1
|
Zheng L, Pang Q, Huang R, Xu H, Guo H, Gao C, Chen X, Wang Y, Cao Q, Gao Y, Gu Z, Wang Z, Luo C, Tao L, Wang T. Stress-mediated Activation of Ferroptosis, Pyroptosis, and Apoptosis Following Mild Traumatic Brain Injury Exacerbates Neurological Dysfunctions. Mol Neurobiol 2024:10.1007/s12035-024-04516-7. [PMID: 39388040 DOI: 10.1007/s12035-024-04516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Nearly half of mild traumatic brain injury (mTBI) patients continue to experience residual neurological dysfunction, which may be attributed to exposure to stress. Ferroptosis, a newly discovered form of cell death, is increasingly recognized for its involvement in the pathophysiology of TBI. Understanding the mechanisms by which stress influences mTBI, particularly through ferroptosis, is crucial for the effective treatment and prevention of mTBI patients who are sensitive to stressful events. In our study, a mouse mTBI model was established. An acute restraint stress (RS) and a chronic unpredictable mild stress (CUMS) model then were applied to make acute and chronic stress, respectively. We found acute RS significantly delayed the recovery of reduced body weight and short-term motor dysfunctions and exacerbated cell insults and blood-brain barrier leakage caused by mTBI. Further studies revealed that acute RS exacerbates neuronal ferroptosis, pyroptosis, and apoptosis by promoting iron overloading in the neocortex following mTBI. Interestingly, the inhibition of ferroptosis with iron chelators, including deferoxamine and ciclopirox, reversed pyroptosis and apoptosis. Moreover, CUMS aggravated neurological dysfunctions (motor function, cognitive function, and anxiety-like behavior) and exacerbated brain lesion volume. CUMS also exacerbates ferroptosis, pyroptosis, and apoptosis by intensifying iron deposition, along with decreasing the expression of neuronal brain-derived neurotrophic factor and glucocorticoid receptor in the neocortex post mTBI. These effects were also mitigated by iron chelators. Our findings suggest that alleviating ferroptosis induced by iron deposition may represent a promising therapeutic approach for mTBI patients who have experienced stressful events.
Collapse
Affiliation(s)
| | | | | | - Heng Xu
- Soochow University, Suzhou, China
| | | | | | | | | | - Qun Cao
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yuan Gao
- Soochow University, Suzhou, China
| | - Zhiya Gu
- Soochow University, Suzhou, China
| | | | | | | | - Tao Wang
- Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Zhou K, Tan Y, Zhang G, Li J, Xing S, Chen X, Wen J, Li G, Fan Y, Zeng J, Zhang J. Loss of SARM1 ameliorates secondary thalamic neurodegeneration after cerebral infarction. J Cereb Blood Flow Metab 2024; 44:224-238. [PMID: 37898107 PMCID: PMC10993876 DOI: 10.1177/0271678x231210694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 08/07/2023] [Accepted: 10/07/2023] [Indexed: 10/30/2023]
Abstract
Ischemic stroke causes secondary neurodegeneration in the thalamus ipsilateral to the infarction site and impedes neurological recovery. Axonal degeneration of thalamocortical fibers and autophagy overactivation are involved in thalamic neurodegeneration after ischemic stroke. However, the molecular mechanisms underlying thalamic neurodegeneration remain unclear. Sterile /Armadillo/Toll-Interleukin receptor homology domain protein (SARM1) can induce Wallerian degeneration. Herein, we aimed to investigate the role of SARM1 in thalamic neurodegeneration and autophagy activation after photothrombotic infarction. Neurological deficits measured using modified neurological severity scores and adhesive-removal test were ameliorated in Sarm1-/- mice after photothrombotic infarction. Compared with wild-type mice, Sarm1-/- mice exhibited unaltered infarct volume; however, there were markedly reduced neuronal death and gliosis in the ipsilateral thalamus. In parallel, autophagy activation was attenuated in the thalamus of Sarm1-/- mice after cerebral infarction. Thalamic Sarm1 re-expression in Sarm1-/- mice increased thalamic neurodegeneration and promoted autophagy activation. Auotophagic inhibitor 3-methyladenine partially alleviated thalamic damage induced by SARM1. Moreover, autophagic initiation through rapamycin treatment aggravated post-stroke neuronal death and gliosis in Sarm1-/- mice. Taken together, SARM1 contributes to secondary thalamic neurodegeneration after cerebral infarction, at least partly through autophagy inhibition. SARM1 deficiency is a potential therapeutic strategy for secondary thalamic neurodegeneration and functional deficits after stroke.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Yan Tan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Guofen Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Jingjing Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Shihui Xing
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Xinran Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Jiali Wen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yuhua Fan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| | - Jian Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology; Guangzhou, China
| |
Collapse
|
3
|
Wong Zhang DE, Zhang SR, Kim HA, Sobey CG, De Silva TM. The Photothrombotic Model of Ischemic Stroke. Methods Mol Biol 2024; 2746:225-235. [PMID: 38070093 DOI: 10.1007/978-1-0716-3585-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Stroke is a major cause of morbidity worldwide; yet, there is a lack of treatment options to address post-stroke cognitive and motor impairment, thus there is an urgency for developing neuroprotective and restorative therapies. Much of our fundamental understanding of stroke pathology has been derived from animal models. The photothrombotic model of ischemic stroke is commonly used to study cellular and molecular mechanisms of neurodegeneration, test functional/cognitive outcomes, identify important biomarkers, and assess the effectiveness of novel therapies. It allows for the precise targeting of an infarct to a specific region of the brain, has a low mortality rate, low seizure rate, and is relatively easy to perform. This chapter outlines materials and methods for the photothrombotic model of ischemic stroke in mice, its limitations, and some considerations needed when using this model.
Collapse
Affiliation(s)
- David E Wong Zhang
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
| | - Shenpeng R Zhang
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
| | - Hyun Ah Kim
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
| | - T Michael De Silva
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
4
|
Brunelli S, Giannella E, Bizzaglia M, De Angelis D, Sancesario GM. Secondary neurodegeneration following Stroke: what can blood biomarkers tell us? Front Neurol 2023; 14:1198216. [PMID: 37719764 PMCID: PMC10502514 DOI: 10.3389/fneur.2023.1198216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Stroke is one of the leading causes of death and the primary source of disability in adults, resulting in neuronal necrosis of ischemic areas, and in possible secondary degeneration of regions surrounding or distant to the initial damaged area. Secondary neurodegeneration (SNDG) following stroke has been shown to have different pathogenetic origins including inflammation, neurovascular response and cytotoxicity, but can be associated also to regenerative processes. Aside from focal neuronal loss, ipsilateral and contralateral effects distal to the lesion site, disruptions of global functional connectivity and a transcallosal diaschisis have been reported in the chronic stages after stroke. Furthermore, SNDG can be observed in different areas not directly connected to the primary lesion, such as thalamus, hippocampus, amygdala, substantia nigra, corpus callosum, bilateral inferior fronto-occipital fasciculus and superior longitudinal fasciculus, which can be highlighted by neuroimaging techniques. Although the clinical relevance of SNDG following stroke has not been well understood, the identification of specific biomarkers that reflect the brain response to the damage, is of paramount importance to investigate in vivo the different phases of stroke. Actually, brain-derived markers, particularly neurofilament light chain, tau protein, S100b, in post-stroke patients have yielded promising results. This review focuses on cerebral morphological modifications occurring after a stroke, on associated cellular and molecular changes and on state-of-the-art of biomarkers in acute and chronic phase. Finally, we discuss new perspectives regarding the implementation of blood-based biomarkers in clinical practice to improve the rehabilitation approaches and post stroke recovery.
Collapse
Affiliation(s)
- Stefano Brunelli
- NeuroRehabilitation Unit 4, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Emilia Giannella
- Clinical Neurochemistry Unit and Biobank, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Mirko Bizzaglia
- Radiology and Diagnostic Imaging Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | | |
Collapse
|
5
|
Warren KE, Coupland KG, Hood RJ, Kang L, Walker FR, Spratt NJ. Movement of cerebrospinal fluid tracer into brain parenchyma and outflow to nasal mucosa is reduced at 24 h but not 2 weeks post-stroke in mice. Fluids Barriers CNS 2023; 20:27. [PMID: 37041551 PMCID: PMC10088200 DOI: 10.1186/s12987-023-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Recent data indicates that cerebrospinal fluid (CSF) dynamics are disturbed after stroke. Our lab has previously shown that intracranial pressure rises dramatically 24 h after experimental stroke and that this reduces blood flow to ischaemic tissue. CSF outflow resistance is increased at this time point. We hypothesised that reduced transit of CSF through brain parenchyma and reduced outflow of CSF via the cribriform plate at 24 h after stroke may contribute to the previously identified post-stroke intracranial pressure elevation. METHODS Using a photothrombotic permanent occlusion model of stroke in C57BL/6 adult male mice, we examined the movement of an intracisternally infused 0.5% Texas Red dextran throughout the brain and measured tracer efflux into the nasal mucosa via the cribriform plate at 24 h or two weeks after stroke. Brain tissue and nasal mucosa were collected ex vivo and imaged using fluorescent microscopy to determine the change in CSF tracer intensity in these tissues. RESULTS At 24 h after stroke, we found that CSF tracer load was significantly reduced in brain tissue from stroke animals in both the ipsilateral and contralateral hemispheres when compared to sham. CSF tracer load was also reduced in the lateral region of the ipsilateral hemisphere when compared to the contralateral hemisphere in stroke brains. In addition, we identified an 81% reduction in CSF tracer load in the nasal mucosa in stroke animals compared to sham. These alterations to the movement of CSF-borne tracer were not present at two weeks after stroke. CONCLUSIONS Our data indicates that influx of CSF into the brain tissue and efflux via the cribriform plate are reduced 24 h after stroke. This may contribute to reported increases in intracranial pressure at 24 h after stroke and thus worsen stroke outcomes.
Collapse
Affiliation(s)
- K E Warren
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia
- Hunter New England Health District, New Lambton Heights, NSW, Australia
| | - K G Coupland
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia
- Hunter New England Health District, New Lambton Heights, NSW, Australia
| | - R J Hood
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia
- Hunter New England Health District, New Lambton Heights, NSW, Australia
| | - L Kang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia
- Hunter New England Health District, New Lambton Heights, NSW, Australia
| | - F R Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia
- Hunter New England Health District, New Lambton Heights, NSW, Australia
| | - N J Spratt
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan and Hunter Medical Research Institute, University Drive, Callaghan, New Lambton Heights, NSW, 2308, Australia.
- Hunter New England Health District, New Lambton Heights, NSW, Australia.
| |
Collapse
|
6
|
Xiao P, Gu J, Xu W, Niu X, Zhang J, Li J, Chen Y, Pei Z, Zeng J, Xing S. RTN4/Nogo-A-S1PR2 negatively regulates angiogenesis and secondary neural repair through enhancing vascular autophagy in the thalamus after cerebral cortical infarction. Autophagy 2022; 18:2711-2730. [PMID: 35263212 PMCID: PMC9629085 DOI: 10.1080/15548627.2022.2047344] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cerebral infarction induces angiogenesis in the thalamus and influences functional recovery. The mechanisms underlying angiogenesis remain unclear. This study aimed to investigate the role of RTN4/Nogo-A in mediating macroautophagy/autophagy and angiogenesis in the thalamus following middle cerebral artery occlusion (MCAO). We assessed secondary neuronal damage, angiogenesis, vascular autophagy, RTN4 and S1PR2 signaling in the thalamus. The effects of RTN4-S1PR2 on vascular autophagy and angiogenesis were evaluated using lentiviral and pharmacological approaches. The results showed that RTN4 and S1PR2 signaling molecules were upregulated in parallel with angiogenesis in the ipsilateral thalamus after MCAO. Knockdown of Rtn4 by siRNA markedly reduced MAP1LC3B-II conversion and levels of BECN1 and SQSTM1 in vessels, coinciding with enhanced angiogenesis in the ipsilateral thalamus. This effect coincided with rescued neuronal loss of the thalamus and improved cognitive function. Conversely, activating S1PR2 augmented vascular autophagy, along with suppressed angiogenesis and aggravated neuronal damage of the thalamus. Further inhibition of autophagic initiation with 3-methyladenine or spautin-1 enhanced angiogenesis while blockade of lysosomal degradation by bafilomycin A1 suppressed angiogenesis in the ipsilateral thalamus. The control of autophagic flux by RTN4-S1PR2 was verified in vitro. Additionally, ROCK1-BECN1 interaction along with phosphorylation of BECN1 (Thr119) was identified in the thalamic vessels after MCAO. Knockdown of Rtn4 markedly reduced BECN1 phosphorylation whereas activating S1PR2 increased its phosphorylation in vessels. These results suggest that blockade of RTN4-S1PR2 interaction promotes angiogenesis and secondary neural repair in the thalamus by suppressing autophagic activation and alleviating dysfunction of lysosomal degradation in vessels after cerebral infarction.Abbreviations: 3-MA: 3-methyladenine; ACTA2/ɑ-SMA: actin alpha 2, smooth muscle, aorta; AIF1/Iba1: allograft inflammatory factor 1; BafA1: bafilomycin A1; BMVECs: brain microvascular endothelial cells; BrdU: 5-bromo-2'-deoxyuridine; CLDN11/OSP: claudin 11; GFAP: glial fibrillary acidic protein; HUVECs: human umbilical vein endothelial cells; LAMA1: laminin, alpha 1; MAP2: microtubule-associated protein 2; MBP2: myelin basic protein 2; MCAO: middle cerebral artery occlusion; PDGFRB/PDGFRβ: platelet derived growth factor receptor, beta polypeptide; RECA-1: rat endothelial cell antigen-1; RHOA: ras homolog family member A; RHRSP: stroke-prone renovascular hypertensive rats; ROCK1: Rho-associated coiled-coil containing protein kinase 1; RTN4/Nogo-A: reticulon 4; RTN4R/NgR1: reticulon 4 receptor; S1PR2: sphingosine-1-phosphate receptor 2; SQSTM1: sequestosome 1.
Collapse
Affiliation(s)
- Peiyi Xiao
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Jinmin Gu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Wei Xu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Xingyang Niu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Jingjing Li
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Yicong Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| | - Shihui Xing
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Choi S, Jang DC, Chung G, Kim SK. Transcutaneous Auricular Vagus Nerve Stimulation Enhances Cerebrospinal Fluid Circulation and Restores Cognitive Function in the Rodent Model of Vascular Cognitive Impairment. Cells 2022; 11:cells11193019. [PMID: 36230988 PMCID: PMC9564197 DOI: 10.3390/cells11193019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular cognitive impairment (VCI) is a common sequela of cerebrovascular disorders. Although transcutaneous auricular vagus nerve stimulation (taVNS) has been considered a complementary treatment for various cognitive disorders, preclinical data on the effect of taVNS on VCI and its mechanism remain ambiguous. To measure cerebrospinal fluid (CSF) circulation during taVNS, we used in vivo two-photon microscopy with CSF and vasculature tracers. VCI was induced by transient bilateral common carotid artery occlusion (tBCCAO) surgery in mice. The animals underwent anesthesia, off-site stimulation, or taVNS for 20 min. Cognitive tests, including the novel object recognition and the Y-maze tests, were performed 24 h after the last treatment. The long-term treatment group received 6 days of treatment and was tested on day 7; the short-term treatment group received 2 days of treatment and was tested 3 days after tBCCAO surgery. CSF circulation increased remarkably in the taVNS group, but not in the anesthesia-control or off-site-stimulation-control groups. The cognitive impairment induced by tBCCAO was significantly restored after both long- and short-term taVNS. In terms of effects, both long- and short-term stimulations showed similar recovery effects. Our findings provide evidence that taVNS can facilitate CSF circulation and that repetitive taVNS can ameliorate VCI symptoms.
Collapse
Affiliation(s)
- Seunghwan Choi
- Department of East-West Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Dong Cheol Jang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Sun Kwang Kim
- Department of East-West Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
8
|
Kim HY, Back DB, Choi BR, Choi DH, Kwon KJ. Rodent Models of Post-Stroke Dementia. Int J Mol Sci 2022; 23:ijms231810750. [PMID: 36142661 PMCID: PMC9501431 DOI: 10.3390/ijms231810750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Post-stroke cognitive impairment is one of the most common complications in stroke survivors. Concomitant vascular risk factors, including aging, diabetes mellitus, hypertension, dyslipidemia, or underlying pathologic conditions, such as chronic cerebral hypoperfusion, white matter hyperintensities, or Alzheimer’s disease pathology, can predispose patients to develop post-stroke dementia (PSD). Given the various clinical conditions associated with PSD, a single animal model for PSD is not possible. Animal models of PSD that consider these diverse clinical situations have not been well-studied. In this literature review, diverse rodent models that simulate the various clinical conditions of PSD have been evaluated. Heterogeneous rodent models of PSD are classified into the following categories: surgical technique, special structure, and comorbid condition. The characteristics of individual models and their clinical significance are discussed in detail. Diverse rodent models mimicking the specific pathomechanisms of PSD could provide effective animal platforms for future studies investigating the characteristics and pathophysiology of PSD.
Collapse
Affiliation(s)
- Hahn Young Kim
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea
- Correspondence: ; Tel.: +82-2-2030-7563; Fax: +82-2-2030-5169
| | - Dong Bin Back
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea
| | - Bo-Ryoung Choi
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea
| | - Dong-Hee Choi
- Department of Medicine, Konkuk University School of Medicine, Seoul 05030, Korea
| | - Kyoung Ja Kwon
- Department of Medicine, Konkuk University School of Medicine, Seoul 05030, Korea
| |
Collapse
|
9
|
Neurobiological Links between Stress, Brain Injury, and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8111022. [PMID: 35663199 PMCID: PMC9159819 DOI: 10.1155/2022/8111022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
Stress, which refers to a combination of physiological, neuroendocrine, behavioral, and emotional responses to novel or threatening stimuli, is essentially a defensive adaptation under physiological conditions. However, strong and long-lasting stress can lead to psychological and pathological damage. Growing evidence suggests that patients suffering from mild and moderate brain injuries and diseases often show severe neurological dysfunction and experience severe and persistent stressful events or environmental stimuli, whether in the acute, subacute, or recovery stage. Previous studies have shown that stress has a remarkable influence on key brain regions and brain diseases. The mechanisms through which stress affects the brain are diverse, including activation of endoplasmic reticulum stress (ERS), apoptosis, oxidative stress, and excitatory/inhibitory neuron imbalance, and may lead to behavioral and cognitive deficits. The impact of stress on brain diseases is complex and involves impediment of recovery, aggravation of cognitive impairment, and neurodegeneration. This review summarizes various stress models and their applications and then discusses the effects and mechanisms of stress on key brain regions—including the hippocampus, hypothalamus, amygdala, and prefrontal cortex—and in brain injuries and diseases—including Alzheimer’s disease, stroke, traumatic brain injury, and epilepsy. Lastly, this review highlights psychological interventions and potential therapeutic targets for patients with brain injuries and diseases who experience severe and persistent stressful events.
Collapse
|
10
|
Growth Hormone Increases BDNF and mTOR Expression in Specific Brain Regions after Photothrombotic Stroke in Mice. Neural Plast 2022; 2022:9983042. [PMID: 35465399 PMCID: PMC9033347 DOI: 10.1155/2022/9983042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Aims We have shown that growth hormone (GH) treatment poststroke increases neuroplasticity in peri-infarct areas and the hippocampus, improving motor and cognitive outcomes. We aimed to explore the mechanisms of GH treatment by investigating how GH modulates pathways known to induce neuroplasticity, focusing on association between brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) in the peri-infarct area, hippocampus, and thalamus. Methods Recombinant human growth hormone (r-hGH) or saline was delivered (0.25 μl/hr, 0.04 mg/day) to mice for 28 days, commencing 48 hours after photothrombotic stroke. Protein levels of pro-BDNF, total-mTOR, phosphorylated-mTOR, total-p70S6K, and phosporylated-p70S6K within the peri-infarct area, hippocampus, and thalamus were evaluated by western blotting at 30 days poststroke. Results r-hGH treatment significantly increased pro-BDNF in peri-infarct area, hippocampus, and thalamus (p < 0.01). r-hGH treatment significantly increased expression levels of total-mTOR in the peri-infarct area and thalamus (p < 0.05). r-hGH treatment significantly increased expression of total-p70S6K in the hippocampus (p < 0.05). Conclusion r-hGH increases pro-BDNF within the peri-infarct area and regions that are known to experience secondary neurodegeneration after stroke. Upregulation of total-mTOR protein expression in the peri-infarct and thalamus suggests that this might be a pathway that is involved in the neurorestorative effects previously reported in these animals and warrants further investigation. These findings suggest region-specific mechanisms of action of GH treatment and provide further understanding for how GH treatment promotes neurorestorative effects after stroke.
Collapse
|
11
|
Gao C, Chen X, Xu H, Guo H, Zheng L, Yan Y, Ren Z, Luo C, Gao Y, Wang Z, Tao L, Wang T. Restraint Stress Delays the Recovery of Neurological Impairments and Exacerbates Brain Damages through Activating Endoplasmic Reticulum Stress-mediated Neurodegeneration/Autophagy/Apopotosis post Moderate Traumatic Brain Injury. Mol Neurobiol 2022; 59:1560-1576. [PMID: 35001355 DOI: 10.1007/s12035-022-02735-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022]
Abstract
Based on accumulating evidence, patients recovering from mild and moderate traumatic brain injury (TBI) often experience increased sensitivity to stressful events. However, few studies have assessed on the effects and pathophysiological mechanisms of stress on TBI. In the current study, using a mouse model of moderate TBI, we investigated whether restraint stress (RS) regulates secondary neurodegeneration and neuronal cell death, which are commonly associated with neurological dysfunctions. Our data showed that RS significantly reduced body weight recovery, delayed the recovery of neurological functions (motor function, cognitive function and anxiety-like behavior) and exacerbated the brain lesion volume after moderate TBI. Immunofluorescence results indicated that moderate TBI-induced cell insults and blood-brain barrier leakage were aggravated by RS. Further Western blotting experiments showed that RS activated endoplasmic reticulum (ER) stress excessively after moderate TBI and decreased the number of NeuN-positive cells, but increased the number of CHOP/NeuN-co-positive cells by performing immunostaining in the injured cortex after moderate TBI. Moreover, RS increased the ratios of CHOP/Aβ and CHOP/p-Tau co-positive cells in the injured cortex after moderate TBI. However, blocking ER stress with the classic ER stress inhibitor salubrinal remarkably decreased apoptosis and the levels of autophagy-related proteins in the mouse model of moderate TBI plus RS. Collectively, RS delays the recovery of neurological function and deteriorates morphological damage by excessively activating ER stress-mediated neurodegeneration, apoptosis and autophagy after moderate TBI. Thus, monitoring stress levels in patients recovering from non-severe TBI may merit consideration in the future.
Collapse
Affiliation(s)
- Cheng Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, Suzhou, 215123, China
| | - Xueshi Chen
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, Suzhou, 215123, China
| | - Heng Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, Suzhou, 215123, China
| | - Hanmu Guo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, Suzhou, 215123, China
| | - Lexin Zheng
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, Suzhou, 215123, China
| | - Ya'nan Yan
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, Suzhou, 215123, China
| | - Zhiyang Ren
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, Suzhou, 215123, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, Suzhou, 215123, China
| | - Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, Suzhou, 215123, China
| | - Zufeng Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, Suzhou, 215123, China
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, Suzhou, 215123, China.
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Affiliated Guangji Hospital, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
12
|
Stuckey SM, Ong LK, Collins-Praino LE, Turner RJ. Neuroinflammation as a Key Driver of Secondary Neurodegeneration Following Stroke? Int J Mol Sci 2021; 22:ijms222313101. [PMID: 34884906 PMCID: PMC8658328 DOI: 10.3390/ijms222313101] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 01/13/2023] Open
Abstract
Ischaemic stroke involves the rapid onset of focal neurological dysfunction, most commonly due to an arterial blockage in a specific region of the brain. Stroke is a leading cause of death and common cause of disability, with over 17 million people worldwide suffering from a stroke each year. It is now well-documented that neuroinflammation and immune mediators play a key role in acute and long-term neuronal tissue damage and healing, not only in the infarct core but also in distal regions. Importantly, in these distal regions, termed sites of secondary neurodegeneration (SND), spikes in neuroinflammation may be seen sometime after the initial stroke onset, but prior to the presence of the neuronal tissue damage within these regions. However, it is key to acknowledge that, despite the mounting information describing neuroinflammation following ischaemic stroke, the exact mechanisms whereby inflammatory cells and their mediators drive stroke-induced neuroinflammation are still not fully understood. As a result, current anti-inflammatory treatments have failed to show efficacy in clinical trials. In this review we discuss the complexities of post-stroke neuroinflammation, specifically how it affects neuronal tissue and post-stroke outcome acutely, chronically, and in sites of SND. We then discuss current and previously assessed anti-inflammatory therapies, with a particular focus on how failed anti-inflammatories may be repurposed to target SND-associated neuroinflammation.
Collapse
Affiliation(s)
- Shannon M. Stuckey
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Lin Kooi Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia;
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan 2308, Australia
| | - Lyndsey E. Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
| | - Renée J. Turner
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.M.S.); (L.E.C.-P.)
- Correspondence: ; Tel.: +61-8-8313-3114
| |
Collapse
|
13
|
Sanchez-Bezanilla S, Hood RJ, Collins-Praino LE, Turner RJ, Walker FR, Nilsson M, Ong LK. More than motor impairment: A spatiotemporal analysis of cognitive impairment and associated neuropathological changes following cortical photothrombotic stroke. J Cereb Blood Flow Metab 2021; 41:2439-2455. [PMID: 33779358 PMCID: PMC8393292 DOI: 10.1177/0271678x211005877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is emerging evidence suggesting that a cortical stroke can cause delayed and remote hippocampal dysregulation, leading to cognitive impairment. In this study, we aimed to investigate motor and cognitive outcomes after experimental stroke, and their association with secondary neurodegenerative processes. Specifically, we used a photothrombotic stroke model targeting the motor and somatosensory cortices of mice. Motor function was assessed using the cylinder and grid walk tasks. Changes in cognition were assessed using a mouse touchscreen platform. Neuronal loss, gliosis and amyloid-β accumulation were investigated in the peri-infarct and ipsilateral hippocampal regions at 7, 28 and 84 days post-stroke. Our findings showed persistent impairment in cognitive function post-stroke, whilst there was a modest spontaneous motor recovery over the investigated period of 84 days. In the peri-infarct region, we detected a reduction in neuronal loss and decreased neuroinflammation over time post-stroke, which potentially explains the spontaneous motor recovery. Conversely, we observed persistent neuronal loss together with concomitant increased neuroinflammation and amyloid-β accumulation in the hippocampus, which likely accounts for the persistent cognitive dysfunction. Our findings indicate that cortical stroke induces secondary neurodegenerative processes in the hippocampus, a region remote from the primary infarct, potentially contributing to the progression of post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Sonia Sanchez-Bezanilla
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Rebecca J Hood
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lyndsey E Collins-Praino
- Department of Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Renée J Turner
- Department of Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.,Centre for Rehab Innovations, The University of Newcastle, Callaghan, NSW, Australia
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.,Centre for Rehab Innovations, The University of Newcastle, Callaghan, NSW, Australia.,LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.,Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
14
|
Is Cerebral Amyloid-β Deposition Related to Post-stroke Cognitive Impairment? Transl Stroke Res 2021; 12:946-957. [PMID: 34195928 DOI: 10.1007/s12975-021-00921-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 01/20/2023]
Abstract
Approximately two-thirds of ischemic stroke patients suffer from different levels of post-stroke cognitive impairment (PSCI), but the underlying mechanisms of PSCI remain unclear. Cerebral amyloid-β (Aβ) deposition, a pathological hallmark of Alzheimer's disease, has been discovered in the brains of stroke patients in some autopsy studies. However, less is known about the role of Aβ pathology in the development of PSCI. It is hypothesized that cerebral ischemic injury may lead to neurotoxic Aβ accumulation in the brain, which further induces secondary neurodegeneration and progressive cognitive decline after stroke onset. In this review, we summarized available evidence from pre-clinical and clinical studies relevant to the aforementioned hypothesis. We found inconsistency in the results obtained from studies in rodents, nonhuman primates, and stroke patients. Moreover, the causal relationship between post-stroke cerebral Aβ deposition and PSCI has been uncertain and controversial. Taken together, evidence supporting the hypothesis that brain ischemia induces cerebral Aβ deposition has been insufficient so far. And, there is still no consensus regarding the contribution of cerebral amyloid pathology to PSCI. Other non-amyloid neurodegenerative mechanisms might be involved and remain to be fully elucidated.
Collapse
|
15
|
Corticosterone Administration Alters White Matter Tract Structure and Reduces Gliosis in the Sub-Acute Phase of Experimental Stroke. Int J Mol Sci 2021; 22:ijms22136693. [PMID: 34206635 PMCID: PMC8269094 DOI: 10.3390/ijms22136693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
White matter tract (WMT) degeneration has been reported to occur following a stroke, and it is associated with post-stroke functional disturbances. White matter pathology has been suggested to be an independent predictor of post-stroke recovery. However, the factors that influence WMT remodeling are poorly understood. Cortisol is a steroid hormone released in response to prolonged stress, and elevated levels of cortisol have been reported to interfere with brain recovery. The objective of this study was to investigate the influence of corticosterone (CORT; the rodent equivalent of cortisol) on WMT structure post-stroke. Photothrombotic stroke (or sham surgery) was induced in 8-week-old male C57BL/6 mice. At 72 h, mice were exposed to standard drinking water ± CORT (100 µg/mL). After two weeks of CORT administration, mice were euthanised and brain tissue collected for histological and biochemical analysis of WMT (particularly the corpus callosum and corticospinal tract). CORT administration was associated with increased tissue loss within the ipsilateral hemisphere, and modest and inconsistent WMT reorganization. Further, a structural and molecular analysis of the WMT components suggested that CORT exerted effects over axons and glial cells. Our findings highlight that CORT at stress-like levels can moderately influence the reorganization and microstructure of WMT post-stroke.
Collapse
|
16
|
Kim GS, Stephenson JM, Al Mamun A, Wu T, Goss MG, Min JW, Li J, Liu F, Marrelli SP. Determining the effect of aging, recovery time, and post-stroke memantine treatment on delayed thalamic gliosis after cortical infarct. Sci Rep 2021; 11:12613. [PMID: 34131204 PMCID: PMC8206333 DOI: 10.1038/s41598-021-91998-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Secondary injury following cortical stroke includes delayed gliosis and eventual neuronal loss in the thalamus. However, the effects of aging and the potential to ameliorate this gliosis with NMDA receptor (NMDAR) antagonism are not established. We used the permanent distal middle cerebral artery stroke model (pdMCAO) to examine secondary thalamic injury in young and aged mice. At 3 days post-stroke (PSD3), slight microgliosis (IBA-1) and astrogliosis (GFAP) was evident in thalamus, but no infarct. Gliosis increased dramatically through PSD14, at which point degenerating neurons were detected. Flow cytometry demonstrated a significant increase in CD11b+/CD45int microglia (MG) in the ipsilateral thalamus at PSD14. CCR2-RFP reporter mouse further demonstrated that influx of peripheral monocytes contributed to the MG/Mϕ population. Aged mice demonstrated reduced microgliosis and astrogliosis compared with young mice. Interestingly, astrogliosis demonstrated glial scar-like characteristics at two years post-stroke, but not by 6 weeks. Lastly, treatment with memantine (NMDAR antagonist) at 4 and 24 h after stroke significantly reduced gliosis at PSD14. These findings expand our understanding of gliosis in the thalamus following cortical stroke and demonstrate age-dependency of this secondary injury. Additionally, these findings indicate that delayed treatment with memantine (an FDA approved drug) provides significant reduction in thalamic gliosis.
Collapse
Affiliation(s)
- Gab Seok Kim
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Jessica M Stephenson
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Abdullah Al Mamun
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Ting Wu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Monica G Goss
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Jia-Wei Min
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Jun Li
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
He JT, Zhao X, Xu L, Mao CY. Vascular Risk Factors and Alzheimer's Disease: Blood-Brain Barrier Disruption, Metabolic Syndromes, and Molecular Links. J Alzheimers Dis 2021; 73:39-58. [PMID: 31815697 DOI: 10.3233/jad-190764] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, marked by cortical and hippocampal deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles and cognitive impairment. Studies indicate a prominent link between cerebrovascular abnormalities and the onset and progression of AD, where blood-brain barrier (BBB) dysfunction and metabolic disorders play key risk factors. Pericyte degeneration, endothelial cell damage, astrocyte depolarization, diminished tight junction integrity, and basement membrane disarray trigger BBB damage. Subsequently, the altered expression of low-density lipoprotein receptor-related protein 1 and receptor for advanced glycation end products at the microvascular endothelial cells dysregulate Aβ transport across the BBB. White matter lesions and microhemorrhages, dyslipidemia, altered brain insulin signaling, and insulin resistance contribute to tau and Aβ pathogenesis, and oxidative stress, mitochondrial damage, inflammation, and hypoperfusion serve as mechanistic links between pathophysiological features of AD and ischemia. Deregulated calcium homeostasis, voltage gated calcium channel functioning, and protein kinase C signaling are also common mechanisms for both AD pathogenesis and cerebrovascular abnormalities. Additionally, APOE polymorphic alleles that characterize impaired cerebrovascular integrity function as primary genetic determinants of AD. Overall, the current review enlightens key vascular risk factors for AD and underscores pathophysiologic relationship between AD and vascular dysfunction.
Collapse
Affiliation(s)
- Jin-Ting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lei Xu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Cui-Ying Mao
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
18
|
Zhao Z, Hood RJ, Ong LK, Pietrogrande G, Sanchez Bezanilla S, Warren KE, Ilicic M, Kluge MG, TeBay C, Ottersen OP, Johnson SJ, Nilsson M, Walker FR. Exploring How Low Oxygen Post Conditioning Improves Stroke-Induced Cognitive Impairment: A Consideration of Amyloid-Beta Loading and Other Mechanisms. Front Neurol 2021; 12:585189. [PMID: 33841293 PMCID: PMC8024636 DOI: 10.3389/fneur.2021.585189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/04/2021] [Indexed: 11/25/2022] Open
Abstract
Cognitive impairment is a common and disruptive outcome for stroke survivors, which is recognized to be notoriously difficult to treat. Previously, we have shown that low oxygen post-conditioning (LOPC) improves motor function and limits secondary neuronal loss in the thalamus after experimental stroke. There is also emerging evidence that LOPC may improve cognitive function post-stroke. In the current study we aimed to explore how exposure to LOPC may improve cognition post-stroke. Experimental stroke was induced using photothrombotic occlusion in adult, male C57BL/6 mice. At 72 h post-stroke animals were randomly assigned to either normal atmospheric air or to one of two low oxygen (11% O2) exposure groups (either 8 or 24 h/day for 14 days). Cognition was assessed during the treatment phase using a touchscreen based paired-associate learning assessment. At the end of treatment (17 days post-stroke) mice were euthanized and tissue was collected for subsequent histology and biochemical analysis. LOPC (both 8 and 24 h) enhanced learning and memory in the 2nd week post-stroke when compared with stroke animals exposed to atmospheric air. Additionally we observed LOPC was associated with lower levels of neuronal loss, the restoration of several vascular deficits, as well as a reduction in the severity of the amyloid-beta (Aβ) burden. These findings provide further insight into the pro-cognitive benefits of LOPC.
Collapse
Affiliation(s)
- Zidan Zhao
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Rebecca J. Hood
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Giovanni Pietrogrande
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Sonia Sanchez Bezanilla
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kirby E. Warren
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Marina Ilicic
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Murielle G. Kluge
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Clifford TeBay
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ole P. Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Office of the President, Karolinska Institutet, Stockholm, Sweden
| | - Sarah J. Johnson
- School of Electrical Engineering and Computing, University of Newcastle, Newcastle, NSW, Australia
- Centre for Rehab Innovations, University of Newcastle, Newcastle, NSW, Australia
| | - Michael Nilsson
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
- Centre for Rehab Innovations, University of Newcastle, Newcastle, NSW, Australia
| | - Frederick R. Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
- Centre for Rehab Innovations, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
19
|
Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int J Mol Sci 2020; 22:ijms22010107. [PMID: 33374338 PMCID: PMC7795778 DOI: 10.3390/ijms22010107] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide. It is usually identified as a stimulant because of a high content of caffeine. However, caffeine is not the only coffee bioactive component. The coffee beverage is in fact a mixture of a number of bioactive compounds such as polyphenols, especially chlorogenic acids (in green beans) and caffeic acid (in roasted coffee beans), alkaloids (caffeine and trigonelline), and the diterpenes (cafestol and kahweol). Extensive research shows that coffee consumption appears to have beneficial effects on human health. Regular coffee intake may protect from many chronic disorders, including cardiovascular disease, type 2 diabetes, obesity, and some types of cancer. Importantly, coffee consumption seems to be also correlated with a decreased risk of developing some neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dementia. Regular coffee intake may also reduce the risk of stroke. The mechanism underlying these effects is, however, still poorly understood. This review summarizes the current knowledge on the neuroprotective potential of the main bioactive coffee components, i.e., caffeine, chlorogenic acid, caffeic acid, trigonelline, kahweol, and cafestol. Data from both in vitro and in vivo preclinical experiments, including their potential therapeutic applications, are reviewed and discussed. Epidemiological studies and clinical reports on this matter are also described. Moreover, potential molecular mechanism(s) by which coffee bioactive components may provide neuroprotection are reviewed.
Collapse
|
20
|
Lesions in the right Rolandic operculum are associated with self-rating affective and apathetic depressive symptoms for post-stroke patients. Sci Rep 2020; 10:20264. [PMID: 33219292 PMCID: PMC7679372 DOI: 10.1038/s41598-020-77136-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke survivors majorly suffered from post-stroke depression (PSD). The PSD diagnosis is commonly performed based on the clinical cut-off for psychometric inventories. However, we hypothesized that PSD involves spectrum symptoms (e.g., apathy, depression, anxiety, and stress domains) and severity levels. Therefore, instead of using the clinical cut-off, we suggested a data-driven analysis to interpret patient spectrum conditions. The patients’ psychological conditions were categorized in an unsupervised manner using the k-means clustering method, and the relationships between psychological conditions and quantitative lesion degrees were evaluated. This study involved one hundred sixty-five patient data; all patients were able to understand and perform self-rating psychological conditions (i.e., no aphasia). Four severity levels—low, low-to-moderate, moderate-to-high, and high—were observed for each combination of two psychological domains. Patients with worse conditions showed the significantly greater lesion degree at the right Rolandic operculum (part of Brodmann area 43). The dissimilarities between stress and other domains were also suggested. Patients with high stress were specifically associated with lesions in the left thalamus. Impaired emotion processing and stress-affected functions have been frequently related to those lesion regions. Those lesions were also robust and localized, suggesting the possibility of an objective for predicting psychological conditions from brain lesions.
Collapse
|
21
|
Hayden EY, Huang JM, Charreton M, Nunez SM, Putman JN, Teter B, Lee JT, Welch A, Frautschy S, Cole G, Teng E, Hinman JD. Modeling Mixed Vascular and Alzheimer's Dementia Using Focal Subcortical Ischemic Stroke in Human ApoE4-TR:5XFAD Transgenic Mice. Transl Stroke Res 2020; 11:1064-1076. [PMID: 32086779 PMCID: PMC10075511 DOI: 10.1007/s12975-020-00786-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
Subcortical white matter ischemic lesions are increasingly recognized to have pathologic overlap in individuals with Alzheimer's disease (AD). The interaction of white matter ischemic lesions with amyloid pathology seen in AD is poorly characterized. We designed a novel mouse model of subcortical white matter ischemic stroke and AD that can inform our understanding of the cellular and molecular mechanisms of mixed vascular and AD dementia. Subcortical white matter ischemic stroke underlying forelimb motor cortex was induced by local stereotactic injection of an irreversible eNOS inhibitor. Subcortical white matter ischemic stroke or sham procedures were performed on human ApoE4-targeted-replacement (TR):5XFAD mice at 8 weeks of age. Behavioral tests were done at 7, 10, 15, and 20 weeks. A subset of animals underwent 18FDG-PET/CT. At 20 weeks of age, brain tissue was examined for amyloid plaque accumulation and cellular changes. Compared with sham E4-TR:5XFAD mice, those with an early subcortical ischemic stroke showed a significant reduction in amyloid plaque burden in the region of cortex overlying the subcortical stroke. Cognitive performance was improved in E4-TR:5XFAD mice with stroke compared with sham E4-TR:5XFAD animals. Iba-1+ microglial cells in the region of cortex overlying the subcortical stroke were increased in number and morphologic complexity compared with sham E4-TR:5XFAD mice, suggesting that amyloid clearance may be promoted by an interaction between activated microglia and cortical neurons in response to subcortical stroke. This novel approach to modeling mixed vascular and AD dementia provides a valuable tool for dissecting the molecular interactions between these two common pathologies.
Collapse
Affiliation(s)
- Eric Y Hayden
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Julia M Huang
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Malena Charreton
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Stefanie M Nunez
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Jennifer N Putman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Bruce Teter
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Jason T Lee
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrew Welch
- The Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Sally Frautschy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Gregory Cole
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Edmond Teng
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Neuroscience Research Building, Rm 415, Los Angeles, CA, 90095, USA.
| |
Collapse
|
22
|
Growth Hormone Treatment Promotes Remote Hippocampal Plasticity after Experimental Cortical Stroke. Int J Mol Sci 2020; 21:ijms21124563. [PMID: 32604953 PMCID: PMC7349868 DOI: 10.3390/ijms21124563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/28/2023] Open
Abstract
Cognitive impairment is common after stroke, and disturbances in hippocampal function are often involved, even in remote non-hippocampal injuries. In terms of hippocampal function, growth hormone (GH) is known to affects plasticity and cognition. We aimed to investigate whether GH treatment after an experimental cortical stroke could enhance remote hippocampal plasticity and the hippocampal-dependent visual discrimination task. C57BL6 male mice were subjected to cortical photothrombotic stroke. Stroke mice were then treated with either saline or GH at 48 h after occlusion for 28 days. We assessed learning and memory using mouse touchscreen platform for the visual discrimination task. We also evaluated markers of neural progenitor cells, synaptic plasticity and cerebrovascular remodelling in the hippocampal formation. GH treatment significantly improved the performance on visual discrimination task after stroke. We observed a concomitant increased number of bromodeoxyuridine-positive cells in the dentate gyrus of the hippocampus. We also detected increased protein levels and density of doublecortin, a neuronal precursor cells marker, as well as glutamate receptor 1 (GLuR1), a synaptic marker. These findings provide further neurobiological evidence for how GH treatment could be used to promote hippocampal plasticity in a remote region from the initial cortical injury, and thus enhance cognitive recovery after stroke.
Collapse
|
23
|
Datta A, Sarmah D, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Advances in Studies on Stroke-Induced Secondary Neurodegeneration (SND) and Its Treatment. Curr Top Med Chem 2020; 20:1154-1168. [DOI: 10.2174/1568026620666200416090820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/23/2022]
Abstract
Background:
The occurrence of secondary neurodegeneration has exclusively been observed
after the first incidence of stroke. In humans and rodents, post-stroke secondary neurodegeneration
(SND) is an inevitable event that can lead to progressive neuronal loss at a region distant to initial infarct.
SND can lead to cognitive and motor function impairment, finally causing dementia. The exact
pathophysiology of the event is yet to be explored. It is seen that the thalami, in particular, are susceptible
to cause SND. The reason behind this is because the thalamus functioning as the relay center and is
positioned as an interlocked structure with direct synaptic signaling connection with the cortex. As SND
proceeds, accumulation of misfolded proteins and microglial activation are seen in the thalamus. This
leads to increased neuronal loss and worsening of functional and cognitive impairment.
Objective:
There is a necessity of specific interventions to prevent post-stroke SND, which are not properly
investigated to date owing to sparsely reproducible pre-clinical and clinical data. The basis of this
review is to investigate about post-stroke SND and its updated treatment approaches carefully.
Methods:
Our article presents a detailed survey of advances in studies on stroke-induced secondary neurodegeneration
(SND) and its treatment.
Results:
This article aims to put forward the pathophysiology of SND. We have also tabulated the latest
treatment approaches along with different neuroimaging systems that will be helpful for future reference
to explore.
Conclusion:
In this article, we have reviewed the available reports on SND pathophysiology, detection
techniques, and possible treatment modalities that have not been attempted to date.
Collapse
Affiliation(s)
- Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
24
|
Lin L, Hao X, Li C, Sun C, Wang X, Yin L, Zhang X, Tian J, Yang Y. Impaired glymphatic system in secondary degeneration areas after ischemic stroke in rats. J Stroke Cerebrovasc Dis 2020; 29:104828. [PMID: 32404284 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104828] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pathomechanism of secondary degeneration in remote regions after ischemic stroke has not been totally clarified. Contrast-enhanced MRI with injecting Gd-DTPA in cisterna magna (CM) is regarded as an efficient method to measure glymphatic system function in brain. Our research aimed at evaluating glymphatic system changes in secondary degeneration areas by contrast-enhanced MRI. METHODS Ischemic stroke was induced by left middle cerebral artery occlusion (MCAO) model. A total of 12 Sprague-Dawley rats were randomly divided into three groups: control group with sham operations (n=4), the group of acute phase (1 day after MCAO) (n=4), and the group of subacute phase (7 days after MCAO) (n=4). Contrast-enhanced MRI was performed in 1days or 7days after operations respectively. All rats received an intrathecal injection of Gd-DTPA (2μl/min, totally 20μl) and high-resolution 3D T1-weighted MRI for 6 h. The time course of the signal-to-noise ratio (SNR) in substantia Nigra (SN) and ventral thalamic nucleus (VTN) was evaluated between two hemispheres in all rats. RESULTS In control group without ischemia, time-to-peak of SNR in SN was earlier than that in VTN. There were no differences of SNR between two hemispheres after intrathecal Gd-DTPA administration. In the group of acute phase, MRI revealed similar time course and time-to-peak of SNR between ipsilateral and contralateral VTN, while a tendency of higher SNR in ipsilateral SN than contralateral SN at 4h, 5h, 6h after Gd-DTPA injection. And time-to-peak of SNR was similar in bilateral SN. In the group of subacute phase, time-to-peak of SNR was similar in bilateral VTN, while longer in ipsilateral SN compared with contralateral side. In addition, SNR in T1WI in ipsilateral was significantly higher than SNR in contralateral SN and VTN at 5h (VTN, P= 0.003; SN, P=0.004) and 6h (VTN, P=0.015; SN, P=0.006) after Gd-DTPA injection. CONCLUSION Glymphatic system was impaired in ipsilateral SN and VTN after ischemic stroke, which may contribute to neural degeneration.
Collapse
Affiliation(s)
- Luyi Lin
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Urumqi Road, Shanghai 200040, China
| | - Xiaozhu Hao
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Urumqi Road, Shanghai 200040, China
| | - Chanchan Li
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Urumqi Road, Shanghai 200040, China
| | - Chengfeng Sun
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Urumqi Road, Shanghai 200040, China
| | - Xiaohong Wang
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Urumqi Road, Shanghai 200040, China
| | - Lekang Yin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoxue Zhang
- Department of Radiotherapy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jiaqi Tian
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanmei Yang
- Department of Radiology, Huashan Hospital, Fudan University, No. 12 Middle Urumqi Road, Shanghai 200040, China.
| |
Collapse
|
25
|
Gao C, Meng Y, Chen G, Chen W, Chen XS, Luo CL, Zhang MY, Wang ZF, Wang T, Tao LY. Chronic restraint stress exacerbates neurological deficits and disrupts the remodeling of the neurovascular unit in a mouse intracerebral hemorrhage model. Stress 2020; 23:338-348. [PMID: 31591949 DOI: 10.1080/10253890.2019.1678023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Growing evidences have shown that patients recovering from stroke experience high and unremitting stress. Chronic restraint stress (CRS) has been found to exacerbate neurological impairments in an experimental focal cortical ischemia model. However, there have been no studies reporting the effect and mechanism of CRS on intracerebral hemorrhage (ICH). This study aimed to evaluate the effect of CRS on a mouse ICH model. Adult male C57BL mice were subjected to infusion of collagenase IV (to induce ICH) or saline (for sham) into the left striatum. After ICH, animals were stressed with application of CRS protocol for 21 days. Our results showed that CRS significantly exacerbated neurological deficits (Garcia test, corner turn test, and wire grip test) and the ipsilateral brain atrophy and reduced body weight gain after ICH. Immunofluorescence staining indicated that CRS exerted significant suppressive effects on neuron, astrocyte, vascular endothelial cell and pericyte and excessively activated microglia post ICH. All of the key cellular components mentioned above are involved in the neurovascular unit (NVU) remodeling in the peri-hemorrhagic region after ICH. Western blot results showed that matrix metalloproteinase (MMP)-9 and tight junction (TJ) proteins including zonula occludens-1, occludin and claudin-5 were increased after ICH, but MMP-9 protein was further up-regulated and TJ-related proteins were down-regulated by CRS. In addition, ICH-induced activation of endoplasmic reticulum stress and apoptosis were further strengthened by CRS. Collectively, CRS exacerbates neurological deficits and disrupts the remodeling of the peri-hemorrhagic NVU after ICH, which may be associated with TJ proteins degradation and excessive activation of MMP-9 and endoplasmic reticulum stress-apoptosis.LAY SUMMARYCRS exacerbates neurological deficits and disrupts the remodeling of the NVU in the recovery stage after ICH, which suggest that monitoring chronic stress levels in patients recovering from ICH may merit consideration in the future.
Collapse
Affiliation(s)
- Cheng Gao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Ying Meng
- Community Health Center, Suzhou Western Eco-City, Suzhou, China
| | - Guang Chen
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Wei Chen
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Xue-Shi Chen
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Cheng-Liang Luo
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Ming-Yang Zhang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Zu-Feng Wang
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | - Tao Wang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
- School of Pharmacy, Soochow University, Suzhou, China
| | - Lu-Yang Tao
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Cao Z, Harvey SS, Bliss TM, Cheng MY, Steinberg GK. Inflammatory Responses in the Secondary Thalamic Injury After Cortical Ischemic Stroke. Front Neurol 2020; 11:236. [PMID: 32318016 PMCID: PMC7154072 DOI: 10.3389/fneur.2020.00236] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke is one of the major causes of chronic disability worldwide and increasing efforts have focused on studying brain repair and recovery after stroke. Following stroke, the primary injury site can disrupt functional connections in nearby and remotely connected brain regions, resulting in the development of secondary injuries that may impede long-term functional recovery. In particular, secondary degenerative injury occurs in the connected ipsilesional thalamus following a cortical stroke. Although secondary thalamic injury was first described decades ago, the underlying mechanisms still remain unclear. We performed a systematic literature review using the NCBI PubMed database for studies that focused on the secondary thalamic degeneration after cortical ischemic stroke. In this review, we discussed emerging studies that characterized the pathological changes in the secondary degenerative thalamus after stroke; these included excitotoxicity, apoptosis, amyloid beta protein accumulation, blood-brain-barrier breakdown, and inflammatory responses. In particular, we highlighted key findings of the dynamic inflammatory responses in the secondary thalamic injury and discussed the involvement of several cell types in this process. We also discussed studies that investigated the effects of blocking secondary thalamic injury on inflammatory responses and stroke outcome. Targeting secondary injuries after stroke may alleviate network-wide deficits, and ultimately promote stroke recovery.
Collapse
Affiliation(s)
- Zhijuan Cao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Sean S Harvey
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Tonya M Bliss
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States.,Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
27
|
Growth Hormone Promotes Motor Function after Experimental Stroke and Enhances Recovery-Promoting Mechanisms within the Peri-Infarct Area. Int J Mol Sci 2020; 21:ijms21020606. [PMID: 31963456 PMCID: PMC7013985 DOI: 10.3390/ijms21020606] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/31/2022] Open
Abstract
Motor impairment is the most common and widely recognised clinical outcome after stroke. Current clinical practice in stroke rehabilitation focuses mainly on physical therapy, with no pharmacological intervention approved to facilitate functional recovery. Several studies have documented positive effects of growth hormone (GH) on cognitive function after stroke, but surprisingly, the effects on motor function remain unclear. In this study, photothrombotic occlusion targeting the motor and sensory cortex was induced in adult male mice. Two days post-stroke, mice were administered with recombinant human GH or saline, continuing for 28 days, followed by evaluation of motor function. Three days after initiation of the treatment, bromodeoxyuridine was administered for subsequent assessment of cell proliferation. Known neurorestorative processes within the peri-infarct area were evaluated by histological and biochemical analyses at 30 days post-stroke. This study demonstrated that GH treatment improves motor function after stroke by 50%–60%, as assessed using the cylinder and grid walk tests. Furthermore, the observed functional improvements occurred in parallel with a reduction in brain tissue loss, as well as increased cell proliferation, neurogenesis, increased synaptic plasticity and angiogenesis within the peri-infarct area. These findings provide new evidence about the potential therapeutic effects of GH in stroke recovery.
Collapse
|
28
|
Zuo X, Hu S, Tang Y, Zhan L, Sun W, Zheng J, Han Y, Xu E. Attenuation of secondary damage and Aβ deposits in the ipsilateral thalamus of dMCAO rats through reduction of cathepsin B by bis(propyl)-cognitin, a multifunctional dimer. Neuropharmacology 2020; 162:107786. [DOI: 10.1016/j.neuropharm.2019.107786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/01/2019] [Accepted: 09/19/2019] [Indexed: 10/25/2022]
|
29
|
Kluge MG, Abdolhoseini M, Zalewska K, Ong LK, Johnson SJ, Nilsson M, Walker FR. Spatiotemporal analysis of impaired microglia process movement at sites of secondary neurodegeneration post-stroke. J Cereb Blood Flow Metab 2019; 39:2456-2470. [PMID: 30204044 PMCID: PMC6893987 DOI: 10.1177/0271678x18797346] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has recently been identified that after motor cortex stroke, the ability of microglia processes to respond to local damage cues is lost from the thalamus, a major site of secondary neurodegeneration (SND). In this study, we combine a photothrombotic stroke model in mice, acute slice and fluorescent imaging to analyse the loss of microglia process responsiveness. The peri-infarct territories and thalamic areas of SND were investigated at time-points 3, 7, 14, 28 and 56 days after stroke. We confirmed the highly specific nature of non-responsive microglia processes to sites of SND. Non-responsiveness was at no time observed at the peri-infarct but started in the thalamus seven days post-stroke and persisted for 56 days. Loss of directed process extension is not a reflection of general functional paralysis as phagocytic function continued to increase over time. Additionally, we identified that somal P2Y12 was present on non-responsive microglia in the first two weeks after stroke but not at later time points. Finally, both classical microglia activation and loss of process extension are highly correlated with neuronal damage. Our findings highlight the importance of microglia, specifically microglia dynamic functions, to the progression of SND post-stroke, and their potential relevance as modulators or therapeutic targets during stroke recovery.
Collapse
Affiliation(s)
- Murielle G Kluge
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Mahmoud Abdolhoseini
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Katarzyna Zalewska
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Sarah J Johnson
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Nilsson
- Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| |
Collapse
|
30
|
Xing S, Pan N, Xu W, Zhang J, Li J, Dang C, Liu G, Pei Z, Zeng J. EphrinB2 activation enhances angiogenesis, reduces amyloid-β deposits and secondary damage in thalamus at the early stage after cortical infarction in hypertensive rats. J Cereb Blood Flow Metab 2019; 39:1776-1789. [PMID: 29624118 PMCID: PMC6727142 DOI: 10.1177/0271678x18769188] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerebral infarction causes secondary neurodegeneration and angiogenesis in thalamus, which impacts functional recovery after stroke. Here, we hypothesize that activation of ephrinB2 could stimulate angiogenesis and restore the secondary neurodegeneration in thalamus after cerebral infarction. Focal cerebral infarction was induced by middle cerebral artery occlusion (MCAO). Secondary damage, angiogenesis, amyloid-β (Aβ) deposits, levels of ephrinB2 and receptor for advanced glycation end product (RAGE) in the ipsilateral thalamus were determined by immunofluorescence and immunoblot. The contribution of ephrinB2 to angiogenesis was determined by siRNA-mediated knockdown of ephrinB2 and pharmacological activation of ephrinB2. The results showed that formation of new vessels and ephrinB2 expression was markedly increased in the ipsilateral thalamus at seven days after MCAO. EphrinB2 knockdown markedly suppressed angiogenesis coinciding with increased Aβ accumulation, neuronal loss and gliosis in the ipsilateral thalamus. In contrast, clustered EphB2-Fc significantly enhanced angiogenesis, alleviated Aβ accumulation and the secondary thalamic damage, which was accompanied by accelerated function recovery. Additionally, activation of ephrinB2 significantly reduced RAGE levels in the ipsilateral thalamus. Our findings suggest that activation of ephrinB2 promotes angiogenesis, ameliorates Aβ accumulation and the secondary thalamic damage after cerebral infarction. Additionally, RAGE might be involved in Aβ clearance by activating ephrinB2 in the thalamus.
Collapse
Affiliation(s)
- Shihui Xing
- 1 Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nannan Pan
- 2 Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Xu
- 1 Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jian Zhang
- 1 Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingjing Li
- 1 Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Dang
- 1 Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Gang Liu
- 1 Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhong Pei
- 1 Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinsheng Zeng
- 1 Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
31
|
Sanchez-Bezanilla S, Nilsson M, Walker FR, Ong LK. Can We Use 2,3,5-Triphenyltetrazolium Chloride-Stained Brain Slices for Other Purposes? The Application of Western Blotting. Front Mol Neurosci 2019; 12:181. [PMID: 31417355 PMCID: PMC6682641 DOI: 10.3389/fnmol.2019.00181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/10/2019] [Indexed: 01/15/2023] Open
Abstract
2,3,5-Triphenyltetrazolium chloride (TTC) staining is a commonly used method to determine the volume of the cerebral infarction in experimental stroke models. The TTC staining protocol is considered to interfere with downstream analyses, and it is unclear whether TTC-stained brain samples can be used for biochemistry analyses. However, there is evidence indicating that, with proper optimization and handling, TTC-stained brains may remain viable for protein analyses. In the present study, we aimed to rigorously assess whether TTC can reliably be used for western blotting of various markers. In this study, brain samples obtained from C57BL/6 male mice were treated with TTC (TTC+) or left untreated (TTC−) at 1 week after photothrombotic occlusion or sham surgery. Brain regions were dissected into infarct, thalamus, and hippocampus, and proteins were extracted by using radioimmunoprecipitation assay buffer. Protein levels of apoptosis, autophagy, neuronal, glial, vascular, and neurodegenerative-related markers were analyzed by western blotting. Our results showed that TTC+ brains display similar relative changes in most of the markers compared with TTC− brains. In addition, we validated that these analyses can be performed in the infarct as well as other brain regions such as the thalamus and hippocampus. Our findings demonstrate that TTC+ brains are reliable for protein analyses using western blotting. Widespread adoption of this approach will be key to lowering the number of animals used while maximizing data.
Collapse
Affiliation(s)
- Sonia Sanchez-Bezanilla
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.,Centre for Rehab Innovations, The University of Newcastle, Callaghan, NSW, Australia.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.,Centre for Rehab Innovations, The University of Newcastle, Callaghan, NSW, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,NHMRC Centre of Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.,School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
32
|
Ouyang F, Chen X, Chen Y, Liang J, Chen Y, Lu T, Huang W, Zeng J. Neuronal loss without amyloid-β deposits in the thalamus and hippocampus in the late period after middle cerebral artery occlusion in cynomolgus monkeys. Brain Pathol 2019; 30:165-178. [PMID: 31278793 DOI: 10.1111/bpa.12764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/01/2019] [Indexed: 11/30/2022] Open
Abstract
Conflicting evidence exists regarding whether focal cerebral infarction contributes to cerebral amyloid-β (Aβ) deposition, as observed in Alzheimer's disease. In this study, we aimed to evaluate the presence of Aβ deposits in the ipsilateral thalamus and hippocampus 12 months post-stroke in non-human primates, whose brains are structurally and functionally similar to that of humans. Four young male cynomolgus monkeys were subjected to unilateral permanent middle cerebral artery occlusion (MCAO), and another four sham-operated monkeys served as controls. All monkeys underwent magnetic resonance imaging examination on post-operative day 7 to assess the location and size of the infarction. The numbers of neurons, astrocytes, microglia and the Aβ load in the non-affected thalamus and hippocampus ipsilaterally remote from infarct foci were examined immunohistochemically at sacrifice 12 months after operation. Thioflavin S and Congo Red stainings were used to identify amyloid deposits. Multiple Aβ antibodies recognizing both the N-terminal and C-terminal epitopes of Aβ peptides were used to avoid antibody cross-reactivity. Aβ levels in cerebrospinal fluid (CSF) and plasma were examined using enzyme-linked immunosorbent assay. The initial infarct was restricted to the left temporal, parietal, insular cortex and the subcortical white matter, while the thalamus and hippocampus remained intact. Of note, there were fewer neurons and more glia in the ipsilateral thalamus and hippocampus in the MCAO group at 12 months post-stroke compared to the control group (all P < 0.05). However, there was no sign of extracellular Aβ plaques in the thalamus or hippocampus. No statistically significant difference was found in CSF or plasma levels of Aβ40 , Aβ42 or the Aβ40 /Aβ42 ratio between the two groups (P > 0.05). These results suggest that significant secondary neuronal loss and reactive gliosis occur in the non-affected thalamus and hippocampus without Aβ deposits in the late period after MCAO in non-human primates.
Collapse
Affiliation(s)
- Fubing Ouyang
- Department of Neurology and Stroke Center, National Key Clinical Department and Key Discipline of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinran Chen
- Department of Neurology and Stroke Center, National Key Clinical Department and Key Discipline of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yonghong Chen
- Department of Neurology and Stroke Center, National Key Clinical Department and Key Discipline of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Liang
- Department of Neurology and Stroke Center, National Key Clinical Department and Key Discipline of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yicong Chen
- Department of Neurology and Stroke Center, National Key Clinical Department and Key Discipline of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Lu
- Department of Neurology and Stroke Center, National Key Clinical Department and Key Discipline of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weixian Huang
- Department of Neurology and Stroke Center, National Key Clinical Department and Key Discipline of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinsheng Zeng
- Department of Neurology and Stroke Center, National Key Clinical Department and Key Discipline of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Sanchez-Bezanilla S, TeBay C, Nilsson M, Walker FR, Ong LK. Visual discrimination impairment after experimental stroke is associated with disturbances in the polarization of the astrocytic aquaporin-4 and increased accumulation of neurotoxic proteins. Exp Neurol 2019; 318:232-243. [PMID: 31077714 DOI: 10.1016/j.expneurol.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/03/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023]
Abstract
Numerous clinical studies have documented the high incidence of cognitive impairment after stroke. However, there is only limited knowledge about the underlying mechanisms. Interestingly, there is emerging evidence suggesting that cognitive function after stroke may be affected due to reduced waste clearance and subsequent accumulation of neurotoxic proteins. To further explore this potential association, we utilised a model of experimental stroke in mice. Specifically, a photothrombotic vascular occlusion targeting motor and sensory parts of the cerebral cortex was induced in young adult mice, and changes in cognition were assessed using a touchscreen platform for pairwise visual discrimination. The results showed that the execution of the visual discrimination task was impaired in mice 10 to 14 days post-stroke compared to sham. Stroke also induced significant neuronal loss within the peri-infarct, thalamus and the CA1 sub-region of the hippocampus. Further, immunohistochemical and protein analyses of the selected brain regions revealed an increased accumulation and aggregation of both amyloid-β and α-synuclein. These alterations were associated with significant disturbances in the aquaporin-4 protein expression and polarization at the astrocytic end-feet. The results suggest a link between the increased accumulation of neurotoxic proteins and the stroke-induced cognitive impairment. Given that the neurotoxic protein accumulation appeared alongside changes in astrocytic aquaporin-4 distribution, we suggest that the function of the waste clearance pathways in the brain post-stroke may represent a therapeutic target to improve brain recovery.
Collapse
Affiliation(s)
- Sonia Sanchez-Bezanilla
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton, Heights, NSW, Australia
| | - Clifford TeBay
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton, Heights, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia; Centre for Rehab Innovations, University of Newcastle, Callaghan, NSW, Australia; LKC School of Medicine, Nanyang Technological University, Singapore
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton, Heights, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia; Centre for Rehab Innovations, University of Newcastle, Callaghan, NSW, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton, Heights, NSW, Australia; NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia.
| |
Collapse
|
34
|
Pietrogrande G, Zalewska K, Zhao Z, Abdolhoseini M, Chow WZ, Sanchez-Bezanilla S, Ong LK, Johnson SJ, Nilsson M, Walker FR. Low oxygen post conditioning prevents thalamic secondary neuronal loss caused by excitotoxicity after cortical stroke. Sci Rep 2019; 9:4841. [PMID: 30890719 PMCID: PMC6425023 DOI: 10.1038/s41598-019-39493-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/14/2019] [Indexed: 02/08/2023] Open
Abstract
In the current study, we were interested in investigating whether Low oxygen post-conditioning (LOPC) was capable of limiting the severity of stroke-induced secondary neurodegeneration (SND). To investigate the effect of LOPC we exposed adult male C57/BL6 mice to photothrombotic occlusion (PTO) of the motor and somatosensory cortex. This is known to induce progressive neurodegeneration in the thalamus within two weeks of infarction. Two days after PTO induction mice were randomly assigned to one of four groups: (i) LOPC-15 day exposure group; (ii) a LOPC 15 day exposure followed by a 15 day exposure to normal atmosphere; (iii) normal atmosphere for 15 days and (iv) normal atmosphere for 30 days (n = 20/group). We observed that LOPC reduced the extent of neuronal loss, as indicated by assessment of both area of loss and NeuN+ cell counts, within the thalamus. Additionally, we identified that LOPC reduced microglial activity and decreased activity within the excitotoxic signalling pathway of the NMDAR axis. Together, these findings suggest that LOPC limits neuronal death caused by excitotoxicity in sites of secondary damage and promotes neuronal survival. In conclusion, this work supports the potential of utilising LOPC to intervene in the sub-acute phase post-stroke to restrict the severity of SND.
Collapse
Affiliation(s)
- Giovanni Pietrogrande
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Hunter Medical Research Institute, Newcastle, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, Australia
| | - Katarzyna Zalewska
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Hunter Medical Research Institute, Newcastle, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, Australia
| | - Zidan Zhao
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Hunter Medical Research Institute, Newcastle, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, Australia
| | - Mahmoud Abdolhoseini
- School of Electrical Engineering and Computing, University of Newcastle, Newcastle, Australia
| | - Wei Zhen Chow
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Hunter Medical Research Institute, Newcastle, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, Australia
| | - Sonia Sanchez-Bezanilla
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Hunter Medical Research Institute, Newcastle, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Hunter Medical Research Institute, Newcastle, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Newcastle, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, Australia
| | - Sarah J Johnson
- School of Electrical Engineering and Computing, University of Newcastle, Newcastle, Australia
| | - Michael Nilsson
- Hunter Medical Research Institute, Newcastle, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Newcastle, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia. .,Hunter Medical Research Institute, Newcastle, Australia. .,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Newcastle, Australia. .,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, Australia.
| |
Collapse
|
35
|
Zhu HL, Liu ZP, Yang WY, Dong DW, Zhao Y, Yang B, Huang LA, Zhang YS, Xu AD. Liraglutide Ameliorates β-Amyloid Deposits and Secondary Damage in the Ipsilateral Thalamus and Sensory Deficits After Focal Cerebral Infarction in Rats. Front Neurosci 2018; 12:962. [PMID: 30618584 PMCID: PMC6304750 DOI: 10.3389/fnins.2018.00962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
Focal cerebral infarction causes β-amyloid (Aβ) deposition and secondary neuronal degeneration in the ipsilateral thalamus. Thalamus is the subcortical center of sensory, the damage of thalamus could cause sensory deficits. The present study aimed to investigate the protective effects of liraglutide, a long-acting glucagon-like peptide-1 (GLP)-1 receptor agonist, on Aβ deposits and secondary damage in the ipsilateral thalamus after focal cerebral infarction. In addition, this study was conducted to investigate whether liraglutide could improve sensory function after focal cerebral infarction. Forty-two male Sprague–Dawley rats were subjected to distal middle cerebral artery occlusion (MCAO) and then randomly divided into liraglutide and vehicle groups, and 14 sham-operated rats as control. At 1 h after MCAO, rats in the liraglutide and vehicle groups were subcutaneously injected with liraglutide (100 μg/kg/d) and isopyknic vehicle, respectively, once a day for 7 days. Sensory function and secondary thalamic damage were assessed using adhesive-removal test and Nissl staining and immunostaining, respectively, at 7 days after MCAO. Terminal deoxynucleotidyl transferase 2’-deoxyuridine 5’-triphosphate nick end labeling and Western blot were used to detect neuronal apoptosis. The results showed that liraglutide improved sensory deficit compared to the controls. Liraglutide treatment significantly reduced Aβ deposition compared with the vehicle treatment. Liraglutide treatment decreased the neuronal loss, astroglial and microglial activation, and apoptosis compared with the vehicle treatment. Liraglutide significantly down-regulated the expression of Bcl-2 and up-regulated that of Bax in the ipsilateral thalamus compared with the vehicle group. These results suggest that liraglutide ameliorates the deposition of Aβ and secondary damage in the ipsilateral thalamus, potentially contributing to improve sensory deficit after focal cerebral infarction.
Collapse
Affiliation(s)
- Hui-Li Zhu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Zhang-Pei Liu
- Clinical Neuroscience Institute, Jinan University, Guangzhou, China.,Department of Neurology, Stroke Center, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Wan-Yong Yang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Da-Wei Dong
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Ying Zhao
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Bing Yang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Li-An Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Yu-Sheng Zhang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - An-Ding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| |
Collapse
|
36
|
Nguyen TVV, Hayes M, Zbesko JC, Frye JB, Congrove NR, Belichenko NP, McKay BS, Longo FM, Doyle KP. Alzheimer's associated amyloid and tau deposition co-localizes with a homeostatic myelin repair pathway in two mouse models of post-stroke mixed dementia. Acta Neuropathol Commun 2018; 6:100. [PMID: 30249297 PMCID: PMC6154927 DOI: 10.1186/s40478-018-0603-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/19/2018] [Indexed: 11/23/2022] Open
Abstract
The goal of this study was to determine the chronic impact of stroke on the manifestation of Alzheimer’s disease (AD) related pathology and behavioral impairments in mice. To accomplish this goal, we used two distinct models. First, we experimentally induced ischemic stroke in aged wildtype (wt) C57BL/6 mice to determine if stroke leads to the manifestation of AD-associated pathological β-amyloid (Aβ) and tau in aged versus young adult wt mice. Second, we utilized a transgenic (Tg) mouse model of AD (hAPP-SL) to determine if stroke leads to the worsening of pre-existing AD pathology, as well as the development of pathology in brain regions not typically expressed in AD Tg mice. In the wt mice, there was delayed motor recovery and an accelerated development of cognitive deficits in aged mice compared to young adult mice following stroke. This corresponded with increased brain atrophy, increased cholinergic degeneration, and a focal increase of Aβ in areas of axonal degeneration in the ipsilateral hemisphere of the aged animals. By contrast, in the hAPP-SL mice, we found that ischemia induced aggravated behavioral deficits in conjunction with a global increase in Aβ, tau, and cholinergic pathology compared to hAPP-SL mice that underwent a sham stroke procedure. With regard to a potential mechanism, in both models, we found that the stroke-induced Aβ and tau deposits co-localized with increased levels of β-secretase 1 (BACE1), along with its substrate, neuregulin 1 (NGR1) type III, both of which are proteins integral for myelin repair. Based on these findings, we propose that the chronic sequelae of stroke may be ratcheting-up a myelin repair pathway, and that the consequent increase in BACE1 could be causing an inadvertent cleavage of its alternative substrate, AβPP, resulting in greater Aβ seeding and pathogenesis.
Collapse
|
37
|
Dong S, Maniar S, Manole MD, Sun D. Cerebral Hypoperfusion and Other Shared Brain Pathologies in Ischemic Stroke and Alzheimer's Disease. Transl Stroke Res 2018; 9:238-250. [PMID: 28971348 PMCID: PMC9732865 DOI: 10.1007/s12975-017-0570-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
Newly emerged evidence reveals that ischemic stroke and Alzheimer's disease (AD) share pathophysiological changes in brain tissue including hypoperfusion, oxidative stress, immune exhaustion, and inflammation. A mechanistic link between hypoperfusion and amyloid β accumulation can lead to cell damage as well as to motor and cognitive deficits. This review will discuss decreased cerebral perfusion and other related pathophysiological changes common to both ischemic stroke and AD, such as vascular damages, cerebral blood flow alteration, abnormal expression of amyloid β and tau proteins, as well as behavioral and cognitive deficits. Furthermore, this review highlights current treatment options and potential therapeutic targets that warrant further investigation.
Collapse
Affiliation(s)
- Shuying Dong
- Department of Pharmacology, Bengbu Medical College, Bengbu, Anhui, China
- Department of Neurology, University of Pittsburgh, S-598 South Biomedical Science Tower, 3500 Terrace St., Pittsburgh, PA, 15213, USA
| | - Shelly Maniar
- Department of Neurology, University of Pittsburgh, S-598 South Biomedical Science Tower, 3500 Terrace St., Pittsburgh, PA, 15213, USA
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, Pennsylvania, 15601, USA
| | - Mioara D Manole
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, S-598 South Biomedical Science Tower, 3500 Terrace St., Pittsburgh, PA, 15213, USA.
- Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
Ong LK, Chow WZ, TeBay C, Kluge M, Pietrogrande G, Zalewska K, Crock P, Åberg ND, Bivard A, Johnson SJ, Walker FR, Nilsson M, Isgaard J. Growth Hormone Improves Cognitive Function After Experimental Stroke. Stroke 2018; 49:1257-1266. [PMID: 29636425 DOI: 10.1161/strokeaha.117.020557] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cognitive impairment is a common outcome for stroke survivors. Growth hormone (GH) could represent a potential therapeutic option as this peptide hormone has been shown to improve cognition in various clinical conditions. In this study, we evaluated the effects of peripheral administration of GH at 48 hours poststroke for 28 days on cognitive function and the underlying mechanisms. METHODS Experimental stroke was induced by photothrombotic occlusion in young adult mice. We assessed the associative memory cognitive domain using mouse touchscreen platform for paired-associate learning task. We also evaluated neural tissue loss, neurotrophic factors, and markers of neuroplasticity and cerebrovascular remodeling using biochemical and histology analyses. RESULTS Our results show that GH-treated stroked mice made a significant improvement on the paired-associate learning task relative to non-GH-treated mice at the end of the study. Furthermore, we observed reduction of neural tissue loss in GH-treated stroked mice. We identified that GH treatment resulted in significantly higher levels of neurotrophic factors (IGF-1 [insulin-like growth factor-1] and VEGF [vascular endothelial growth factor]) in both the circulatory and peri-infarct regions. GH treatment in stroked mice not only promoted protein levels and density of presynaptic marker (SYN-1 [synapsin-1]) and marker of myelination (MBP [myelin basic protein]) but also increased the density and area coverage of 2 major vasculature markers (CD31 and collagen-IV), within the peri-infarct region. CONCLUSIONS These findings provide compelling preclinical evidence for the usage of GH as a potential therapeutic tool in the recovery phase of patients after stroke.
Collapse
Affiliation(s)
- Lin Kooi Ong
- From the Priority Research Centre for Stroke and Brain Injury (L.K.O., F.R.W., M.N., J.I.) .,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.).,National Health and Medical Research Council Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia (F.R.W., M.N., L.K.O.)
| | - Wei Zhen Chow
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Clifford TeBay
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Murielle Kluge
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Giovanni Pietrogrande
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Katarzyna Zalewska
- School of Biomedical Sciences and Pharmacy (W.Z.C., C.T., M.K., G.P., K.Z.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Patricia Crock
- Department of Paediatric Endocrinology and Diabetes, Priority Research Centre Grow Up Well, John Hunter Children's Hospital (P.C.)
| | - N David Åberg
- Sahlgrenska University Hospital, University of Gothenburg, Sweden (N.D.A.)
| | - Andrew Bivard
- Department of Neurology, John Hunter Hospital (A.B.), University of Newcastle, Australia.,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Sarah J Johnson
- School of Electrical Engineering and Computing (S.J.J.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.)
| | - Frederick R Walker
- From the Priority Research Centre for Stroke and Brain Injury (L.K.O., F.R.W., M.N., J.I.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.).,National Health and Medical Research Council Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia (F.R.W., M.N., L.K.O.)
| | - Michael Nilsson
- From the Priority Research Centre for Stroke and Brain Injury (L.K.O., F.R.W., M.N., J.I.).,Hunter Medical Research Institute, Australia (L.K.O., A.B., F.R.W., M.N., W.Z.C., C.T., M.K., G.P., K.Z., S.J.J.).,National Health and Medical Research Council Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia (F.R.W., M.N., L.K.O.)
| | - Jörgen Isgaard
- From the Priority Research Centre for Stroke and Brain Injury (L.K.O., F.R.W., M.N., J.I.) .,Centre for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology and Department of Internal Medicine (J.I.)
| |
Collapse
|
39
|
Zhao Z, Ong LK, Johnson S, Nilsson M, Walker FR. Chronic stress induced disruption of the peri-infarct neurovascular unit following experimentally induced photothrombotic stroke. J Cereb Blood Flow Metab 2017; 37:3709-3724. [PMID: 28304184 PMCID: PMC5718325 DOI: 10.1177/0271678x17696100] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How stress influences brain repair is an issue of considerable importance, as patients recovering from stroke are known to experience high and often unremitting levels of stress post-event. In the current study, we investigated how chronic stress modified the key cellular components of the neurovascular unit. Using an experimental model of focal cortical ischemia in male C57BL/6 mice, we examined how exposure to a persistently aversive environment, induced by the application of chronic restraint stress, altered the cortical remodeling post-stroke. We focused on systematically investigating changes in the key components of the neurovascular unit (i.e. neurons, microglia, astrocytes, and blood vessels) within the peri-infarct territories using both immunohistochemistry and Western blotting. The results from our study indicated that exposure to chronic stress exerted a significant suppressive effect on each of the key cellular components involved in neurovascular remodeling. Co-incident with these cellular changes, we observed that chronic stress was associated with an exacerbation of motor impairment 42 days post-event. Collectively, these results highlight the vulnerability of the peri-infarct neurovascular unit to the negative effects of chronic stress.
Collapse
Affiliation(s)
- Zidan Zhao
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| | - Lin Kooi Ong
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| | - Sarah Johnson
- 4 School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Nilsson
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| | - Frederick R Walker
- 1 School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,2 Hunter Medical Research Institute, Newcastle, NSW, Australia.,3 NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Australia
| |
Collapse
|
40
|
Kluge MG, Kracht L, Abdolhoseini M, Ong LK, Johnson SJ, Nilsson M, Walker FR. Impaired microglia process dynamics post-stroke are specific to sites of secondary neurodegeneration. Glia 2017; 65:1885-1899. [PMID: 28836304 DOI: 10.1002/glia.23201] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/06/2017] [Accepted: 07/23/2017] [Indexed: 01/28/2023]
Abstract
Stroke induces tissue death both at the site of infarction and at secondary sites connected to the primary infarction. This latter process has been referred to as secondary neurodegeneration (SND). Using predominantly fixed tissue analyses, microglia have been implicated in regulating the initial response at both damage sites post-stroke. In this study, we used acute slice based multiphoton imaging, to investigate microglia dynamic process movement in mice 14 days after a photothrombotic stroke. We evaluated the baseline motility and process responses to locally induced laser damage in both the peri-infarct (PI) territory and the ipsilateral thalamus, a major site of post-stroke SND. Our findings show that microglia process extension toward laser damage within the thalamus is lost, yet remains robustly intact within the PI territory. However, microglia at both sites displayed an activated morphology and elevated levels of commonly used activation markers (CD68, CD11b), indicating that the standardly used fixed tissue metrics of microglial "activity" are not necessarily predictive of microglia function. Analysis of the purinergic P2 Y12 receptor, a key regulator of microglia process extension, revealed an increased somal localization on nonresponsive microglia in the thalamus. To our knowledge, this is the first study to identify a non-responsive microglia phenotype specific to areas of SND post-stroke, which cannot be identified by the classical assessment of microglia activation but rather the localization of P2 Y12 to the soma.
Collapse
Affiliation(s)
- Murielle G Kluge
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Laura Kracht
- Department of Neuroscience, University of Groningen, University Medical Centre Groningen, The Netherlands
| | - Mahmoud Abdolhoseini
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, Victoria, Australia
| | - Sarah J Johnson
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Michael Nilsson
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, Victoria, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, Victoria, Australia
| |
Collapse
|