1
|
Boateng CA, Nilson AN, Placide R, Pham ML, Jakobs FM, Boldizsar N, McIntosh S, Stallings LS, Korankyi IV, Kelshikar S, Shah N, Panasis D, Muccilli A, Ladik M, Maslonka B, McBride C, Sanchez MX, Akca E, Alkhatib M, Saez J, Nguyen C, Kurtyan E, DePierro J, Crowthers R, Brunt D, Bonifazi A, Newman AH, Rais R, Slusher BS, Free RB, Sibley DR, Stewart KD, Wu C, Hemby SE, Keck TM. Pharmacology and Therapeutic Potential of Benzothiazole Analogues for Cocaine Use Disorder. J Med Chem 2023; 66:12141-12162. [PMID: 37646374 PMCID: PMC10510399 DOI: 10.1021/acs.jmedchem.3c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 09/01/2023]
Abstract
Pharmacological targeting of the dopamine D4 receptor (D4R)─expressed in brain regions that control cognition, attention, and decision-making─could be useful for several neuropsychiatric disorders including substance use disorders (SUDs). This study focused on the synthesis and evaluation of a novel series of benzothiazole analogues designed to target D4R. We identified several compounds with high D4R binding affinity (Ki ≤ 6.9 nM) and >91-fold selectivity over other D2-like receptors (D2R, D3R) with diverse partial agonist and antagonist profiles. Novel analogue 16f is a potent low-efficacy D4R partial agonist, metabolically stable in rat and human liver microsomes, and has excellent brain penetration in rats (AUCbrain/plasma > 3). 16f (5-30 mg/kg, i.p.) dose-dependently decreased iv cocaine self-administration in rats, consistent with previous results produced by D4R-selective antagonists. Off-target antagonism of 5-HT2A or 5-HT2B may also contribute to these effects. Results with 16f support further efforts to target D4R in SUD treatment.
Collapse
Affiliation(s)
- Comfort A. Boateng
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Ashley N. Nilson
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rebekah Placide
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Mimi L. Pham
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Franziska M. Jakobs
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Noelia Boldizsar
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Scot McIntosh
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Leia S. Stallings
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Ivana V. Korankyi
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Shreya Kelshikar
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Nisha Shah
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Diandra Panasis
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Abigail Muccilli
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Maria Ladik
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Brianna Maslonka
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Connor McBride
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Moises Ximello Sanchez
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Ebrar Akca
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Mohammad Alkhatib
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Julianna Saez
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Catherine Nguyen
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Emily Kurtyan
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Jacquelyn DePierro
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Raymond Crowthers
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Dylan Brunt
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Alessandro Bonifazi
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amy Hauck Newman
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Rana Rais
- Department
of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Barbara S. Slusher
- Department
of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - R. Benjamin Free
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David R. Sibley
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kent D. Stewart
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Chun Wu
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Scott E. Hemby
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Thomas M. Keck
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| |
Collapse
|
2
|
Zhou Q, Xu J, Xu Y, Sun S, Chen J. Role of ICAM1 in tumor immunity and prognosis of triple-negative breast cancer. Front Immunol 2023; 14:1176647. [PMID: 37671167 PMCID: PMC10475526 DOI: 10.3389/fimmu.2023.1176647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
Background Treating triple-negative breast cancer (TNBC) is a difficult landscape owing to its short survival times and high risk of metastasis and recurrence among patients. Although involved in tumor invasion and metastasis, the mechanism of action of intercellular adhesion molecule 1 (ICAM1), a trans-membrane glycoprotein, in TNBC is ambiguous. Methods We examined ICAM1's role in TNBC, focusing on its expression, cell survival, mutation, and tumor immunity. Then, a risk score model was created utilizing co-expressed genes associated with ICAM1. According to their respective risk scores, we divided patients into high- and low-risk groups. Immune function, drug susceptibility differences, and somatic variants were analyzed in the high-and low-risk groups. And we used the CMap database to predict potential medications. Then, TNBC cells with low expression of ICAM-1 were co-cultured with PMA-treated THP-1 cells and CD8 T cells. In addition, We detected the expression of PD-1 and CTLA4 of low ICAM-1 expressing TNBC cells when they were cocultured with CD8 T cells. Results ICAM1 was found to be involved in leukocyte cell adhesion, motility, and immune activation. Patients with low-ICAM1 group had shorter disease-free survival (DFS) than those with high-ICAM1 group. The group with elevated levels of ICAM1 exhibited significantly increased levels of T-cell regulation, quiescence in natural killer (NK) cells, and M1 macrophage. ICAM1 expression was correlated with immune checkpoint drugs. The prognostic ability of the risk score model was found to be superior to that of individual genes. Patients categorized as high-risk exhibited elevated clinical stages, showed higher M1 macrophage numbers, and were able to benefit better from immunotherapy. Individuals belonging to the high-risk group exhibit significantly elevated mutation rates in TP53, TTN, and SYNE1 genes, along with increased TMB and PD-L1 levels and decreased TIDE scores. These findings suggest that immunotherapy may be advantageous for the high-risk group. Furthermore, low expression of ICAM1 was found to promote polarization to M2 macrophages along with T-cell exhaustion. Conclusion In conclusion, Low ICAM1 expression may be related to immune escape, leading to poor treatment response and a worse prognosis.
Collapse
Affiliation(s)
- Qin Zhou
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Breast surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Jiawei Xu
- Department of Breast surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yan Xu
- Department of Breast surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Shaokun Sun
- Department of Breast surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Jian Chen
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Breast surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| |
Collapse
|
3
|
Graßl F, Bock L, Huete-Huerta González Á, Schiller M, Gmeiner P, König J, Fromm MF, Hübner H, Heinrich MR. Exploring Structural Determinants of Bias among D4 Subtype-Selective Dopamine Receptor Agonists. J Med Chem 2023. [PMID: 37450764 DOI: 10.1021/acs.jmedchem.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The high affinity dopamine D4 receptor ligand APH199 and derivatives thereof exhibit bias toward the Gi signaling pathway over β-arrestin recruitment compared to quinpirole. Based on APH199, two novel groups of D4 subtype selective ligands were designed and evaluated, in which the original benzyl phenylsemicarbazide substructure was replaced by either a biphenylmethyl urea or a biphenyl urea moiety. Functional assays revealed a range of different bias profiles among the newly synthesized compounds, namely, with regard to efficacy, potency, and GRK2 dependency, in which bias factors range from 1 to over 300 and activation from 15% to over 98% compared to quinpirole. These observations demonstrate that within bias, an even more precise tuning toward a particular profile is possible, which─in a general sense─could become an important aspect in future drug development. Docking studies enabled further insight into the role of the ECL2 and the EPB in the emergence of bias, thereby taking advantage of the diversity of functionally selective D4 agonists now available.
Collapse
Affiliation(s)
- Fabian Graßl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Leonard Bock
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Álvaro Huete-Huerta González
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Martin Schiller
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Chestnykh D, Graßl F, Pfeifer C, Dülk J, Ebner C, Walters M, von Hörsten S, Kornhuber J, Kalinichenko LS, Heinrich M, Müller CP. Behavioural effects of APH199, a selective dopamine D4 receptor agonist, in animal models. Psychopharmacology (Berl) 2023; 240:1011-1031. [PMID: 36854793 PMCID: PMC10006056 DOI: 10.1007/s00213-023-06347-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
RATIONALE The dopamine D4 receptors (DRD4) play a key role in numerous brain functions and are involved in the pathogenesis of various psychiatric disorders. DRD4 ligands have been shown to moderate anxiety, reward and depression-like behaviours, and cognitive impairments. Despite a series of promising but ambiguous findings, the therapeutic advantages of DRD4 stimulation remain elusive. OBJECTIVES The investigation focused on the behavioural effects of the recently developed DRD4 agonist, APH199, to evaluate its impact on anxiety, anhedonia, behavioural despair, establishment and retrieval of alcohol reinforcement, and amphetamine (AMPH)-induced symptoms. METHODS Male C57BL/6 J mice and Sprague-Dawley rats were examined in five independent experiments. We assessed APH199 (0.1-5 mg/kg, i.p.) effects on a broad range of behavioural parameters in the open field (OF) test, conditioned place preference test (CPP), elevated plus maze (EPM), light-dark box (LDB), novelty suppressed feeding (NSF), forced swim test (FST), sucrose preference test (SPT), AMPH-induced hyperlocomotion test (AIH), and prepulse inhibition (PPI) of the acoustic startle response in AMPH-sensitized rats. RESULTS APH199 caused mild and sporadic anxiolytic and antidepressant effects in EPM and FST, but no remarkable impact on behaviour in other tests in mice. However, we found a significant increase in AMPH-induced hyperactivity, suggesting an exaggeration of the psychotic-like responses in the AMPH-sensitized rats. CONCLUSIONS Our data challenged the hypothesis of the therapeutic benefits of DRD4 agonists, pointing out a possible aggravation of psychosis. We suggest a need for further preclinical studies to ensure the safety of antipsychotics with DRD4 stimulating properties.
Collapse
Affiliation(s)
- Daria Chestnykh
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Fabian Graßl
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nuremberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Canice Pfeifer
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Jonas Dülk
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Chiara Ebner
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Mona Walters
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Friedrich-Alexander-University of Erlangen-Nuremberg, Palmsanlage 5, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Markus Heinrich
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nuremberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
- Centre for Drug Research, University Sains Malaysia, Penang, Minden, Malaysia.
| |
Collapse
|
5
|
Sinani A, Vassi A, Tsotsokou G, Nikolakopoulou M, Kouvelas ED, Mitsacos A. Early life stress influences basal ganglia dopamine receptors and novel object recognition of adolescent and adult rats. IBRO Neurosci Rep 2022; 12:342-354. [PMID: 35572456 PMCID: PMC9092503 DOI: 10.1016/j.ibneur.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
Environmental stimuli in early life are recognized to affect brain development and behavior. Mother-pup interaction constitutes a determinant stimulus during this critical period. It is known that the dopaminergic system undergoes significant reorganization during adolescence and that dopamine receptors are involved in recognition memory. Based on the above, we examined the effects of brief and prolonged maternal separation during the neonatal period (15 or 180 min daily) on basal ganglia dopamine receptors and on the behavior in the novel object recognition task of adolescent and adult male rats. Using the NOR task, we observed that the discrimination index (DI) was decreased in rats with brief maternal separations independent of age. Using receptor autoradiography, we observed that brief maternal separation induced decreases in D1, D2 and D4 receptor binding levels in adult basal ganglia nuclei, while prolonged maternal separation induced increases in D1 receptor binding levels in caudate - putamen (CPu) of adolescent rats. With immunoblotting experiments, we found decreases in D1 and increases in D2 total protein levels in CPu of adult rats with prolonged maternal separations. Α positive correlation was observed between DI and D1 binding levels in CPu, internal globus pallidus and substantia nigra, and D2 binding levels in nucleus accumbens core in adult rats, using the Pearson correlation coefficient. Our results indicate that the long-lasting effects of neonatal mother-offspring separation on dopamine receptors depend on the duration of maternal separation and age and that this early life experience impairs recognition memory in adolescent and adult rats. Furthermore, the present results suggest that modulation of striatal dopamine receptors might underlie the reduced recognition memory of adult rats with brief neonatal maternal separations.
Collapse
Affiliation(s)
- Ada Sinani
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Andriana Vassi
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Giota Tsotsokou
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Maria Nikolakopoulou
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Elias D Kouvelas
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Ada Mitsacos
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
6
|
Hayes J, Laursen B, Eneberg E, Kehler J, Rasmussen LK, Langgard M, Bastlund JF, Gerdjikov TV. Phosphodiesterase type 1 inhibition alters medial prefrontal cortical activity during goal-driven behaviour and partially reverses neurophysiological deficits in the rat phencyclidine model of schizophrenia. Neuropharmacology 2021; 186:108454. [PMID: 33444639 DOI: 10.1016/j.neuropharm.2021.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Positive modulation of cAMP signalling by phosphodiesterase (PDE) inhibitors has recently been explored as a potential target for the reversal of cognitive and behavioural deficits implicating the corticoaccumbal circuit. Previous studies show that PDE type 1 isoform B (PDE1B) inhibition may improve memory function in rodent models; however, the contribution of PDE1B inhibition to impulsivity, attentional and motivational functions as well as its neurophysiological effects have not been investigated. To address this, we recorded single unit activity in medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) in Lister Hooded rats treated with the PDE1B inhibitor Lu AF64386 and tested in the 5-choice serial reaction time task (5-CSRTT). We also asked whether PDE1B inhibition modulates neurophysiological deficits produced by subchronic phencyclidine (PCP) treatment, a rat pharmacological model of schizophrenia. Lu AF64386 significantly affected behavioural parameters consistent with a reduction in goal-directed behaviour, however without affecting accuracy. Additionally, it reduced mPFC neuronal activity. Pre-treatment with PCP did not affect behavioural parameters, however it significantly disrupted overall neuronal firing while increasing phasic responses to reward-predicting cues and disrupting mPFC-NAc cross-talk. The latter two effects were reversed by Lu AF64386. These findings suggest PDE1B inhibition may be beneficial in disorders implicating a dysfunction of the mPFC-NAc network.
Collapse
Affiliation(s)
- Jessica Hayes
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, United Kingdom
| | | | | | - Jan Kehler
- Molecular Discovery and Innovation, Lundbeck A/S, Denmark
| | | | | | | | - Todor V Gerdjikov
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, United Kingdom.
| |
Collapse
|
7
|
Giorgioni G, Del Bello F, Pavletić P, Quaglia W, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Piergentili A. Recent findings leading to the discovery of selective dopamine D 4 receptor ligands for the treatment of widespread diseases. Eur J Med Chem 2020; 212:113141. [PMID: 33422983 DOI: 10.1016/j.ejmech.2020.113141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022]
Abstract
Since its discovery, the dopamine D4 receptor (D4R) has been suggested to be an attractive target for the treatment of neuropsychiatric diseases. Novel findings have renewed the interest in such a receptor as an emerging target for the management of different diseases, including cancer, Parkinson's disease, alcohol or substance use disorders, eating disorders, erectile dysfunction and cognitive deficits. The recently resolved crystal structures of D4R in complexes with the potent ligands nemonapride and L-745870 strongly improved the knowledge on the molecular mechanisms involving the D4R functions and may help medicinal chemists in drug design. This review is focused on the recent development of the subtype selective D4R ligands belonging to classical or new chemotypes. Moreover, ligands showing functional selectivity toward G protein activation or β-arrestin recruitment and the effects of selective D4R ligands on the above-mentioned diseases are discussed.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy.
| | - Pegi Pavletić
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy.
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, Italy
| | | | | | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| |
Collapse
|
8
|
Liao IM, Chen JC. Lack of dopamine D4 receptor participation in mouse hyperdopaminergic locomotor response. Behav Brain Res 2020; 396:112925. [PMID: 32971195 DOI: 10.1016/j.bbr.2020.112925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
Chronic methamphetamine (METH) treatment induces behavioral sensitization in rodents. During this process, hyperactivation of the mesolimbic dopamine system plays a central role, and dopamine D2-like receptor-based antipsychotics are known to alleviate the behavioral hyperactivity. The atypical antipsychotic, clozapine (Clz), acts partially as a dopamine D4 receptor (D4R) antagonist and mitigates hyperdopaminergic drug addiction and/or comorbid psychotic symptoms; however, it remains unclear whether D4R blockade contributes to the therapeutic effects of Clz. Here, we evaluated the potential role of D4R in regulating hyperdopaminergia-induced behavioral hyperactivity in METH behavioral sensitization and dopamine transporter (DAT) knockdown (KD) mice. Clz or a D4R-selective antagonist, L-745,870, were co-administered to mice with daily METH in a METH sensitization model, and Clz or L-745,870 were administered alone in a DAT KD hyperactivity model. Locomotor activity and accumbal D4R expression were analyzed. Clz suppressed both the initiation and expression of METH behavioral sensitization, as well as DAT KD hyperactivity. However, repetitive Clz treatment induced tolerance to the suppression effect on METH sensitization initiation. In contrast, D4R inhibition by L-745,870 had no effect on METH sensitization or DAT KD hyperactivity. Accumbal D4R expression was similar between METH-sensitized mice with and without Clz co-treatment. In sum, our results suggest the mesolimbic D4R does not participate in behavioral sensitization encoded by hyperdopaminergia, a finding which likely extends to the therapeutic effects of Clz. Therefore, molecular targets other than D4R should be prioritized in the development of future therapeutics for treatment of hyperdopaminergia-dependent neuropsychiatric disorders.
Collapse
Affiliation(s)
- I-Mei Liao
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, United States
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Chang Gung Memorial Hospital, Keelung, Taiwan; Healthy Ageing Research Center, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
9
|
Pirzer AS, Lasch R, Friedrich H, Hübner H, Gmeiner P, Heinrich MR. Benzyl Phenylsemicarbazides: A Chemistry-Driven Approach Leading to G Protein-Biased Dopamine D4 Receptor Agonists with High Subtype Selectivity. J Med Chem 2019; 62:9658-9679. [DOI: 10.1021/acs.jmedchem.9b01085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anna S. Pirzer
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Roman Lasch
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Heike Friedrich
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Markus R. Heinrich
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
10
|
Cadinu D, Grayson B, Podda G, Harte MK, Doostdar N, Neill JC. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology 2018; 142:41-62. [DOI: 10.1016/j.neuropharm.2017.11.045] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/28/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023]
|
11
|
Gupta I, Young AMJ. Metabotropic glutamate receptor modulation of dopamine release in the nucleus accumbens shell is unaffected by phencyclidine pretreatment: In vitro assessment using fast-scan cyclic voltammetry rat brain slices. Brain Res 2018. [PMID: 29524437 DOI: 10.1016/j.brainres.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The non-competitive glutamate antagonist, phencyclidine is used in rodents to model behavioural deficits see in schizophrenia. Importantly, these deficits endure long after the cessation of short-term chronic treatment (sub-chronic), indicating that the drug treatment causes long-term changes in the physiology and/or chemistry of the brain. There is evidence that this may occur through glutamatergic modulation of mesolimbic dopamine release, perhaps involving metabotropic glutamate receptors (mGluR). This study sought to investigate the effect of sub-chronic phencyclidine pretreatment on modulation of dopamine neurotransmission by metabotropic glutamate receptors 2 and 5 (mGluR2 and mGluR5) in the nucleus accumbens shell in vitro, with the hypothesis that phencyclidine pretreatment would disrupt the mGluR-mediated modulation of dopamine release. We showed that the orthosteric mGluR2 agonist LY379268 (0.1 µM, 1 µM and 10 µM) and mGluR5 positive allosteric modulator CDPPB (1 µM and 10 µM) both attenuated potassium-evoked dopamine release, underscoring their role in modulating dopamine neurotransmission in the nucleus accumbens. Sub-chronic PCP treatment, which caused cognitive deficits measured by performance in the novel object recognition task, modelling aspects of behavioral deficits seen in schizophrenia, induced neurobiological changes that enhanced dopamine release in the nucleus accumbens, but had no effect on mGluR2 or mGluR5 mediated changes in dopamine release. Therefore it is unlikely that schizophrenia-related behavioural changes seen after sub-chronic phencyclidine pre-treatment are mediated through mGluR modulation of dopamine release.
Collapse
Affiliation(s)
- Ishan Gupta
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK.
| |
Collapse
|
12
|
Asif-Malik A, Dautan D, Young AMJ, Gerdjikov TV. Altered cortico-striatal crosstalk underlies object recognition memory deficits in the sub-chronic phencyclidine model of schizophrenia. Brain Struct Funct 2017; 222:3179-3190. [PMID: 28293729 PMCID: PMC5585296 DOI: 10.1007/s00429-017-1393-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/22/2017] [Indexed: 11/29/2022]
Abstract
The neural mechanisms underlying cognitive deficits in schizophrenia are poorly understood. Sub-chronic treatment with the NMDA antagonist phencyclidine (PCP) produces cognitive abnormalities in rodents that reliably model aspects of the neurocognitive alterations observed in schizophrenia. Given that network activity across regions encompassing medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) plays a significant role in motivational and cognitive tasks, we measured activity across cortico-striatal pathways in PCP-treated rats to characterize neural enabling and encoding of task performance in a novel object recognition task. We found that PCP treatment impaired task performance and concurrently (1) reduced tonic NAc neuronal activity, (2) desynchronized cross-activation of mPFC and NAc neurons, and (3) prevented the increase in mPFC and NAc neural activity associated with the exploration of a novel object in relation to a familiar object. Taken together, these observations reveal key neuronal and network-level adaptations underlying PCP-induced cognitive deficits, which may contribute to the emergence of cognitive abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Aman Asif-Malik
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 9HN, UK
| | - Daniel Dautan
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 9HN, UK
| | - Todor V Gerdjikov
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 9HN, UK.
| |
Collapse
|
13
|
Moritz AE, Free RB, Sibley DR. Advances and challenges in the search for D 2 and D 3 dopamine receptor-selective compounds. Cell Signal 2017; 41:75-81. [PMID: 28716664 DOI: 10.1016/j.cellsig.2017.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/30/2022]
Abstract
Compounds that target D2-like dopamine receptors (DRs) are currently used as therapeutics for several neuropsychiatric disorders including schizophrenia (antagonists) and Parkinson's disease (agonists). However, as the D2R and D3R subtypes are highly homologous, creating compounds with sufficient subtype-selectivity as well as drug-like properties for therapeutic use has proved challenging. This review summarizes the progress that has been made in developing D2R- or D3R-selective antagonists and agonists, and also describes the experimental conditions that need to be considered when determining the selectivity of a given compound, as apparent selectivity can vary widely depending on assay conditions. Future advances in this field may take advantage of currently available structural data to target alternative secondary binding sites through creating bivalent or bitopic chemical structures. Alternatively, the use of high-throughput screening techniques to identify novel scaffolds that might bind to the D2R or D3R in areas other than the highly conserved orthosteric site, such as allosteric sites, followed by iterative medicinal chemistry will likely lead to exceptionally selective compounds in the future. More selective compounds will provide a better understanding of the normal and pathological functioning of each receptor subtype, as well as offer the potential for improved therapeutics.
Collapse
Affiliation(s)
- Amy E Moritz
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, MD 20892-3723, United States
| | - R Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, MD 20892-3723, United States
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, MD 20892-3723, United States.
| |
Collapse
|
14
|
Neurochemical arguments for the use of dopamine D 4 receptor stimulation to improve cognitive impairment associated with schizophrenia. Pharmacol Biochem Behav 2017; 157:16-23. [DOI: 10.1016/j.pbb.2017.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/23/2017] [Accepted: 04/21/2017] [Indexed: 12/26/2022]
|
15
|
Miyauchi M, Neugebauer NM, Meltzer HY. Dopamine D 4 receptor stimulation contributes to novel object recognition: Relevance to cognitive impairment in schizophrenia. J Psychopharmacol 2017; 31:442-452. [PMID: 28347261 DOI: 10.1177/0269881117693746] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Several atypical antipsychotic drugs (APDs) have high affinity for the dopamine (DA) D4 receptor, but the relevance to the efficacy for the treatment of cognitive impairment associated with schizophrenia (CIAS) is poorly understood. The aim of this study was to investigate the effects of D4 receptor stimulation or blockade on novel object recognition (NOR) in normal rats and on the sub-chronic phencyclidine (PCP)-induced novel object recognition deficit. The effect of the D4 agonist, PD168077, and the D4 antagonist, L-745,870, were studied alone, and in combination with clozapine and lurasidone. In normal rats, L-745,870 impaired novel object recognition, whereas PD168077 had no effect. PD168077 acutely reversed the sub-chronic phencyclidine-induced novel object recognition deficit. Co-administration of a sub-effective dose (SED) of PD168077 with a sub-effective dose of lurasidone also reversed this deficit, but a sub-effective dose of PD168077 with a sub-effective dose of clozapine, a more potent D4 antagonist than lurasidone, did not reverse the sub-chronic phencyclidine-induced novel object recognition deficit. At a dose that did not induce a novel object recognition deficit, L-745,870 blocked the ability of clozapine, but not lurasidone, to reverse the novel object recognition deficit. D4 receptor agonism has a beneficial effect on novel object recognition in sub-chronic PCP-treated rats and augments the cognitive enhancing efficacy of an atypical antipsychotic drug that lacks affinity for the D4 receptor, lurasidone.
Collapse
Affiliation(s)
- Masanori Miyauchi
- 1 Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA.,2 Sumitomo Dainippon Pharma Co. Ltd, Suita, Osaka, Japan
| | - Nichole M Neugebauer
- 1 Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA
| | - Herbert Y Meltzer
- 1 Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
16
|
RP5063, an atypical antipsychotic drug with a unique pharmacologic profile, improves declarative memory and psychosis in mouse models of schizophrenia. Behav Brain Res 2017; 332:180-199. [PMID: 28373127 DOI: 10.1016/j.bbr.2017.02.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/11/2017] [Accepted: 02/22/2017] [Indexed: 12/13/2022]
Abstract
Various types of atypical antipsychotic drugs (AAPDs) modestly improve the cognitive impairment associated with schizophrenia (CIAS). RP5063 is an AAPD with a diverse and unique pharmacology, including partial agonism at dopamine (DA) D2, D3, D4, serotonin (5-HT)1A, and 5-HT2A receptors (Rs), full agonism at α4β2 nicotinic acetylcholine (ACh)R (nAChR), and antagonism at 5-HT2B, 5-HT6, and 5-HT7Rs. Most atypical APDs are 5-HT2A inverse agonists. The efficacy of RP5063 in mouse models of psychosis and episodic memory were studied. RP5063 blocked acute phencyclidine (PCP)-as well as amphetamine-induced hyperactivity, indicating antipsychotic activity. Acute administration of RP5063 significantly reversed subchronic (sc)PCP-induced impairment in novel object recognition (NOR), a measure of episodic memory, but not reversal learning, a measure of executive function. Co-administration of a sub-effective dose (SED) of RP5063 with SEDs of a 5-HT7R antagonist, a 5-HT1BR antagonist, a 5-HT2AR inverse agonist, or an α4β2 nAChR agonist, restored the ability of RP5063 to ameliorate the NOR deficit in scPCP mice. Pre-treatment with a 5-HT1AR, a D4R, antagonist, but not an α4β2 nAChR antagonist, blocked the ameliorating effect of RP5063. Further, co-administration of scRP5063 prior to each dose of PCP prevented the effect of PCP to produce a deficit in NOR for one week. RP5063, given to scPCP-treated mice for one week restored NOR for one week only. Acute administration of RP5063 significantly increased cortical DA efflux, which may be critical to some of its cognitive enhancing properties. These results indicate that RP5063, by itself, or as an adjunctive treatment has a multifaceted basis for improving some cognitive deficits associated with schizophrenia.
Collapse
|
17
|
LASSBio-1422: a new molecular scaffold with efficacy in animal models of schizophrenia and disorders of attention and cognition. Behav Pharmacol 2016; 28:48-62. [PMID: 27755061 DOI: 10.1097/fbp.0000000000000267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aiming to identify new antipsychotic lead-compounds, our group has been working on the design and synthesis of new N-phenylpiperazine derivatives. Here, we characterized LASSBio-1422 as a pharmacological prototype of this chemical series. Adult male Wistar rats and CF1 mice were used for in-vitro and in-vivo assays, respectively. LASSBio-1422 [1 and 5 mg/kg, postoperatively (p.o.)] inhibited apomorphine-induced climbing as well as ketamine-induced hyperlocomotion (1 and 5 mg/kg, p.o.), animal models predictive of efficacy on positive symptoms. Furthermore, LASSBio-1422 (5 mg/kg, p.o.) prevented the prepulse impairment induced by apomorphine, (±)-2,5-dimethoxy-4-iodoamphetamine, and ketamine, as well as the memory impairment induced by ketamine in the novel object-recognition task at the acquisition, consolidation, and retrieval phases of memory formation. Potential extrapyramidal side-effects and sedation were assessed by catatonia, rota-rod, locomotion, and barbiturate sleeping time, and LASSBio-1422 (15 mg/kg, p.o.) did not affect any of the parameters observed. Binding assays showed that LASSBio-1422 has a binding profile different from the known atypical antipsychotic drugs: it does not bind to AMPA, kainate, N-methyl-D-aspartate, glicine, and mGluR2 receptors and has low or negligible affinity for D1, D2, and 5-HT2A/C receptors, but high affinity for D4 receptors (Ki=0.076 µmol/l) and, to a lesser extent, for 5-HT1A receptors (Ki=0.493 µmol/l). The antagonist action of LASSBio-1422 at D4 receptors was assessed through the classical GTP-shift assay. In conclusion, LASSBio-1422 is effective in rodent models of positive and cognitive symptoms of schizophrenia and its ability to bind to D4 and 5-HT1A receptors may at least in part explain its effects in these animal models.
Collapse
|
18
|
Mammoli V, Bonifazi A, Dal Ben D, Giannella M, Giorgioni G, Piergentili A, Pigini M, Quaglia W, Thomas A, Newman AH, Ferré S, Sanchez-Soto M, Keck TM, Del Bello F. A Novel Class of Dopamine D4 Receptor Ligands Bearing an Imidazoline Nucleus. ChemMedChem 2016; 11:1819-28. [PMID: 26990230 PMCID: PMC4993638 DOI: 10.1002/cmdc.201600022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 01/08/2023]
Abstract
Over the years, the 2-substituted imidazoline nucleus has been demonstrated to be a bioversatile structural motif. In this study, novel imidazoline derivatives bearing a 3- and/or 4-hydroxy- or methoxy-substituted phenyl ring, linked by an ethylene bridge to position 2 of an N-benzyl- or N-phenethyl-substituted imidazoline nucleus, were prepared and studied against D2 -like receptor subtypes. Binding studies highlighted that a set of N-phenethylimidazoline compounds are selective for D4 over D2 and D3 receptors. In functional assays, the 3-methoxy-substituted derivative, endowed with the highest D4 affinity value, and its 3-hydroxy analogue behaved as partial agonists with low intrinsic efficacy and as competitive D4 antagonists when tested in the presence of the D2 -like receptor agonist quinpirole. Molecular docking analysis, performed using a homology model of the human D4 receptor developed using the X-ray crystal structure of the antagonist-bound human D3 receptor as a template, was in accordance with the binding results and provided useful information for the design of novel imidazoline D4 receptor ligands based on this new scaffold.
Collapse
Affiliation(s)
- Valerio Mammoli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Alessandro Bonifazi
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Mario Giannella
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Maria Pigini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Ajiroghene Thomas
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Amy H Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Sergi Ferré
- Integrative Neurobiology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Marta Sanchez-Soto
- Integrative Neurobiology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 333 Cassell Drive, Baltimore, MD, 21224, USA
| | - Thomas M Keck
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, 333 Cassell Drive, Baltimore, MD, 21224, USA
- Department of Chemistry & Biochemistry, Department of Biomedical & Translational Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy.
| |
Collapse
|
19
|
Li SB, Du D, Hasan MT, Köhr G. D4 Receptor Activation Differentially Modulates Hippocampal Basal and Apical Dendritic Synapses in Freely Moving Mice. Cereb Cortex 2016; 26:647-55. [PMID: 25270308 DOI: 10.1093/cercor/bhu229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Activation of D4 receptors (D4Rs) has been shown to improve cognitive performance, potentially affecting synaptic strength. We investigated the D4R agonist PD 168077 (PD) in hippocampal CA1 of freely moving mice. We electrically stimulated in stratum oriens (OR) or radiatum (RAD) and evoked local field potentials (LFPs). Intraperitoneally injected PD dose-dependently and reversibly attenuated LFPs for longer time in basal (OR) than apical (RAD) dendrites. High-frequency stimulation induced LTP that was stronger and more stable in OR than RAD. LTP lasted at least 4 h during which the paired-pulse ratio remained reduced. A PD concentration not affecting synaptic transmission was sufficient to reduce LTP in OR but not in RAD. A PD concentration reducing synaptic transmission reduced the early phase LTP in OR additionally and the late phase LTP in RAD exclusively. Furthermore, cell type-specific expression of mCherry in DATCre mice generated fluorescence in dorsal CA1 that was highest in lacunosum moleculare and similar in OR/RAD, indicating that midbrain dopaminergic fibers distribute evenly in OR/RAD. Together, the D4R-mediated modulation of hippocampal synaptic transmission and plasticity is stronger in OR than RAD. This could affect information processing in CA1 neurons, since signals arriving via basal and apical afferents are distinct.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim 68159, Germany
| | - Dan Du
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim 68159, Germany
| | - Mazahir T Hasan
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin 12101, Germany
| | - Georg Köhr
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim 68159, Germany
| |
Collapse
|
20
|
Disruption of medial prefrontal synchrony in the subchronic phencyclidine model of schizophrenia in rats. Neuroscience 2014; 287:157-63. [PMID: 25542422 PMCID: PMC4317768 DOI: 10.1016/j.neuroscience.2014.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022]
Abstract
Subchronic PCP pretreatment reduced theta oscillations in medial prefrontal cortex. Subchronic PCP pretreatment produced abnormal cortical synchronization in putative cortical pyramidal cells. Subchronic PCP pretreatment produced abnormal locking of cortical spikes to lower oscillation frequencies.
Subchronic treatment with the N-methyl-d-aspartate (NMDA) antagonist phencyclidine (PCP) produces behavioral abnormalities in rodents which are considered a reliable pharmacological model of neurocognitive deficits in schizophrenia. Alterations in prefrontal neuronal firing after acute PCP administration have been observed, however enduring changes in prefrontal activity after subchronic PCP treatment have not been studied. To address this we have recorded cortical oscillations and unit responses in putative cortical pyramidal cells in subchronic PCP-treated rats (2 mg/kg twice daily for 7 days) under urethane anesthesia. We found that this regimen reduced theta oscillations in the medial prefrontal cortex. It further produced abnormal cortical synchronization in putative cortical pyramidal cells. These alterations in prefrontal cortex functioning may contribute to cognitive deficits seen in subchronic NMDA antagonist pre-treated animals in prefrontal-dependent tasks.
Collapse
|
21
|
Identification of a new selective dopamine D4 receptor ligand. Bioorg Med Chem 2014; 22:3105-14. [PMID: 24800940 DOI: 10.1016/j.bmc.2014.04.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/05/2014] [Accepted: 04/14/2014] [Indexed: 12/25/2022]
Abstract
The dopamine D4 receptor has been shown to play key roles in certain CNS pathologies including addiction to cigarette smoking. Thus, selective D4 ligands may be useful in treating some of these conditions. Previous studies in our laboratory have indicated that the piperazine analog of haloperidol exhibits selective and increased affinity to the DAD4 receptor subtype, in comparison to its piperidine analog. This led to further exploration of the piperazine moiety to identify new agents that are selective at the D4 receptor. Compound 27 (KiD4=0.84 nM) was the most potent of the compounds tested. However, it only had moderate selectivity for the D4 receptor. Compound 28 (KiD4=3.9 nM) while not as potent, was more discriminatory for the D4 receptor subtype. In fact, compound 28 has little or no binding affinity to any of the other four DA receptor subtypes. In addition, of the 23 CNS receptors evaluated, only two, 5HT1AR and 5HT2BR, have binding affinity constants better than 100 nM (Ki <100 nM). Compound 28 is a potentially useful D4-selective ligand for probing disease treatments involving the D4 receptor, such as assisting smoking cessation, reversing cognitive deficits in schizophrenia and treating erectile dysfunction. Thus, further optimization, functional characterization and evaluation in animal models may be warranted.
Collapse
|
22
|
Lack of dopamine D4 receptor affinity contributes to the procognitive effect of lurasidone. Behav Brain Res 2014; 261:26-30. [DOI: 10.1016/j.bbr.2013.11.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 11/21/2022]
|
23
|
Nilsson MKL, Carlsson ML. The monoaminergic stabilizer (-)-OSU6162 reverses delay-dependent natural forgetting and improves memory impairment induced by scopolamine in mice. Neuropharmacology 2013; 75:399-406. [PMID: 23994443 DOI: 10.1016/j.neuropharm.2013.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/05/2013] [Accepted: 08/18/2013] [Indexed: 12/14/2022]
Abstract
The aim of the present study was to evaluate the effect of the monoaminergic stabilizer (-)-OSU6162 on spatial recognition memory. Male NMRI mice were tested in the object location model which is based on the animals' inherent interest to examine changes in their environment: The animals' propensity to explore relocated objects in relation to unaltered objects, presented in two different sessions (sample and trial), was studied. In a first series of experiments the effect of (-)-OSU6162 on natural forgetting was evaluated. With an inter-session interval (ISI) of 30 min or an hour, untreated mice spent longer time exploring the displaced object, but when the time between sessions was as long as 6 h, the mice did not identify the displaced object. However, using the 6 h ISI design we found that (-)-OSU6162 in doses up to 30 μmol/kg, given directly after the sample session, caused an increased interest for the displaced object. Twenty-four hours after administration, (-)-OSU6162 was still effective in facilitating identification of the displaced object. We also evaluated the effect of (-)-OSU6162 on scopolamine-induced memory deficits in this model - the two agents were given 30 min before the sample session and the ISI was one hour. Under these conditions scopolamine induced a deficit in object location memory and this effect was counteracted by (-)-OSU6162. The data from the present study suggest that (-)-OSU6162 prolongs object location memory in normal mice and reverses scopolamine-induced memory deficits. (-)-OSU6162 might be a valuable drug candidate for memory deficits and other cognitive impairments.
Collapse
Affiliation(s)
- Marie K L Nilsson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska Science Park, Medicinaregatan 8A, 413 46 Gothenburg, Sweden.
| | - Maria L Carlsson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska Science Park, Medicinaregatan 8A, 413 46 Gothenburg, Sweden
| |
Collapse
|
24
|
Ye N, Neumeyer JL, Baldessarini RJ, Zhen X, Zhang A. Update 1 of: Recent Progress in Development of Dopamine Receptor Subtype-Selective Agents: Potential Therapeutics for Neurological and Psychiatric Disorders. Chem Rev 2013; 113:PR123-78. [DOI: 10.1021/cr300113a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Na Ye
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - John L. Neumeyer
- Medicinal Chemistry Laboratory,
McLean Hospital, Harvard Medical School, Massachusetts 02478, United States
| | | | - Xuechu Zhen
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China 215123
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| |
Collapse
|
25
|
Andersson R, Johnston A, Fisahn A. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons. PLoS One 2012; 7:e40906. [PMID: 22815864 PMCID: PMC3398948 DOI: 10.1371/journal.pone.0040906] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/14/2012] [Indexed: 12/28/2022] Open
Abstract
Background Gamma oscillations are electric activity patterns of the mammalian brain hypothesized to serve attention, sensory perception, working memory and memory encoding. They are disrupted or altered in schizophrenic patients with associated cognitive deficits, which persist in spite of treatment with antipsychotics. Because cognitive symptoms are a core feature of schizophrenia it is relevant to explore signaling pathways that potentially regulate gamma oscillations. Dopamine has been reported to decrease gamma oscillation power via D1-like receptors. Based on the expression pattern of D4 receptors (D4R) in hippocampus, and pharmacological effects of D4R ligands in animals, we hypothesize that they are in a position to regulate gamma oscillations as well. Methodology/Principal Findings To address this hypothesis we use rat hippocampal slices and kainate-induced gamma oscillations. Local field potential recordings as well as intracellular recordings of pyramidal cells, fast-spiking and non-fast-spiking interneurons were carried out. We show that D4R activation with the selective ligand PD168077 increases gamma oscillation power, which can be blocked by the D4R-specific antagonist L745,870 as well as by the antipsychotic drug Clozapine. Pyramidal cells did not exhibit changes in excitatory or inhibitory synaptic current amplitudes, but inhibitory currents became more coherent with the oscillations after application of PD168077. Fast-spiking, but not non-fast spiking, interneurons, increase their action potential phase-coupling and coherence with regard to ongoing gamma oscillations in response to D4R activation. Among several possible mechanisms we found that the NMDA receptor antagonist AP5 also blocks the D4R mediated increase in gamma oscillation power. Conclusions/Significance We conclude that D4R activation affects fast-spiking interneuron synchronization and thereby increases gamma power by an NMDA receptor-dependent mechanism. This suggests that converging deficits on fast-spiking interneurons may lead to decreased network function and thus aberrant gamma oscillations and cognitive decline in schizophrenia.
Collapse
Affiliation(s)
- Richard Andersson
- Neuronal Oscillations Laboratory, KI-Alzheimer Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - April Johnston
- Neuronal Oscillations Laboratory, KI-Alzheimer Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - André Fisahn
- Neuronal Oscillations Laboratory, KI-Alzheimer Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
26
|
Lyon L, Saksida LM, Bussey TJ. Spontaneous object recognition and its relevance to schizophrenia: a review of findings from pharmacological, genetic, lesion and developmental rodent models. Psychopharmacology (Berl) 2012; 220:647-72. [PMID: 22068459 DOI: 10.1007/s00213-011-2536-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/06/2011] [Indexed: 12/12/2022]
Abstract
RATIONALE Spontaneous (novel) object recognition (SOR) is one of the most widely used rodent behavioural tests. The opportunity for rapid data collection has made SOR a popular choice in studies that explore cognitive impairment in rodent models of schizophrenia, and that test the efficacy of drugs intended to reverse these deficits. OBJECTIVES We provide an overview of the many recent studies that have used SOR to explore the mnemonic effects of manipulation of the key transmitter systems relevant to schizophrenia-the dopamine, glutamate, GABA, acetylcholine, serotonin and cannabinoid systems-alone or in combination. We also review the use of SOR in studying memory in genetically modified mouse models of schizophrenia, as well as in neurodevelopmental and lesion models. We end by discussing the construct and predictive validity, and translational relevance, of SOR with respect to cognitive impairment in schizophrenia. RESULTS Perturbation of the dopamine or glutamate systems can generate robust and reliable impairment in SOR. Impaired performance is also seen following antagonism of the muscarinic acetylcholine system, or exposure to cannabinoid agonists. Cognitive enhancement has been reported using alpha7-nicotinic acetylcholine receptor agonists and 5-HT(6) antagonists. Among non-pharmacological models, neonatal ventral hippocampal lesions and maternal immune activation can impair SOR, while mixed results have been obtained with mice carrying mutations in schizophrenia risk-associated genes, including neuregulin and COMT. CONCLUSIONS While SOR is not without its limitations, the task represents a useful method for studying manipulations with relevance to cognitive impairment in schizophrenia, as well as the interactions between them.
Collapse
Affiliation(s)
- L Lyon
- Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | | | | |
Collapse
|