1
|
Hamati R, Ahrens J, Shvetz C, Holahan MR, Tuominen L. 65 years of research on dopamine's role in classical fear conditioning and extinction: A systematic review. Eur J Neurosci 2024; 59:1099-1140. [PMID: 37848184 DOI: 10.1111/ejn.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.
Collapse
Affiliation(s)
- Rami Hamati
- Neuroscience Graduate Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Ahrens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Cecelia Shvetz
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Kushwaha P, Kumar V, Saha B. Current development of β-carboline derived potential antimalarial scaffolds. Eur J Med Chem 2023; 252:115247. [PMID: 36931118 DOI: 10.1016/j.ejmech.2023.115247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
β-Carboline alkaloids are an eminent class of nitrogen-based natural alkaloids and therapeutic molecules which exert various pharmacological activities through diverse mechanisms. A lot of attention has recently been directed towards this moiety in order to develop effective antimalarial drugs. "Malaria", an acute febrile illness caused by diverse Plasmodium parasites, is a continuing and escalating problem that devastates economically less developed countries by significantly increased morbidity and mortality rates. The mounting parasite resistance towards the antimalarial drugs and augmenting the 'habitat of the insect vector' are creating a catastrophe, indicating an urgent need for new efficacious therapeutics to combat this tropical disease. This article comprehensively encapsulates the clinical and preclinical antimalarial scaffolds comprising β-carboline moiety in their structure. Herein, various classes of natural and semi-synthetic analogues of β-carbolines reported in the last decade (2011-2021) have been extensively studied and illustrated. This review will help the readers to develop an insight into the β-carboline based antimalarials and molecular mechanisms lying behind their mode of action, which is anticipated to be beneficial for the future development of new β-carboline based therapeutics.
Collapse
Affiliation(s)
- Preeti Kushwaha
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201303, Uttar Pradesh, India
| | - Vipin Kumar
- Sophisticated Analytical Instrument Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201303, Uttar Pradesh, India.
| |
Collapse
|
3
|
Plazas E, Faraone N. Indole Alkaloids from Psychoactive Mushrooms: Chemical and Pharmacological Potential as Psychotherapeutic Agents. Biomedicines 2023; 11:461. [PMID: 36830997 PMCID: PMC9953455 DOI: 10.3390/biomedicines11020461] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Neuropsychiatric diseases such as depression, anxiety, and post-traumatic stress represent a substantial long-term challenge for the global health systems because of their rising prevalence, uncertain neuropathology, and lack of effective pharmacological treatments. The approved existing studies constitute a piece of strong evidence whereby psychiatric drugs have shown to have unpleasant side effects and reduction of sustained tolerability, impacting patients' quality of life. Thus, the implementation of innovative strategies and alternative sources of bioactive molecules for the search for neuropsychiatric agents are required to guarantee the success of more effective drug candidates. Psychotherapeutic use of indole alkaloids derived from magic mushrooms has shown great interest and potential as an alternative to the synthetic drugs currently used on the market. The focus on indole alkaloids is linked to their rich history, their use as pharmaceuticals, and their broad range of biological properties, collectively underscoring the indole heterocycle as significant in drug discovery. In this review, we aim to report the physicochemical and pharmacological characteristics of indole alkaloids, particularly those derived from magic mushrooms, highlighting the promising application of such active ingredients as safe and effective therapeutic agents for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Nicoletta Faraone
- Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada
| |
Collapse
|
4
|
Molecular Pathways of the Therapeutic Effects of Ayahuasca, a Botanical Psychedelic and Potential Rapid-Acting Antidepressant. Biomolecules 2022; 12:biom12111618. [DOI: 10.3390/biom12111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Ayahuasca is a psychoactive brew traditionally used in indigenous and religious rituals and ceremonies in South America for its therapeutic, psychedelic, and entheogenic effects. It is usually prepared by lengthy boiling of the leaves of the bush Psychotria viridis and the mashed stalks of the vine Banisteriopsis caapi in water. The former contains the classical psychedelic N,N-dimethyltryptamine (DMT), which is thought to be the main psychoactive alkaloid present in the brew. The latter serves as a source for β-carbolines, known for their monoamine oxidase-inhibiting (MAOI) properties. Recent preliminary research has provided encouraging results investigating ayahuasca’s therapeutic potential, especially regarding its antidepressant effects. On a molecular level, pre-clinical and clinical evidence points to a complex pharmacological profile conveyed by the brew, including modulation of serotoninergic, glutamatergic, dopaminergic, and endocannabinoid systems. Its substances also interact with the vesicular monoamine transporter (VMAT), trace amine-associated receptor 1 (TAAR1), and sigma-1 receptors. Furthermore, ayahuasca’s components also seem to modulate levels of inflammatory and neurotrophic factors beneficially. On a biological level, this translates into neuroprotective and neuroplastic effects. Here we review the current knowledge regarding these molecular interactions and how they relate to the possible antidepressant effects ayahuasca seems to produce.
Collapse
|
5
|
Prah A, Gavranić T, Perdih A, Sollner Dolenc M, Mavri J. Computational Insights into β-Carboline Inhibition of Monoamine Oxidase A. Molecules 2022; 27:molecules27196711. [PMID: 36235246 PMCID: PMC9571839 DOI: 10.3390/molecules27196711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Monoamine oxidases (MAOs) are an important group of enzymes involved in the degradation of neurotransmitters and their imbalanced mode of action may lead to the development of various neuropsychiatric or neurodegenerative disorders. In this work, we report the results of an in-depth computational study in which we performed a static and a dynamic analysis of a series of substituted β-carboline natural products, found mainly in roasted coffee and tobacco smoke, that bind to the active site of the MAO-A isoform. By applying molecular docking in conjunction with structure-based pharmacophores and molecular dynamics simulations coupled with dynamic pharmacophores, we extensively investigated the geometric aspects of MAO-A binding. To gain insight into the energetics of binding, we used the linear interaction energy (LIE) method and determined the key anchors that allow productive β-carboline binding to MAO-A. The results presented herein could be applied in the rational structure-based design and optimization of β-carbolines towards preclinical candidates that would target the MAO-A enzyme and would be applicable especially in the treatment of mental disorders such as depression.
Collapse
Affiliation(s)
- Alja Prah
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Tanja Gavranić
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | | | - Janez Mavri
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
6
|
Hamdy SA, Kodama T, Nakashima Y, Han X, Morita H. Catalytic potential of a fungal indole prenyltransferase toward β-carbolines, harmine and harman, and their prenylation effects on antibacterial activity. J Biosci Bioeng 2022; 134:311-317. [PMID: 35931602 DOI: 10.1016/j.jbiosc.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
Abstract
The prenylation of compounds has attracted much attention, since it often adds bioactivity to non-prenylated compounds. We employed an enzyme assay with CdpNPT, an indole prenyltransferase from Aspergillus fumigatus with two naturally occurring β-carbolines, harmine (3) and harman (4) as prenyl acceptors, in the presence of dimethylallyl diphosphate (DMAPP) as the prenyl donor. The enzyme accepted these two prenyl acceptor substrates to produce 6-(3',3'-dimethylallyl)harmine (5) from 3 and 9-(3',3'-dimethylallyl)harman (6) and 6-(3',3'-dimethylallyl)harman (7) from 4. The X-ray crystal structure analysis of the CdpNPT (38-440) truncated mutant complexed with 4, and docking simulation studies of DMAPP to the crystal structure of the CdpNPT (38-440) mutant, suggested that CdpNPT could employ the two-step prenylation mechanism to produce 7, while the enzyme produced 6 with either one- or two-step prenylation mechanisms. Furthermore, the antibacterial assays revealed that the 3',3'-dimethylallylation of 3 and 4, as well as harmol (1), at C-6 enhanced the activities against Staphylococcus aureus and Bacillus subtilis.
Collapse
Affiliation(s)
- Sherif Ahmed Hamdy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt; Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Takeshi Kodama
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Yu Nakashima
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Xiaojie Han
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
7
|
Hou Y, Dong B, Peng Y, Peng C, Wang M, Li X. Pharmacodynamics assessment of β-carboline from the roots of Psammosilene tunicoides as analgesic compound. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115163. [PMID: 35247473 DOI: 10.1016/j.jep.2022.115163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Psammosilene tunicoides (W. C. Wu et C. Y. Wu) is a well-known medicinal herb for the treatment of pain, hemostasia and rheumatoid arthritis among Chinese people. AIM OF THE STUDY The present study aimed to investigate the antinociceptive activity and mechanism of β-carboline alkaloids 1-4 which were extracted from the roots of P. tunicoides. MATERIALS AND METHODS The analgesic effects were evaluated using peripheral and central pain mouse models of nociception, including the formalin test and the tail flick test. The levels of glutamic acid (Glu) and nitric oxide (NO) in cerebellar cortexes and spinal cords (L4-6) were determined. The anti-inflammatory of all compounds were then assessed on RAW264.7 cells. RESULTS Our results showed that compounds 1-4 had significant analgesic effects on both phases of formalin test of mice. Furthermore, all compounds showed suppressive effects on Glu in the brain and NO levels in the brain cortex and the spinal cord. Except for compound 1, the others could extend the pain threshold of hot water tail-flick in mice. In addition, compounds 2 and 3 (60 μmol/kg) could decrease GABAAα1 protein levels in spinal cord. All compounds exhibited anti-inflammatory effects by inhibiting lipopolysaccharide (LPS)-induced NO production in RAW264.7 cells with half-maximal inhibitory concentration (IC50) 1.1-34.9 μM. CONCLUSION β-carboline alkaloids from the roots of P. tunicoides had significant analgesic activity by both central and peripheral mechanisms. Our findings suggested that regulating the release of NO or Glu or GABAα1 are some of the mechanisms of analgesic activity of β-carboline alkaloids.
Collapse
Affiliation(s)
- Yinhuan Hou
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Bangjian Dong
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
8
|
Hong SW, Teesdale-Spittle P, Page R, Ellenbroek B, Truman P. Biologically Active Compounds Present in Tobacco Smoke: Potential Interactions Between Smoking and Mental Health. Front Neurosci 2022; 16:885489. [PMID: 35557609 PMCID: PMC9087043 DOI: 10.3389/fnins.2022.885489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022] Open
Abstract
Tobacco dependence remains one of the major preventable causes of premature morbidity and mortality worldwide. There are well over 8,000 compounds present in tobacco and tobacco smoke, but we do not know what effect, if any, many of them have on smokers. Major interest has been on nicotine, as well as on toxic and carcinogenic effects and several major and minor components of tobacco smoke responsible for the negative health effects of smoking have been elucidated. Smokers themselves report a variety of positive effects from smoking, including effects on depression, anxiety and mental acuity. Smoking has also been shown to have protective effects in Parkinson’s Disease. Are the subjective reports of a positive effect of smoking due to nicotine, of some other components of tobacco smoke, or are they a manifestation of the relief from nicotine withdrawal symptoms that smoking provides? This mini-review summarises what is currently known about the components of tobacco smoke with potential to have positive effects on smokers.
Collapse
Affiliation(s)
- Sa Weon Hong
- School of Health Sciences, Massey University, Wellington, New Zealand
| | - Paul Teesdale-Spittle
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Rachel Page
- School of Health Sciences, Massey University, Wellington, New Zealand
| | - Bart Ellenbroek
- Department of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Penelope Truman
- School of Health Sciences, Massey University, Wellington, New Zealand
| |
Collapse
|
9
|
Glavonic E, Mitic M, Adzic M. Hallucinogenic drugs and their potential for treating fear-related disorders: Through the lens of fear extinction. J Neurosci Res 2022; 100:947-969. [PMID: 35165930 DOI: 10.1002/jnr.25017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Fear-related disorders, mainly phobias and post-traumatic stress disorder, are highly prevalent, debilitating disorders that pose a significant public health problem. They are characterized by aberrant processing of aversive experiences and dysregulated fear extinction, leading to excessive expression of fear and diminished quality of life. The gold standard for treating fear-related disorders is extinction-based exposure therapy (ET), shown to be ineffective for up to 35% of subjects. Moreover, ET combined with traditional pharmacological treatments for fear-related disorders, such as selective serotonin reuptake inhibitors, offers no further advantage to patients. This prompted the search for ways to improve ET outcomes, with current research focused on pharmacological agents that can augment ET by strengthening fear extinction learning. Hallucinogenic drugs promote reprocessing of fear-imbued memories and induce positive mood and openness, relieving anxiety and enabling the necessary emotional engagement during psychotherapeutic interventions. Mechanistically, hallucinogens induce dynamic structural and functional neuroplastic changes across the fear extinction circuitry and temper amygdala's hyperreactivity to threat-related stimuli, effectively mitigating one of the hallmarks of fear-related disorders. This paper provides the first comprehensive review of hallucinogens' potential to alleviate symptoms of fear-related disorders by focusing on their effects on fear extinction and the underlying molecular mechanisms. We overview both preclinical and clinical studies and emphasize the advantages of hallucinogenic drugs over current first-line treatments. We highlight 3,4-methylenedioxymethamphetamine and ketamine as the most effective therapeutics for fear-related disorders and discuss the potential molecular mechanisms responsible for their potency with implications for improving hallucinogen-assisted psychotherapy.
Collapse
Affiliation(s)
- Emilija Glavonic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Sun J, Wang J, Wang X, Hu X, Cao H, Bai J, Li D, Hua H. Design and synthesis of β-carboline derivatives with nitrogen mustard moieties against breast cancer. Bioorg Med Chem 2021; 45:116341. [PMID: 34365102 DOI: 10.1016/j.bmc.2021.116341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
To discover the promising antitumor agents, a series of β-carboline derivatives with nitrogen mustard moieties were designed and synthesized. Most target derivatives showed antiproliferative activity against MCF-7 and MDA-MB-231 cells. Among them, (1-methyl-9H-pyrido[3,4-b]indol-3-yl)methyl (S)-3-(4-(bis(2-chloroethyl)amino)phenyl)-2-formamidopropanoate possessed the most potent antiproliferative activity with IC50 values of 1.79 μM and 4.96 μM, respectively, which were significantly higher than that of the parent compounds, and the efficacy was comparable to that of the positive control doxorubicin. More importantly, it showed weak cytotoxicity against human normal breast cell line MCF-10A (IC50 > 20 μM), exhibiting certain selectivity. Subsequently, further mechanism exploration indicated that it induced G2/M phase cell cycle arrest and apoptosis in MDA-MB-231 cells. The DCFH-DA fluorescent probe assay and comet assay showed that this compound could cause intracellular ROS accumulation and DNA damage. In addition, it exerted potent inhibitory effect on the migration, invasion and adhesion of MDA-MB-231 cells in vitro. In short, (1-methyl-9H-pyrido[3,4-b]indol-3-yl)methyl (S)-3-(4-(bis(2-chloroethyl)amino)phenyl)-2-formamidopropanoate was considered as a promising compound for anti-breast cancer.
Collapse
Affiliation(s)
- Jianan Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jiesen Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Xinyan Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jiao Bai
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
11
|
Jaka O, Iturria I, van der Toorn M, Hurtado de Mendoza J, Latino DARS, Alzualde A, Peitsch MC, Hoeng J, Koshibu K. Effects of Natural Monoamine Oxidase Inhibitors on Anxiety-Like Behavior in Zebrafish. Front Pharmacol 2021; 12:669370. [PMID: 34079463 PMCID: PMC8165606 DOI: 10.3389/fphar.2021.669370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/28/2021] [Indexed: 01/28/2023] Open
Abstract
Monoamine oxidases (MAO) are a valuable class of mitochondrial enzymes with a critical role in neuromodulation. In this study, we investigated the effect of natural MAO inhibitors on novel environment-induced anxiety by using the zebrafish novel tank test (NTT). Because zebrafish spend more time at the bottom of the tank when they are anxious, anxiolytic compounds increase the time zebrafish spend at the top of the tank and vice versa. Using this paradigm, we found that harmane, norharmane, and 1,2,3,4-tetrahydroisoquinoline (TIQ) induce anxiolytic-like effects in zebrafish, causing them to spend more time at the top of the test tank and less time at the bottom. 2,3,6-trimethyl-1,4-naphtoquinone (TMN) induced an interesting mix of both anxiolytic- and anxiogenic-like effects during the first and second halves of the test, respectively. TIQ was unique in having no observable effect on general movement. Similarly, a reference MAO inhibitor clorgyline—but not pargyline—increased the time spent at the top in a concentration-dependent manner. We also demonstrated that the brain bioavailability of these compounds are high based on the ex vivo bioavailability assay and in silico prediction models, which support the notion that the observed effects on anxiety-like behavior in zebrafish were most likely due to the direct effect of these compounds in the brain. This study is the first investigation to demonstrate the anxiolytic-like effects of MAO inhibitors on novel environment-induced anxiety in zebrafish.
Collapse
Affiliation(s)
- Oihane Jaka
- Biobide, Gipuzkoa Scientific and Technological Park, San Sebastian, Spain
| | - Iñaki Iturria
- Biobide, Gipuzkoa Scientific and Technological Park, San Sebastian, Spain
| | - Marco van der Toorn
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | | | - Diogo A R S Latino
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | - Ainhoa Alzualde
- Biobide, Gipuzkoa Scientific and Technological Park, San Sebastian, Spain
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| | - Kyoko Koshibu
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchâtel, Switzerland
| |
Collapse
|
12
|
β-Carbolines as potential anticancer agents. Eur J Med Chem 2021; 216:113321. [PMID: 33684825 DOI: 10.1016/j.ejmech.2021.113321] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 01/18/2023]
Abstract
β-Carbolines are indole alkaloids having a tricyclic pyrido[3,4-b]indole ring in their structure. Since the isolation of first β-carboline from Peganum harmala in 1841, the isolation and synthesis of various β-carboline derivatives surged in the following centuries. β-Carboline derivatives due to their widespread availability from natural sources, structural flexibility, quick reactivity and interaction with varied anticancer targets such as DNA (intercalation, groove binding, etc.), enzymes (GPX4, topoisomerases, kinases, etc.) and proteins (tubulin, ABCG2/BRCP1, etc.) have established themselves as promising lead compounds for the synthesis of various anticancer active agents. The current review covers the synthesis and isolation, anticancer activity, mechanism of action and SAR of various β-carboline containing molecules, its derivatives and congeners.
Collapse
|
13
|
The influence of rat strain on the development of neuropathic pain and comorbid anxio-depressive behaviour after nerve injury. Sci Rep 2020; 10:20981. [PMID: 33262364 PMCID: PMC7708988 DOI: 10.1038/s41598-020-77640-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Back-translating the clinical manifestations of human disease burden into animal models is increasingly recognized as an important facet of preclinical drug discovery. We hypothesized that inbred rat strains possessing stress hyper-reactive-, depressive- or anxiety-like phenotypes may possess more translational value than common outbred strains for modeling neuropathic pain. Rats (inbred: LEW, WKY, F344/ICO and F344/DU, outbred: Crl:SD) were exposed to Spared Nerve Injury (SNI) and evaluated routinely for 6 months on behaviours related to pain (von Frey stimulation and CatWalk-gait analysis), anxiety (elevated plus maze, EPM) and depression (sucrose preference test, SPT). Markers of stress reactivity together with spinal/brain opioid receptor expression were also measured. All strains variously developed mechanical allodynia after SNI with the exception of stress-hyporesponsive LEW rats, despite all strains displaying similar functional gait-deficits after injury. However, affective changes reflective of anxiety- and depressive-like behaviour were only observed for F344/DU in the EPM, and for Crl:SD in SPT. Although differences in stress reactivity and opioid receptor expression occurred, overall they were relatively unaffected by SNI. Thus, anxio-depressive behaviours did not develop in all strains after nerve injury, and correlated only modestly with degree of pain sensitivity or with genetic predisposition to stress and/or affective disturbances.
Collapse
|
14
|
Ferraz CAA, de Oliveira Júnior RG, Picot L, da Silva Almeida JRG, Nunes XP. Pre-clinical investigations of β-carboline alkaloids as antidepressant agents: A systematic review. Fitoterapia 2019; 137:104196. [PMID: 31175948 DOI: 10.1016/j.fitote.2019.104196] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022]
Abstract
Depressive disorders remain a current public health problem whose prevalence has increased in the past decades. In the constant search for new therapeutic alternatives, β-carboline alkaloids have been identified as good candidates for new antidepressant drugs. In this systematic review, we summarized all pre-clinical investigations involving the use of natural or semisynthetic β-carboline in depression models. A literature search was conducted in August 2018, using PubMed, Scopus and Science Direct databases. All reports were carefully analyzed, and data extraction was conducted through standardized forms. Methodological quality assessment of in vivo studies was also performed. The entire systematic review was performed according to PRISMA statement. From a total of 373 articles, 26 met all inclusion criteria. In vitro and in vivo studies have evaluated a wide variety of β-carbolines through enzymatic and binding assays, and acute or chronic animal models. Most of the in vivo and in vitro studies is concentrated on two molecules: harman and harmine. They have been investigated in several animal models and some mechanisms of action have been proposed for their antidepressant activity. In general, β-carbolines modulate 5-HT and GABA systems, promote neurogenesis, induce neuroendocrine response and restore astrocytic function, being effective when administrated acutely or chronically in different animal models, including chronic mild stress protocols. In short, β-carbolines are multi-target antidepressant compounds and may be useful in the treatment of depressive disorders.
Collapse
Affiliation(s)
- Christiane Adrielly Alves Ferraz
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina 56304-917, Brazil
| | | | - Laurent Picot
- Littoral Environnement et Sociétés (LIENSs), Université de La Rochelle, UMRi CNRS 7266, La Rochelle 17042, France
| | | | - Xirley Pereira Nunes
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina 56304-917, Brazil.
| |
Collapse
|
15
|
Nasehi M, Shirkhodaei A, Ebrahimi-Ghiri M, Zarrindast MR. Abolishment of fear memory-disruptive effects REM sleep deprivation by harmane. Biomed Pharmacother 2019; 109:1563-1568. [DOI: 10.1016/j.biopha.2018.10.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022] Open
|
16
|
Dai J, Dan W, Schneider U, Wang J. β-Carboline alkaloid monomers and dimers: Occurrence, structural diversity, and biological activities. Eur J Med Chem 2018; 157:622-656. [DOI: 10.1016/j.ejmech.2018.08.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/26/2018] [Accepted: 08/10/2018] [Indexed: 01/21/2023]
|
17
|
Wagner DJ, Duan H, Chapron A, Lee RW, Wang J. Potent inhibition of human organic cation transporter 2 (hOCT2) by β-carboline alkaloids. Xenobiotica 2017; 47:1112-1120. [PMID: 27977936 PMCID: PMC5648609 DOI: 10.1080/00498254.2016.1271160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023]
Abstract
1. Beta-carbolines are indole alkaloids with a wide range of pharmacological and toxicological activities. Beta-carbolines are structurally related to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), a known substrate of organic cation transporters (OCTs). The goal of this study is to determine the interaction of β-carbolines with human OCT1, 2, and 3 (SLC22A1-3). 2. Dose-dependent inhibition studies were performed for five commercially available β-carbolines using a fluorescent substrate assay in HEK293 cells stably expressing hOCT1-3. The substrate potential was evaluated by uptake assays and the impact of active transport on cellular toxicity examined. 3. All tested β-carbolines potently inhibited hOCT2 with IC50 values in the sub- or low micromolar range. Harmaline is the most potent hOCT2 inhibitor (IC50 = 0.50 ± 0.08 μM). hOCT1 and hOCT3 are less sensitive to β-carboline inhibition. Harmaline, norharmanium, and 2,9-dimethyl-4,9-dihydro-3H-β-carbolinium accumulated 2- to 7-fold higher in cells expressing hOCT1-3. HEK293 cells expressing hOCT1-3 were 6.5- to 13-fold more sensitive to harmane and norharmanium toxicity. 4. Our data support a significant role of hOCT1-3 in tissue uptake and disposition of β-carbolines. Importantly, the potent inhibition of hOCT2 by β-carbolines also raises the concern of potential drug interactions between naturally occurring bioactive alkaloids and drugs eliminated by hOCT2.
Collapse
Affiliation(s)
- David J. Wagner
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Haichuan Duan
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Alenka Chapron
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Richard W. Lee
- School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Nasehi M, Ghadimi F, Khakpai F, Zarrindast MR. Interaction between harmane, a class of β-carboline alkaloids, and the CA1 serotonergic system in modulation of memory acquisition. Neurosci Res 2017; 122:17-24. [PMID: 28380327 DOI: 10.1016/j.neures.2017.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 03/19/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
Abstract
This study set to assess the involvement of dorsal hippocampus (CA1) serotonergic system on harmane induced memory acquisition deficit. We used one trial step-down inhibitory avoidancetask to evaluate memory retention and then, open field test to evaluate locomotor activity in adult male NMRI mice. The results showed that pre-training intra-peritoneal (i.p.) administration of harmane (12mg/kg) induced impairment of memory acquisition. Pre-training intra-CA1 administration of 5-HT1B/1D receptor agonist (CP94253; 0.5 and 5ng/mouse) and 5-HT2A/2B/2C receptor agonist (α-methyl 5-HT; 50ng/mouse) impaired memory acquisition. Furthermore, intra-CA1 administration of 5-HT1B/1D receptor antagonist (GR127935; 0.5ng/mouse) and 5-HT2 receptor antagonist (cinancerine; 5ng/mouse) improved memory acquisition. In addition, pre-training intra-CA1 injection of sub-threshold dose of CP94253 (0.05ng/mouse) and α-methyl 5-HT (5ng/mouse) potentiated impairment of memory acquisition induced by harmane (12mg/kg, i.p.). On the other hand, pre-training intra-CA1 infusion of sub-threshold dose of GR127935 (0.05ng/mouse) and cinancerine (0.5ng/mouse) with the administration of harmane (12mg/kg, i.p.) weakened impairment of memory acquisition. Moreover, all above doses of drugs did not change locomotor activity. The present findings suggest that there is an interaction between harmane and the CA1 serotonergic system in modulation of memory acquisition.
Collapse
Affiliation(s)
- Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Fatemeh Ghadimi
- Department of Biology, Faculty of Basic Sciences, Kharazmi (TarbiatMoalem) University Tehran, Iran
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Abu Ghazaleh H, Lalies MD, Nutt DJ, Hudson AL. Harmane: An atypical neurotransmitter? Neurosci Lett 2015; 590:1-5. [DOI: 10.1016/j.neulet.2015.01.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/15/2015] [Accepted: 01/22/2015] [Indexed: 12/14/2022]
|