1
|
Hwang I, Jeung EB. Embryoid Body Test: A Simple and Reliable Alternative Developmental Toxicity Test. Int J Mol Sci 2024; 25:13566. [PMID: 39769329 PMCID: PMC11676132 DOI: 10.3390/ijms252413566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The increasing emphasis on animal welfare and ethics, as well as the considerable time and cost involved with animal testing, have prompted the replacement of many aspects of animal testing with alternative methods. In the area of developmental toxicity, the embryonic stem cell test (EST) has played a significant role. The EST evaluates toxicity using mouse embryonic stem cells and somatic cells and observes the changes in heartbeat after cardiac differentiation. Nevertheless, the EST is a relatively complex testing process, and an in vitro test requires a long duration. Several attempts have been made to develop a more straightforward testing method than the EST, with improved reproducibility and accuracy, leading to the development of the embryoid body test (EBT). Unlike the EST, which involves cardiac differentiation stages, the EBT verifies toxicity by measuring the changes in the area of the embryoid body. Despite its short testing period and simple procedure, the EBT offers high accuracy and reproducibility and is fully validated through two rounds of validation, making it ready for practical application. The EBT is expected to play a crucial role in the rapidly increasing demand for alternative methods to animal testing, particularly for screening early developmental toxicity.
Collapse
Affiliation(s)
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
| |
Collapse
|
2
|
L Ruden X, Singh A, Marben T, Tang W, O Awonuga A, Ruden DM, E Puscheck E, Feng H, Korzeniewski SJ, A Rappolee D. A Single Cell Transcriptomic Fingerprint of Stressed Premature, Imbalanced Differentiation of Embryonic Stem Cells. Birth Defects Res 2024; 116:e2409. [PMID: 39482570 DOI: 10.1002/bdr2.2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 08/13/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Miscarriages cause a greater loss-of-life than cardiovascular diseases, but knowledge about environmentally induced miscarriages is limited. Cultured naïve pluripotent embryonic stem cells (ESC) differentiate into extra-embryonic endoderm/extraembryonic endoderm (XEN) or formative pluripotent ESC, during the period emulating maximal miscarriage of peri-implantation development. In previous reports using small marker sets, hyperosmotic sorbitol, or retinoic acid (RA) decreased naïve pluripotency and increased XEN by FACS quantitation. METHODS Bulk and single cell (sc)RNAseq analyses of two cultured ESC lines was done, corroborated by qPCR. Transcriptomic responses were analyzed of cultured ESC stressed by Sorbitol, with Leukemia inhibitory factor (LIF + ; stemness growth factor), RA without LIF to control for XEN induction, and compared with normal differentiation (LIF - , ND). RESULTS Sorbitol and RA increase subpopulations of 2-cell embryo-like (2CEL) and XEN sub-lineages; primitive, parietal, and visceral endoderm (VE) cells and suppress formative pluripotency, imbalancing alternate lineage choices of initial naïve pluripotent cultured ESC compared with ND. Although bulk RNAseq and gene ontology (GO) group analyses suggest that stress induces anterior VE-head organizer and placental markers, scRNAseq reveals relatively few cells. But VE and placental markers/cells were in adjacent stressed cell clusters in the UMAP, like recent, normal UMAP of conceptuses. UMAPs show that dose-dependent stress overrides stemness to force premature lineage imbalance. CONCLUSIONS Hyperosmotic stress, and other toxicological stresses, like drugs with active ingredient RA, may cause premature, lineage imbalance, resulting in miscarriages or birth defects.
Collapse
Affiliation(s)
- Ximena L Ruden
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
- Reproductive Stress Inc, Grosse Pointe Farms, Michigan, USA
| | - Aditi Singh
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
- WSU Center for Molecular Medicine and Genetics, Detroit, Michigan, USA
| | - Teya Marben
- University of Detroit, Detroit, Michigan, USA
| | - Wen Tang
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Awoniyi O Awonuga
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
| | - Douglas M Ruden
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
- Institute for Environmental Health Sciences, Wayne State University, Detroit, USA
| | - Elizabeth E Puscheck
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
- Reproductive Stress Inc, Grosse Pointe Farms, Michigan, USA
- Invia Fertility, Chicago, Illinois, USA
| | - Hao Feng
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Steven J Korzeniewski
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Daniel A Rappolee
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
- Reproductive Stress Inc, Grosse Pointe Farms, Michigan, USA
- WSU Center for Molecular Medicine and Genetics, Detroit, Michigan, USA
- Department of Physiology, Wayne State University (WSU), Detroit, Michigan, USA
| |
Collapse
|
3
|
Catlin NR, Cappon GD, Davenport SD, Stethem CM, Nowland WS, Campion SN, Bowman CJ. New approach methodologies to confirm developmental toxicity of pharmaceuticals based on weight of evidence. Reprod Toxicol 2024; 129:108686. [PMID: 39128486 DOI: 10.1016/j.reprotox.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The aim of embryo-fetal developmental toxicity assessments for pharmaceuticals is to inform potential risk of adverse pregnancy outcome, which has traditionally relied on studies in pregnant animals. Recent updates to international safety guidelines (ICH S5R3) have incorporated information on how to use weight of evidence and alternative assays to reduce animal use while still informing risk of fetal harm. Uptake of these alternative approaches has been slow due to limitations in understanding how alternative assays translate to in vivo effects and then relevance to human exposure. To understand the predictivity of new approach methodologies for developmental toxicity (DevTox NAMs), we used two pharmaceutical examples (glasdegib and lorlatinib) to illustrate the value of DevTox NAMs to complement weight of evidence (WoE) assessments while considering the relationship of concentration-effect levels in NAMs to in vivo studies. The in vitro results generated in a battery of assays (mEST, rWEC, zebrafish, and human based stem cells) confirmed the WoE based on literature and further confirmed by preliminary embryo-fetal development data. The data generated for these two compounds supports integrating DevTox NAMs into the developmental toxicity assessment for advanced cancer indications.
Collapse
Affiliation(s)
- Natasha R Catlin
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA.
| | - Gregg D Cappon
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA; Current: ToxStrategies, Katy, TX, USA
| | - Scott D Davenport
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| | - Christine M Stethem
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| | - William S Nowland
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| | - Sarah N Campion
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| | - Christopher J Bowman
- Drug Safety Research and Development, Pfizer Research & Development, Groton, CT, USA
| |
Collapse
|
4
|
Jacobs MN, Hoffmann S, Hollnagel HM, Kern P, Kolle SN, Natsch A, Landsiedel R. Avoiding a reproducibility crisis in regulatory toxicology-on the fundamental role of ring trials. Arch Toxicol 2024; 98:2047-2063. [PMID: 38689008 PMCID: PMC11169035 DOI: 10.1007/s00204-024-03736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024]
Abstract
The ongoing transition from chemical hazard and risk assessment based on animal studies to assessment relying mostly on non-animal data, requires a multitude of novel experimental methods, and this means that guidance on the validation and standardisation of test methods intended for international applicability and acceptance, needs to be updated. These so-called new approach methodologies (NAMs) must be applicable to the chemical regulatory domain and provide reliable data which are relevant to hazard and risk assessment. Confidence in and use of NAMs will depend on their reliability and relevance, and both are thoroughly assessed by validation. Validation is, however, a time- and resource-demanding process. As updates on validation guidance are conducted, the valuable components must be kept: Reliable data are and will remain fundamental. In 2016, the scientific community was made aware of the general crisis in scientific reproducibility-validated methods must not fall into this. In this commentary, we emphasize the central importance of ring trials in the validation of experimental methods. Ring trials are sometimes considered to be a major hold-up with little value added to the validation. Here, we clarify that ring trials are indispensable to demonstrate the robustness and reproducibility of a new method. Further, that methods do fail in method transfer and ring trials due to different stumbling blocks, but these provide learnings to ensure the robustness of new methods. At the same time, we identify what it would take to perform ring trials more efficiently, and how ring trials fit into the much-needed update to the guidance on the validation of NAMs.
Collapse
Affiliation(s)
- Miriam N Jacobs
- Radiation, Chemical and Environmental Hazards (RCE), Department of Toxicology, UK Health Security Agency (UKHSA), Harwell Science and Innovation Campus, Chilton, OX11 0RQ, UK
| | | | | | - Petra Kern
- Procter & Gamble Services Company NV, Strombeek-Bever, Belgium
| | - Susanne N Kolle
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany
| | | | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany.
- Free University of Berlin, Biology, Chemistry and Pharmacy, Pharmacology and Toxicology, Berlin, Germany.
| |
Collapse
|
5
|
Vágó J, Somogyi C, Takács R, Barna KB, Jin EJ, Zákány R, Matta C. Isolation and Culturing of Primary Murine Chondroprogenitor Cells: A Mammalian Model of Chondrogenesis. Curr Protoc 2024; 4:e1005. [PMID: 38465381 DOI: 10.1002/cpz1.1005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Embryonic limb bud-derived micromass cultures are valuable tools for investigating cartilage development, tissue engineering, and therapeutic strategies for cartilage-related disorders. This collection of fine-tuned protocols used in our laboratories outlines step-by-step procedures for the isolation, expansion, and differentiation of primary mouse limb bud cells into chondrogenic micromass cultures. Key aspects covered in these protocols include synchronized fertilization of mice (Basic Protocol 1), tissue dissection, cell isolation, micromass formation, and culture optimization parameters, such as cell density and medium composition (Basic Protocol 2). We describe techniques for characterizing the chondrogenic differentiation process by histological analysis (Basic Protocol 3). The protocols also address common challenges encountered during the process and provide troubleshooting strategies. This fine-tuned comprehensive protocol serves as a valuable resource for scientists working in the fields of developmental biology, cartilage tissue engineering, and regenerative medicine, offering an updated methodology for the study of efficient chondrogenic differentiation and cartilage tissue regeneration. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Synchronized fertilization of mice Basic Protocol 2: Micromass culture of murine embryonic limb bud-derived cells Basic Protocol 3: Qualitative assessment of cartilage matrix production using Alcian blue staining.
Collapse
Affiliation(s)
- Judit Vágó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary
- These authors contributed equally to the work
| | - Csilla Somogyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary
- These authors contributed equally to the work
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary
| | - Krisztina Bíróné Barna
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary
| | - Eun-Jung Jin
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, South Korea
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
6
|
Hamm JT, Hsieh JH, Roberts GK, Collins B, Gorospe J, Sparrow B, Walker NJ, Truong L, Tanguay RL, Dyballa S, Miñana R, Schiavone V, Terriente J, Weiner A, Muriana A, Quevedo C, Ryan KR. Interlaboratory Study on Zebrafish in Toxicology: Systematic Evaluation of the Application of Zebrafish in Toxicology's (SEAZIT's) Evaluation of Developmental Toxicity. TOXICS 2024; 12:93. [PMID: 38276729 PMCID: PMC10820928 DOI: 10.3390/toxics12010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Embryonic zebrafish represent a useful test system to screen substances for their ability to perturb development. The exposure scenarios, endpoints captured, and data analysis vary among the laboratories who conduct screening. A lack of harmonization impedes the comparison of the substance potency and toxicity outcomes across laboratories and may hinder the broader adoption of this model for regulatory use. The Systematic Evaluation of the Application of Zebrafish in Toxicology (SEAZIT) initiative was developed to investigate the sources of variability in toxicity testing. This initiative involved an interlaboratory study to determine whether experimental parameters altered the developmental toxicity of a set of 42 substances (3 tested in duplicate) in three diverse laboratories. An initial dose-range-finding study using in-house protocols was followed by a definitive study using four experimental conditions: chorion-on and chorion-off using both static and static renewal exposures. We observed reasonable agreement across the three laboratories as 33 of 42 test substances (78.6%) had the same activity call. However, the differences in potency seen using variable in-house protocols emphasizes the importance of harmonization of the exposure variables under evaluation in the second phase of this study. The outcome of the Def will facilitate future practical discussions on harmonization within the zebrafish research community.
Collapse
Affiliation(s)
- Jon T. Hamm
- Inotiv, P.O. Box 13501, Research Triangle Park, NC 27709, USA
| | - Jui-Hua Hsieh
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Georgia K. Roberts
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Bradley Collins
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jenni Gorospe
- Battelle Memorial Institute, Columbus, OH 43201, USA
| | | | - Nigel J. Walker
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | | | - Rafael Miñana
- ZeClinics SL., 08980 Barcelona, Spain
- CTI Laboratory Services Spain SL., 48160 Bilbao, Spain
| | | | | | - Andrea Weiner
- BBD BioPhenix SL. (Biobide), 20009 San Sebastian, Spain
| | | | - Celia Quevedo
- BBD BioPhenix SL. (Biobide), 20009 San Sebastian, Spain
| | - Kristen R. Ryan
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
7
|
Settivari RS, Martini A, Wijeyesakere S, Toltin A, LeBaron MJ. Application of Evolving New Approach Methodologies for Chemical Safety Assessment. A COMPREHENSIVE GUIDE TO TOXICOLOGY IN NONCLINICAL DRUG DEVELOPMENT 2024:977-1015. [DOI: 10.1016/b978-0-323-85704-8.00026-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Hodjat M, Abdollahi M. A Modified Murine Embryonic Stem Cell Test for Evaluating the Teratogenic Effects of Drugs. Methods Mol Biol 2024; 2753:217-230. [PMID: 38285341 DOI: 10.1007/978-1-0716-3625-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Animal-based test systems have traditionally been used to screen for the potential teratogenic activity of drugs. Still, their deficits in predicting precise human-specific outcomes and ethical concerns have led to a need for alternative approaches. In vitro, teratogenicity testing using cell cultures or other in vitro systems is a potential alternative. Of the different in vitro platforms, the mouse embryonic stem cell test (mEST) is currently the most widely used and validated in vitro test for assessing the potential effects of teratogens on early embryonic development. The mEST involves exposing mouse embryonic stem cells to the test compound and monitoring their differentiation for several days.Nevertheless, its predictive ability was comparatively lower when distinguishing weak developmental toxicants from non-toxic substances. Since then, several modifications and adaptations of the mEST protocol have been developed. This chapter describes an alternative method based on molecular approaches to predict embryotoxicity. This method, originated from the mEST, analyzes the expression of differentiation genes involved in the development of mesoderm, endoderm, and stoderm and allows screening embryo-toxicants with different mechanisms of action. The hanging drops embryoid bodies used in the original mEST protocol have been replaced with monolayer culture, and thus the process has been shortened. In general, the method shows higher predictability compared with the traditional ones.
Collapse
Affiliation(s)
- Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
9
|
Myden A, Stalford SA, Fowkes A, White E, Hirose A, Yamada T. Enhancing developmental and reproductive toxicity knowledge: A new AOP stemming from glutathione depletion. Curr Res Toxicol 2023; 5:100124. [PMID: 37808440 PMCID: PMC10556594 DOI: 10.1016/j.crtox.2023.100124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/14/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Integrated approaches to testing and assessments (IATAs) have been proposed as a method to organise new approach methodologies in order to replace traditional animal testing for chemical safety assessments. To capture the mechanistic aspects of toxicity assessments, IATAs can be framed around the adverse outcome pathway (AOP) concept. To utilise AOPs fully in this context, a sufficient number of pathways need to be present to develop fit for purpose IATAs. In silico approaches can support IATA through the provision of predictive models and also through data integration to derive conclusions using a weight-of-evidence approach. To examine the maturity of a developmental and reproductive toxicity (DART) AOP network derived from the literature, an assessment of its coverage was performed against a novel toxicity dataset. A dataset of diverse compounds, with data from studies performed according to OECD test guidelines TG-421 and TG-422, was curated to test the performance of an in silico model based on the AOP network - allowing for the identification of knowledge gaps within the network. One such gap in the knowledge was filled through the development of an AOP stemming from the molecular initiating event 'glutathione reaction with an electrophile' leading to male fertility toxicity. The creation of the AOP provided the mechanistic rationale for the curation of pre-existing structural alerts to relevant key events. Integrating this new knowledge and associated alerts into the DART AOP network will improve its coverage of DART-relevant chemical space. In addition, broadening the coverage of AOPs for a particular regulatory endpoint may facilitate the development of, and confidence in, robust IATAs.
Collapse
Affiliation(s)
- Alun Myden
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Susanne A. Stalford
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Adrian Fowkes
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Emma White
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Akihiko Hirose
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Takashi Yamada
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| |
Collapse
|
10
|
Wang H, Meng Z, Zhao CY, Xiao YH, Zeng H, Lian H, Guan RQ, Liu Y, Feng ZG, Han QQ. Research progress of implantation materials and its biological evaluation. Biomed Mater 2023; 18:062001. [PMID: 37591254 DOI: 10.1088/1748-605x/acf17b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
With the development of modern material science, life science and medical science, implantation materials are widely employed in clinical fields. In recent years, these materials have also evolved from inert supports or functional substitutes to bioactive materials able to trigger or promote the regenerative potential of tissues. Reasonable biological evaluation of implantation materials is the premise to make sure their safe application in clinical practice. With the continual development of implantation materials and the emergence of new implantation materials, new challenges to biological evaluation have been presented. In this paper, the research progress of implantation materials, the progress of biological evaluation methods, and also the characteristics of biocompatibility evaluation for novel implantation materials, like animal-derived implantation materials, nerve contact implantation materials, nanomaterials and tissue-engineered medical products were reviewed in order to provide references for the rational biological evaluation of implantable materials.
Collapse
Affiliation(s)
- Han Wang
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Zhu Meng
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Chen-Yu Zhao
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Yong-Hao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Hang Zeng
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
- China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Huan Lian
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Rui-Qin Guan
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
- Yantai University, Yantai 264005, People's Republic of China
| | - Yu Liu
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
- Yantai University, Yantai 264005, People's Republic of China
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Qian-Qian Han
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
| |
Collapse
|
11
|
Steger-Hartmann T, Clark M. Can Historical Control Group Data Be Used to Replace Concurrent Controls in Animal Studies? Toxicol Pathol 2023; 51:361-362. [PMID: 37905979 DOI: 10.1177/01926233231208987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The availability of large amounts of high-quality control data from tightly controlled regulated animal safety data has created the idea to re-use these data beyond its classical applications of quality control, identification of treatment-related effects and assessing effect-size relevance for building virtual control groups (VCGs). While the ethical and cost-saving aspects of such a concept are immediately evident, the potential challenges need to be carefully considered to avoid any effect which could lower the sensitivity of an animal study to detect adverse events, safety thresholds, target organs, or biomarkers. In our brief communication, we summarize the current discussion regarding VCGs and propose a path forward how the replacement of concurrent control with VCGs resulting from historical data could be systematically assessed and to come to conclusions regarding the scientific value of the concept.
Collapse
|
12
|
Chabchoubi IB, Bouchhima RA, Louhichi N, Baanannou A, Masmoudi S, Hentati O. Short-term effects of various non-steroidal anti-inflammatory drugs (NSAIDs) on Danio rerio embryos. MethodsX 2023; 10:102215. [PMID: 37251652 PMCID: PMC10209031 DOI: 10.1016/j.mex.2023.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Due to the widespread use of non-steroidal anti-inflammatory drugs (NSAIDs) without a medical prescription and their frequent prevalence in aquatic habitats, there are major health and environmental issues. NSAIDs have been found in surface water and wastewater in concentrations ranging from ng/L to μg/L all over the world. The purpose of this study was to determine the relationship between NSAIDs (diclofenac, ketoprofen, paracetamol and ibuprofen) exposure and associated adverse effects in the assessment of indirect human health risks posed by Danio rerio (zebrafish) and Environmental Risk Assessment (ERA) of these NSAIDs in aquatic environments. Therefore, the objectives of this study were to (i) reveal abnormality endpoints of early developmental stages, after exposure of zebrafish and (ii) perform an ecological risk assessment of aquatic organisms upon exposure to NSAIDs detected in surface waters based on the risk quotients (RQs) method. According to the toxicity data collected, all of the malformations appeared after diclofenac exposure at all concentrations. The most notable malformations were the lack of pigmentation and an increase in yolk sac volume, with EC50 values of 0.6 and 1.03 mg/L, respectively. The results obtained for the ERA revealed RQs higher than 1 for all the four NSAIDs chosen, posing ecotoxicological pressure in aquatic environments. Overall, our findings provide a critical contribution to the formulation of high-priority actions, sustainable strategies and strict regulations that minimize the negative effects of NSAIDs on the aquatic ecosystem.•To determine the LC50, lethal conditions such as coagulation, absence of heartbeat and blood flow, absence of tail separation and development of somites were taken into account.•The EC50 was calculated using sublethal parameters such as blood coagulation, pericardial edema, yolk sac edema or hypertrophy.•The 4 compounds present a high risk individually and in mixture with a RQ >> 1.
Collapse
Affiliation(s)
- Imen Ben Chabchoubi
- Institut Supérieur de Biotechnologie de Monastir (ISBM), Rue Taher Haddad, 5000, University of Monastir, Monastir, Tunisia
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 4, 3038, University of Sfax, Sfax, Tunisia
| | - Rim Attya Bouchhima
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 4, 3038, University of Sfax, Sfax, Tunisia
| | - Nacim Louhichi
- Unité Cibles pour le Diagnostic et la Thérapie, Route Sidi Mansour, Km 6, 3018, Sfax, Center of Biotechnology of Sfax (CBS), Tunisia
| | - Aissette Baanannou
- Unité Cibles pour le Diagnostic et la Thérapie, Route Sidi Mansour, Km 6, 3018, Sfax, Center of Biotechnology of Sfax (CBS), Tunisia
| | - Saber Masmoudi
- Unité Cibles pour le Diagnostic et la Thérapie, Route Sidi Mansour, Km 6, 3018, Sfax, Center of Biotechnology of Sfax (CBS), Tunisia
| | - Olfa Hentati
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 4, 3038, University of Sfax, Sfax, Tunisia
- Institut Supérieur de Biotechnologie de Sfax (ISBS), Route de Soukra, Km 4, 3038, University of Sfax, Sfax, Tunisia
| |
Collapse
|
13
|
Li L, Mou X, Xie H, Zhang A, Li J, Wang R, Seid A, Tang LY, Wang L, Leung PC, Spielmann H, Wang CC, Fan X. In vitro tests to evaluate embryotoxicity and irritation of Chinese herbal medicine (Pentaherbs formulation) for atopic dermatitis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116149. [PMID: 36632857 DOI: 10.1016/j.jep.2023.116149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atopic dermatitis (AD) is a common chronic inflammatory skin disorder and its prevalence is increasing in the last few decades. No treatment can cure the condition. Pregnancy often worsens the clinical manifestation. There are considerable interests in Chinese Herbal Medicine (CHM) as an alternative treatment for AD. A well tolerated CHM formula (Pentaherbs formulation, PHF) has been proven efficacious in improving life quality and reducing topical corticosteroid use in children with moderate-to-severe AD. However, safety data of PHF are not available. AIM OF THE STUDY Our study aimed to evaluate the safety of PHF and its 5 individual herbal extracts, including embryotoxicity by Embryonic Stem Cell Test (EST) and irritation by Skin Irritation Test (SIT). MATERIALS AND METHODS Quality of 5 herbal extracts of PHF was confirmed by chromatography. In EST, mouse embryonic stem cell line (D3) and mouse fibroblast cell line (3T3) were used to study potential embryotoxicity. Three endpoints were assessed by concentration-response curves after 10 days' culture: 50% inhibition of D3 differentiation into beating cardiomyocytes (ID50D3), 50% cytotoxic effects on D3 (IC50D3) and on fibroblasts (IC503T3). A biostatistically based prediction model (PM) was applied to predict the embryotoxic potentials of each CHM. In SIT, epidermis equivalent commercially available kits (EpiDerm™) were used, and concentration-viability curves were obtained by MTT assay to detect skin irritations of each CHM. RESULTS Chemical authentication confirmed that 5 test herbal extracts contained their main active compounds. EST results indicated that the formula PHF and its individual CHMs were non-embryotoxic, except one CHM, Amur Corktree Bark (Huang Bai, Phellodendron chinense C.K.Schneid), was weakly embryotoxic. SIT results showed that cell viability was above 50% after treatment with different concentrations of all tested CHMs. CONCLUSIONS Our in vitro tests provided preliminary evidence for safety of the formula PHF in embryonic stem cell test and skin irritation model, but PHF shall be cautiously used in pregnant women with AD. Further studies are needed to support its clinical application as an alternative treatment for AD, especially to the patients who plan for pregnancy or at lactation stages.
Collapse
Affiliation(s)
- Lu Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China; Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China; Department of Obstetrics and Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Sichuan University-Chinese University of Hong Kong Joint Reproductive Medicine Laboratory, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| | - Xuan Mou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China.
| | - Hongliang Xie
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China.
| | - Aolin Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China.
| | - Junwei Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China.
| | - Rongyun Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - André Seid
- Institut für Pharmazie (Pharmakologie und Toxikologie), Freie Universität Berlin, Berlin, Germany.
| | - Ling Yin Tang
- Department of Obstetrics and Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Sichuan University-Chinese University of Hong Kong Joint Reproductive Medicine Laboratory, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| | - Ling Wang
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| | - Horst Spielmann
- Institut für Pharmazie (Pharmakologie und Toxikologie), Freie Universität Berlin, Berlin, Germany.
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Sichuan University-Chinese University of Hong Kong Joint Reproductive Medicine Laboratory, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
| |
Collapse
|
14
|
Amel A, Rossouw S, Goolam M. Gastruloids: A Novel System for Disease Modelling and Drug Testing. Stem Cell Rev Rep 2023; 19:104-113. [PMID: 36308705 DOI: 10.1007/s12015-022-10462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 01/29/2023]
Abstract
By virtue of its inaccessible nature, mammalian implantation stage development has remained one of the most enigmatic and hard to investigate periods of embryogenesis. Derived from pluripotent stem cells, gastruloids recapitulate key aspects of gastrula-stage embryos and have emerged as a powerful in vitro tool to study the architectural features of early post-implantation embryos. While the majority of the work in this emerging field has focused on the use of gastruloids to model embryogenesis, their tractable nature and suitability for high-throughput scaling, has presented an unprecedented opportunity to investigate both developmental and environmental aberrations to the embryo as they occur in vitro. This review summarises the recent developments in the use of gastruloids to model congenital anomalies, their usage in teratogenicity testing, and the current limitations of this emerging field.
Collapse
Affiliation(s)
- Atoosa Amel
- Department of Human Biology, University of Cape Town, 7925, Cape Town, South Africa
| | - Simoné Rossouw
- Department of Human Biology, University of Cape Town, 7925, Cape Town, South Africa
| | - Mubeen Goolam
- Department of Human Biology, University of Cape Town, 7925, Cape Town, South Africa. .,UCT Neuroscience Institute, Cape Town, South Africa.
| |
Collapse
|
15
|
Niethammer M, Burgdorf T, Wistorf E, Schönfelder G, Kleinsorge M. In vitro models of human development and their potential application in developmental toxicity testing. Development 2022; 149:276688. [DOI: 10.1242/dev.200933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Recent publications describe the development of in vitro models of human development, for which applications in developmental toxicity testing can be envisaged. To date, these regulatory assessments have exclusively been performed in animal studies, the relevance of which to adverse reactions in humans may be questioned. Recently developed cell culture-based models of embryo-fetal development, however, do not yet exhibit sufficient levels of standardisation and reproducibility. Here, the advantages and shortcomings of both in vivo and in vitro developmental toxicity testing are addressed, as well as the possibility of integrated testing strategies as a viable option in the near future.
Collapse
Affiliation(s)
- Mirjam Niethammer
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R) 1 , 10589 Berlin , Germany
| | - Tanja Burgdorf
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R) 1 , 10589 Berlin , Germany
| | - Elisa Wistorf
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R) 1 , 10589 Berlin , Germany
| | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R) 1 , 10589 Berlin , Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health 2 , 10117 Berlin , Germany
| | - Mandy Kleinsorge
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R) 1 , 10589 Berlin , Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin 3 , 10178 Berlin , Germany
| |
Collapse
|
16
|
Marikawa Y. Toward better assessments of developmental toxicity using stem cell-based in vitro embryogenesis models. Birth Defects Res 2022; 114:972-982. [PMID: 35102709 PMCID: PMC9339025 DOI: 10.1002/bdr2.1984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022]
Abstract
In the past few decades, pluripotent stem cells have been explored as nonanimal alternatives to assess the developmental toxicity of chemicals. To date, numerous versions of stem cell-based assays have been reported that are allegedly effective. Nonetheless, none of the assays has become the gold standard in developmental toxicity assessment. Why? This article discusses several issues in the hope of facilitating the refinement of stem cell assays and their acceptance as the cornerstone in predictive developmental toxicology. Each stem cell assay is built on a limited representation of embryogenesis, so that multiple assays are needed to detect the diverse effects of various chemicals. To validate and compare the strengths and weaknesses of individual assays, standardized lists of reference chemicals should be established. Reference lists should consist of exposures defined by toxicokinetic data, namely maternal plasma concentrations that cause embryonic death or malformations, and also by the effects on the molecular machineries that control embryogenesis. Although not entirely replacing human or animal tests, carefully selected stem cell assays should serve as practical and ethical alternatives to proactively identify chemical exposures that disturb embryogenesis. To achieve this goal, unprecedented levels of coordination and conviction are required among research and regulatory communities.
Collapse
Affiliation(s)
- Yusuke Marikawa
- Department of Anatomy, Biochemistry and PhysiologyInstitute for Biogenesis Research, University of Hawaii John A. Burns School of MedicineHonoluluHawaiiUSA
| |
Collapse
|
17
|
Emerging biotechnology applications in natural product and synthetic pharmaceutical analyses. Acta Pharm Sin B 2022; 12:4075-4097. [DOI: 10.1016/j.apsb.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
|
18
|
The DevTox Germ Layer Reporter Platform: An Assay Adaptation of the Human Pluripotent Stem Cell Test. TOXICS 2022; 10:toxics10070392. [PMID: 35878297 PMCID: PMC9321663 DOI: 10.3390/toxics10070392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Environmental chemical exposures are a contributing factor to birth defects affecting infant morbidity and mortality. The USA EPA is committed to developing new approach methods (NAMs) to detect chemical risks to susceptible populations, including pregnant women. NAM-based coverage for cellular mechanisms associated with early human development could enhance identification of potential developmental toxicants (DevTox) for new and existing data-poor chemicals. The human pluripotent stem cell test (hPST) is an in vitro test method for rapidly identifying potential human developmental toxicants that employs directed differentiation of embryonic stem cells to measure reductions in SOX17 biomarker expression and nuclear localization. The objective of this study was to expand on the hPST principles to develop a model platform (DevTox GLR) that utilizes the transgenic RUES2-GLR cell line expressing fluorescent reporter fusion protein biomarkers for SOX17 (endoderm marker), BRA (mesoderm marker), and SOX2 (ectoderm and pluripotency marker). Initial assay adaption to definitive endoderm (DevTox GLR-Endo) was performed to emulate the hPST SOX17 endpoint and enable comparative evaluation of concordant chemical effects. Assay duration was reduced to two days and screening throughput scaled to 384-well format for enhanced speed and efficiency. Assay performance for 66 chemicals derived from reference and training set data resulted in a balanced accuracy of 72% (79% sensitivity and 65% specificity). The DevTox GLR-Endo assay demonstrates successful adaptation of the hPST concept with increased throughput, shorter assay duration, and minimal endpoint processing. The DevTox GLR model platform expands the in vitro NAM toolbox to rapidly identify potential developmental hazards and mechanistically characterize toxicant effects on pathways and processes associated with early human development.
Collapse
|
19
|
Piersma AH, Baker NC, Daston GP, Flick B, Fujiwara M, Knudsen TB, Spielmann H, Suzuki N, Tsaioun K, Kojima H. Pluripotent stem cell assays: Modalities and applications for predictive developmental toxicity. Curr Res Toxicol 2022; 3:100074. [PMID: 35633891 PMCID: PMC9130094 DOI: 10.1016/j.crtox.2022.100074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
This manuscript provides a review focused on embryonic stem cell-based models and their place within the landscape of alternative developmental toxicity assays. Against the background of the principles of developmental toxicology, the wide diversity of alternative methods using pluripotent stem cells developed in this area over the past half century is reviewed. In order to provide an overview of available models, a systematic scoping review was conducted following a published protocol with inclusion criteria, which were applied to select the assays. Critical aspects including biological domain, readout endpoint, availability of standardized protocols, chemical domain, reproducibility and predictive power of each assay are described in detail, in order to review the applicability and limitations of the platform in general and progress moving forward to implementation. The horizon of innovative routes of promoting regulatory implementation of alternative methods is scanned, and recommendations for further work are given.
Collapse
Affiliation(s)
- Aldert H. Piersma
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - George P. Daston
- Global Product Stewardship, The Procter & Gamble Company, Cincinnati, OH, USA
| | - Burkhard Flick
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany
| | - Michio Fujiwara
- Drug Safety Research Labs, Astellas Pharma Inc., Tsukuba-shi, Japan
| | - Thomas B. Knudsen
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, USA
| | - Horst Spielmann
- Institute for Pharmacy, Faculty of Biology, Chemistry, and Pharmacy, Freie Universität, Berlin, Germany
| | - Noriyuki Suzuki
- Cell Science Group Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | - Katya Tsaioun
- Evidence-Based Toxicology Collaboration at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hajime Kojima
- National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
20
|
Chang X, Tan YM, Allen DG, Bell S, Brown PC, Browning L, Ceger P, Gearhart J, Hakkinen PJ, Kabadi SV, Kleinstreuer NC, Lumen A, Matheson J, Paini A, Pangburn HA, Petersen EJ, Reinke EN, Ribeiro AJS, Sipes N, Sweeney LM, Wambaugh JF, Wange R, Wetmore BA, Mumtaz M. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. TOXICS 2022; 10:232. [PMID: 35622645 PMCID: PMC9143724 DOI: 10.3390/toxics10050232] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023]
Abstract
During the past few decades, the science of toxicology has been undergoing a transformation from observational to predictive science. New approach methodologies (NAMs), including in vitro assays, in silico models, read-across, and in vitro to in vivo extrapolation (IVIVE), are being developed to reduce, refine, or replace whole animal testing, encouraging the judicious use of time and resources. Some of these methods have advanced past the exploratory research stage and are beginning to gain acceptance for the risk assessment of chemicals. A review of the recent literature reveals a burst of IVIVE publications over the past decade. In this review, we propose operational definitions for IVIVE, present literature examples for several common toxicity endpoints, and highlight their implications in decision-making processes across various federal agencies, as well as international organizations, including those in the European Union (EU). The current challenges and future needs are also summarized for IVIVE. In addition to refining and reducing the number of animals in traditional toxicity testing protocols and being used for prioritizing chemical testing, the goal to use IVIVE to facilitate the replacement of animal models can be achieved through their continued evolution and development, including a strategic plan to qualify IVIVE methods for regulatory acceptance.
Collapse
Affiliation(s)
- Xiaoqing Chang
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Yu-Mei Tan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, 109 T.W. Alexander Drive, Durham, NC 27709, USA;
| | - David G. Allen
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Shannon Bell
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Paul C. Brown
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Lauren Browning
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Patricia Ceger
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Jeffery Gearhart
- The Henry M. Jackson Foundation, Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Pertti J. Hakkinen
- National Library of Medicine, National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD 20894, USA;
| | - Shruti V. Kabadi
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, 5001 Campus Drive, HFS-275, College Park, MD 20740, USA;
| | - Nicole C. Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, P.O. Box 12233, Research Triangle Park, NC 27709, USA;
| | - Annie Lumen
- U.S. Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA;
| | - Joanna Matheson
- U.S. Consumer Product Safety Commission, Division of Toxicology and Risk Assessment, 5 Research Place, Rockville, MD 20850, USA;
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy;
| | - Heather A. Pangburn
- Air Force Research Laboratory, 711 Human Performance Wing, 2729 R Street, Area B, Building 837, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Elijah J. Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| | - Emily N. Reinke
- U.S. Army Public Health Center, 8252 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA;
| | - Alexandre J. S. Ribeiro
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Nisha Sipes
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Lisa M. Sweeney
- UES, Inc., 4401 Dayton-Xenia Road, Beavercreek, OH 45432, Assigned to Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - John F. Wambaugh
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Ronald Wange
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Barbara A. Wetmore
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, Office of the Associate Director for Science, 1600 Clifton Road, S102-2, Atlanta, GA 30333, USA
| |
Collapse
|
21
|
Valentin JP, Hoffmann P, Ortemann-Renon C, Koerner J, Pierson J, Gintant G, Willard J, Garnett C, Skinner M, Vargas HM, Wisialowski T, Pugsley MK. The Challenges of Predicting Drug-Induced QTc Prolongation in Humans. Toxicol Sci 2022; 187:3-24. [PMID: 35148401 PMCID: PMC9041548 DOI: 10.1093/toxsci/kfac013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The content of this article derives from a Health and Environmental Sciences Institute (HESI) consortium with a focus to improve cardiac safety during drug development. A detailed literature review was conducted to evaluate the concordance between nonclinical repolarization assays and the clinical thorough QT (TQT) study. Food and Drug Administration and HESI developed a joint database of nonclinical and clinical data, and a retrospective analysis of 150 anonymized drug candidates was reviewed to compare the performance of 3 standard nonclinical assays with clinical TQT study findings as well as investigate mechanism(s) potentially responsible for apparent discrepancies identified. The nonclinical assays were functional (IKr) current block (Human ether-a-go-go related gene), action potential duration, and corrected QT interval in animals (in vivo corrected QT). Although these nonclinical assays demonstrated good specificity for predicting negative clinical QT prolongation, they had relatively poor sensitivity for predicting positive clinical QT prolongation. After review, 28 discordant TQT-positive drugs were identified. This article provides an overview of direct and indirect mechanisms responsible for QT prolongation and theoretical reasons for lack of concordance between clinical TQT studies and nonclinical assays. We examine 6 specific and discordant TQT-positive drugs as case examples. These were derived from the unique HESI/Food and Drug Administration database. We would like to emphasize some reasons for discordant data including, insufficient or inadequate nonclinical data, effects of the drug on other cardiac ion channels, and indirect and/or nonelectrophysiological effects of drugs, including altered heart rate. We also outline best practices that were developed based upon our evaluation.
Collapse
Affiliation(s)
- Jean-Pierre Valentin
- Department of Investigative Toxicology, UCB Biopharma SRL, Braine-l’Alleud B-1420, Belgium
| | | | | | - John Koerner
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland 20993, USA
| | - Jennifer Pierson
- Health and Environmental Sciences Institute, Washington, District of Columbia 20005, USA
| | | | - James Willard
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland 20993, USA
| | - Christine Garnett
- Center for Drug Evaluation and Research, FDA, Silver Spring, Maryland 20993, USA
| | | | - Hugo M Vargas
- Department of Safety Pharmacology & Animal Research Center, Amgen, Thousand Oaks, California 91320, USA
| | - Todd Wisialowski
- Department of Safety Pharmacology, Pfizer, Groton, Connecticut 06340, USA
| | - Michael K Pugsley
- Department of Toxicology, Cytokinetics, South San Francisco, California 94080, USA
| |
Collapse
|
22
|
The Human Induced Pluripotent Stem Cell Test as an Alternative Method for Embryotoxicity Testing. Int J Mol Sci 2022; 23:ijms23063295. [PMID: 35328717 PMCID: PMC8950674 DOI: 10.3390/ijms23063295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
The evaluation of substances for their potency to induce embryotoxicity is controlled by safety regulations. Test guidelines for reproductive and developmental toxicity rely mainly on animal studies, which make up the majority of animal usage in regulatory toxicology. Therefore, there is an urgent need for alternative in vitro methods to follow the 3R principles. To improve human safety, cell models based on human cells are of great interest to overcome species differences. Here, human induced pluripotent stem cells (hiPSCs) are an ideal cell source as they largely recapitulate embryonic stem cells without bearing ethical concerns and they are able to differentiate into most cell types of the human body. Here, we set up and characterized a fetal bovine serum (FBS)-free hiPSC-based in vitro test method, called the human induced pluripotent stem cell test (hiPS Test), to evaluate the embryotoxic potential of substances. After 10 days in culture, hiPSCs develop into beating cardiomyocytes. As terminal endpoint evaluations, cell viability, qPCR analyses as well as beating frequency and area of beating cardiomyocytes by video analyses are measured. The embryotoxic positive and non-embryotoxic negative controls, 5-Fluorouracil (5-FU) and Penicillin G (PenG), respectively, were correctly assessed in the hiPS Test. More compounds need to be screened in the future for defining the assay’s applicability domain, which will inform us of the suitability of the hiPS Test for detecting adverse effects of substances on embryonic development.
Collapse
|
23
|
Jamalpoor A, Hartvelt S, Dimopoulou M, Zwetsloot T, Brandsma I, Racz PI, Osterlund T, Hendriks G. A novel human stem cell-based biomarker assay for in vitro assessment of developmental toxicity. Birth Defects Res 2022; 114:1210-1228. [PMID: 35289129 DOI: 10.1002/bdr2.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Testing for developmental toxicity according to the current regulatory guidelines requires large numbers of animals, making these tests very resource intensive, time-consuming, and ethically debatable. Over the past decades, several alternative in vitro assays have been developed, but these often suffered from low predictability and the inability to provide a mechanistic understanding of developmental toxicity. METHODS To identify embryotoxic compounds, we developed a human induced pluripotent stem cells (hiPSCs)-based biomarker assay. The assay is based on the differentiation of hiPSCs into functional cardiomyocytes and hepatocytes. Proper stem cell differentiation is investigated by morphological profiling and assessment of time-dependent expression patterns of cell-specific biomarkers. In this system, a decrease in the expression of the biomarker genes and morphology disruption of the differentiated cells following compound treatment indicated teratogenicity. RESULTS The hiPSCs-based biomarker assay was validated with 21 well-established in vivo animal teratogenic and non-teratogenic compounds during cardiomyocyte and hepatocyte differentiation. The in vivo teratogenic compounds (e.g., thalidomide and valproic acid) markedly disrupted morphology, functionality, and the expression pattern of the biomarker genes in either one or both cell types. Non-teratogenic chemicals generally had no effect on the morphology of differentiated cells, nor on the expression of the biomarker genes. Compared to the in vivo classification, the assay achieved high accuracy (91%), sensitivity (91%), and specificity (90%). CONCLUSION The assay, which we named ReproTracker®, is a state-of-the-art in vitro method that can identify the teratogenicity potential of new pharmaceuticals and chemicals and signify the outcome of in vivo test systems.
Collapse
Affiliation(s)
- Amer Jamalpoor
- Toxys B.V., Leiden Bio Science Park, Oegstgeest, The Netherlands
| | - Sabine Hartvelt
- Toxys B.V., Leiden Bio Science Park, Oegstgeest, The Netherlands
| | - Myrto Dimopoulou
- Toxys B.V., Leiden Bio Science Park, Oegstgeest, The Netherlands
| | - Tom Zwetsloot
- Toxys B.V., Leiden Bio Science Park, Oegstgeest, The Netherlands
| | - Inger Brandsma
- Toxys B.V., Leiden Bio Science Park, Oegstgeest, The Netherlands
| | - Peter I Racz
- Toxys B.V., Leiden Bio Science Park, Oegstgeest, The Netherlands
| | - Torben Osterlund
- Toxys B.V., Leiden Bio Science Park, Oegstgeest, The Netherlands
| | - Giel Hendriks
- Toxys B.V., Leiden Bio Science Park, Oegstgeest, The Netherlands
| |
Collapse
|
24
|
Establishment of a developmental toxicity assay based on human iPSC reporter to detect FGF signal disruption. iScience 2022; 25:103770. [PMID: 35146387 PMCID: PMC8819105 DOI: 10.1016/j.isci.2022.103770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
The number of man-made chemicals has increased exponentially recently, and exposure to some of them can induce fetal malformations. Because complex and precisely programmed signaling pathways play important roles in developmental processes, their disruption by external chemicals often triggers developmental toxicity. However, highly accurate and high-throughput screening assays for potential developmental toxicants are currently lacking. In this study, we propose a reporter assay that utilizes human-induced pluripotent stem cells (iPSCs) to detect changes in fibroblast growth factor signaling, which is essential for limb morphogenesis. The dynamics of this signaling after exposure to a chemical were integrated to estimate the degree of signaling disruption, which afforded a good prediction of the capacity of chemicals listed in the ECVAM International Validation Study that induce limb malformations. This study presents an initial report of a human iPSC-based signaling disruption assay, which could be useful for the screening of potential developmental toxicants. Human iPSC-based FGF signal disruption reporter system was established FGF signal disruption was a good indicator of limb malformation-related toxicants Integration of dynamic FGF signal disruption results improved assay performance
Collapse
|
25
|
Fragki S, Hoogenveen R, van Oostrom C, Schwillens P, Piersma AH, Zeilmaker MJ. Integrating in vitro chemical transplacental passage into a generic PBK model: A QIVIVE approach. Toxicology 2022; 465:153060. [PMID: 34871708 DOI: 10.1016/j.tox.2021.153060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022]
Abstract
With the increasing application of cell culture models as primary tools for predicting chemical safety, the quantitative extrapolation of the effective dose from in vitro to in vivo (QIVIVE) is of increasing importance. For developmental toxicity this requires scaling the in vitro observed dose-response characteristics to in vivo fetal exposure, while integrating maternal in vivo kinetics during pregnancy, in particular transplacental transfer. Here the transfer of substances across the placental barrier, has been studied using the in vitro BeWo cell assay and six embryotoxic compounds of different kinetic complexity. The BeWo assay results were incorporated in an existing generic Physiologically Based Kinetic (PBK) model which for this purpose was extended with rat pregnancy. Finally, as a "proof of principle", the BeWo PBK model was used to perform a QIVIVE based on developmental toxicity as observed in various different in vitro toxicity assays. The BeWo results illustrated different transport profiles of the chemicals across the BeWo monolayer, allocating the substances into two distinct groups: the 'quickly-transported' and the 'slowly-transported'. BeWo PBK exposure simulations during gestation were compared to experimentally measured maternal blood and fetal concentrations and a reverse dosimetry approach was applied to translate in vitro observed embryotoxicity into equivalent in vivo dose-response curves. This approach allowed for a direct comparison of the in vitro dose-response characteristics as observed in the Whole Embryo Culture (WEC), and the Embryonic Stem Cell test (cardiac:ESTc and neural:ESTn) with in vivo rat developmental toxicity data. Overall, the in vitro to in vivo comparisons suggest a promising future for the application of such QIVIVE methodologies for screening and prioritization purposes of developmental toxicants. Nevertheless, the clear need for further improvements is acknowledged for a wider application of the approach in chemical safety assessment.
Collapse
Affiliation(s)
- Styliani Fragki
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Rudolf Hoogenveen
- Centre for Statistics, Informatics and Modelling, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Conny van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Paul Schwillens
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD, Utrecht, the Netherlands
| | - Marco J Zeilmaker
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
26
|
Kanno S, Okubo Y, Kageyama T, Yan L, Fukuda J. Integrated fibroblast growth factor signal disruptions in human iPS cells for prediction of teratogenic toxicity of chemicals. J Biosci Bioeng 2022; 133:291-299. [PMID: 35034848 DOI: 10.1016/j.jbiosc.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
The number of man-made chemicals has increased rapidly in recent decades, with certain chemicals potentially causing malformations in fetuses. Although the toxicities of chemicals have been tested in animals, chemicals that are not teratogenic in rodents can cause severe malformations in humans, owing to the differences in the susceptibility to the teratogenicity of chemicals among species. One possible cause of such species differences, other than pharmacokinetics, could be the difference in sensitivity to such chemicals at the cellular level. Therefore, a human cell-based high-throughput assay system is needed for detecting potential teratogenic chemicals. In this study, we proposed a signal reporter assay using human induced pluripotent stem cells (iPSCs). Because developmental processes are governed by highly intricate and precisely programmed signaling pathways, external chemical-induced disruption of these pathways often triggers developmental toxicities. The reporter assay using hiPSCs was used to detect changes in the fibroblast growth factor (FGF) signaling pathway, a pathway essential for limb morphogenesis. The method was based on monitoring and time-accumulation of the signal disruption over time, rather than the classical endpoint detection of the signal disruption. This approach was useful for detecting signal disruptions caused by the malformation chemicals listed in the ICH S5 guideline, including thalidomide. The human iPSC-based signal disruption assay could be a promising tool for the initial screening of developmental toxicants.
Collapse
Affiliation(s)
- Seiya Kanno
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya Ward, Yokohama, Kanagawa 240-8501, Japan; TechnoPro, Inc., 6-10-1 Roppongi, Minato City, Tokyo 106-6135, Japan
| | - Yusuke Okubo
- Division of Cellular & Molecular Toxicology, Center for Biological Safety & Research, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Tatsuto Kageyama
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya Ward, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-2-1 Sakado, Takatsu Ward, Kawasaki, Kanagawa 213-0012, Japan
| | - Lei Yan
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya Ward, Yokohama, Kanagawa 240-8501, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya Ward, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-2-1 Sakado, Takatsu Ward, Kawasaki, Kanagawa 213-0012, Japan.
| |
Collapse
|
27
|
Konala VBR, Nandakumar S, Surendran H, Datar S, Bhonde R, Pal R. Neuronal and cardiac toxicity of pharmacological compounds identified through transcriptomic analysis of human pluripotent stem cell-derived embryoid bodies. Toxicol Appl Pharmacol 2021; 433:115792. [PMID: 34742744 DOI: 10.1016/j.taap.2021.115792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Concurrent with the '3R' principle, the embryonic stem cell test (EST) using mouse embryonic stem cells, developed in 2000, remains the solely accepted in vitro method for embryotoxicity testing. However, the scope and implementation of EST for embryotoxicity screening, compliant with regulatory requirements, are limited. This is due to its technical complexity, long testing period, labor-intensive methodology, and limited endpoint data, leading to misclassification of embryotoxic potential. In this study, we used human induced pluripotent stem cell (hiPSC)-derived embryoid bodies (EB) as an in vitro model to investigate the embryotoxic effects of a carefully selected set of pharmacological compounds. Morphology, viability, and differentiation potential were investigated after exposing EBs to folic acid, all-trans-retinoic acid, dexamethasone, and valproic acid for 15 days. The results showed that the compounds differentially repressed cell growth, compromised morphology, and triggered apoptosis in the EBs. Further, transcriptomics was employed to compare subtle temporal changes between treated and untreated cultures. Gene ontology and pathway analysis revealed that dysregulation of a large number of genes strongly correlated with impaired neuroectoderm and cardiac mesoderm formation. This aberrant gene expression pattern was associated with several disorders of the brain like mental retardation, multiple sclerosis, stroke and of the heart like dilated cardiomyopathy, ventricular tachycardia, and ventricular arrhythmia. Lastly, these in vitro findings were validated using in ovo chick embryo model. Taken together, pharmacological compound or drug-induced defective EB development from hiPSCs could potentially be used as a suitable in vitro platform for embryotoxicity screening.
Collapse
Affiliation(s)
- Vijay Bhaskar Reddy Konala
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru 560064, Karnataka, India; Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru 560065, Karnataka, India
| | - Swapna Nandakumar
- Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru 560065, Karnataka, India
| | - Harshini Surendran
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru 560064, Karnataka, India; Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru 560065, Karnataka, India
| | - Savita Datar
- Department of Zoology, S. P. College, Pune 411030, Maharashtra, India
| | - Ramesh Bhonde
- Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| | - Rajarshi Pal
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru 560064, Karnataka, India; Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru 560065, Karnataka, India.
| |
Collapse
|
28
|
Abdulhasan M, Ruden X, You Y, Harris SM, Ruden DM, Awonuga AO, Alvero A, Puscheck EE, Rappolee DA. Using Live Imaging and FUCCI Embryonic Stem Cells to Rank DevTox Risks: Adverse Growth Effects of PFOA Compared With DEP Are 26 Times Faster, 1,000 Times More Sensitive, and 13 Times Greater in Magnitude. FRONTIERS IN TOXICOLOGY 2021; 3:709747. [PMID: 35295126 PMCID: PMC8915856 DOI: 10.3389/ftox.2021.709747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Fluorescent ubiquitination-based cell cycle indicator (FUCCI) embryonic stem cells (ESCs), which fluoresce green during the S-G2-M phases, generate an S-shaped curve for the accumulation of cells during normal stemness (NS) culture with leukemia-inhibitory factor (LIF). Since it was hypothesized that a culture of ESCs was heterogeneous in the cell cycle, it was expected that increased S-G2-M-phases of the cell cycle would make an S-shaped curve parallel to the accumulation curve. Unexpectedly, it was observed that the fraction of FUCCI ESCs in green decreases over time to a nadir at ∼24 h after previous feeding and then rapidly enters S-G2-M-phases after medium change. G1 delay by infrequent medium change is a mild stress, as it does not affect growth significantly when frequency is increased to 12 h. Perfluoro-octanoic acid (PFOA) and diethyl phthalate (DEP) were used as examples of members of the per- and polyfluoroalkyl substances (PFAS) and phthalate families of chemicals, respectively. Two adverse outcomes were used to compare dose- and time-dependent effects of PFOA and DEP. The first was cell accumulation assay by time-lapse confluence measurements, largely at Tfinal/T74 h. The second was by quantifying dominant toxicant stress shown by the suppression of mild stress that creates a green fed/unfed peak. In terms of speed, PFOA is 26 times faster than DEP for producing a time-dependent LOAEL dose at 100 uM (that is, 2 h for PFOA and 52 h for DEP). PFOA has 1000-fold more sensitive LOAEL doses than DEP for suppressing ESC accumulation (confluence) at day 3 and day 2. There were two means to compare the magnitude of the growth suppression of PFOA and DEP. For the suppression of the accumulation of cells measured by confluence at Tfinal/T74h, there was a 13-fold suppression at the highest dose of PFOA > the highest dose of DEP. For the suppression of entry into the cell cycle after the G1 phase by stress on day 1 and 2, there is 10-fold more suppression by PFOA than DEP. The data presented here suggest that FUCCI ESCs can assay the suppression of accumulated growth or predict the suppression of future growth by the suppression of fed/unfed green fluorescence peaks and that PFOA's adverse effects are faster and larger and can occur at more sensitive lower doses than DEP.
Collapse
Affiliation(s)
- Mohammed Abdulhasan
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Reproductive Stress 3M Inc, Grosse Pointe Farms, Detroit, MI, United States
| | - Ximena Ruden
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuan You
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sean M. Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Douglas M. Ruden
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Awoniyi O. Awonuga
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ayesha Alvero
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Elizabeth E. Puscheck
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Reproductive Stress 3M Inc, Grosse Pointe Farms, Detroit, MI, United States
- Invia Fertility Clinics, IL, Chicago, United States
| | - Daniel A. Rappolee
- Department of Ob/Gyn, CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, United States
- Reproductive Stress 3M Inc, Grosse Pointe Farms, Detroit, MI, United States
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biology, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
29
|
Di Paolo C, Hoffmann S, Witters H, Carrillo JC. Minimum reporting standards based on a comprehensive review of the zebrafish embryo teratogenicity assay. Regul Toxicol Pharmacol 2021; 127:105054. [PMID: 34653553 DOI: 10.1016/j.yrtph.2021.105054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
Reproductive toxicity chemical safety assessment involves extensive use of vertebrate animals for regulatory testing purposes. Although alternative methods such as the zebrafish embryo teratogenicity assay (identified in the present manuscript by the acronym ZETA) are promising for replacing tests with mammals, challenges to regulatory application involve lack of standardization and incomplete validation. To identify key protocol aspects and ultimately support improving this situation, a comprehensive review of the literature on the level of harmonization/standardization and validation status of the ZETA has been conducted. The gaps and needed advances of the available ZETA protocols were evaluated and discussed with respect to its applicability as an alternative approach for teratogenicity assessment. Based on the review outcomes, a set of minimum reporting standards for the experimental protocol is proposed. Together with other initiatives towards implementation of alternative approaches at the screening and regulatory levels, the application of minimum reporting requirements is anticipated to support future method standardization and validation, as well as identifying potential improvement aspects. Present findings are expected to ultimately support advancing the ongoing validation initiatives towards the regulatory acceptance of the ZETA.
Collapse
Affiliation(s)
- Carolina Di Paolo
- Shell Health, Shell International, B.V. Carel van Bylandtlaan 16, 2596, HR, The Hague, the Netherlands.
| | | | - Hilda Witters
- Flemish Institute for Technological Research (VITO), Unit Health, Boeretang 200, B-2400, Mol, Belgium
| | - Juan-Carlos Carrillo
- Shell Health, Shell International, B.V. Carel van Bylandtlaan 16, 2596, HR, The Hague, the Netherlands
| |
Collapse
|
30
|
Song YS, Dai MZ, Zhu CX, Huang YF, Liu J, Zhang CD, Xie F, Peng Y, Zhang Y, Li CQ, Zhang LJ. Validation, Optimization, and Application of the Zebrafish Developmental Toxicity Assay for Pharmaceuticals Under the ICH S5(R3) Guideline. Front Cell Dev Biol 2021; 9:721130. [PMID: 34595173 PMCID: PMC8476914 DOI: 10.3389/fcell.2021.721130] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
The zebrafish as an alternative animal model for developmental toxicity testing has been extensively investigated, but its assay protocol was not harmonized yet. This study has validated and optimized the zebrafish developmental toxicity assay previously reported by multiple inter-laboratory studies in the United States and Europe. In this study, using this classical protocol, of 31 ICH-positive compounds, 23 compounds (74.2%) were teratogenic in zebrafish, five had false-negative results, and three were neither teratogenic nor non-teratogenic according to the protocol standard; of 14 ICH-negative compounds, 12 compounds (85.7%) were non-teratogenic in zebrafish and two had false-positive results. After we added an additional TI value in the zebrafish treated with testing compounds at 2 dpf along with the original 5 dpf, proposed a new category as the uncategorized compounds for those TI values smaller than the cutoff both at 2 dpf and 5 dpf but inducing toxic phenotypes, refined the testing concentration ranges, and optimized the TI cut-off value from ≥ 10 to ≥ 3 for compounds with refined testing concentrations, this optimized zebrafish developmental assay reached 90.3% sensitivity (28/31 positive compounds were teratogenic in zebrafish) and 88.9% (40/45) overall predictability. Our results from this study strongly support the use of zebrafish as an alternative in vivo method for screening and assessing the teratogenicity of candidate drugs for regulatory acceptance.
Collapse
Affiliation(s)
- Yi-Sheng Song
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | | | - Chen-Xia Zhu
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | | | - Jing Liu
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Cheng-Da Zhang
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Feng Xie
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Yi Peng
- Hunter Biotechnology, Inc., Hangzhou, China
| | - Yong Zhang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.,Hunter Biotechnology, Inc., Hangzhou, China
| | - Chun-Qi Li
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.,Hunter Biotechnology, Inc., Hangzhou, China
| | - Li-Jiang Zhang
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, China.,Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
31
|
Predicting the in vivo developmental toxicity of benzo[a]pyrene (BaP) in rats by an in vitro-in silico approach. Arch Toxicol 2021; 95:3323-3340. [PMID: 34432120 PMCID: PMC8448719 DOI: 10.1007/s00204-021-03128-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022]
Abstract
Developmental toxicity testing is an animal-intensive endpoints in toxicity testing and calls for animal-free alternatives. Previous studies showed the applicability of an in vitro–in silico approach for predicting developmental toxicity of a range of compounds, based on data from the mouse embryonic stem cell test (EST) combined with physiologically based kinetic (PBK) modelling facilitated reverse dosimetry. In the current study, the use of this approach for predicting developmental toxicity of polycyclic aromatic hydrocarbons (PAHs) was evaluated, using benzo[a]pyrene (BaP) as a model compound. A rat PBK model of BaP was developed to simulate the kinetics of its main metabolite 3-hydroxybenzo[a]pyrene (3-OHBaP), shown previously to be responsible for the developmental toxicity of BaP. Comparison to in vivo kinetic data showed that the model adequately predicted BaP and 3-OHBaP blood concentrations in the rat. Using this PBK model and reverse dosimetry, a concentration–response curve for 3-OHBaP obtained in the EST was translated into an in vivo dose–response curve for developmental toxicity of BaP in rats upon single or repeated dose exposure. The predicted half maximal effect doses (ED50) amounted to 67 and 45 mg/kg bw being comparable to the ED50 derived from the in vivo dose–response data reported for BaP in the literature, of 29 mg/kg bw. The present study provides a proof of principle of applying this in vitro–in silico approach for evaluating developmental toxicity of BaP and may provide a promising strategy for predicting the developmental toxicity of related PAHs, without the need for extensive animal testing.
Collapse
|
32
|
An Evaluation of Human Induced Pluripotent Stem Cells to Test for Cardiac Developmental Toxicity. Int J Mol Sci 2021; 22:ijms22158114. [PMID: 34360880 PMCID: PMC8347148 DOI: 10.3390/ijms22158114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
To prevent congenital defects arising from maternal exposure, safety regulations require pre-market developmental toxicity screens for industrial chemicals and pharmaceuticals. Traditional embryotoxicity approaches depend heavily on the use of low-throughput animal models which may not adequately predict human risk. The validated embryonic stem cell test (EST) developed in murine embryonic stem cells addressed the former problem over 15 years ago. Here, we present a proof-of-concept study to address the latter challenge by updating all three endpoints of the classic mouse EST with endpoints derived from human induced pluripotent stem cells (hiPSCs) and human fibroblasts. Exposure of hiPSCs to selected test chemicals inhibited differentiation at lower concentrations than observed in the mouse EST. The hiPSC-EST also discerned adverse developmental outcomes driven by novel environmental toxicants. Evaluation of the early cardiac gene TBX5 yielded similar toxicity patterns as the full-length hiPSC-EST. Together, these findings support the further development of hiPSCs and early molecular endpoints as a biologically relevant embryotoxicity screening approach for individual chemicals and mixtures.
Collapse
|
33
|
Zhu Q, Jia Y, Guo J, Meng X, Chong L, Xu L, Zhou L, Sun Z. Establishment of an in vitro method of rabbit embryo toxicity with toxicokinetics study. J Appl Toxicol 2021; 42:380-391. [PMID: 34322893 DOI: 10.1002/jat.4223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022]
Abstract
This report introduces a novel method, rabbit whole embryo culture (WEC) combined with toxicokinetics (TK), for toxicity testing. Rodent WEC has been extensively used for in vitro screening of developmental toxicity. To improve the reliability of in vitro data, it is important to consider TK and species specificity. To test the utility and effectiveness of this method, we investigated the toxic effect of thalidomide on rabbit embryos and its behavior in test systems both in vitro and in vivo under the same experimental condition. The data showed that thalidomide induced embryo malformations such as embryonic brain hypoplasia, short limb buds, and declined embryonic growth both in vitro and in vivo. The toxic effect increased with the increasing exposure of the embryo to thalidomide. In addition, we observed similar toxic effects and exposure-effect relationships in vivo and in vitro. Therefore, we preliminarily conclude that this new method can effectively predict and explain thalidomide toxicity. Furthermore, we investigated the behavior of test compounds in the WEC system for the first time, and this method is expected to be an important technique for in vitro toxicity study after extensive verification.
Collapse
Affiliation(s)
- Qiuyang Zhu
- School of Pharmacy, Fudan University, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Yuling Jia
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Jun Guo
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Xiang Meng
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Liming Chong
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Li Xu
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Li Zhou
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| | - Zuyue Sun
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.,Reproductive and Developmental Research Institute, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Zurlinden TJ, Saili KS, Rush N, Kothiya P, Judson RS, Houck KA, Hunter ES, Baker NC, Palmer JA, Thomas RS, Knudsen TB. Profiling the ToxCast Library With a Pluripotent Human (H9) Stem Cell Line-Based Biomarker Assay for Developmental Toxicity. Toxicol Sci 2021; 174:189-209. [PMID: 32073639 DOI: 10.1093/toxsci/kfaa014] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Stemina devTOX quickPredict platform is a human pluripotent stem cell-based assay that predicts the developmental toxicity potential based on changes in cellular metabolism following chemical exposure [Palmer, J. A., Smith, A. M., Egnash, L. A., Conard, K. R., West, P. R., Burrier, R. E., Donley, E. L. R., and Kirchner, F. R. (2013). Establishment and assessment of a new human embryonic stem cell-based biomarker assay for developmental toxicity screening. Birth Defects Res. B Dev. Reprod. Toxicol. 98, 343-363]. Using this assay, we screened 1065 ToxCast phase I and II chemicals in single-concentration or concentration-response for the targeted biomarker (ratio of ornithine to cystine secreted or consumed from the media). The dataset from the Stemina (STM) assay is annotated in the ToxCast portfolio as STM. Major findings from the analysis of ToxCast_STM dataset include (1) 19% of 1065 chemicals yielded a prediction of developmental toxicity, (2) assay performance reached 79%-82% accuracy with high specificity (> 84%) but modest sensitivity (< 67%) when compared with in vivo animal models of human prenatal developmental toxicity, (3) sensitivity improved as more stringent weights of evidence requirements were applied to the animal studies, and (4) statistical analysis of the most potent chemical hits on specific biochemical targets in ToxCast revealed positive and negative associations with the STM response, providing insights into the mechanistic underpinnings of the targeted endpoint and its biological domain. The results of this study will be useful to improving our ability to predict in vivo developmental toxicants based on in vitro data and in silico models.
Collapse
Affiliation(s)
| | | | | | | | | | | | - E Sidney Hunter
- National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, North Carolina
| | | | | | | | | |
Collapse
|
35
|
Palmer JA, Smith AM, Gryshkova V, Donley ELR, Valentin JP, Burrier RE. A Targeted Metabolomics-Based Assay Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Identifies Structural and Functional Cardiotoxicity Potential. Toxicol Sci 2021; 174:218-240. [PMID: 32040181 DOI: 10.1093/toxsci/kfaa015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Implementing screening assays that identify functional and structural cardiotoxicity earlier in the drug development pipeline has the potential to improve safety and decrease the cost and time required to bring new drugs to market. In this study, a metabolic biomarker-based assay was developed that predicts the cardiotoxicity potential of a drug based on changes in the metabolism and viability of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Assay development and testing was conducted in 2 phases: (1) biomarker identification and (2) targeted assay development. In the first phase, metabolomic data from hiPSC-CM spent media following exposure to 66 drugs were used to identify biomarkers that identified both functional and structural cardiotoxicants. Four metabolites that represent different metabolic pathways (arachidonic acid, lactic acid, 2'-deoxycytidine, and thymidine) were identified as indicators of cardiotoxicity. In phase 2, a targeted, exposure-based biomarker assay was developed that measured these metabolites and hiPSC-CM viability across an 8-point concentration curve. Metabolite-specific predictive thresholds for identifying the cardiotoxicity potential of a drug were established and optimized for balanced accuracy or sensitivity. When predictive thresholds were optimized for balanced accuracy, the assay predicted the cardiotoxicity potential of 81 drugs with 86% balanced accuracy, 83% sensitivity, and 90% specificity. Alternatively, optimizing the thresholds for sensitivity yields a balanced accuracy of 85%, 90% sensitivity, and 79% specificity. This new hiPSC-CM-based assay provides a paradigm that can identify structural and functional cardiotoxic drugs that could be used in conjunction with other endpoints to provide a more comprehensive evaluation of a drug's cardiotoxicity potential.
Collapse
Affiliation(s)
| | - Alan M Smith
- Stemina Biomarker Discovery, Inc, Madison, Wisconsin
| | - Vitalina Gryshkova
- UCB Biopharma SPRL, Investigative Toxicology, Development Science, B-1420 Braine L'Alleud, Belgium
| | | | - Jean-Pierre Valentin
- UCB Biopharma SPRL, Investigative Toxicology, Development Science, B-1420 Braine L'Alleud, Belgium
| | | |
Collapse
|
36
|
Lauschke K, Rosenmai AK, Meiser I, Neubauer JC, Schmidt K, Rasmussen MA, Holst B, Taxvig C, Emnéus JK, Vinggaard AM. A novel human pluripotent stem cell-based assay to predict developmental toxicity. Arch Toxicol 2020; 94:3831-3846. [PMID: 32700165 PMCID: PMC7603451 DOI: 10.1007/s00204-020-02856-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/14/2020] [Indexed: 01/12/2023]
Abstract
There is a great need for novel in vitro methods to predict human developmental toxicity to comply with the 3R principles and to improve human safety. Human-induced pluripotent stem cells (hiPSC) are ideal for the development of such methods, because they are easy to retrieve by conversion of adult somatic cells and can differentiate into most cell types of the body. Advanced three-dimensional (3D) cultures of these cells, so-called embryoid bodies (EBs), moreover mimic the early developing embryo. We took advantage of this to develop a novel human toxicity assay to predict chemically induced developmental toxicity, which we termed the PluriBeat assay. We employed three different hiPSC lines from male and female donors and a robust microtiter plate-based method to produce EBs. We differentiated the cells into cardiomyocytes and introduced a scoring system for a quantitative readout of the assay-cardiomyocyte contractions in the EBs observed on day 7. Finally, we tested the three compounds thalidomide (2.3-36 µM), valproic acid (25-300 µM), and epoxiconazole (1.3-20 µM) on beating and size of the EBs. We were able to detect the human-specific teratogenicity of thalidomide and found the rodent toxicant epoxiconazole as more potent than thalidomide in our assay. We conclude that the PluriBeat assay is a novel method for predicting chemicals' adverse effects on embryonic development.
Collapse
Affiliation(s)
- Karin Lauschke
- National Food Institute, Technical University of Denmark, Kemitorvet, 2800, Kongens Lyngby, Denmark
- Department for Biotechnology and Biomedicine, Technical University of Denmark, Produktionstorvet, 2800, Kongens Lyngby, Denmark
| | - Anna Kjerstine Rosenmai
- National Food Institute, Technical University of Denmark, Kemitorvet, 2800, Kongens Lyngby, Denmark
| | - Ina Meiser
- Fraunhofer Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Julia Christiane Neubauer
- Fraunhofer Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, 97082, Würzburg, Germany
| | - Katharina Schmidt
- Fraunhofer Institute for Biomedical Engineering, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | | | - Bjørn Holst
- Bioneer A/S, Kogle Allé 2, 2970, Hørsholm, Denmark
| | - Camilla Taxvig
- National Food Institute, Technical University of Denmark, Kemitorvet, 2800, Kongens Lyngby, Denmark
| | - Jenny Katarina Emnéus
- Department for Biotechnology and Biomedicine, Technical University of Denmark, Produktionstorvet, 2800, Kongens Lyngby, Denmark
| | - Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, Kemitorvet, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
37
|
Brotzmann K, Wolterbeek A, Kroese D, Braunbeck T. Neurotoxic effects in zebrafish embryos by valproic acid and nine of its analogues: the fish-mouse connection? Arch Toxicol 2020; 95:641-657. [PMID: 33111190 PMCID: PMC7870776 DOI: 10.1007/s00204-020-02928-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/05/2020] [Indexed: 01/26/2023]
Abstract
Since teratogenicity testing in mammals is a particular challenge from an animal welfare perspective, there is a great need for the development of alternative test systems. In this context, the zebrafish (Danio rerio) embryo has received increasing attention as a non-protected embryonic vertebrate in vivo model. The predictive power of zebrafish embryos for general vertebrate teratogenicity strongly depends on the correlation between fish and mammals with respect to both overall general toxicity and more specific endpoints indicative of certain modes-of-action. The present study was designed to analyze the correlation between (1) effects of valproic acid and nine of its analogues in zebrafish embryos and (2) their known neurodevelopmental effects in mice. To this end, zebrafish embryos exposed for 120 h in an extended version of the acute fish embryo toxicity test (FET; OECD TG 236) were analyzed with respect to an extended list of sublethal endpoints. Particular care was given to endpoints putatively related to neurodevelopmental toxicity, namely jitter/tremor, deformation of sensory organs (eyes) and craniofacial deformation, which might correlate to neural tube defects caused by valproic acid in mammals. A standard evaluation of lethal (LC according to OECD TG 236) and sublethal toxicity (EC) merely indicated that four out of ten compounds tested in zebrafish correlate with positive results in mouse in vivo studies. A detailed assessment of more specific effects, however, namely, jitter/tremor, small eyes and craniofacial deformation, resulted in a correspondence of 75% with in vivo mouse data. A refinement of endpoint analysis from an integration of all observations into one LCx or ECx data (as foreseen by current ecotoxicology-driven OECD guidelines) to a differential evaluation of endpoints specific of selected modes-of-action thus increases significantly the predictive power of the zebrafish embryo model for mammalian teratogenicity. However, for some of the endpoints observed, e.g., scoliosis, lordosis, pectoral fin deformation and lack of movement, further experiments are required for the identification of underlying modes-of-action and an unambiguous interpretation of their predictive power for mammalian toxicity.
Collapse
Affiliation(s)
- Katharina Brotzmann
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - André Wolterbeek
- TNO Healthy Living Unit, Department of Risk Analysis for Products in Development, The Netherlands Organization for Applied Scientific Research, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| | - Dinant Kroese
- TNO Healthy Living Unit, Department of Risk Analysis for Products in Development, The Netherlands Organization for Applied Scientific Research, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
38
|
Aikawa N. A novel screening test to predict the developmental toxicity of drugs using human induced pluripotent stem cells. J Toxicol Sci 2020; 45:187-199. [PMID: 32238694 DOI: 10.2131/jts.45.187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In vitro human induced pluripotent stem (iPS) cells testing (iPST) to assess developmental toxicity, e.g., the induction of malformation or dysfunction, was developed by modifying a mouse embryonic stem cell test (EST), a promising animal-free approach. The iPST evaluates the potential risks and types of drugs-induced developmental toxicity in humans by assessing three endpoints: the inhibitory effects of the drug on the cardiac differentiation of iPS cells and on the proliferation/survival of iPS cells and human fibroblasts. In the present study, the potential developmental toxicity of drugs was divided into three classes (1: non-developmentally toxic, 2: weakly developmentally toxic and 3: strongly developmentally toxic) according to the EST criteria. In addition, the type of developmental toxicity of drugs was grouped into three types (1: non-effective, 2: embryotoxic [inducing growth retardation/dysfunction]/deadly or 3: teratogenic [inducing malformation]/deadly) by comparing the three endpoints. The present study was intended to validate the clinical predictability of the iPST. The traditionally developmentally toxic drugs of aminopterin, methotrexate, all-trans-retinoic acid, thalidomide, tetracycline, lithium, phenytoin, 5-fluorouracil, warfarin and valproate were designated as class 2 or 3 according to the EST criteria, and their developmental toxicity was type 3. The non-developmentally toxic drugs of ascorbic acid, saccharin, isoniazid and penicillin G were designated as class 1, and ascorbic acid, saccharin and isoniazid were grouped as type 1 while penicillin G was type 2 but not teratogenic. These results suggest that the iPST is useful for predicting the human developmental toxicity of drug candidates in a preclinical setting.
Collapse
Affiliation(s)
- Nobuo Aikawa
- Translational Research Unit, R&D Division, Kyowa Kirin Co., Ltd
| |
Collapse
|
39
|
Witt G, Keminer O, Leu J, Tandon R, Meiser I, Willing A, Winschel I, Abt JC, Brändl B, Sébastien I, Friese MA, Müller FJ, Neubauer JC, Claussen C, Zimmermann H, Gribbon P, Pless O. An automated and high-throughput-screening compatible pluripotent stem cell-based test platform for developmental and reproductive toxicity assessment of small molecule compounds. Cell Biol Toxicol 2020; 37:229-243. [PMID: 32564278 PMCID: PMC8012336 DOI: 10.1007/s10565-020-09538-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/02/2020] [Indexed: 12/02/2022]
Abstract
The embryonic stem cell test (EST) represents the only validated and accepted in vitro system for the detection and classification of compounds according to their developmental and reproductive teratogenic potency. The widespread implementation of the EST, however, in particular for routine application in pharmaceutical development, has not been achieved so far. Several drawbacks still limit the high-throughput screening of potential drug candidates in this format: The long assay period, the use of non-homogeneous viability assays, the low throughput analysis of marker protein expression and the compatibility of the assay procedures to automation. We have therefore introduced several advancements into the EST workflow: A reduction of the assay period, an introduction of homogeneous viability assays, and a straightforward analysis of marker proteins by flow cytometry and high content imaging to assess the impact of small molecules on differentiation capacity. Most importantly, essential parts of the assay procedure have been adapted to lab automation in 96-well format, thus enabling the interrogation of several compounds in parallel. In addition, extensive investigations were performed to explore the predictive capacity of this next-generation EST, by testing a set of well-known embryotoxicants that encompasses the full range of chemical-inherent embryotoxic potencies possible. Due to these significant improvements, the augmented workflow provides a basis for a sensitive, more rapid, and reproducible high throughput screening compatible platform to predict in vivo developmental toxicity from in vitro data which paves the road towards application in an industrial setting. •The embryonic stem cell test to predict teratogenicity was made automation-compatible. •Several key improvements to the assay procedure have been introduced to increase performance. •The workflow was adapted to human iPS cells and isogenic fibroblast donor cells. ![]()
Collapse
Affiliation(s)
- Gesa Witt
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Oliver Keminer
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Jennifer Leu
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Rashmi Tandon
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Ina Meiser
- Fraunhofer IBMT, 66280, Sulzbach, Saar, Germany
| | - Anne Willing
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Ingo Winschel
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Jana-Christin Abt
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Björn Brändl
- Christian-Albrechts-Universität zu Kiel, ZIP gGmbH, 24105, Kiel, Germany
| | | | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Franz-Josef Müller
- Christian-Albrechts-Universität zu Kiel, ZIP gGmbH, 24105, Kiel, Germany
| | | | - Carsten Claussen
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Heiko Zimmermann
- Fraunhofer IBMT, 66280, Sulzbach, Saar, Germany.,Lehrstuhl für Molekulare und Zelluläre Biotechnologie, Universität des Saarlandes, 66123, Saarbrücken, Germany.,Fakultät für Meereswissenschaften, Universidad Católica del Norte, CL-1781421, Coquimbo, Chile
| | - Philip Gribbon
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Ole Pless
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany.
| |
Collapse
|
40
|
Defining embryonic developmental effects of chemical mixtures using the embryonic stem cell test. Food Chem Toxicol 2020; 140:111284. [DOI: 10.1016/j.fct.2020.111284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
|
41
|
Peters MF, Choy AL, Pin C, Leishman DJ, Moisan A, Ewart L, Guzzie-Peck PJ, Sura R, Keller DA, Scott CW, Kolaja KL. Developing in vitro assays to transform gastrointestinal safety assessment: potential for microphysiological systems. LAB ON A CHIP 2020; 20:1177-1190. [PMID: 32129356 DOI: 10.1039/c9lc01107b] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug-induced gastrointestinal toxicities (DI-GITs) are among the most common adverse events in clinical trials. High prevalence of DI-GIT has persisted among new drugs due in part to the lack of robust experimental tools to allow early detection or to guide optimization of safer molecules. Developing in vitro assays for the leading GI toxicities (nausea, vomiting, diarrhoea, constipation, and abdominal pain) will likely involve recapitulating complex physiological properties that require contributions from diverse cell/tissue types including epithelial, immune, microbiome, nerve, and muscle. While this stipulation may be beyond traditional 2D monocultures of intestinal cell lines, emerging 3D GI microtissues capture interactions between diverse cell and tissue types. These interactions give rise to microphysiologies fundamental to gut biology. For GI microtissues, organoid technology was the breakthrough that introduced intestinal stem cells with the capability of differentiating into each of the epithelial cell types and that self-organize into a multi-cellular tissue proxy with villus- and crypt-like domains. Recently, GI microtissues generated using miniaturized devices with microfluidic flow and cyclic peristaltic strain were shown to induce Caco2 cells to spontaneously differentiate into each of the principle intestinal epithelial cell types. Second generation models comprised of epithelial organoids or microtissues co-cultured with non-epithelial cell types can successfully reproduce cross-'tissue' functional interactions broadening the potential of these models to accurately study drug-induced toxicities. A new paradigm in which in vitro assays become an early part of GI safety assessment could be realized if microphysiological systems (MPS) are developed in alignment with drug-discovery needs. Herein, approaches for assessing GI toxicity of pharmaceuticals are reviewed and gaps are compared with capabilities of emerging GI microtissues (e.g., organoids, organ-on-a-chip, transwell systems) in order to provide perspective on the assay features needed for MPS models to be adopted for DI-GIT assessment.
Collapse
Affiliation(s)
- Matthew F Peters
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Inselman A, Liu F, Wang C, Shi Q, Pang L, Mattes W, White M, Lyn-Cook B, Rosas-Hernandez H, Cuevas E, Lantz S, Imam S, Ali S, Petibone DM, Shemansky JM, Xiong R, Wang Y, Tripathi P, Cao X, Heflich RH, Slikker W. Dr. Daniel Acosta and In Vitro toxicology at the U.S. Food and Drug Administration's National Center for Toxicological Research. Toxicol In Vitro 2020; 64:104471. [PMID: 31628011 DOI: 10.1016/j.tiv.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 10/25/2022]
Abstract
For the past five years, Dr. Daniel Acosta has served as the Deputy Director of Research at the National Center for Toxicological Research (NCTR), a principle research laboratory of the U.S. Food and Drug Administration (FDA). Over his career at NCTR, Dr. Acosta has had a major impact on developing and promoting the use of in vitro assays in regulatory toxicity and product safety assessments. As Dr. Acosta nears his retirement we have dedicated this paper to his many accomplishments at the NCTR. Described within this paper are some of the in vitro studies that have been conducted under Dr. Acosta's leadership. These studies include toxicological assessments involving developmental effects, and the development and application of in vitro reproductive, heart, liver, neurological and airway cell and tissue models.
Collapse
Affiliation(s)
- Amy Inselman
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Fang Liu
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Cheng Wang
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Qiang Shi
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Li Pang
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - William Mattes
- Division of Systems Biology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Matthew White
- Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | | | - Elvis Cuevas
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Susan Lantz
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Syed Imam
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Syed Ali
- Division of Neurotoxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Dayton M Petibone
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Jennifer M Shemansky
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Rui Xiong
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Yiying Wang
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Priya Tripathi
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, NCTR, FDA, Jefferson, AR 72079, USA
| | | |
Collapse
|
43
|
Peters MF, Landry T, Pin C, Maratea K, Dick C, Wagoner MP, Choy AL, Barthlow H, Snow D, Stevens Z, Armento A, Scott CW, Ayehunie S. Human 3D Gastrointestinal Microtissue Barrier Function As a Predictor of Drug-Induced Diarrhea. Toxicol Sci 2020; 168:3-17. [PMID: 30364994 PMCID: PMC6390652 DOI: 10.1093/toxsci/kfy268] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Drug-induced gastrointestinal toxicities (GITs) rank among the most common clinical side effects. Preclinical efforts to reduce incidence are limited by inadequate predictivity of in vitro assays. Recent breakthroughs in in vitro culture methods support intestinal stem cell maintenance and continual differentiation into the epithelial cell types resident in the intestine. These diverse cells self-assemble into microtissues with in vivo-like architecture. Here, we evaluate human GI microtissues grown in transwell plates that allow apical and/or basolateral drug treatment and 96-well throughput. Evaluation of assay utility focused on predictivity for diarrhea because this adverse effect correlates with intestinal barrier dysfunction which can be measured in GI microtissues using transepithelial electrical resistance (TEER). A validation set of widely prescribed drugs was assembled and tested for effects on TEER. When the resulting TEER inhibition potencies were adjusted for clinical exposure, a threshold was identified that distinguished drugs that induced clinical diarrhea from those that lack this liability. Microtissue TEER assay predictivity was further challenged with a smaller set of drugs whose clinical development was limited by diarrhea that was unexpected based on 1-month animal studies. Microtissue TEER accurately predicted diarrhea for each of these drugs. The label-free nature of TEER enabled repeated quantitation with sufficient precision to develop a mathematical model describing the temporal dynamics of barrier damage and recovery. This human 3D GI microtissue is the first in vitro assay with validated predictivity for diarrhea-inducing drugs. It should provide a platform for lead optimization and offers potential for dose schedule exploration.
Collapse
Affiliation(s)
- Matthew F Peters
- Oncology Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Waltham, MA 02451
| | - Tim Landry
- MatTek Corporation, Ashland, Massachusetts 01721
| | - Carmen Pin
- Mechanistic Safety and ADME Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Kim Maratea
- Oncology Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Waltham, MA 02451
| | - Cortni Dick
- Oncology Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Waltham, MA 02451
| | - Matthew P Wagoner
- Oncology Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Waltham, MA 02451
| | - Allison L Choy
- Science and Enabling Units IT, AstraZeneca, Waltham, MA 02451
| | - Herb Barthlow
- Oncology Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Waltham, MA 02451
| | - Deb Snow
- Oncology Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Waltham, MA 02451
| | | | - Alex Armento
- MatTek Corporation, Ashland, Massachusetts 01721
| | - Clay W Scott
- Oncology Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Waltham, MA 02451
| | | |
Collapse
|
44
|
Mussap M, Loddo C, Fanni C, Fanos V. Metabolomics in pharmacology - a delve into the novel field of pharmacometabolomics. Expert Rev Clin Pharmacol 2020; 13:115-134. [PMID: 31958027 DOI: 10.1080/17512433.2020.1713750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Pharmacometabolomics is an emerging science pursuing the application of precision medicine. Combining both genetic and environmental factors, the so-called pharmacometabolomic approach guides patient selection and stratification in clinical trials and optimizes personalized drug dosage, improving efficacy and safety.Areas covered: This review illustrates the progressive introduction of pharmacometabolomics as an innovative solution for enhancing the discovery of novel drugs and improving research and development (R&D) productivity of the pharmaceutical industry. An extended analysis on published pharmacometabolomics studies both in animal models and humans includes results obtained in several areas such as hepatology, gastroenterology, nephrology, neuropsychiatry, oncology, drug addiction, embryonic cells, neonatology, and microbiomics.Expert opinion: a tailored, individualized therapy based on the optimization of pharmacokinetics and pharmacodynamics, the improvement of drug efficacy, and the abolition of drug toxicity and adverse drug reactions is a key issue in precision medicine. Genetics alone has become insufficient for deciphring intra- and inter-individual variations in drug-response, since they originate both from genetic and environmental factors, including human microbiota composition. The association between pharmacogenomics and pharmacometabolomics may be considered the new strategy for an in-deep knowledge on changes and alterations in human and microbial metabolic pathways due to the action of a drug.
Collapse
Affiliation(s)
- Michele Mussap
- Laboratory Unit, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Claudia Fanni
- Division of Pediatrics, Rovigo Hospital, Rovigo, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
45
|
Breidenbach L, Hempel K, Mittelstadt SW, Lynch JJ. Refinement of the rodent pentylenetetrazole proconvulsion assay, which is a good predictor of convulsions in repeat-dose toxicology studies. J Pharmacol Toxicol Methods 2020; 101:106653. [PMID: 31730935 DOI: 10.1016/j.vascn.2019.106653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The pentylenetetrazole (PTZ)-induced seizure assay in rodents is an established method for investigating drug-induced alterations in seizure threshold such as proconvulsant effects. The standard procedure in our laboratory was to administer the test item prior to 75-120 mg/kg subcutaneous PTZ. However, this dose range is associated with a high incidence of mortality, including approximately 40% or greater deaths of control animals. METHODS The predictivity of the PTZ-induced seizure assay was retrospectively evaluated by relating drug plasma levels associated with proconvulsant effects to exposures observed during convulsions in repeat-dose toxicology studies. Margins to estimated efficacious doses were also considered. To investigate potential refinements, a high PTZ dose (80 mg/kg, subcutaneously) was compared to two lower doses (40 and 60 mg/kg), and a range of doses of theophylline was orally administered as positive control. RESULTS The PTZ-induced proconvulsion assay proved to be a good predictor of convulsions in toxicology studies. In the refinement study, theophylline potentiated PTZ-induced seizures over all doses tested. At 60 mg/kg PTZ, the proconvulsant dose-dependency of theophylline was best observed. At both 40 and 60 mg/kg PTZ, mortality in control animals was significantly reduced. DISCUSSION Risk assessment at an early stage of drug development supports candidate selection and, along that approach, the PTZ proconvulsion assay was proven to be a good predictor of convulsions in subsequent toxicology studies. It was also demonstrated that a relatively lower PTZ dose (60 mg/kg) improved the dose-response-curve of the positive control tested, decreased mortality overall and, therefore, contributes to refining this standard procedure for CNS safety evaluation.
Collapse
Affiliation(s)
- Laura Breidenbach
- AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany.
| | - Katja Hempel
- AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | | | - James J Lynch
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA
| |
Collapse
|
46
|
|
47
|
Pirosa A, Clark KL, Tan J, Yu S, Yang Y, Tuan RS, Alexander PG. Modeling appendicular skeletal cartilage development with modified high-density micromass cultures of adult human bone marrow-derived mesenchymal progenitor cells. Stem Cell Res Ther 2019; 10:388. [PMID: 31842986 PMCID: PMC6916440 DOI: 10.1186/s13287-019-1505-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/17/2023] Open
Abstract
Background Animal cell-based systems have been critical tools in understanding tissue development and physiology, but they are less successful in more practical tasks, such as predicting human toxicity to pharmacological or environmental factors, in which the congruence between in vitro and clinical outcomes lies on average between 50 and 60%. Emblematic of this problem is the high-density micromass culture of embryonic limb bud mesenchymal cells, derived from chick, mouse, or rat. While estimated predictive value of this model system in toxicological studies is relatively high, important failures prevent its use by international regulatory agencies for toxicity testing and policy development. A likely underlying reason for the poor predictive capacity of animal-based culture models is the small but significant physiological differences between species. This deficiency has inspired investigators to develop more organotypic, 3-dimensional culture system using human cells to model normal tissue development and physiology and assess pharmacological and environmental toxicity. Methods We have developed a modified, miniaturized micromass culture model using adult human bone marrow-derived mesenchymal progenitor cells (hBM-MPCs) that is amenable to moderate throughput and high content analysis to study chondrogenesis. The number of cells per culture was reduced, and a methacrylated gelatin (gelMA) overlay was incorporated to normalize the morphology of the cultures. Results These modified human cell-based micromass cultures demonstrated robust chondrogenesis, indicated by increased Alcian blue staining and immunodetectable production of collagen type II and aggrecan, and stage-specific chondrogenic gene expression. In addition, in cultures of hBM-MPCs transduced with a lentiviral collagen type II promoter-driven GFP reporter construct, levels of GFP reporter activity correlated well with changes in endogenous collagen type II transcript levels, indicating the feasibility of non-invasive monitoring of chondrogenesis. Conclusions The modified hBM-MPC micromass culture system described here represents a reproducible and controlled model for analyzing mechanisms of human skeletal development that may later be applied to pharmacological and environmental toxicity studies.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Karen L Clark
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Jian Tan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Shuting Yu
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Yuanheng Yang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
48
|
Kamelia L, de Haan L, Spenkelink B, Bruyneel B, Ketelslegers HB, Boogaard PJ, Rietjens IMCM. The role of metabolism in the developmental toxicity of polycyclic aromatic hydrocarbon-containing extracts of petroleum substances. J Appl Toxicol 2019; 40:330-341. [PMID: 31808176 PMCID: PMC7028058 DOI: 10.1002/jat.3906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022]
Abstract
In vitro assays presently used for prenatal developmental toxicity (PDT) testing only assess the embryotoxic potential of parent substances and not that of potentially embryotoxic metabolites. Here we combined a biotransformation system, using hamster liver microsomes, with the ES‐D3 cell differentiation assay of the embryonic stem cell test (EST) to compare the in vitro PDT potency of two 5‐ring polycyclic aromatic hydrocarbons (PAHs), benzo[a]pyrene (BaP) and dibenz[a,h]anthracene (DBA), and dimethyl sulfoxide extracts from five PAH‐containing petroleum substances (PS) and a gas‐to‐liquid base oil (GTLb), with and without bioactivation. In the absence of bioactivation, DBA, but not BaP, inhibited the differentiation of ES‐D3 cells into beating cardiomyocytes in a concentration‐dependent manner. Upon bioactivation, BaP induced in vitro PDT, while its major metabolite 3‐hydroxybenzo[a]pyrene was shown to be active in the EST as well. This means BaP needs biotransformation to exert its embryotoxic effects. GTLb extracts tested negative in the EST, with and without bioactivation. The PS‐induced PDT in the EST was not substantially changed following bioactivation, implying that metabolism may not play a crucial role for the PS extracts under study to exert the in vitro PDT effects. Altogether, these results indicate that although some PAH require bioactivation to induce PDT, some do not and this latter appears to hold for the (majority of) the PS constituents responsible for the in vitro PDT of these complex substances. The present study combines a biotransformation system, using hamster liver microsomes, with the embryonic stem cell test to compare the in vitro prenatal developmental toxicity potency of two 5‐ring polycyclic aromatic hydrocarbons, benzo[a]pyrene and dibenz[a,h]anthracene, and dimethyl sulfoxide extracts from five PAH‐containing petroleum substances and a gas‐to‐liquid base oil, with and without bioactivation.
Collapse
Affiliation(s)
- Lenny Kamelia
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Laura de Haan
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Bert Spenkelink
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Ben Bruyneel
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Hans B Ketelslegers
- European Petroleum Refiners Association, Concawe Division, Brussels, Belgium
| | - Peter J Boogaard
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.,Shell Health, Shell International B.V., The Hague, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
49
|
Boos JA, Misun PM, Michlmayr A, Hierlemann A, Frey O. Microfluidic Multitissue Platform for Advanced Embryotoxicity Testing In Vitro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900294. [PMID: 31380185 PMCID: PMC6662399 DOI: 10.1002/advs.201900294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/12/2019] [Indexed: 05/05/2023]
Abstract
The integration of metabolic competence in developmental toxicity assays in vitro is of fundamental importance to better predict adverse drug effects. Here, a microfluidic hanging-drop platform is presented that seamlessly integrates liver metabolism into the embryonic stem cell test (EST). Primary human liver microtissues (hLiMTs) and embryoid bodies (EBs) are combined in the same fluidic network, so that hLiMT-generated metabolites are directly transported to the EBs. Gravity-driven flow through the network enables continuous intertissue communication, constant medium turnover, and, most importantly, immediate exchange of metabolites. As a proof of concept, the prodrug cyclophosphamide is investigated and a fourfold lower ID50 concentration (50% inhibition of EB differentiation) is found after biotransformation, which demonstrates the potentially adverse effects of metabolites on embryotoxicity. The metaEST platform provides a promising tool to increase the predictive power of the current EST assay by more comprehensively including and better reflecting physiological processes in in vitro tests.
Collapse
Affiliation(s)
- Julia Alicia Boos
- Bioengineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZürichMattenstrasse 264058BaselSwitzerland
| | - Patrick Mark Misun
- Bioengineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZürichMattenstrasse 264058BaselSwitzerland
| | - Astrid Michlmayr
- Bioengineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZürichMattenstrasse 264058BaselSwitzerland
| | - Andreas Hierlemann
- Bioengineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZürichMattenstrasse 264058BaselSwitzerland
| | - Olivier Frey
- Bioengineering LaboratoryDepartment of Biosystems Science and EngineeringETH ZürichMattenstrasse 264058BaselSwitzerland
- InSphero AGWagistrasse 278952SchlierenSwitzerland
| |
Collapse
|
50
|
Li L, Yin Tang L, Liang B, Wang R, Sun Q, Bik San Lau C, Chung Leung P, Fritsche E, Liebsch M, Seiler Wulczyn AEM, Spielmann H, Wang CC. Evaluation of in vitro embryotoxicity tests for Chinese herbal medicines. Reprod Toxicol 2019; 89:45-53. [PMID: 31228572 DOI: 10.1016/j.reprotox.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022]
Abstract
Chinese herbal medicines (CHMs) have been widely used during pregnancy, but feto-embryo safety tests are lacking. Here we evaluated in vitro embryotoxicity tests (IVTs) as alternative methods in assessing developmental toxicity of CHMs. Ten CHMs were selected and classified as strongly, weakly and non-embryotoxic. Three well validated IVTs and prediction models (PMs), including embryonic stem cell test (EST), micromass (MM) and whole embryo culture (WEC), were compared. All strongly embryotoxic CHMs were predicted by MM and WEC PM2. While all weakly embryotoxic CHMs were predicted by MM and WEC PM1. All non-embryotoxic CHMs were classified by EST, MM, but over-classified as weakly embryotoxic by WEC PM1. Overall predictivity, precision and accuracy of WEC determined by PM2 were better than EST and MM tests. Compared with validated chemicals, performance of IVTs for CHMs was comparable. So IVTs are adequate to identify and exclude embryotoxic potential of CHMs in this training set.
Collapse
Affiliation(s)
- Lu Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; Institute of Chinese Medicine & State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ling Yin Tang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Bo Liang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Rongyun Wang
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiuhua Sun
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Clara Bik San Lau
- Institute of Chinese Medicine & State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ping Chung Leung
- Institute of Chinese Medicine & State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ellen Fritsche
- IUF-Leibniz Research Institute of Environmental Medicine, Düsseldorf, Germany
| | - Manfred Liebsch
- Central Ethics Committee for Stem Cell Research (ZES), Robert Koch Institute, Berlin, Germany
| | | | - Horst Spielmann
- Institute for Pharmacy, Faculty of Biology, Chemistry, and Pharmacy, Freie Universität, Berlin, Germany
| | - Chi Chiu Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|