1
|
Puteikis K, Ažukaitis K, Dadurkevičienė D, Mikučionytė D, Simanauskas K, Šileikienė V, Masiliūnas R, Jankauskienė A, Mameniškienė R. Cognitive Outcomes in Young Adults with Primary Arterial Hypertension: The Role of Cardiovascular Risk Factors and Hypertension-Mediated Organ Damage. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1353. [PMID: 39202634 PMCID: PMC11356388 DOI: 10.3390/medicina60081353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: We aimed to explore the association between cognitive performance and markers of hypertension-mediated organ damage (HMOD) in young adults with hypertension. Materials and Methods: A group of adults aged 16 to 45 years with primary arterial hypertension completed a battery of paper-pencil as well as computer-based neuropsychological tests across all major cognitive domains. They also underwent office and ambulatory 24 h blood pressure, intima-media thickness measurements, heart ultrasound, and laboratory analysis of their lipid profile, blood uric acid concentration, and urine albumin-creatinine ratio. Associations between cognitive test results and markers of HMOD were explored through correlation analysis and age-, sex-, and body mass index-adjusted linear regression modeling. Results: Seventy-six individuals (62, 81.6% male) aged 36.5 years (interquartile range 18.4 to 42.0 years) were enrolled. After adjusting for age, sex, and body mass index in linear regression models, worse categorical fluency was associated with higher left ventricular mass (βst = -0.264, p = 0.043) and worse performance in a task of sustained attention-with higher left ventricular mass index (βst = -0. 304, p = 0.016). Worse phonemic fluency was related to higher pulse pressure (βst = -0.241, p = 0.049) in the respective model. Better strategy use in the task of spatial working memory was linked to higher daytime mean diastolic blood pressure (βst = -0.343 p = 0.017). Conclusions: Performance among young adults with hypertension across selected cognitive domains was inversely associated with pulse pressure, markers of left ventricular damage, and directly associated with daytime diastolic blood pressure. Our study suggests that the previously reported relationship between cognitive and cardiovascular markers in hypertension exists earlier than in middle or late adulthood.
Collapse
Affiliation(s)
- Kristijonas Puteikis
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| | - Karolis Ažukaitis
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| | | | | | - Kazys Simanauskas
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| | - Vaida Šileikienė
- Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| | - Rytis Masiliūnas
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| | - Augustina Jankauskienė
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| | - Rūta Mameniškienė
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| |
Collapse
|
2
|
Triana AM, Saramäki J, Glerean E, Hayward NMEA. Neuroscience meets behavior: A systematic literature review on magnetic resonance imaging of the brain combined with real-world digital phenotyping. Hum Brain Mapp 2024; 45:e26620. [PMID: 38436603 PMCID: PMC10911114 DOI: 10.1002/hbm.26620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
A primary goal of neuroscience is to understand the relationship between the brain and behavior. While magnetic resonance imaging (MRI) examines brain structure and function under controlled conditions, digital phenotyping via portable automatic devices (PAD) quantifies behavior in real-world settings. Combining these two technologies may bridge the gap between brain imaging, physiology, and real-time behavior, enhancing the generalizability of laboratory and clinical findings. However, the use of MRI and data from PADs outside the MRI scanner remains underexplored. Herein, we present a Preferred Reporting Items for Systematic Reviews and Meta-Analysis systematic literature review that identifies and analyzes the current state of research on the integration of brain MRI and PADs. PubMed and Scopus were automatically searched using keywords covering various MRI techniques and PADs. Abstracts were screened to only include articles that collected MRI brain data and PAD data outside the laboratory environment. Full-text screening was then conducted to ensure included articles combined quantitative data from MRI with data from PADs, yielding 94 selected papers for a total of N = 14,778 subjects. Results were reported as cross-frequency tables between brain imaging and behavior sampling methods and patterns were identified through network analysis. Furthermore, brain maps reported in the studies were synthesized according to the measurement modalities that were used. Results demonstrate the feasibility of integrating MRI and PADs across various study designs, patient and control populations, and age groups. The majority of published literature combines functional, T1-weighted, and diffusion weighted MRI with physical activity sensors, ecological momentary assessment via PADs, and sleep. The literature further highlights specific brain regions frequently correlated with distinct MRI-PAD combinations. These combinations enable in-depth studies on how physiology, brain function and behavior influence each other. Our review highlights the potential for constructing brain-behavior models that extend beyond the scanner and into real-world contexts.
Collapse
Affiliation(s)
- Ana María Triana
- Department of Computer Science, School of ScienceAalto UniversityEspooFinland
| | - Jari Saramäki
- Department of Computer Science, School of ScienceAalto UniversityEspooFinland
| | - Enrico Glerean
- Department of Neuroscience and Biomedical Engineering, School of ScienceAalto UniversityEspooFinland
| | | |
Collapse
|
3
|
Zhang Q, Zhang Y, Shi Q, Zhao L, Yue Y, Yan C. Application study of DTI combined with ASL in the crossed cerebellar diaschisis after subacute cerebral hemorrhage. Neurol Sci 2023; 44:3949-3956. [PMID: 37335404 DOI: 10.1007/s10072-023-06908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE To study the value of 3.0T magnetic resonance imaging with diffusion tensor imaging (DTI) and 3D-arterial spin labeling (ASL) perfusion imaging in the diagnosis of the crossed cerebellar diaschisis (CCD) after the unilateral supratentorial subacute cerebral hemorrhage. METHODS Fifty-eight patients with the unilateral supratentorial subacute cerebral hemorrhage who underwent diffusion tensor imaging (DTI), 3D-arterial spin labeling (ASL), and conventional magnetic resonance imaging (MRI) scanning were enrolled. Cerebral blood flow (CBF) values of the perihematomal edema (PHE) and bilateral cerebellar hemisphere were measured on ASL mapping, and the fractional anisotropy (FA) and mean diffusivity (MD) values of the bilateral cortical, pontine, and middle cerebellar peduncle (MCP) were measured on DTI mapping. RESULTS In the CCD(+) group, FA values of the cerebral cortex and pontine ipsilateral to the lesion were statistically reduced compared to the contralateral side (P < 0.05), and the FA and MD values of the middle cerebellar peduncle (MCP) contralateral to the lesion were statistically reduced compared to the ipsilateral side (P < 0.05). Positive correlation was detected between the CBF values of the perihematomal edema (PHE) and the CBF values of cerebellar hemispheres (r = 0.642, P < 0.05), whereas the CBF values of PHE had a significantly high positive correlation with the FA in the contralateral MCP (r = 0.854, P < 0.05). CBF values in the contralateral cerebellar hemisphere correlated with FA (r = 0.466, P < 0.05) and MD values (r = 0.718, P < 0.05) in the contralateral MCP. CONCLUSION Hemodynamic alterations of PHE and cortical-ponts-cerebellum (CPC) fibrous pathway damage are associated with the development of CCD; DTI technique can assess the degree of CPC fiber pathway injury at an early stage.
Collapse
Affiliation(s)
- Qinghua Zhang
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Yundu Zhang
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Qiang Shi
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Lei Zhao
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China
| | - Yun Yue
- Department of Hyperbaric Oxygen, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China.
| | - Chengxin Yan
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong, China.
| |
Collapse
|
4
|
Winder NR, Reeve EH, Kronquist EK, Khurana A, Lee B, Nguyen T, Henson GD, Walker AE. High pulse pressure impairs cerebral artery endothelial function in young, but not old, mice. Exp Gerontol 2023; 173:112101. [PMID: 36690049 PMCID: PMC9974894 DOI: 10.1016/j.exger.2023.112101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
One of the hallmarks of vascular aging is increased pulse pressure. This elevated pulse pressure is associated with deleterious effects on cerebral vascular function; however, it is unknown if age modulates the susceptibility to high pulse pressure. To examine the effects of age on the cerebral artery response to pulse pressure, we studied isolated cerebral arteries collected from young (6.1 ± 0.2 mo) and old (26.7 ± 0.5 mo) male C57BL/6 mice. Isolated cerebral arteries were exposed ex vivo to static pressure, low pulse pressure (25 mmHg), and high pulse pressure (50 mmHg). In cerebral arteries from young mice, endothelium-dependent dilation was similar between the static and low pulse pressure conditions. Exposure to high pulse pressure impaired endothelium-dependent dilation in cerebral arteries from young mice, mediated by less nitric oxide bioavailability and greater oxidative stress. Cerebral arteries from old mice had impaired cerebral artery endothelium-dependent dilation at static pressure compared with young cerebral arteries. However, exposure to low or high pulse pressure did not cause any further impairments to endothelium-dependent dilation in old cerebral arteries compared with static pressure. The old cerebral arteries had less distension during exposure to high pulse pressure and greater stiffness compared with young cerebral arteries. These results indicate that acute exposure to high pulse pressure impairs endothelium-dependent dilation in young, but not old, cerebral arteries. The greater stiffness of cerebral arteries from old mice potentially protects against the negative consequences of high pulse pressure.
Collapse
Affiliation(s)
- Nick R Winder
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Emily H Reeve
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Elise K Kronquist
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Aleena Khurana
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Byron Lee
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Thuan Nguyen
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA
| | - Grant D Henson
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Ashley E Walker
- Department of Human Physiology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
5
|
Liu C, Lee SH, Loewenstein DA, Galvin JE, Levin BE, McKinney A, Alperin N. Early Amnestic Mild Cognitive Impairment Is Associated with Reduced Total Cerebral Blood Flow with no Brain Tissue Loss. J Alzheimers Dis 2023; 91:1313-1322. [PMID: 36617780 DOI: 10.3233/jad-220734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Lower cerebral blood flow (CBF) and excessive brain atrophy are linked to Alzheimer's disease (AD). It is still undetermined whether reduced CBF precedes or follows brain tissue loss. OBJECTIVE We compared total CBF (tCBF), global cerebral perfusion (GCP), and volumes of AD-prone regions between cognitively normal (CN) and early amnestic mild cognitive impairment (aMCI) and tested their associations with cognitive performance to assess their predictive value for differentiation between CN and early aMCI. METHODS A total of 74 participants (mean age 69.9±6.2 years, 47 females) were classified into two groups: 50 CN and 24 aMCI, of whom 88% were early aMCI. tCBF, GCP, and global and regional brain volumetry were measured using phase-contrast and T1-weighted MRI. Neuropsychological tests tapping global cognition and four cognitive domains (memory, executive function, language, and visuospatial) were administered. Comparisons and associations were investigated using analyses of covariance (ANCOVA) and linear regression analyses, respectively. RESULTS Women had significantly higher GCP than men. Both, tCBF and GCP were significantly reduced in aMCI compared with CN, while differences in volumes of cerebral gray matter, white matter, and AD-prone regions were not significant. tCBF and GCP were significantly associated with global cognition (standardized beta (stβ) = 0.324 and stβ= 0.326) and with memory scores (stβ≥0.297 and stβ≥0.264) across all participants. Associations of tCBF and GCP with memory scores were also significant in CN (stβ= 0.327 and stβ= 0.284) and in aMCI (stβ= 0.627 and stβ= 0.485). CONCLUSION Reduced tCBF and GCP are sensitive biomarkers of early aMCI that likely precede brain tissue loss.
Collapse
Affiliation(s)
- Che Liu
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biomedical Engineering, University of Miami, Miami, FL, USA.,Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sang H Lee
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David A Loewenstein
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - James E Galvin
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bonnie E Levin
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexander McKinney
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Noam Alperin
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biomedical Engineering, University of Miami, Miami, FL, USA.,Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
6
|
Abstract
BACKGROUND Blood pressure variability (BPV) has been linked with cognitive impairment and dementia. However, the pathophysiological mechanisms by which BPV affects cognition are unclear. This systematic review aims to assess the links between different BPV measures and white and grey matter structures. METHODS AND RESULTS The following databases were searched from inception through to January 2021; EMBASE, MEDLINE, EMCARE and SCOPUS. Studies that reported on the relationship between within-individual BPV (short, medium or long-term variability) or a circadian blood pressure (BP) measurement and MRI assessed brain structures were included. Overall, 20 studies met the criteria and were included, of which 11 studies looked at short-term BPV, eight articles investigated visit-to-visit BPV and one study looked at a compositional BPV measurement. Due to heterogeneity in study samples, meta-analysis was not possible. Across the included studies, associations between MRI indices and BP dipping patterns were mixed; higher long-term BPV and higher sleep systolic BPV was found to be associated with lower whole brain volume and hippocampal volume. CONCLUSION Increased BPV, in particular systolic long-term and systolic night-time BPV, appears to be associated with lower brain volume and hippocampal volume. This highlights the adverse effect that increased BPV has upon the brain, potentially contributing to cognitive decline, including dementia, in late-life.
Collapse
|
7
|
Badji A, de la Colina AN, Boshkovski T, Sabra D, Karakuzu A, Robitaille-Grou MC, Gros C, Joubert S, Bherer L, Lamarre-Cliche M, Stikov N, Gauthier CJ, Cohen-Adad J, Girouard H. A Cross-Sectional Study on the Impact of Arterial Stiffness on the Corpus Callosum, a Key White Matter Tract Implicated in Alzheimer's Disease. J Alzheimers Dis 2021; 77:591-605. [PMID: 32741837 DOI: 10.3233/jad-200668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Vascular risk factors such as arterial stiffness play an important role in the etiology of Alzheimer's disease (AD), presumably due to the emergence of white matter lesions. However, the impact of arterial stiffness to white matter structure involved in the etiology of AD, including the corpus callosum remains poorly understood. OBJECTIVE The aims of the study are to better understand the relationship between arterial stiffness, white matter microstructure, and perfusion of the corpus callosum in older adults. METHODS Arterial stiffness was estimated using the gold standard measure of carotid-femoral pulse wave velocity (cfPWV). Cognitive performance was evaluated with the Trail Making Test part B-A. Neurite orientation dispersion and density imaging was used to obtain microstructural information such as neurite density and extracellular water diffusion. The cerebral blood flow was estimated using arterial spin labelling. RESULTS cfPWV better predicts the microstructural integrity of the corpus callosum when compared with other index of vascular aging (the augmentation index, the systolic blood pressure, and the pulse pressure). In particular, significant associations were found between the cfPWV, an alteration of the extracellular water diffusion, and a neuronal density increase in the body of the corpus callosum which was also correlated with the performance in cognitive flexibility. CONCLUSION Our results suggest that arterial stiffness is associated with an alteration of brain integrity which impacts cognitive function in older adults.
Collapse
Affiliation(s)
- Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, Montreal, QC, Canada.,Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| | - Adrián Noriega de la Colina
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.,Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, Montreal, QC, Canada.,Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| | - Tommy Boshkovski
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Dalia Sabra
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.,Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada.,PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Agah Karakuzu
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| | | | - Charley Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Sven Joubert
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.,Department of Psychology, Faculty of Arts and Sciences, Université de Montréal, Montreal, QC, Canada
| | - Louis Bherer
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Maxime Lamarre-Cliche
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montreal, QC, Canada
| | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| | - Claudine J Gauthier
- Montreal Heart Institute, Montreal, QC, Canada.,Physics Department, Concordia University, Montreal, QC, Canada.,PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.,Functional Neuroimaging Unit, Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, Montreal, QC, Canada
| | - Hélène Girouard
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, Montreal, QC, Canada.,Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
8
|
Yang T, Zhang F. Targeting Transcription Factor Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2) for the Intervention of Vascular Cognitive Impairment and Dementia. Arterioscler Thromb Vasc Biol 2020; 41:97-116. [PMID: 33054394 DOI: 10.1161/atvbaha.120.314804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vascular cognitive impairment and dementia (VCID) is an age-related, mild to severe mental disability due to a broad panel of cerebrovascular disorders. Its pathobiology involves neurovascular dysfunction, blood-brain barrier disruption, white matter damage, microRNAs, oxidative stress, neuroinflammation, and gut microbiota alterations, etc. Nrf2 (Nuclear factor erythroid 2-related factor 2) is the master regulator of redox status and controls the transcription of a panel of antioxidative and anti-inflammatory genes. By interacting with NF-κB (nuclear factor-κB), Nrf2 also fine-tunes the cellular oxidative and inflammatory balance. Aging is associated with Nrf2 dysfunction, and increasing evidence has proved the role of Nrf2 in mitigating the VCID process. Based on VCID pathobiologies and Nrf2 studies from VCID and other brain diseases, we point out several hypothetical Nrf2 targets for VCID management, including restoration of endothelial function and neurovascular coupling, preservation of blood-brain barrier integrity, reduction of amyloidopathy, promoting white matter integrity, and mitigating oxidative stress and neuroinflammation. Collectively, the Nrf2 pathway could be a promising direction for future VCID research. Targeting Nrf2 would shed light on VCID managing strategies.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA
| |
Collapse
|