1
|
Nocentini A, Costa A, Bonardi A, Ammara A, Giovannuzzi S, Petreni A, Bartolucci G, Rani B, Leri M, Bucciantini M, Fernández-Bolaños JG, López Ó, Passani MB, Provensi G, Gratteri P, Supuran CT. Enhanced Recognition Memory through Dual Modulation of Brain Carbonic Anhydrases and Cholinesterases. J Med Chem 2024; 67:16873-16898. [PMID: 39283654 DOI: 10.1021/acs.jmedchem.4c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This study introduces a novel multitargeting strategy that combines carbonic anhydrase (CA) activators and cholinesterase (ChE) inhibitors to enhance cognitive functions. A series of tacrine-based derivatives with amine/amino acid moieties were synthesized and evaluated for their dual activity on brain CA isoforms and ChEs (AChE and BChE). Several derivatives, notably compounds 26, 30, 34, and 40, demonstrated potent CA activation, particularly of hCA II and VII, and strong ChE inhibition with subnanomolar to low nanomolar IC50 values. In vivo studies using a mouse model of social recognition memory showed that these derivatives significantly improved memory consolidation at doses 10-100 times lower than the reference compounds (either alone or in combination). Molecular modeling and ADMET predictions elucidated the compound binding modes and confirmed favorable pharmacokinetic and safety profiles. The findings suggest that dual modulation of CA and ChE activities is a promising strategy for treating cognitive deficits associated with neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Alessio Nocentini
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Alessia Costa
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, Laboratory of Ocular and Neuropsychopharmacology (Braeye Lab), University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Andrea Ammara
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Andrea Petreni
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Gianluca Bartolucci
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Barbara Rani
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, Laboratory of Ocular and Neuropsychopharmacology (Braeye Lab), University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence 50134, Italy
| | - José G Fernández-Bolaños
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville 41012, Spain
| | - Óscar López
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville 41012, Spain
| | - Maria Beatrice Passani
- Department of Health Sciences, Laboratory of Ocular and Neuropsychopharmacology (Braeye Lab), University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Gustavo Provensi
- Department of NEUROFARBA, Section of Pharmacology and Toxicology, Laboratory of Ocular and Neuropsychopharmacology (Braeye Lab), University of Florence, Viale Pieraccini 6, Florence 50139, Italy
| | - Paola Gratteri
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
2
|
Polichnowski AJ, Williamson GA, Blair TE, Hoover DB. Autonomic and cholinergic mechanisms mediating cardiovascular and temperature effects of donepezil in conscious mice. Am J Physiol Regul Integr Comp Physiol 2021; 320:R871-R884. [PMID: 33851543 DOI: 10.1152/ajpregu.00360.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Donepezil is a centrally acting acetylcholinesterase (AChE) inhibitor with therapeutic potential in inflammatory diseases; however, the underlying autonomic and cholinergic mechanisms remain unclear. Here, we assessed effects of donepezil on mean arterial pressure (MAP), heart rate (HR), HR variability, and body temperature in conscious adult male C57BL/6 mice to investigate the autonomic pathways involved. Central versus peripheral cholinergic effects of donepezil were assessed using pharmacological approaches including comparison with the peripherally acting AChE inhibitor, neostigmine. Drug treatments included donepezil (2.5 or 5 mg/kg sc), neostigmine methyl sulfate (80 or 240 μg/kg ip), atropine sulfate (5 mg/kg ip), atropine methyl bromide (5 mg/kg ip), or saline. Donepezil, at 2.5 and 5 mg/kg, decreased HR by 36 ± 4% and 44 ± 3% compared with saline (n = 10, P < 0.001). Donepezil, at 2.5 and 5 mg/kg, decreased temperature by 13 ± 2% and 22 ± 2% compared with saline (n = 6, P < 0.001). Modest (P < 0.001) increases in MAP were observed with donepezil after peak bradycardia occurred. Atropine sulfate and atropine methyl bromide blocked bradycardic responses to donepezil, but only atropine sulfate attenuated hypothermia. The pressor response to donepezil was similar in mice coadministered atropine sulfate; however, coadministration of atropine methyl bromide potentiated the increase in MAP. Neostigmine did not alter HR or temperature, but did result in early increases in MAP. Despite the marked bradycardia, donepezil did not increase normalized high-frequency HR variability. We conclude that donepezil causes marked bradycardia and hypothermia in conscious mice via the activation of muscarinic receptors while concurrently increasing MAP via autonomic and cholinergic pathways that remain to be elucidated.
Collapse
Affiliation(s)
- Aaron J Polichnowski
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| | - Geoffrey A Williamson
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Tesha E Blair
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
3
|
Donepezil attenuates the development of morphine tolerance in rats with cancer-induced bone pain: The role of cortical N-methyl-D-aspartate receptors. Neurosci Lett 2021; 747:135678. [PMID: 33516802 DOI: 10.1016/j.neulet.2021.135678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 12/23/2022]
Abstract
Cancer-induced bone pain (CIBP), which is associated with poor quality of life, is most commonly treated using opioids. However, long-term use of morphine for analgesia induces tolerance and can diminish the treatment's effectiveness. The mechanisms that underlie morphine tolerance have been reported to be related to the inflammation of the nervous system and hyperactivation of N-methyl-D-aspartate receptors (NMDARs). Donepezil is an anti-inflammatory and neuroprotective drug that is thought to alleviate morphine tolerance. In this study, we aimed to investigate the effect of three different dosages of donepezil (1, 1.5 and 2 mg/kg) on morphine tolerance in rats with CIBP, and the possible involvement of donepezil-mediated NMDAR subunit 1 (NR1). We found that donepezil can prolong the analgesic efficacy of morphine and delay the development of chronic morphine tolerance. Furthermore, continuous morphine injection increased the expression of NR1, and this was suppressed by co-administration with donepezil using both western blotting and immunofluorescence. Our findings demonstrate that donepezil has the potential to attenuate morphine tolerance, possibly by inhibiting NR1 activity in the cortex.
Collapse
|
4
|
Hawlitschka A, Holzmann C, Wree A, Antipova V. Repeated Intrastriatal Botulinum Neurotoxin-A Injection in Hemiparkinsonian Rats Increased the Beneficial Effect on Rotational Behavior. Toxins (Basel) 2018; 10:E368. [PMID: 30208596 PMCID: PMC6162461 DOI: 10.3390/toxins10090368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 01/20/2023] Open
Abstract
Injection of botulinum neurotoxin-A (BoNT-A) into the striatum of hemiparkinsonian (hemi-PD) rats reduced apomorphine-induced rotation behavior significantly, for at least 3 months. Thereafter, rotation behavior increased again. We injected hemi-PD rats with 1 ng BoNT-A twice, the second injection following 6 months after the first one and tested the rats for apomorphine-induced rotations and spontaneous motor behaviors, i.e., corridor task and stepping test. To test the hypothesis that BoNT-A reduced striatal hypercholinism in hemi-PD rats, the acetylcholinesterase inhibitor donepezil was injected prior to separate apomorphine-induced rotation tests. In hemi-PD rats, the first BoNT-A injection led to a clear reduction of the apomorphine-induced rotations, and the second BoNT-A injection to a more massive and prolonged reaction. In hemi-PD rats whose apomorphine-induced rotation behavior was strongly reduced by an intrastriatal BoNT-A, subsequent donepezil injections led to significant increases of the rotation rate. Concerning corridor task and stepping test, neither first nor second BoNT-A injections changed hemi-PD rats' behavior significantly. The data give evidence for the possibility of repeated intrastriatal administrations of BoNT-A, for treatment of motor symptoms in experimental hemi-PD over a longer time.
Collapse
Affiliation(s)
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, D-18057 Rostock, Germany.
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany.
| | - Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany.
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Macroscopic and Clinical Anatomy, Medical University of Graz, A-8010 Graz, Austria.
| |
Collapse
|
5
|
Qian S, He L, Wang Q, Wong YC, Mak M, Ho CY, Han Y, Zuo Z. Intranasal delivery of a novel acetylcholinesterase inhibitor HLS-3 for treatment of Alzheimer's disease. Life Sci 2018; 207:428-435. [DOI: 10.1016/j.lfs.2018.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 11/25/2022]
|
6
|
Combined QSAR, molecular docking and molecular dynamics study on new Acetylcholinesterase and Butyrylcholinesterase inhibitors. Comput Biol Chem 2018; 74:304-326. [DOI: 10.1016/j.compbiolchem.2018.03.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/01/2018] [Accepted: 03/17/2018] [Indexed: 12/25/2022]
|
7
|
Larsen LE, Lysebettens WV, Germonpré C, Carrette S, Daelemans S, Sprengers M, Thyrion L, Wadman WJ, Carrette E, Delbeke J, Boon P, Vonck K, Raedt R. Clinical Vagus Nerve Stimulation Paradigms Induce Pronounced Brain and Body Hypothermia in Rats. Int J Neural Syst 2016; 27:1750016. [PMID: 28178853 DOI: 10.1142/s0129065717500162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vagus nerve stimulation (VNS) is a widely used neuromodulation technique that is currently used or being investigated as therapy for a wide array of human diseases such as epilepsy, depression, Alzheimer's disease, tinnitus, inflammatory diseases, pain, heart failure and many others. Here, we report a pronounced decrease in brain and core temperature during VNS in freely moving rats. Two hours of rapid cycle VNS (7s on/18s off) decreased brain temperature by around [Formula: see text]C, while standard cycle VNS (30[Formula: see text]s on/300[Formula: see text]s off) was associated with a decrease of around [Formula: see text]C. Rectal temperature similarly decreased by more than [Formula: see text]C during rapid cycle VNS. The hypothermic effect triggered by VNS was further associated with a vasodilation response in the tail, which reflects an active heat release mechanism. Despite previous evidence indicating an important role of the locus coeruleus-noradrenergic system in therapeutic effects of VNS, lesioning this system with the noradrenergic neurotoxin DSP-4 did not attenuate the hypothermic effect. Since body and brain temperature affect most physiological processes, this finding is of substantial importance for interpretation of several previously published VNS studies and for the future direction of research in the field.
Collapse
Affiliation(s)
- Lars Emil Larsen
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Wouter Van Lysebettens
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Charlotte Germonpré
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Sofie Carrette
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Sofie Daelemans
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Mathieu Sprengers
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Lisa Thyrion
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Wytse Jan Wadman
- 2 Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1090GE, The Netherlands
| | - Evelien Carrette
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Jean Delbeke
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Paul Boon
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Kristl Vonck
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Robrecht Raedt
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| |
Collapse
|
8
|
Misik J, Korabecny J, Nepovimova E, Cabelova P, Kassa J. The effects of novel 7-MEOTA-donepezil like hybrids and N-alkylated tacrine analogues in the treatment of quinuclidinyl benzilate-induced behavioural deficits in rats performing the multiple T-maze test. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 159:547-53. [DOI: 10.5507/bp.2015.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
|
9
|
Improved cognition without adverse effects: novel M1 muscarinic potentiator compares favorably to donepezil and xanomeline in rhesus monkey. Psychopharmacology (Berl) 2015; 232:1859-66. [PMID: 25491927 DOI: 10.1007/s00213-014-3813-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/11/2014] [Indexed: 02/05/2023]
Abstract
RATIONALE The standards of care for Alzheimer's disease, acetylcholinesterase inhibitors such as donepezil (Aricept®), are dose-limited due to adverse side-effects. These adverse events lead to significant patient non-compliance, constraining the dose and magnitude of efficacy that can be achieved. Non-selective muscarinic receptor orthosteric agonists such as Xanomeline have been shown to be effective in treating symptoms as well, but were also poorly tolerated. Therefore, there is an unmet medical need for a symptomatic treatment that improves symptoms and is better tolerated. METHODS We compared donepezil, xanomeline, and the novel selective muscarinic 1 receptor positive allosteric modulator PQCA in combination with donepezil in the object retrieval detour (ORD) cognition test in rhesus macaque. Gastrointestinal (GI) side effects (salivation and feces output) were then assessed with all compounds to determine therapeutic window. RESULTS All three compounds significantly reduced a scopolamine-induced deficit in ORD. Consistent with what is observed clinically in patients, both donepezil and xanomeline produced significant GI effects in rhesus at doses equal to or less than a fivefold margin from the minimum effective dose that improves cognition. In stark contrast, PQCA produced no GI side effects when tested at the same dose range. CONCLUSIONS These data suggest M1 positive allosteric modulators have the potential to improve cognition in Alzheimer's disease with a greater therapeutic margin than the current standard of care, addressing an important unmet medical need.
Collapse
|
10
|
A comparison of cholinesterase inhibitors in the treatment of quinuclidinyl benzilate-induced behavioural deficit in rats performing the multiple T-maze. J Appl Biomed 2014. [DOI: 10.1016/j.jab.2014.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Podurgiel S, Collins-Praino LE, Yohn S, Randall PA, Roach A, Lobianco C, Salamone JD. Tremorolytic effects of safinamide in animal models of drug-induced parkinsonian tremor. Pharmacol Biochem Behav 2013; 105:105-11. [DOI: 10.1016/j.pbb.2013.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 01/16/2013] [Accepted: 01/19/2013] [Indexed: 01/02/2023]
|
12
|
Goh CW, Aw CC, Lee JH, Chen CP, Browne ER. Pharmacokinetic and Pharmacodynamic Properties of Cholinesterase Inhibitors Donepezil, Tacrine, and Galantamine in Aged and Young Lister Hooded Rats. Drug Metab Dispos 2010; 39:402-11. [DOI: 10.1124/dmd.110.035964] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
13
|
Low dose of donepezil improves gabapentin analgesia in the rat spared nerve injury model of neuropathic pain: single and multiple dosing studies. J Neural Transm (Vienna) 2010; 117:1377-85. [DOI: 10.1007/s00702-010-0494-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/21/2010] [Indexed: 01/14/2023]
|
14
|
Collins LE, Galtieri DJ, Brennum LT, Sager TN, Hockemeyer J, Müller CE, Hinman JR, Chrobak JJ, Salamone JD. Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX. Pharmacol Biochem Behav 2009; 94:561-9. [PMID: 19958787 DOI: 10.1016/j.pbb.2009.11.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/19/2009] [Accepted: 11/25/2009] [Indexed: 01/05/2023]
Abstract
Tremulous jaw movements in rats, which can be induced by dopamine (DA) antagonists, DA depletion, and cholinomimetics, have served as a useful model for studies of tremor. Although adenosine A(2A) antagonists can reduce the tremulous jaw movements induced by DA antagonists and DA depletion, there are conflicting reports about the interaction between adenosine antagonists and cholinomimetic drugs. The present studies investigated the ability of adenosine antagonists to reverse the tremorogenic effect of the muscarinic agonist pilocarpine. While the adenosine A(2A) antagonist MSX-3 was incapable of reversing the tremulous jaw movements induced by the 4.0mg/kg dose of pilocarpine, both MSX-3 and the adenosine A(2A) antagonist SCH58261 reversed the tremulous jaw movements elicited by 0.5mg/kg pilocarpine. Systemic administration of the adenosine A(1) antagonist DPCPX failed to reverse the tremulous jaw movements induced by either an acute 0.5mg/kg dose of the cholinomimetic pilocarpine or the DA D2 antagonist pimozide, indicating that the tremorolytic effects of adenosine antagonists may be receptor subtype specific. Behaviorally active doses of MSX-3 and SCH 58261 showed substantial in vivo occupancy of A(2A) receptors, but DPCPX did not. The results of these studies support the use of adenosine A(2A) antagonists for the treatment of tremor.
Collapse
Affiliation(s)
- Lyndsey E Collins
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Grasing K, He S, Yang Y. Long-lasting decreases in cocaine-reinforced behavior following treatment with the cholinesterase inhibitor tacrine in rats selectively bred for drug self-administration. Pharmacol Biochem Behav 2009; 94:169-78. [PMID: 19698738 DOI: 10.1016/j.pbb.2009.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/22/2009] [Accepted: 08/07/2009] [Indexed: 11/18/2022]
Abstract
Tacrine is a centrally acting, reversible cholinesterase inhibitor that increases synaptic levels of acetylcholine (ACh) and can potentiate the actions of dopamine (DA). The present study was conducted to evaluate effects of tacrine on cocaine-reinforced responding in a rat line selectively bred for high levels of drug self-administration (the HS line). HS rats self-administered different doses of cocaine under a fixed-ratio-5 (FR-5) schedule. Over a four-day period, vehicle or tacrine (1.0, 3.2, or 10 mg/kg-day) was infused when animals were maintained in home cages (21 h per day). Tacrine dose-dependently decreased cocaine self-administration. Actions of tacrine differed for self-administration that was initiated within 20 min of pretreatment (described as early sessions), and for self-administration that occurred between one and three days after administration of tacrine was discontinued (late sessions). Tacrine's potency for attenuating self-administration during late sessions was greater for cocaine- relative to food-reinforcement in HS rats, and for HS relative to outbred rats. In a subset of tacrine-treated HS rats, cocaine self-administration was persistently attenuated by more than 80% from pretreatment baseline levels over a one-week period during which no further tacrine was administered. In summary, pretreatment with tacrine can produce a long-lasting attenuation of cocaine-reinforced responding.
Collapse
Affiliation(s)
- Kenneth Grasing
- Substance Abuse Research Laboratory, 151, Kansas City Veterans Affairs Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128, USA.
| | | | | |
Collapse
|
16
|
Basselin M, Nguyen HN, Chang L, Bell JM, Rapoport SI. Acute but not chronic donepezil increases muscarinic receptor-mediated signaling via arachidonic acid in unanesthetized rats. J Alzheimers Dis 2009; 17:369-82. [PMID: 19363262 PMCID: PMC2790024 DOI: 10.3233/jad-2009-1058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Donepezil, an acetylcholinesterase (AChE) inhibitor used for treating Alzheimer's disease patients, is thought to act by increasing brain extracellular acetylcholine (ACh), and ACh binding to cholinergic receptors. Muscarinic receptors are coupled to cytosolic phospholipase A2 (cPLA2) activation and arachidonic acid (AA) release from synaptic membrane phospholipid. This activation can be imaged in rodents as an AA incorporation coefficient k*, using quantitative autoradiography. Acute and chronic effects of donepezil on the AA signal, k* for AA, were measured in 81 brain regions of unanesthetized rats. Twenty min after a single oral dose (3.0 mg/kg) of donepezil, k* was increased significantly in 37 brain regions, whereas k* did not differ from control 7 h afterwards or following chronic (21 days) of donepezil. Pretreatment with atropine prevented the 20-min increments in k* following donepezil. Donepezil also increased the brain ACh concentration and reduced brain AChE activity, but did not change cPLA2 activity, regardless of administration regimen. These results show that donepezil acutely increases the brain AA signal that is mediated by ACh acting at muscarinic receptors, but that this signal is rapidly desensitized despite continued elevated brain ACh concentration. In contrast, the AA signal in response to arecoline was not altered following donepezil.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg. 9, Room 1S126, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
17
|
CNS-selective noncompetitive cholinesterase inhibitors derived from the natural piperidine alkaloid (−)-spectaline. Eur J Pharmacol 2008; 580:339-49. [DOI: 10.1016/j.ejphar.2007.11.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 11/01/2007] [Accepted: 11/15/2007] [Indexed: 11/22/2022]
|
18
|
Knol RJJ, de Bruin K, van Eck-Smit BLF, Booij J. No significant effects of single intravenous, single oral and subchronic oral administration of acetylcholinesterase inhibitors on striatal [123I]FP-CIT binding in rats. Eur J Nucl Med Mol Imaging 2007; 35:598-604. [PMID: 17955237 DOI: 10.1007/s00259-007-0620-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE [(123)I]FP-CIT SPECT is a valuable diagnostic tool to discriminate Lewy body dementia from Alzheimer's dementia. To date, however, it is uncertain whether the frequently used acetylcholinesterase inhibitors (AChEIs) by demented patients, have an effect on [(123)I]FP-CIT binding to dopamine transporters (DATs). Earlier animal studies showed a decline of DAT availability after acute intravenous injection of AChEIs. The aim of this study was to investigate effects of single intravenous, single oral and subchronic oral administration of AChEIs on DAT availability in the rat brain as measured by [(123)I]FP-CIT. METHODS Biodistribution studies were performed in Wistar rats (n = 5-16 per group). Before [(123)I]FP-CIT injection, rats were injected intravenously with a single dose of the AChEI rivastigmine (2.5 mg/kg body weight) or donepezil (0.5 mg/kg), the DAT-blocker methylphenidate (10 mg/kg) or saline. A second group was orally treated with a single dose of rivastigmine or donepezil (2.5 mg/kg), methylphenidate (10 mg/kg) or saline before injection of [(123)I]FP-CIT. Studies were also performed in rats that were orally treated during 14 consecutive days with either rivastigmine (1 mg/kg daily), donepezil (1.5 mg/kg daily), methylphenidate (2.5 mg/kg) or saline. Brain parts were assayed in a gamma counter, and specific striatum/cerebellum ratios were calculated for the [(123)I]FP-CIT binding to DATs. RESULTS No significant effects of either single intravenous, single oral or subchronic oral administration of AChEIs on striatal FP-CIT binding could be detected. Single pretreatment with methylphenidate resulted in an expected significantly lower striatal FP-CIT binding. CONCLUSION We conclude that in rats, single intravenous and single or subchronic oral administration of the tested AChEIs does not lead to an important alteration of [(123)I]FP-CIT binding to striatal DATs. Therefore, it is unlikely that these drugs will induce large effects on the interpretation of [(123)I]FP-CIT SPECT scans in routine clinical studies.
Collapse
Affiliation(s)
- R J J Knol
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 15 F2N, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Orozco C, García-de-Diego AM, Arias E, Hernández-Guijo JM, García AG, Villarroya M, López MG. Depolarization preconditioning produces cytoprotection against veratridine-induced chromaffin cell death. Eur J Pharmacol 2006; 553:28-38. [PMID: 17045260 DOI: 10.1016/j.ejphar.2006.08.084] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 08/28/2006] [Accepted: 08/31/2006] [Indexed: 11/28/2022]
Abstract
The hypothesis that K(+) channels and cell depolarization are involved in neuronal death and neuroprotection was tested in bovine chromaffin cells subjected to two treatment periods: the first period (preconditioning period) lasted 6 to 48 h and consisted of treatment with high K(+) solutions or with tetraethylammonium (TEA), a K(+) channel blocker; the second period consisted of incubation with veratridine for 24 h, to cause cell damage. Preconditioning with high K(+) (20-80 mM) or TEA (10-30 mM) for 24 h caused 20-60% cytoprotection against veratridine-induced cell death in bovine chromaffin cells. The absence of Ca(2+) ions during the first 9 h of an 18-h preconditioning period abolished the cytoprotection. Preconditioning with K(+) or TEA increased by 2.5-fold the expression of brain-derived neurotrophic factor and by nearly 2-fold the expression of the antiapoptotic protein Bcl-2. However, preconditioning did not modify the veratridine-evoked Ca(2+) signal. High K(+) shifted the Em by about 10 mV and TEA evoked a transient burst of action potentials superimposed on a sustained depolarization. We conclude that preconditioning may protect chromaffin cells from death by blocking K(+) channels that depolarize the cell and cause a cytosolic Ca(2+) signal, leading to enhanced expression of BDNF and Bcl-2.
Collapse
Affiliation(s)
- Camilo Orozco
- Instituto de Farmacología Teófilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Klegeris A, Schulzer M, Harper DG, McGeer PL. Increase in core body temperature of Alzheimer's disease patients as a possible indicator of chronic neuroinflammation: a meta-analysis. Gerontology 2006; 53:7-11. [PMID: 16940734 DOI: 10.1159/000095386] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 05/20/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Neuroinflammation contributes to the pathogenesis of Alzheimer's disease (AD). Increased pro-inflammatory cytokine levels have been reported in the brain and cerebro-spinal fluid of individuals affected by this neurodegenerative disorder. These same cytokines, including interleukin -1, interleukin-6 and tumor necrosis factor-alpha, are also believed to be involved in thermoregulation. Furthermore, their effects are thought to be mediated through the induction of cyclooxygenases resulting in increased production of inflammatory prostaglandins. Such increases have been observed in AD brains. We hypothesized that these increased levels of inflammatory mediators could lead to an increase in core body temperature in AD patients. OBJECTIVE To determine whether clinical signs of AD are accompanied by an increase in core body temperature. METHODS Analysis of the scientific literature identified six studies that used continuous rectal measurements of core body temperature in AD and control patients. Meta-analysis was performed on these published data. RESULTS Meta-analysis showed that the mean core body temperature in AD patients was significantly increased by 0.10 degrees C when compared to healthy elderly subjects. The two-sided p value was 0.0355, and the 95% confidence interval was 0.0068-0.1950. The severity of AD pathology did not appear to contribute significantly (p = 0.235) to the heterogeneity in the core body temperature among different groups of AD patients. CONCLUSION The significant increase in core body temperature in AD patients could be a direct consequence of local inflammatory reactions in the brain. Although the changes observed are probably too small to be of any diagnostic value, these observations lend further support to the neuroinflammatory hypothesis of AD pathology.
Collapse
Affiliation(s)
- Andis Klegeris
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
21
|
Jackson S, Ham RJ, Wilkinson D. The safety and tolerability of donepezil in patients with Alzheimer's disease. Br J Clin Pharmacol 2004; 58 Suppl 1:1-8. [PMID: 15496217 PMCID: PMC1884556 DOI: 10.1111/j.1365-2125.2004.01848.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cholinesterase (ChE) inhibitors, which prevent the hydrolysis of acetylcholine, have been approved for the symptomatic treatment of Alzheimer's disease (AD) for over a decade. However, the first ChE inhibitors were associated with a high incidence of side-effects and general tolerability concerns, including hepatotoxicity. Side-effects associated with increased cholinergic activity, particularly in the gastrointestinal (GI) system, can prevent patients from achieving effective doses of drug. In addition, the advanced age and frail nature of patients with AD mean that poor tolerability is a serious concern. The potential for drug-drug interactions is also an important consideration, due to the high prevalence of comorbid disease in these patients. Data both from clinical trials and studies in routine clinical practice have shown that donepezil is associated with a low incidence of GI adverse events (AEs) that is comparable with placebo. Donepezil is a potent, selective inhibitor of acetylcholinesterase, and selective inhibition of central as opposed to peripheral ChEs might be expected to reduce the incidence of AEs, thus this may explain the lower incidence of cholinergic AEs observed following treatment with donepezil, compared with nonselective ChE inhibitors. There are no differences in cardiovascular AEs, including bradycardia, between placebo and donepezil groups in the clinical trials published to date, even in a very sick vascular dementia population with high rates of comorbidity and concomitant medication use. Data from single- and multiple-dose studies of donepezil in patients with hepatic impairment and with moderately to severely impaired renal function indicate that donepezil is safe and well tolerated in these groups. Furthermore, both in vitro and clinical studies have shown that donepezil is not associated with drug-drug interactions. The incidence of weight loss is very similar between donepezil- and placebo-treated patients. Although insomnia and other sleep disorders have been reported following administration of donepezil, lengthening the time period before increasing the dose of donepezil from 5 to 10 mg day(-1) or switching to morning dosing can reduce these events to the levels of placebo-treated patients. Over 770 million days of patient use and an extensive publication database demonstrate that donepezil has a good tolerability and safety profile.
Collapse
Affiliation(s)
- Stephen Jackson
- Department of Health Care of the Elderly, Guy's, King's and St Thomas' School of Medicine, Kings College London, London, UK.
| | | | | |
Collapse
|
22
|
Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer's disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging 2004; 21:453-78. [PMID: 15132713 DOI: 10.2165/00002512-200421070-00004] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The deficiency in cholinergic neurotransmission in Alzheimer's disease has led to the development of cholinesterase inhibitors as the first-line treatment for symptoms of this disease. The clinical benefits of these agents include improvements, stabilisation or less than expected decline in cognition, function and behaviour. The common mechanism of action underlying this class of agents is an increase in available acetylcholine through inhibition of the catabolic enzyme, acetylcholinesterase. There is substantial evidence that the cholinesterase inhibitors, including donepezil, galantamine and rivastigmine, decrease acetylcholinesterase activity in a number of brain regions in patients with Alzheimer's disease. There is also a significant correlation between acetylcholinesterase inhibition and observed cognitive improvement. However, the cholinesterase inhibitors are reported to have additional pharmacological actions. Rivastigmine inhibits butyrylcholinesterase with a similar affinity to acetylcholinesterase, although it is not clear whether the inhibition of butyrylcholinesterase contributes to the therapeutic effect of rivastigmine. Based on data from preclinical studies, it has been proposed that galantamine also potentiates the action of acetylcholine on nicotinic receptors via allosteric modulation; however, the effects appear to be highly dependent on the concentrations of agonist and galantamine. It is not yet clear whether these concentrations are related to those achieved in the brain of patients with Alzheimer's disease within therapeutic dose ranges. Preclinical studies have shown that donepezil and galantamine also significantly increase nicotinic receptor density, and increased receptor density may be associated with enhanced synaptic strengthening through long-term potentiation, which is related to cognitive function. Despite these differences in pharmacology, a review of clinical data, including head-to-head studies, has not demonstrated differences in efficacy, although they may have an impact on tolerability. It seems clear that whatever the subsidiary modes of action, clinical evidence supporting acetylcholinesterase inhibition as the mechanism by which cholinesterase inhibitors treat the symptoms of Alzheimer's disease is accumulating. Certainly, as a class, the currently approved cholinesterase inhibitors (donepezil, galantamine, rivastigmine and tacrine) provide important benefits in patients with Alzheimer's disease and these drugs offer a significant advance in the management of dementia.
Collapse
Affiliation(s)
- David G Wilkinson
- Memory Assessment and Research Centre, Moorgreen Hospital, Southampton, UK.
| | | | | | | |
Collapse
|
23
|
Sayer R, Law E, Connelly PJ, Breen KC. Association of a salivary acetylcholinesterase with Alzheimer's disease and response to cholinesterase inhibitors. Clin Biochem 2004; 37:98-104. [PMID: 14725939 DOI: 10.1016/j.clinbiochem.2003.10.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES A decrease in cholinergic activity is a key event in the biochemistry of Alzheimer's disease (AD). The aim of the study was to investigate the expression levels of markers of cholinergic function in saliva, which is a readily accessible body fluid that can be obtained from subjects with minimal distress. DESIGN AND METHODS Salivary samples were obtained from people with NINCDS-ARDRA "probable" Alzheimer's disease and age- and sex-matched controls. Salivary acetylcholinesterase enzyme (AChE) activity was determined colorometrically. RESULTS Robust AChE catalytic activity was detected in the saliva samples that was stable for up to 6 h at room temperature following the provision of the salivary sample. The activity of the enzyme was significantly lower in people with AD than in age-matched controls. In addition, there were significant differences in activity between those who responded to acetylcholinesterase inhibitor (AChE-I) therapy and those who did not. CONCLUSIONS Salivary enzyme activity may therefore prove to be a useful marker of central cholinergic activity.
Collapse
Affiliation(s)
- Rachel Sayer
- Dundee Alzheimer's Disease Research Centre, Department of Psychiatry, University of Dundee Medical School, Ninewells Hospital, Dundee DD1 9SY, UK
| | | | | | | |
Collapse
|
24
|
Liston DR, Nielsen JA, Villalobos A, Chapin D, Jones SB, Hubbard ST, Shalaby IA, Ramirez A, Nason D, White WF. Pharmacology of selective acetylcholinesterase inhibitors: implications for use in Alzheimer's disease. Eur J Pharmacol 2004; 486:9-17. [PMID: 14751402 DOI: 10.1016/j.ejphar.2003.11.080] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cholinesterase inhibitors vary in their selectivity for acetylcholinesterase versus butyrylcholinesterase. We examined several cholinesterase inhibitors and assessed the relative role of acetylcholinesterase versus butyrylcholinesterase inhibition in central and peripheral responses to these medications. Donepezil and icopezil are highly selective for acetylcholinesterase, whereas tacrine and heptylphysostigmine demonstrated greater potency for butyrylcholinesterase over acetylcholinesterase. All four compounds increased acetylcholine levels in mouse brains. Dose-response curves for tremor (central effect) and salivation (peripheral effect) showed that donepezil and icopezil possess a more favourable therapeutic index than the nonselective inhibitors, tacrine and heptylphysostigmine. Co-administration of the selective butyrylcholinesterase inhibitor tetraisopropylpyrophosphoramide (iso-OMPA) potentiated peripheral, but not central, effects of the selective acetylcholinesterase inhibitor icopezil. The improved therapeutic index observed in mice with icopezil is due to a high degree of selectivity for acetylcholinesterase versus butyrylcholinesterase, suggesting that high selectivity for acetylcholinesterase may contribute to the clinically favourable tolerability profile of agents such as donepezil in Alzheimer's disease patients.
Collapse
Affiliation(s)
- Dane R Liston
- CNS Discovery, Pfizer Global Research and Development, Pfizer Inc., Eastern Point Road, Mailstop 8220-4016, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sugimoto H, Ogura H, Arai Y, Limura Y, Yamanishi Y. Research and development of donepezil hydrochloride, a new type of acetylcholinesterase inhibitor. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 89:7-20. [PMID: 12083745 DOI: 10.1254/jjp.89.7] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A wide range of evidence shows that cholinesterase (ChE) inhibitors can interfere with the progression of Alzheimer's disease (AD). The earliest known ChE inhibitors, namely, physostigmine and tacrine, showed modest improvement in the cognitive function of AD patients. However, clinical studies show that physostigmine has poor oral activity, brain penetration and pharmacokinetic parameters, while tacrine has hepatotoxic liability. Studies were then focused on finding a new type of acetylcholinesterase (AChE) inhibitor that would overcome the disadvantages of these two compounds. During the study, by chance we found a seed compound. We then conducted a structure-activity relationship study of this compound. After four years of exploratory research, we found donepezil hydrochloride (donepezil). Donepezil showed several positive characteristics including the following: 1) It has a novel structure compared to other conventional ChE inhibitors; 2) It shows strong anti-AChE activity and has long lasting efficacy; 3) The inhibitory characteristic of donepezil shows that it is highly selective for AChE as compared to butyrylcholinesterase (BuChE) and showed reversibility; 4) The results of clinical studies on donepezil show a very high significant difference on ADAS cog and CIBIC plus scores of AD patients. Donepezil is currently marketed in 56 countries all over the world.
Collapse
Affiliation(s)
- Hachiro Sugimoto
- Tsukuba Research Institute Laboratories, Eisai Co, Ltd, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|