1
|
Uzun Uysal E, Tomruk NB, Çakır Şen C, Yıldızhan E. D-serine and D-amino acid oxidase levels in patients with schizophrenia spectrum disorders in the first episode and 6-month follow-up. J Psychiatr Res 2024; 175:123-130. [PMID: 38728915 DOI: 10.1016/j.jpsychires.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND D-serine and the D-amino acid oxidase (DAO) enzyme, which breaks down d-amino acids, may be involved in the pathophysiology of schizophrenia by affecting the N-methyl-D-aspartate (NMDA) receptor. The exact role of D-serine and DAO, as well as the consequences of increased DAO activity in patients with schizophrenia, remain unclear. We aimed to investigate D-serine and DAO levels in patients with first-episode schizophrenia spectrum disorders before treatment and after six months of treatment. METHOD Comparisons for the serum levels of D-serine and DAO were made between 81 healthy controls and 89 patients with first-episode schizophrenia spectrum disorders without a history of treatment. Further comparisons were made after 6 months for changes in these levels in the 41 patients in follow-up. The Positive and Negative Syndrome Scale (PANNS), Calgary Scale for Depression in Schizophrenia (CDSS), Montreal Cognitive Assessment Scale (MoCA), Global Assessment Scale (GAS), and Clinical Global Impression Scale (CGI) were used to evaluate the symptom severity and functionality. Secondary results included comparisons related to antipsychotic equivalent doses. RESULTS Before treatment, patients had significantly lower levels of D-serine, DAO, and D-serine/DAO ratio compared to healthy individuals (p < 0.001; p < 0.001; p = 0.004). DAO and D-serine levels of the patients were higher after six months of treatment (p = 0.025; p = 0.001). There was correlation of DAO levels with antipsychotic dosage and with PANSS negative and total subscale scores (rho = 0.421, p = 0.01; rho = 0.280, p = 0.008; rho = 0.371, p = 0.000). No correlation was found between serum D-serine level, DAO level, and the D-serine/DAO ratio with cognitive function. CONCLUSIONS The results suggest that D-serine and DAO may play a role that is sensitive to treatment effects in schizophrenia spectrum disorders. To gain a more comprehensive understanding of the impact antipsychotic drugs have on NMDA receptor dysfunction, there is a requirement for studies that directly evaluates the activity of the DAO enzyme.
Collapse
Affiliation(s)
- Eda Uzun Uysal
- Arnavutkoy State Hospital, Department of Psychiatry, Istanbul, Turkey.
| | - Nesrin Buket Tomruk
- Bakırköy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| | - Cansu Çakır Şen
- Bakırköy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| | - Eren Yıldızhan
- Bakırköy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| |
Collapse
|
2
|
Oshima M, Toyama T, Nakade Y, Yomogida D, Yuasa T, Horikoshi K, Minami T, Ogura H, Nakagawa S, Miyagawa T, Kitajima S, Hara A, Sakai N, Shimizu M, Mita M, Kinoshita M, Nakada M, Kikuchi M, Iwata Y, Wada T. Association Between Risperidone Use and Kidney Function Decline in Patients with Schizophrenia: A Retrospective Cohort Study. Clin Ther 2023; 45:889-893. [PMID: 37487866 DOI: 10.1016/j.clinthera.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE Several D-amino acids have been shown to be protective against kidney injury in mice. Risperidone, a currently used atypical antipsychotic agent for schizophrenia, is also known to inhibit the activity of D-amino acid oxidase, which degrades certain D-amino acids. Based on the hypothesis that risperidone would prevent kidney disease progression, this study investigated the association between risperidone use and kidney function decline in patients with schizophrenia. METHODS This retrospective cohort study included patients who were diagnosed with schizophrenia and had data available from two or more serum creatinine measurements between April 1, 2010, and March 31, 2020. Patients who used risperidone for at least 30 days were included in the risperidone group, whereas those who had no record of risperidone use were included in the control group. Cox regression models were used to evaluate the risk for 40% decline in estimated glomerular filtration rate (eGFR) in patients treated with risperidone compared to that in the control group. FINDINGS Overall, 212 patients used risperidone and 1468 patients had no record of risperidone use. The mean age was 55 years, 759 (45%) of the patients were male, and the mean eGFR at baseline was 88 mL/min/1.73 m2. The mean age in the risperidone group was less than that in the control group (52 vs 56 years); other baseline characteristics were comparable between the two groups. During a mean follow-up of 1.6 years, 267 patients (16%) had a 40% eGFR decline. The incidence rate of 40% eGFR decline was lower in the risperidone group than in the control group (60 vs 104 per 1000 person-years). After adjustment for baseline age, sex, and eGFR, risperidone use was associated with a decreased risk for 40% eGFR decline (hazard ratio = 0.54; 95% CI, 0.33-0.87; P = 0.01). IMPLICATIONS Risperidone use may be associated with decreased risk for kidney function decline in patients with schizophrenia. Further studies are warranted to validate these findings.
Collapse
Affiliation(s)
| | | | - Yusuke Nakade
- Department of Nephrology and Laboratory Medicine; Department of Clinical Laboratory Medicine
| | | | | | | | | | | | | | | | | | - Akinori Hara
- Department of Nephrology and Laboratory Medicine
| | | | - Miho Shimizu
- Department of Nephrology and Laboratory Medicine
| | | | | | | | - Mitsuru Kikuchi
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, and the; Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | | | - Takashi Wada
- Department of Nephrology and Laboratory Medicine
| |
Collapse
|
3
|
Masson P, Mukhametgalieva AR. Partial Reversible Inhibition of Enzymes and Its Metabolic and Pharmaco-Toxicological Implications. Int J Mol Sci 2023; 24:12973. [PMID: 37629158 PMCID: PMC10454656 DOI: 10.3390/ijms241612973] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Partial reversible inhibition of enzymes, also called hyperbolic inhibition, is an uncommon mechanism of reversible inhibition, resulting from a productive enzyme-inhibitor complex. This type of inhibition can involve competitive, mixed, non-competitive and uncompetitive inhibitors. While full reversible inhibitors show linear plots for reciprocal enzyme initial velocity versus inhibitor concentration, partial inhibitors produce hyperbolic plots. Similarly, dose-response curves show residual fractional activity of enzymes at high doses. This article reviews the theory and methods of analysis and discusses the significance of this type of reversible enzyme inhibition in metabolic processes, and its implications in pharmacology and toxicology.
Collapse
Affiliation(s)
- Patrick Masson
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, 18 ul. Kremlevskaya, 420008 Kazan, Russia
| | | |
Collapse
|
4
|
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants (Basel) 2023; 12:antiox12040975. [PMID: 37107350 PMCID: PMC10135787 DOI: 10.3390/antiox12040975] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants' mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
5
|
Sakamoto T, Odera K, Onozato M, Sugasawa H, Takahashi R, Fujimaki Y, Fukushima T. Direct Fluorescence Evaluation of d-Amino Acid Oxidase Activity Using a Synthetic d-Kynurenine Derivative. Anal Chem 2022; 94:14530-14536. [PMID: 36222234 DOI: 10.1021/acs.analchem.2c00775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
d-Amino acid oxidase (DAO) has been suggested to be associated with the central nervous system diseases, such as schizophrenia. We newly synthesized a nonfluorescent 5-methylthio-d-kynurenine (MeS-d-KYN), which was converted to blue-fluorescent 6-MeS-kynurenic acid (MeS-KYNA, λex = 364 nm, λem = 450 nm) through a one-step reaction by incubation with DAO. It was revealed that fluorescence intensity increased accompanied by commercial porcine kidney DAO activity (unit) with a good correlation (R2 = 0.9972), suggesting that the fluorometric evaluation of DAO activity using MeS-d-KYN is feasible. MeS-d-KYN was applied to fluorescent DAO imaging in cultured LLC-PK1 cells, and the blue fluorescence of MeS-KYNA overlapped considerably with the location of peroxisomes, which was suggested to be the location of DAO in the cells. Because fluorescence was diminished in the presence of 6-chloro-1,2-benzisoxazol-3(2H)-one (CBIO), a DAO inhibitor, it was considered that DAO activity in cells could be directly evaluated using MeS-d-KYN as the substrate.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| | - Keiko Odera
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| | - Mayu Onozato
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| | - Hiroshi Sugasawa
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| | - Ryoya Takahashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| | - Yasuto Fujimaki
- Tokyo Metropolitan Industrial Technology Research Institute, Jonan Branch, 1-20-20 minamikamata, Ota-ku, Tokyo144-0035, Japan
| | - Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba274-8510, Japan
| |
Collapse
|
6
|
de Bartolomeis A, Vellucci L, Austin MC, De Simone G, Barone A. Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules 2022; 12:biom12070909. [PMID: 35883465 PMCID: PMC9312470 DOI: 10.3390/biom12070909] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia has been conceptualized as a neurodevelopmental disorder with synaptic alterations and aberrant cortical–subcortical connections. Antipsychotics are the mainstay of schizophrenia treatment and nearly all share the common feature of dopamine D2 receptor occupancy, whereas glutamatergic abnormalities are not targeted by the presently available therapies. D-amino acids, acting as N-methyl-D-aspartate receptor (NMDAR) modulators, have emerged in the last few years as a potential augmentation strategy in those cases of schizophrenia that do not respond well to antipsychotics, a condition defined as treatment-resistant schizophrenia (TRS), affecting almost 30–40% of patients, and characterized by serious cognitive deficits and functional impairment. In the present systematic review, we address with a direct and reverse translational perspective the efficacy of D-amino acids, including D-serine, D-aspartate, and D-alanine, in poor responders. The impact of these molecules on the synaptic architecture is also considered in the light of dendritic spine changes reported in schizophrenia and antipsychotics’ effect on postsynaptic density proteins. Moreover, we describe compounds targeting D-amino acid oxidase and D-aspartate oxidase enzymes. Finally, other drugs acting at NMDAR and proxy of D-amino acids function, such as D-cycloserine, sarcosine, and glycine, are considered in the light of the clinical burden of TRS, together with other emerging molecules.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
- Correspondence: ; Tel.: +39-081-7463673 or +39-081-7463884 or +39-3662745592; Fax: +39-081-7462644
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Mark C. Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA;
| | - Giuseppe De Simone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| |
Collapse
|
7
|
Bahmad HF, Demus T, Moubarak MM, Daher D, Alvarez Moreno JC, Polit F, Lopez O, Merhe A, Abou-Kheir W, Nieder AM, Poppiti R, Omarzai Y. Overcoming Drug Resistance in Advanced Prostate Cancer by Drug Repurposing. Med Sci (Basel) 2022; 10:medsci10010015. [PMID: 35225948 PMCID: PMC8883996 DOI: 10.3390/medsci10010015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in men. Common treatments include active surveillance, surgery, or radiation. Androgen deprivation therapy and chemotherapy are usually reserved for advanced disease or biochemical recurrence, such as castration-resistant prostate cancer (CRPC), but they are not considered curative because PCa cells eventually develop drug resistance. The latter is achieved through various cellular mechanisms that ultimately circumvent the pharmaceutical’s mode of action. The need for novel therapeutic approaches is necessary under these circumstances. An alternative way to treat PCa is by repurposing of existing drugs that were initially intended for other conditions. By extrapolating the effects of previously approved drugs to the intracellular processes of PCa, treatment options will expand. In addition, drug repurposing is cost-effective and efficient because it utilizes drugs that have already demonstrated safety and efficacy. This review catalogues the drugs that can be repurposed for PCa in preclinical studies as well as clinical trials.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Correspondence: or ; Tel.: +1-786-961-0216
| | - Timothy Demus
- Division of Urology, Columbia University, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (T.D.); (A.M.N.)
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (M.M.M.); (W.A.-K.)
- CNRS, IBGC, UMR5095, Universite de Bordeaux, F-33000 Bordeaux, France
| | - Darine Daher
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Francesca Polit
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Olga Lopez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Ali Merhe
- Department of Urology, Jackson Memorial Hospital, University of Miami, Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (M.M.M.); (W.A.-K.)
| | - Alan M. Nieder
- Division of Urology, Columbia University, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (T.D.); (A.M.N.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Robert Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Yumna Omarzai
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
8
|
Steinhorn B, Eroglu E, Michel T. Chemogenetic Approaches to Probe Redox Pathways: Implications for Cardiovascular Pharmacology and Toxicology. Annu Rev Pharmacol Toxicol 2022; 62:551-571. [PMID: 34530645 PMCID: PMC10507364 DOI: 10.1146/annurev-pharmtox-012221-082339] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemogenetics refers to experimental systems that dynamically regulate the activity of a recombinant protein by providing or withholding the protein's specific biochemical stimulus. Chemogenetic tools permit precise dynamic control of specific signaling molecules to delineate the roles of those molecules in physiology and disease. Yeast d-amino acid oxidase (DAAO) enables chemogenetic manipulation of intracellular redox balance by generating hydrogen peroxide only in the presence of d-amino acids. Advances in biosensors have allowed the precise quantitation of these signaling molecules. The combination of chemogenetic approaches with biosensor methodologies has opened up new lines of investigation, allowing the analysis of intracellular redox pathways that modulate physiological and pathological cell responses. We anticipate that newly developed transgenic chemogenetic models will permit dynamic modulation of cellularredox balance in diverse cells and tissues and will facilitate the identification and validation of novel therapeutic targets involved in both physiological redox pathways and pathological oxidative stress.
Collapse
Affiliation(s)
- Benjamin Steinhorn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Emrah Eroglu
- Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Department of Molecular Biology and Biochemistry, Medical University of Graz, 8036 Graz, Austria
| | - Thomas Michel
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
9
|
Increasing the sensitivity of the molecular probes for the substituent effects – The SESE approach. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Sogabe H, Shishido Y, Miyazaki H, Kim SH, Rachadech W, Fukui K. Dynamics of D-amino acid oxidase in kidney epithelial cells under amino acid starvation. J Biochem 2021; 170:119-129. [PMID: 33725110 DOI: 10.1093/jb/mvab029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/08/2021] [Indexed: 11/14/2022] Open
Abstract
D-amino acid oxidase (DAO) is a flavoenzyme catalyzing the oxidation of D-amino acid (AA)s. In the kidney, its expression is detected in proximal tubules, and DAO is considered to play a role in the conversion of D-form AAs to α-keto acids. LLC-PK1 cells, a pig renal proximal tubule cell line, were used to elucidate the regulation of DAO protein synthesis and degradation. In this study, we showed that trypsinization of LLC-PK1 cells in culture system rapidly reduced the intracellular DAO protein level to approximately 33.9% of that before treatment, even within 30 min. Furthermore, we observed that the DAO protein level was decreased when LLC-PK1 cells were subjected to AA starvation. To determine the degradation pathway, we treated the cells with chloroquine and MG132. DAO degradation was found to be inhibited by chloroquine, but not by MG132 treatment. We next examined whether or not DAO was degraded by autophagy. We found that AA starvation led to an increased accumulation of LC3-II, suggesting that DAO protein is degraded by autophagy due to AA starvation conditions. Furthermore, treatment with cycloheximide inhibited DAO protein degradation. Taken together, DAO protein is degraded by autophagy under starvation. The present study revealed the potential dynamics of DAO correlated with renal pathophysiology.
Collapse
Affiliation(s)
- Hirofumi Sogabe
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Yuji Shishido
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Hayato Miyazaki
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Soo Hyeon Kim
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Wanitcha Rachadech
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.,Division of Chemistry, Faculty of Science, Udon Thani Rajabhat University, 64 Thahan Road, Muang, Udon Thani, 41000, Thailand
| | - Kiyoshi Fukui
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| |
Collapse
|
11
|
Rachadech W, Kato Y, Abou El-Magd RM, Shishido Y, Kim SH, Sogabe H, Maita N, Yorita K, Fukui K. P219L substitution in human D-amino acid oxidase impacts the ligand binding and catalytic efficiency. J Biochem 2021; 168:557-567. [PMID: 32730563 DOI: 10.1093/jb/mvaa083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
Human D-amino acid oxidase (DAO) is a flavoenzyme that is implicated in neurodegenerative diseases. We investigated the impact of replacement of proline with leucine at Position 219 (P219L) in the active site lid of human DAO on the structural and enzymatic properties, because porcine DAO contains leucine at the corresponding position. The turnover numbers (kcat) of P219L were unchanged, but its Km values decreased compared with wild-type, leading to an increase in the catalytic efficiency (kcat/Km). Moreover, benzoate inhibits P219L with lower Ki value (0.7-0.9 µM) compared with wild-type (1.2-2.0 µM). Crystal structure of P219L in complex with flavin adenine dinucleotide (FAD) and benzoate at 2.25 Å resolution displayed conformational changes of the active site and lid. The distances between the H-bond-forming atoms of arginine 283 and benzoate and the relative position between the aromatic rings of tyrosine 224 and benzoate were changed in the P219L complex. Taken together, the P219L substitution leads to an increase in the catalytic efficiency and binding affinity for substrates/inhibitors due to these structural changes. Furthermore, an acetic acid was located near the adenine ring of FAD in the P219L complex. This study provides new insights into the structure-function relationship of human DAO.
Collapse
Affiliation(s)
- Wanitcha Rachadech
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.,Division of Chemistry, Faculty of Science, Udon Thani Rajabhat University, 64 Thahan Road, Muang, Udon Thani 41000, Thailand
| | - Yusuke Kato
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Rabab M Abou El-Magd
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Yuji Shishido
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Soo Hyeon Kim
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Hirofumi Sogabe
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Nobuo Maita
- Division of Disease Proteomics, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Kazuko Yorita
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Kiyoshi Fukui
- Division of Enzyme Pathophysiology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| |
Collapse
|
12
|
Pei JC, Luo DZ, Gau SS, Chang CY, Lai WS. Directly and Indirectly Targeting the Glycine Modulatory Site to Modulate NMDA Receptor Function to Address Unmet Medical Needs of Patients With Schizophrenia. Front Psychiatry 2021; 12:742058. [PMID: 34658976 PMCID: PMC8517243 DOI: 10.3389/fpsyt.2021.742058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Schizophrenia is a severe mental illness that affects ~1% of the world's population. It is clinically characterized by positive, negative, and cognitive symptoms. Currently available antipsychotic medications are relatively ineffective in improving negative and cognitive deficits, which are related to a patient's functional outcomes and quality of life. Negative symptoms and cognitive deficits are unmet by the antipsychotic medications developed to date. In recent decades, compelling animal and clinical studies have supported the NMDA receptor (NMDAR) hypofunction hypothesis of schizophrenia and have suggested some promising therapeutic agents. Notably, several NMDAR-enhancing agents, especially those that function through the glycine modulatory site (GMS) of NMDAR, cause significant reduction in psychotic and cognitive symptoms in patients with schizophrenia. Given that the NMDAR-mediated signaling pathway has been implicated in cognitive/social functions and that GMS is a potential therapeutic target for enhancing the activation of NMDARs, there is great interest in investigating the effects of direct and indirect GMS modulators and their therapeutic potential. In this review, we focus on describing preclinical and clinical studies of direct and indirect GMS modulators in the treatment of schizophrenia, including glycine, D-cycloserine, D-serine, glycine transporter 1 (GlyT1) inhibitors, and D-amino acid oxidase (DAO or DAAO) inhibitors. We highlight some of the most promising recently developed pharmacological compounds designed to either directly or indirectly target GMS and thus augment NMDAR function to treat the cognitive and negative symptoms of schizophrenia. Overall, the current findings suggest that indirectly targeting of GMS appears to be more beneficial and leads to less adverse effects than direct targeting of GMS to modulate NMDAR functions. Indirect GMS modulators, especially GlyT1 inhibitors and DAO inhibitors, open new avenues for the treatment of unmet medical needs for patients with schizophrenia.
Collapse
Affiliation(s)
- Ju-Chun Pei
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Da-Zhong Luo
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Shiang-Shin Gau
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Chia-Yuan Chang
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Yousefi-Manesh H, Dejban P, Mumtaz F, Abdollahi A, Chamanara M, Dehpour A, Hasanvand A, Rashidian A. Risperidone attenuates acetic acid-induced colitis in rats through inhibition of TLR4/NF-kB signaling pathway. Immunopharmacol Immunotoxicol 2020; 42:464-472. [PMID: 32787472 DOI: 10.1080/08923973.2020.1808987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIM The purpose of the present study is to explore the anti-inflammatory potential of risperidone in acetic acid-induced rat colitis through inhibition of TLR4/NF-kB pathway. METHODS Acute colitis induction was done by intra-rectal administration of 2 mL of 4% diluted acetic acid solution. Two h after colitis induction, dexamethasone (2 mg/kg) as standard drugorrisperidone (2, 4 and 6 mg/kg) were administered orally to wistar rats for five consecutive days. 24 h after the last treatment, animals were sacrificed by cervical dislocation. Macroscopic and microscopic damage evaluation was done. Biochemical and ELISA methods were used to assess myeloid peroxidase (MPO) enzyme activity and tumor necrosis factor-α (TNF-α) level respectively. Moreover, immunohistochemistry (IHC) was performed to detect the expression of TLR4 and pNF-kBproteins. RESULTS Dexamethasone (2 mg/kg) or risperidone (2, 4 and 6 mg/kg) improved acetic acid-induced macroscopic (p < .001) and microscopic lesions. Additionally, risperidone (2, 4 and 6 mg/kg) inhibited the activity of MPO and TNF-α (p < .01, p < .001) in the colon tissue compared to acetic acid group. Furthermore, bothdexamethasone and risperidone (2, 4 and 6 mg/kg) significantly reduced acetic acid-induced expression of TLR4and pNF-kB proteins (p < .05, p < .01, p < .001). CONCLUSION The anti-inflammatory effect of risperidone on acetic acid-induced colitis in rats may involve inhibition of TLR4 and NF-kB signaling pathway.
Collapse
Affiliation(s)
- Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Dejban
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faiza Mumtaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Hasanvand
- Department of Pharmacology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Turanli B, Grøtli M, Boren J, Nielsen J, Uhlen M, Arga KY, Mardinoglu A. Drug Repositioning for Effective Prostate Cancer Treatment. Front Physiol 2018; 9:500. [PMID: 29867548 PMCID: PMC5962745 DOI: 10.3389/fphys.2018.00500] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022] Open
Abstract
Drug repositioning has gained attention from both academia and pharmaceutical companies as an auxiliary process to conventional drug discovery. Chemotherapeutic agents have notorious adverse effects that drastically reduce the life quality of cancer patients so drug repositioning is a promising strategy to identify non-cancer drugs which have anti-cancer activity as well as tolerable adverse effects for human health. There are various strategies for discovery and validation of repurposed drugs. In this review, 25 repurposed drug candidates are presented as result of different strategies, 15 of which are already under clinical investigation for treatment of prostate cancer (PCa). To date, zoledronic acid is the only repurposed, clinically used, and approved non-cancer drug for PCa. Anti-cancer activities of existing drugs presented in this review cover diverse and also known mechanisms such as inhibition of mTOR and VEGFR2 signaling, inhibition of PI3K/Akt signaling, COX and selective COX-2 inhibition, NF-κB inhibition, Wnt/β-Catenin pathway inhibition, DNMT1 inhibition, and GSK-3β inhibition. In addition to monotherapy option, combination therapy with current anti-cancer drugs may also increase drug efficacy and reduce adverse effects. Thus, drug repositioning may become a key approach for drug discovery in terms of time- and cost-efficiency comparing to conventional drug discovery and development process.
Collapse
Affiliation(s)
- Beste Turanli
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kazim Y. Arga
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
15
|
Ishiwata S, Hattori K, Sasayama D, Teraishi T, Miyakawa T, Yokota Y, Matsumura R, Yoshida F, Nishikawa T, Kunugi H. Plasma and cerebrospinal fluid G72 protein levels in schizophrenia and major depressive disorder. Psychiatry Res 2017; 254:244-250. [PMID: 28477547 DOI: 10.1016/j.psychres.2017.04.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/15/2023]
Abstract
G72 is a modulator of D-amino acid oxidase, the enzyme that degrades D-serine, an amino acid that plays a critical role in glutamate neurotransmission, and has been implicated in psychiatric disorders. The aim of this study was to examine whether plasma or cerebrospinal fluid (CSF) G72 protein levels were altered in either schizophrenia or major depressive disorder (MDD) and whether any correlation between G72 levels and disease severity existed. Initially, 27 schizophrenic patients, 26 MDD patients, and 27 healthy controls matched for age, sex, and ethnicity were enrolled. Compared to those of controls, plasma or CSF G72 levels were not significantly different in patients with schizophrenia or MDD. Although we found a significant positive correlation between plasma G72 levels and a positive symptoms score on the positive and negative syndrome scale (PANSS), this was not replicated in the second study (40 schizophrenic patients). CSF G72 levels showed no significant correlation with PANSS scores. In MDD, neither plasma nor CSF G72 levels correlated significantly with depression severity. Since severity of our patients were relatively mild, further investigations in a large number of subjects including drug-free patients, younger patients, and more severely affected patients are warranted.
Collapse
Affiliation(s)
- Sayuri Ishiwata
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Toshiya Teraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Tomoko Miyakawa
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Yuuki Yokota
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Ryo Matsumura
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Fuyuko Yoshida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Toru Nishikawa
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan.
| |
Collapse
|
16
|
Kohiki T, Kato Y, Nishikawa Y, Yorita K, Sagawa I, Denda M, Inokuma T, Shigenaga A, Fukui K, Otaka A. Elucidation of inhibitor-binding pockets ofd-amino acid oxidase using docking simulation and N-sulfanylethylanilide-based labeling technology. Org Biomol Chem 2017; 15:5289-5297. [DOI: 10.1039/c7ob00633k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding pockets of a schizophrenia-relatedd-amino acid oxidase to its inhibitor were clarified by docking simulation and protein labeling experiments.
Collapse
Affiliation(s)
- Taiki Kohiki
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| | - Yusuke Kato
- Division of Enzyme Pathophysiology
- The Institute for Enzyme Research (KOSOKEN)
- Tokushima University
- Tokushima 770-8503
- Japan
| | - Yusuke Nishikawa
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| | - Kazuko Yorita
- Division of Enzyme Pathophysiology
- The Institute for Enzyme Research (KOSOKEN)
- Tokushima University
- Tokushima 770-8503
- Japan
| | - Ikuko Sagawa
- Support Center for Advanced Medical Sciences
- Institute of Biomedical Sciences
- Tokushima University Graduate School
- Tokushima 770-8505
- Japan
| | - Masaya Denda
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| | - Tsubasa Inokuma
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
- PRESTO
| | - Kiyoshi Fukui
- Division of Enzyme Pathophysiology
- The Institute for Enzyme Research (KOSOKEN)
- Tokushima University
- Tokushima 770-8503
- Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences
- Tokushima University
- Tokushima 770-8505
- Japan
| |
Collapse
|
17
|
Puangpetch A, Vanwong N, Nuntamool N, Hongkaew Y, Chamnanphon M, Sukasem C. CYP2D6 polymorphisms and their influence on risperidone treatment. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2016; 9:131-147. [PMID: 27942231 PMCID: PMC5138038 DOI: 10.2147/pgpm.s107772] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 enzyme especially CYP2D6 plays a major role in biotransformation. The interindividual variations of treatment response and toxicity are influenced by the polymorphisms of this enzyme. This review emphasizes the effect of CYP2D6 polymorphisms in risperidone treatment in terms of basic knowledge, pharmacogenetics, effectiveness, adverse events, and clinical practice. Although the previous studies showed different results, the effective responses in risperidone treatment depend on the CYP2D6 polymorphisms. Several studies suggested that CYP2D6 polymorphisms were associated with plasma concentration of risperidone, 9-hydroxyrisperidone, and active moiety but did not impact on clinical outcomes. In addition, CYP2D6 poor metabolizer showed more serious adverse events such as weight gain and prolactin than other predicted phenotype groups. The knowledge of pharmacogenomics of CYP2D6 in risperidone treatment is increasing, and it can be used for the development of personalized medication in term of genetic-based dose recommendation. Moreover, the effects of many factors in risperidone treatment are still being investigated. Both the CYP2D6 genotyping and therapeutic drug monitoring are the important steps to complement the genetic-based risperidone treatment.
Collapse
Affiliation(s)
- Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital
| | - Natchaya Vanwong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital
| | - Nopphadol Nuntamool
- Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yaowaluck Hongkaew
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital
| | - Monpat Chamnanphon
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital
| |
Collapse
|
18
|
Gulec M, Ozcan H, Oral E, Dursun OB, Unal D, Aksak S, Selli J, Keles ON, Unal B, Albayrak A, Halici Z. Nephrotoxic Effects of Chronically Administered Olanzapine and Risperidone in Male Rats. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20111208083355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mustafa Gulec
- Department of Psychiatry, Ataturk University School of Medicine, Erzurum - Turkey
| | - Halil Ozcan
- Department of Psychiatry, Ataturk University School of Medicine, Erzurum - Turkey
| | - Elif Oral
- Department of Psychiatry, Ataturk University School of Medicine, Erzurum - Turkey
| | - Onur Burak Dursun
- Department of Child and Adolescent Psychiatry, Ataturk University School of Medicine, Erzurum - Turkey
| | - Deniz Unal
- Department of Histology and Embryology, Ataturk University School of Medicine, Erzurum - Turkey
| | - Selina Aksak
- Department of Histology and Embryology, Ataturk University School of Medicine, Erzurum - Turkey
| | - Jale Selli
- Department of Histology and Embryology, Ataturk University School of Medicine, Erzurum - Turkey
| | - Osman Nuri Keles
- Department of Histology and Embryology, Ataturk University School of Medicine, Erzurum - Turkey
| | - Bunyamin Unal
- Department of Histology and Embryology, Ataturk University School of Medicine, Erzurum - Turkey
| | - Abdulmecit Albayrak
- Department of Pharmacology, Ataturk University School of Medicine, Erzurum - Turkey
| | - Zekai Halici
- Department of Pharmacology, Ataturk University School of Medicine, Erzurum - Turkey
| |
Collapse
|
19
|
Schmidt RW, Thompson ML. Glycinergic signaling in the human nervous system: An overview of therapeutic drug targets and clinical effects. Ment Health Clin 2016; 6:266-276. [PMID: 29955481 PMCID: PMC6007534 DOI: 10.9740/mhc.2016.11.266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycine and related endogenous compounds (d-serine, d-alanine, sarcosine) serve critical roles in both excitatory and inhibitory neurotransmission and are influenced by a multitude of enzymes and transporters, including glycine transporter 1 and 2 (GlyT1 and GlyT2), d-amino acid oxidase (DAAO), serine racemase (SRR), alanine-serine-cysteine transporter 1 (Asc-1), and kynurenine aminotransferase (KAT). MEDLINE, Web of Science, and PsychINFO were searched for relevant human trials of compounds. Many studies utilizing exogenous administration of small molecule agonists of the glycineB site of n-methyl-d-aspartate receptor have been studied as have a growing number of glycine transporter type 1 (GlyT1) inhibitors. The clinical effects of these compounds are reviewed as are the potential effects of newer novel compounds.
Collapse
Affiliation(s)
- Robert W Schmidt
- Clinical Pharmacy Specialist, Mental Health, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia,
| | | |
Collapse
|
20
|
Park JY, Shin S, Kim JK, Park KC, Park JH. Synthesis of Benzoisoxazole Derivatives and Evaluation of Inhibitory Potency against Cholinesterase for Alzheimer's Disease Therapeutics. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jung-Youl Park
- Department of Chemical & Biological Engineering; Hanbat National University; Daejeon 34158 South Korea
- Industry-Academic Cooperation Foundation; Hanbat National University; Daejeon 34158 South Korea
| | - Sujeong Shin
- Department of Chemical & Biological Engineering; Hanbat National University; Daejeon 34158 South Korea
| | - Jae-kwan Kim
- Department of Chemical & Biological Engineering; Hanbat National University; Daejeon 34158 South Korea
| | - Kyoung Chan Park
- Department of Chemical & Biological Engineering; Hanbat National University; Daejeon 34158 South Korea
| | - Jeong Ho Park
- Department of Chemical & Biological Engineering; Hanbat National University; Daejeon 34158 South Korea
| |
Collapse
|
21
|
Onozato M, Nakazawa H, Hakariya H, Shishikura M, Nagashima C, Ishimaru K, Sakamoto T, Iizuka H, Ichiba H, Fukushima T. Effect of risperidone on plasma d-serine concentration in rats post-administered with d-serine. Life Sci 2016; 158:98-103. [PMID: 27352936 DOI: 10.1016/j.lfs.2016.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/14/2016] [Accepted: 06/23/2016] [Indexed: 11/30/2022]
Abstract
AIMS Risperidone (Ris) is a second-generation antipsychotic (SGA) used to treat patients with schizophrenia. Additional interventions that increase plasma d-serine (d-Ser) levels could provide improved amelioration of the negative symptoms of schizophrenia. In the present study, we studied whether Ris pretreatment altered the concentration of plasma d-Ser administered intraperitoneally. In addition, the effects of Ris and its main metabolite, 9-hydroxyrisperidone (9-OHRis), on rat d-amino acid oxidase (DAO) activity were examined in vitro. MATERIALS AND METHODS Ris (0, 0.5, 1.0, or 3.0mg/kg), followed by d-Ser (20mg/kg), were administered intraperitoneally (i.p.) to male Sprague-Dawley rats, and the time-courses of plasma d-Ser, Ris, and 9-OHRis concentrations were examined. Inhibition of DAO activity in rat cerebellar and kidney preparations by Ris and 9-OHRis were measured spectrophotometrically. KEY FINDINGS Significant increases in plasma d-Ser levels were observed in rats treated with both Ris and d-Ser. This effect occurred in a Ris dose-dependent manner, and the areas under the plasma d-Ser concentration-time curves were similar in rats treated with Ris (1.0mg/kg) and with a commercial DAO inhibitor, 3-methylpyrazole-5-carboxylic acid (1.0mg/kg). Rat plasma analyses showed that 9-OHRis was rapidly produced from Ris; however, high concentrations of Ris and 9-OHRis produced weak DAO inhibition in vitro, suggesting that some other pharmacological effect of Ris and/or 9-OHRis might contribute to its effects on plasma d-Ser levels. SIGNIFICANCE The combined administration of Ris and d-Ser may increase plasma d-Ser levels, suggesting that this approach could reduce the dose of d-Ser required for these patients.
Collapse
Affiliation(s)
- Mayu Onozato
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Hiromi Nakazawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Hitomi Hakariya
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Miho Shishikura
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Chihiro Nagashima
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Katsuyuki Ishimaru
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Tatsuya Sakamoto
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Hideaki Iizuka
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Hideaki Ichiba
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Takeshi Fukushima
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan.
| |
Collapse
|
22
|
Park JY, Shin S, Park KC, Jeong E, Park JH. Synthesis and in vitro Assay of New Triazole Linked Decursinol Derivatives Showing Inhibitory Activity against Cholinesterase for Alzheimer’s Disease Therapeutics. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2016. [DOI: 10.5012/jkcs.2016.60.2.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Iwasaki M, Kashiwaguma Y, Nagashima C, Izumi M, Uekusa A, Iwasa S, Onozato M, Ichiba H, Fukushima T. A high-performance liquid chromatography assay with a triazole-bonded column for evaluation ofd-amino acid oxidase activity. Biomed Chromatogr 2015; 30:384-9. [DOI: 10.1002/bmc.3559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Megumi Iwasaki
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| | - Yoshiyuki Kashiwaguma
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| | - Chihiro Nagashima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| | - Mao Izumi
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| | - Ayano Uekusa
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| | - Sumiko Iwasa
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| | - Mayu Onozato
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| | - Hideaki Ichiba
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| | - Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences; Toho University; Chiba 274-8510 Japan
| |
Collapse
|
24
|
Shishikura M, Hakariya H, Iwasa S, Yoshio T, Ichiba H, Yorita K, Fukui K, Fukushima T. Evaluation of human D-amino acid oxidase inhibition by anti-psychotic drugs in vitro. Biosci Trends 2015; 8:149-54. [PMID: 25030849 DOI: 10.5582/bst.2014.01034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It is of importance to determine whether antipsychotic drugs currently prescribed for schizophrenia exert D-amino acid oxidase (DAO)-inhibitory effects. We first investigated whether human (h)DAO can metabolize D-kynurenine (D-KYN) to produce the fluorescent compound kynurenic acid (KYNA) by using high-performance liquid chromatography with mass spectrometry, and fluorescence spectrometry. After confirmation of KYNA production from D-KYN by hDAO, 8 first- and second-generation antipsychotic drugs, and 6 drugs often prescribed concomitantly, were assayed for hDAO-inhibitory effects by using in vitro fluorometric methods with D-KYN as the substrate. DAO inhibitors 3-methylpyrazole-5-carboxylic acid and 4H-thieno[3,2-b]pyrrole-5-carboxylic acid inhibited KYNA production in a dose-dependent manner. Similarly, the second-generation antipsychotics blonanserin and risperidone were found to possess relatively strong hDAO-inhibitory effects in vitro (5.29 ± 0.47 μM and 4.70 ± 0.17 μM, respectively). With regard to blonanserin and risperidone, DAO-inhibitory effects should be taken into consideration in the context of their in vivo pharmacotherapeutic efficacy.
Collapse
Affiliation(s)
- Miho Shishikura
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tuszynski JA, Winter P, White D, Tseng CY, Sahu KK, Gentile F, Spasevska I, Omar SI, Nayebi N, Churchill CD, Klobukowski M, El-Magd RMA. Mathematical and computational modeling in biology at multiple scales. Theor Biol Med Model 2014; 11:52. [PMID: 25542608 PMCID: PMC4396153 DOI: 10.1186/1742-4682-11-52] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/25/2014] [Indexed: 01/08/2023] Open
Abstract
A variety of topics are reviewed in the area of mathematical and computational modeling in biology, covering the range of scales from populations of organisms to electrons in atoms. The use of maximum entropy as an inference tool in the fields of biology and drug discovery is discussed. Mathematical and computational methods and models in the areas of epidemiology, cell physiology and cancer are surveyed. The technique of molecular dynamics is covered, with special attention to force fields for protein simulations and methods for the calculation of solvation free energies. The utility of quantum mechanical methods in biophysical and biochemical modeling is explored. The field of computational enzymology is examined.
Collapse
Affiliation(s)
- Jack A Tuszynski
- Department of Physics and Department of Oncology, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Siodła T, Ozimiński WP, Hoffmann M, Koroniak H, Krygowski TM. Toward a physical interpretation of substituent effects: the case of fluorine and trifluoromethyl groups. J Org Chem 2014; 79:7321-31. [PMID: 25046196 DOI: 10.1021/jo501013p] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The application of ab initio and DFT computational methods at six different levels of theory (MP2/cc-pVDZ, MP2/aug-cc-pVTZ, B3LYP/cc-pVDZ, B3LYP/aug-cc-pVTZ, M06/cc-pVDZ, and M06/aug-cc-pVTZ) to meta- and para-substituted fluoro- and trifluoromethylbenzene derivatives and to 1-fluoro- and 1-trifluoromethyl-2-substituted trans-ethenes allowed the study of changes in the electronic and geometric properties of F- and CF3-substituted systems under the impact of other substituents (BeH, BF2, BH2, Br, CFO, CHO, Cl, CN, F, Li, NH2, NMe2, NO, NO2, OH, H, CF3, and CH3). Various parameters of these systems have been investigated, including homodesmotic reactions in terms of the substituent effect stabilization energy (SESE), the π and σ electron donor-acceptor indexes (pEDA and sEDA, respectively), the charge on the substituent active region (cSAR, known earlier as qSAR), and bond lengths, which have been regressed against Hammett constants, resulting mostly in an accurate correspondence except in the case of p-fluorobenzene derivatives. Moreover, changes in the characteristics of the ability of the substituent to attract or donate electrons under the impact of the kind of moiety to which the substituent is attached have been considered as the indirect substituent effect and investigated by means of the cSAR model. Regressions of cSAR(X) versus cSAR(Y) for any systems X and Y allow final results to be obtained on the same scale of magnitude.
Collapse
Affiliation(s)
- Tomasz Siodła
- Faculty of Chemistry, Adam Mickiewicz University , Umultowska 89b, 61-614 Poznań, Poland
| | | | | | | | | |
Collapse
|
27
|
Abstract
The potential of flavoproteins as targets of pharmacological treatments is immense. In this review we present an overview of the current research progress on medical interventions based on flavoproteins with a special emphasis on cancer, infectious diseases, and neurological disorders.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | | | |
Collapse
|
28
|
Nunes EA, MacKenzie EM, Rossolatos D, Perez-Parada J, Baker GB, Dursun SM. D-serine and schizophrenia: an update. Expert Rev Neurother 2012; 12:801-12. [PMID: 22853788 DOI: 10.1586/ern.12.65] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Considering the lengthy history of pharmacological treatment of schizophrenia, the development of novel antipsychotic agents targeting the glutamatergic system is relatively new. A glutamatergic deficit has been proposed to underlie many of the symptoms typically observed in schizophrenia, particularly the negative and cognitive symptoms (which are less likely to respond to current treatments). D-serine is an important coagonist of the glutamate NMDA receptor, and accumulating evidence suggests that D-serine levels and/or activity may be dysfunctional in schizophrenia and that facilitation of D-serine transmission could provide a significant therapeutic breakthrough, especially where conventional treatments have fallen short. A summary of the relevant animal data, as well as genetic studies and clinical trials examining D-serine as an adjunct to standard antipsychotic therapy, is provided in this article. Together, the evidence suggests that research on the next generation of antipsychotic agents should include studies on increasing brain levels of D-serine or mimicking its action on the NMDA receptor.
Collapse
Affiliation(s)
- Emerson A Nunes
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
29
|
El Sayed SM, El-Magd RMA, Shishido Y, Yorita K, Chung SP, Tran DH, Sakai T, Watanabe H, Kagami S, Fukui K. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects. J Bioenerg Biomembr 2012; 44:513-23. [PMID: 22802136 DOI: 10.1007/s10863-012-9455-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/29/2012] [Indexed: 11/30/2022]
Abstract
Angiogenesis is critical for cancer growth and metastasis. Steps of angiogenesis are energy consuming, while vascular endothelial cells are highly glycolytic. Glioblastoma multiforme (GBM) is a highly vascular tumor and this enhances its aggressiveness. D-amino acid oxidase (DAO) is a promising therapeutic protein that induces oxidative stress upon acting on its substrates. Oxidative stress-energy depletion (OSED) therapy was recently reported (El Sayed et al., Cancer Gene Ther, 19, 1-18, 2012). OSED combines DAO-induced oxidative stress with energy depletion caused by glycolytic inhibitors such as 3-bromopyruvate (3BP), a hexokinase II inhibitor that depleted ATP in cancer cells and induced production of hydrogen peroxide. 3BP disturbs the Warburg effect and antagonizes effects of lactate and pyruvate (El Sayed et al., J Bioenerg Biomembr, 44, 61-79, 2012). Citrate is a natural organic acid capable of inhibiting glycolysis by targeting phosphofructokinase. Here, we report that DAO, 3BP and citrate significantly inhibited angiogenesis, decreased the number of vascular branching points and shortened the length of vascular tubules. OSED delayed the growth of C6/DAO glioma cells. 3BP combined with citrate delayed the growth of C6 glioma cells and decreased significantly the number and size of C6 glioma colonies in soft agar. Human GBM cells (U373MG) were resistant to chemotherapy e.g. cisplatin and cytosine arabinoside, while 3BP was effective in decreasing the viability and disturbing the morphology of U373MG cells.
Collapse
Affiliation(s)
- S M El Sayed
- Division of Enzyme Pathophysiology, The Institute for Enzyme Research (KOSOKEN), The University of Tokushima, Kuramoto-cho, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
El Sayed SM, El-Magd RMA, Shishido Y, Chung SP, Diem TH, Sakai T, Watanabe H, Kagami S, Fukui K. 3-Bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects. J Bioenerg Biomembr 2012; 44:61-79. [DOI: 10.1007/s10863-012-9409-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/11/2012] [Indexed: 01/08/2023]
|
31
|
d-Amino acid metabolism in mammals: Biosynthesis, degradation and analytical aspects of the metabolic study. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3162-8. [DOI: 10.1016/j.jchromb.2011.06.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 12/28/2022]
|
32
|
El Sayed SM, Abou El-Magd RM, Shishido Y, Chung SP, Sakai T, Watanabe H, Kagami S, Fukui K. D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate. Cancer Gene Ther 2011; 19:1-18. [PMID: 21921941 DOI: 10.1038/cgt.2011.59] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glioma tumors are refractory to conventional treatment. Glioblastoma multiforme is the most aggressive type of primary brain tumors in humans. In this study, we introduce oxidative stress-energy depletion (OSED) therapy as a new suggested treatment for glioblastoma. OSED utilizes D-amino acid oxidase (DAO), which is a promising therapeutic protein that induces oxidative stress and apoptosis through generating hydrogen peroxide (H2O2). OSED combines DAO with 3-bromopyruvate (3BP), a hexokinase II (HK II) inhibitor that interferes with Warburg effect, a metabolic alteration of most tumor cells that is characterized by enhanced aerobic glycolysis. Our data revealed that 3BP induced depletion of energetic capabilities of glioma cells. 3BP induced H2O2 production as a novel mechanism of its action. C6 glioma transfected with DAO and treated with D-serine together with 3BP-sensitized glioma cells to 3BP and decreased markedly proliferation, clonogenic power and viability in a three-dimensional tumor model with lesser effect on normal astrocytes. DAO gene therapy using atelocollagen as an in vivo transfection agent proved effective in a glioma tumor model in Sprague-Dawley (SD) rats, especially after combination with 3BP. OSED treatment was safe and tolerable in SD rats. OSED therapy may be a promising therapeutic modality for glioma.
Collapse
Affiliation(s)
- S M El Sayed
- Division of Enzyme Pathophysiology, The Institute for Enzyme Research (KOSOKEN), The University of Tokushima, Kuramoto-cho, Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
The association of schizophrenia risk D-amino acid oxidase polymorphisms with sensorimotor gating, working memory and personality in healthy males. Neuropsychopharmacology 2011; 36:1677-88. [PMID: 21471957 PMCID: PMC3138651 DOI: 10.1038/npp.2011.49] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is evidence supporting a role for the D-amino acid oxidase (DAO) locus in schizophrenia. This study aimed to determine the relationship of five single-nucleotide polymorphisms (SNPs) within the DAO gene identified as promising schizophrenia risk genes (rs4623951, rs2111902, rs3918346, rs3741775, and rs3825251) to acoustic startle, prepulse inhibition (PPI), working memory, and personality dimensions. A highly homogeneous study entry cohort (n = 530) of healthy, young male army conscripts (n = 703) originating from the Greek LOGOS project (Learning On Genetics Of Schizophrenia Spectrum) underwent PPI of the acoustic startle reflex, working memory, and personality assessment. The QTPHASE from the UNPHASED package was used for the association analysis of each SNP or haplotype data, with p-values corrected for multiple testing by running 10,000 permutations of the data. The rs4623951_T-rs3741775_G and rs4623951_T-rs2111902_T diplotypes were associated with reduced PPI and worse performance in working memory tasks and a personality pattern characterized by attenuated anxiety. Median stratification analysis of the risk diplotype group (ie, those individuals homozygous for the T and G alleles (TG+)) showed reduced PPI and working memory performance only in TG+ individuals with high trait anxiety. The rs4623951_T allele, which is the DAO polymorphism most strongly associated with schizophrenia, might tag a haplotype that affects PPI, cognition, and personality traits in general population. Our findings suggest an influence of the gene in the neural substrate mediating sensorimotor gating and working memory, especially when combined with high anxiety and further validate DAO as a candidate gene for schizophrenia and spectrum disorders.
Collapse
|
34
|
Abou El-Magd RM, Sasaki C, Kawazoe T, El-Sayed SM, Yorita K, Shishido Y, Sakai T, Nakamura Y, Fukui K. Bioprocess development of the production of the mutant P-219-L human d-amino acid oxidase for high soluble fraction expression in recombinant Escherichia coli. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Hashimoto K. Comments on 'The effect of risperidone on D-amino acid oxidase activity as a hypothesis for a novel mechanism of action in the treatment of schizophrenia'. J Psychopharmacol 2010; 24:1133-4. [PMID: 19939869 DOI: 10.1177/0269881109348177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
36
|
Abstract
D-amino acid oxidase (DAO) is a flavoenzyme that metabolizes certain D-amino acids, notably the endogenous N-methyl D-aspartate receptor (NMDAR) co-agonist, D-serine. As such, it has the potential to modulate the function of NMDAR and to contribute to the widely hypothesized involvement of NMDAR signalling in schizophrenia. Three lines of evidence now provide support for this possibility: DAO shows genetic associations with the disorder in several, although not all, studies; the expression and activity of DAO are increased in schizophrenia; and DAO inactivation in rodents produces behavioural and biochemical effects, suggestive of potential therapeutic benefits. However, several key issues remain unclear. These include the regional, cellular and subcellular localization of DAO, the physiological importance of DAO and its substrates other than D-serine, as well as the causes and consequences of elevated DAO in schizophrenia. Herein, we critically review the neurobiology of DAO, its involvement in schizophrenia, and the therapeutic value of DAO inhibition. This review also highlights issues that have a broader relevance beyond DAO itself: how should we weigh up convergent and cumulatively impressive, but individually inconclusive, pieces of evidence regarding the role that a given gene may have in the aetiology, pathophysiology and pharmacotherapy of schizophrenia?
Collapse
|
37
|
Potential pathophysiological role of D-amino acid oxidase in schizophrenia: immunohistochemical and in situ hybridization study of the expression in human and rat brain. J Neural Transm (Vienna) 2009; 116:1335-47. [PMID: 19685198 DOI: 10.1007/s00702-009-0289-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 07/27/2009] [Indexed: 11/26/2022]
Abstract
D-Amino acid oxidase (DAO) is a peroxisomal flavoenzyme that catalyzes oxidative deamination of a wide range of D-amino acids. Among the possible substrates of DAO in vivo, D-serine is proposed to be a neuromodulator of the N-methyl-D-aspartate (NMDA) type glutamate receptor. The gene for DAO was reported to be associated with schizophrenia. Since DAO is expected to be one of the key enzymes in the regulation of NMDA neurotransmission, the modulation of the enzyme activity is expected to be therapeutical for neuronal disorders. In search of the pathophysiological role of DAO, we analyzed the distribution of DAO mRNA and protein in the rat and human brain. In rat, the distribution of DAO mRNA was newly detected in choroid plexus (CP) epithelial cells in addition to glial cells of pons, medulla oblongata, and especially Bergmann glia of cerebellum. Moreover, to investigate how DAO expression level is altered in schizophrenia, we performed immunohistochemistry in the human brain. In agreement with the results in the rat brain, the immunoreactivity for DAO was detected in glial cells of rhombencephalon and in CP. Furthermore, higher level of DAO expression was observed in schizophrenic CP epithelial cells than that in non-schizophrenic cases. These results suggest that an increase in DAO expression in parts of the brain is involved in aberrant D-amino acid metabolism. In particular, gene expression of DAO in CP suggests that DAO may regulate D-amino acid concentration by modulating the cerebrospinal fluid and may be regarded as a potential therapeutic target for schizophrenia.
Collapse
|
38
|
Romano D, Molla G, Pollegioni L, Marinelli F. Optimization of human D-amino acid oxidase expression in Escherichia coli. Protein Expr Purif 2009; 68:72-8. [PMID: 19497370 DOI: 10.1016/j.pep.2009.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/21/2009] [Accepted: 05/26/2009] [Indexed: 11/19/2022]
Abstract
Human D-amino acid oxidase (hDAAO) is a flavoprotein that plays a key role in the pathophysiology of schizophrenia. So far, the biochemical characterization of this enzyme has been hampered by the difficulty of expressing it in a common heterologous host such as Escherichia coli. Increasing amounts of recombinant hDAAO are indeed required for the investigation of its structure-function relationships and for the screening of new inhibitors to be used in the treatment of schizophrenia. A recombinant hDAAO has been over-expressed in BL21(DE3)Star E. coli cells. By alternating screenings of medium components at flask level and investigating physiological parameters in 2L controlled batch fermentations, an improved, robust and scalable microbial process was set up giving almost a 40- and 4-fold improvement in volumetric productivity and specific activity, respectively. Under these conditions approximately 770 U/L culture hDAAO with a specific activity of approximately 0.4 U/mg protein and a specific productivity of 24.9 U/g biomass were produced. Optimization of medium ingredients, of the time and the amount of inducer's addition, pH control at the moment of induction and harvest, low mechanical shear stress regime during recombinant protein production, represent the factors concurring to achieve the reported expression level. Notably, this expression level is higher than any previously described production of hDAAOs. A yield of 100 mg of pure hDAAO/L culture thus became available in comparison to the 1-10 mg/L previously reported.
Collapse
Affiliation(s)
- Diego Romano
- Dipartimento di Biotecnologie e Scienze Molecolari, Università degli Studi dell'Insubria, Varese, Italy
| | | | | | | |
Collapse
|