1
|
Wang L, Lu D, Wang X, Wang Z, Li W, Chen G. The effects of nitric oxide in Alzheimer's disease. Med Gas Res 2024; 14:186-191. [PMID: 39073326 DOI: 10.4103/2045-9912.385939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2023] [Indexed: 07/30/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent cause of dementia, is a progressive neurodegenerative condition that commences subtly and inexorably worsens over time. Despite considerable research, a specific drug that can fully cure or effectively halt the progression of AD remains elusive. Nitric oxide (NO), a crucial signaling molecule in the nervous system, is intimately associated with hallmark pathological changes in AD, such as amyloid-beta deposition and tau phosphorylation. Several therapeutic strategies for AD operate through the nitric oxide synthase/NO system. However, the potential neurotoxicity of NO introduces an element of controversy regarding its therapeutic utility in AD. This review focuses on research findings concerning NO's role in experimental AD and its underlying mechanisms. Furthermore, we have proposed directions for future research based on our current comprehension of this critical area.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Xiaodong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Wen Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Fu X, Lu H, Gao M, Li P, He Y, He Y, Luo X, Rao X, Liu W. Nitric oxide in the cardio-cerebrovascular system: Source, regulation and application. Nitric Oxide 2024; 152:48-57. [PMID: 39299647 DOI: 10.1016/j.niox.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Nitric oxide (NO) plays a crucial role as a messenger or effector in the body, yet it presents a dual impact on cardio-cerebrovascular health. Under normal physiological conditions, NO exhibits vasodilatory effects, regulates blood pressure, inhibits platelet aggregation, and offers neuroprotective actions. However, in pathological situations, excessive NO production contributes to or worsens inflammation within the body. Moreover, NO may combine with reactive oxygen species (ROS), generating harmful substances that intensify physical harm. This paper succinctly reviews pertinent literature to clarify the in vivo and in vitro origins of NO, its regulatory function in the cardio-cerebrovascular system, and the advantages and disadvantages associated with NO donor drugs, NO delivery systems, and vascular stent materials for treating cardio-cerebrovascular disease. The findings provide a theoretical foundation for the application of NO in cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaoming Fu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Haowei Lu
- Department of Pharmacy, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Meng Gao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Pinghe Li
- Lanzhou Foci Pharmaceutical Co., Ltd, Lanzhou, 730030, China
| | - Yan He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Yu He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Xiaojian Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Xiaoyong Rao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Wei Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
3
|
Dhauria M, Mondal R, Deb S, Shome G, Chowdhury D, Sarkar S, Benito-León J. Blood-Based Biomarkers in Alzheimer's Disease: Advancing Non-Invasive Diagnostics and Prognostics. Int J Mol Sci 2024; 25:10911. [PMID: 39456697 PMCID: PMC11507237 DOI: 10.3390/ijms252010911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is expected to rise dramatically in incidence due to the global population aging. Traditional diagnostic approaches, such as cerebrospinal fluid analysis and positron emission tomography, are expensive and invasive, limiting their routine clinical use. Recent advances in blood-based biomarkers, including amyloid-beta, phosphorylated tau, and neurofilament light, offer promising non-invasive alternatives for early AD detection and disease monitoring. This review synthesizes current research on these blood-based biomarkers, highlighting their potential to track AD pathology and enhance diagnostic accuracy. Furthermore, this review uniquely integrates recent findings on protein-protein interaction networks and microRNA pathways, exploring novel combinations of proteomic, genomic, and epigenomic biomarkers that provide new insights into AD's molecular mechanisms. Additionally, we discuss the integration of these biomarkers with advanced neuroimaging techniques, emphasizing their potential to revolutionize AD diagnostics. Although large-scale validation is still needed, these biomarkers represent a critical advancement toward more accessible, cost-effective, and early diagnostic tools for AD.
Collapse
Affiliation(s)
| | - Ritwick Mondal
- Department of Clinical Pharmacology and Therapeutic Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India;
| | - Shramana Deb
- Department of Stroke Medicine, Institute of Neuroscience, Kolkata 700017, India;
| | - Gourav Shome
- Department of Biological Sciences, Bose Institute, Kolkata 700054, India;
| | - Dipanjan Chowdhury
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India; (D.C.); (S.S.)
| | - Shramana Sarkar
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India; (D.C.); (S.S.)
| | - Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, ES-28041 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), ES-28041 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ES-28029 Madrid, Spain
- Department of Medicine, Complutense University, ES-28040 Madrid, Spain
| |
Collapse
|
4
|
Pan J, Yao Q, Wang Y, Chang S, Li C, Wu Y, Shen J, Yang R. The role of PI3K signaling pathway in Alzheimer's disease. Front Aging Neurosci 2024; 16:1459025. [PMID: 39399315 PMCID: PMC11466886 DOI: 10.3389/fnagi.2024.1459025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating progressively neurodegenerative disease. The best-characterized hallmark of AD, which is marked by behavioral alterations and cognitive deficits, is the aggregation of deposition of amyloid-beta (Aβ) and hyper-phosphorylated microtubule-associated protein Tau. Despite decades of experimental progress, the control rate of AD remains poor, and more precise deciphering is needed for potential therapeutic targets and signaling pathways involved. In recent years, phosphoinositide 3-kinase (PI3K) and Akt have been recognized for their role in the neuroprotective effect of various agents, and glycogen synthase kinase 3 (GSK3), a downstream enzyme, is also crucial in the tau phosphorylation and Aβ deposition. An overview of the function of PI3K/Akt pathway in the pathophysiology of AD is provided in this review, along with a discussion of recent developments in the pharmaceuticals and herbal remedies that target the PI3K/Akt signaling pathway. In conclusion, despite the challenges and hurdles, cumulative findings of novel targets and agents in the PI3K/Akt signaling axis are expected to hold promise for advancing AD prevention and treatment.
Collapse
Affiliation(s)
- Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Qi Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yankai Wang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Suyan Chang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Chenlong Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yongjiang Wu
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Jianhong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
5
|
Katusic ZS, d’Uscio LV, He T. Cerebrovascular Endothelial Dysfunction: Role of BACE1. Arterioscler Thromb Vasc Biol 2024; 44:1737-1747. [PMID: 38868939 PMCID: PMC11269044 DOI: 10.1161/atvbaha.124.320798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Dysfunctional endothelium is increasingly recognized as a mechanistic link between cardiovascular risk factors and dementia, including Alzheimer disease. BACE1 (β-site amyloid-β precursor protein-cleaving enzyme 1) is responsible for β-processing of APP (amyloid-β precursor protein), the first step in the production of Aβ (amyloid-β) peptides, major culprits in the pathogenesis of Alzheimer disease. Under pathological conditions, excessive activation of BACE1 exerts detrimental effects on endothelial function by Aβ-dependent and Aβ-independent mechanisms. High local concentration of Aβ in the brain blood vessels is responsible for the loss of key vascular protective functions of endothelial cells. More recent studies recognized significant contribution of Aβ-independent proteolytic activity of endothelial BACE1 to the pathogenesis of endothelial dysfunction. This review critically evaluates existing evidence supporting the concept that excessive activation of BACE1 expressed in the cerebrovascular endothelium impairs key homeostatic functions of the brain blood vessels. This concept has important therapeutic implications. Indeed, improved understanding of the mechanisms of endothelial dysfunction may help in efforts to develop new approaches to the protection and preservation of healthy cerebrovascular function.
Collapse
Affiliation(s)
- Zvonimir S. Katusic
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Livius V. d’Uscio
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Tongrong He
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55902, USA
| |
Collapse
|
6
|
Adams JA, Uryash A, Lopez JR. Harnessing Passive Pulsatile Shear Stress for Alzheimer's Disease Prevention and Intervention. J Alzheimers Dis 2024; 98:387-401. [PMID: 38393906 DOI: 10.3233/jad-231010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Alzheimer's disease (AD) affects more than 40 million people worldwide and is the leading cause of dementia. This disease is a challenge for both patients and caregivers and puts a significant strain on the global healthcare system. To address this issue, the Lancet Commission recommends focusing on reducing modifiable lifestyle risk factors such as hypertension, diabetes, and physical inactivity. Passive pulsatile shear stress (PPSS) interventions, which use devices like whole-body periodic acceleration, periodic acceleration along the Z-axis (pGz), and the Jogging Device, have shown significant systemic and cellular effects in preclinical and clinical models which address these modifiable risks factors. Based on this, we propose that PPSS could be a potential non-pharmacological and non-invasive preventive or therapeutic strategy for AD. We perform a comprehensive review of the biological basis based on all publications of PPSS using these devices and demonstrate their effects on the various aspects of AD. We draw from this comprehensive analysis to support our hypothesis. We then delve into the possible application of PPSS as an innovative intervention. We discuss how PPSS holds promise in ameliorating hypertension and diabetes while mitigating physical inactivity, potentially offering a holistic approach to AD prevention and management.
Collapse
Affiliation(s)
- Jose A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Jose R Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA
| |
Collapse
|
7
|
Shields KL, Jarrett CL, Bisconti AV, Park SH, Craig JC, Broxterman RM, Richardson RS. Preserved endothelium-independent vascular function with aging in men and women: evidence from the peripheral and cerebral vasculature. J Appl Physiol (1985) 2023; 135:559-571. [PMID: 37391885 PMCID: PMC10538978 DOI: 10.1152/japplphysiol.00571.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
In the peripheral and cerebral vasculature, the impact of aging and sex on the endothelial-independent functional capacity of vascular smooth muscle cells (VSMCs) is not well understood, nor is it known whether such VSMC functions in these vascular beds reflect one another. Therefore, endothelium-independent dilation, at both the conduit (Δ diameter) and microvascular (Δ vascular conductance, VC) level, elicited by sublingual nitroglycerin (NTG, 0.8 mg of Nitrostat), compared with sham-delivery (control), was assessed using Doppler ultrasound in the popliteal (PA) and middle cerebral (MCA) artery of 20 young [23 ± 4 yr, 10 males (YM)/10 females (YF)] and 21 old [69 ± 5 yr, 11 males (OM)/10 females (OF)] relatively healthy adults. In the PA, compared with zero, NTG significantly increased diameter in all groups (YM: 0.29 ± 0.13, YF: 0.35 ± 0.26, OM: 0.30 ± 0.18, OF: 0.31 ± 0.14 mm), while control did not. The increase in VC only achieved significance in the OF (0.22 ± 0.31 mL/min/mmHg). In the MCA, compared with zero, NTG significantly increased diameter and VC in all groups (YM: 0.89 ± 0.30, 1.06 ± 1.28; YF: 0.97 ± 0.31, 1.84 ± 1.07; OM: 0.90 ± 0.42, 0.72 ± 0.99; OF: 0.74 ± 0.32, 1.19 ± 1.18, mm and mL/min/mmHg, respectively), while control did not. There were no age or sex differences or age-by-sex interactions for both the NTG-induced PA and MCA dilation and VC. In addition, PA and MCA dilation and VC responses to NTG were not related when grouped by age, sex, or as all subjects (r = 0.04-0.44, P > 0.05). Thus, peripheral and cerebral endothelial-independent VSMC function appears to be unaffected by age or sex, and variations in such VSMC function in one of these vascular beds are not reflected in the other.NEW & NOTEWORTHY To confidently explain peripheral and cerebral vascular dysfunction, it is essential to have a clear understanding of the endothelial-independent function of VSMCs across age and sex. By assessing endothelium-independent dilation using sublingual nitroglycerin, endothelial-independent VSMC function in the periphery (popliteal artery), and in the cerebral circulation (middle cerebral artery), was not different due to age or sex. In addition, endothelial-independent VSMC function in one of these vascular beds is not reflected in the other.
Collapse
Affiliation(s)
- Katherine L Shields
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Catherine L Jarrett
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Angela V Bisconti
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Soung Hun Park
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Jesse C Craig
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Center on Aging, University of Utah, Salt Lake City, Utah, United States
| | - Russell S Richardson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Center on Aging, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
8
|
He T, d’Uscio LV, Katusic ZS. BACE2 deficiency impairs expression and function of endothelial nitric oxide synthase in brain endothelial cells. J Neurochem 2023; 166:928-942. [PMID: 37547981 PMCID: PMC10599353 DOI: 10.1111/jnc.15929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023]
Abstract
Beta-site amyloid precursor protein (APP)-cleaving enzyme 2 (BACE2) is highly expressed in cerebrovascular endothelium. Notably, BACE2 is one of the most downregulated genes in cerebrovascular endothelium derived from patients with Alzheimer's disease. The present study was designed to determine the role of BACE2 in control of expression and function of endothelial nitric oxide synthase (eNOS). Genetic downregulation of BACE2 with small interfering RNA (BACE2siRNA) in human brain microvascular endothelial cells (BMECs) significantly decreased expression of eNOS and elevated levels of eNOS phosphorylated at threonine residue Thr495, thus leading to reduced production of nitric oxide (NO). BACE2siRNA also suppressed expression of APP and decreased production and release of soluble APPα (sAPPα). In contrast, adenovirus-mediated overexpression of APP increased expression of eNOS. Consistent with these observations, nanomolar concentrations of sAPPα and APP 17mer peptide (derived from sAPPα) augmented eNOS expression. Further analysis established that γ-aminobutyric acid type B receptor subunit 1 and Krüppel-like factor 2 may function as downstream molecular targets significantly contributing to BACE2/APP/sAPPα-induced up-regulation of eNOS. In agreement with studies on cultured human endothelium, endothelium-dependent relaxations to acetylcholine and basal production of cyclic GMP were impaired in cerebral arteries of BACE2-deficient mice. We propose that in the brain blood vessels, BACE2 may function as a vascular protective protein.
Collapse
Affiliation(s)
- Tongrong He
- Departments of Anesthesiology and Perioperative Medicine, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Livius V. d’Uscio
- Departments of Anesthesiology and Perioperative Medicine, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Zvonimir S. Katusic
- Departments of Anesthesiology and Perioperative Medicine, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
9
|
Wang N, Yang X, Zhao Z, Liu D, Wang X, Tang H, Zhong C, Chen X, Chen W, Meng Q. Cooperation between neurovascular dysfunction and Aβ in Alzheimer's disease. Front Mol Neurosci 2023; 16:1227493. [PMID: 37654789 PMCID: PMC10466809 DOI: 10.3389/fnmol.2023.1227493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
The amyloid-β (Aβ) hypothesis was once believed to represent the pathogenic process of Alzheimer's disease (AD). However, with the failure of clinical drug development and the increasing understanding of the disease, the Aβ hypothesis has been challenged. Numerous recent investigations have demonstrated that the vascular system plays a significant role in the course of AD, with vascular damage occurring prior to the deposition of Aβ and neurofibrillary tangles (NFTs). The question of how Aβ relates to neurovascular function and which is the trigger for AD has recently come into sharp focus. In this review, we outline the various vascular dysfunctions associated with AD, including changes in vascular hemodynamics, vascular cell function, vascular coverage, and blood-brain barrier (BBB) permeability. We reviewed the most recent findings about the complicated Aβ-neurovascular unit (NVU) interaction and highlighted its vital importance to understanding disease pathophysiology. Vascular defects may lead to Aβ deposition, neurotoxicity, glial cell activation, and metabolic dysfunction; In contrast, Aβ and oxidative stress can aggravate vascular damage, forming a vicious cycle loop.
Collapse
Affiliation(s)
- Niya Wang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiang Yang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong Zhao
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Da Liu
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiaoyan Wang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hao Tang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Chuyu Zhong
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xinzhang Chen
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wenli Chen
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qiang Meng
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
10
|
Burrage EN, Coblentz T, Prabhu SS, Childers R, Bryner RW, Lewis SE, DeVallance E, Kelley EE, Chantler PD. Xanthine oxidase mediates chronic stress-induced cerebrovascular dysfunction and cognitive impairment. J Cereb Blood Flow Metab 2023; 43:905-920. [PMID: 36655326 PMCID: PMC10196752 DOI: 10.1177/0271678x231152551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
Xanthine oxidase (XO) mediates vascular function. Chronic stress impairs cerebrovascular function and increases the risk of stroke and cognitive decline. Our study determined the role of XO on stress-induced cerebrovascular dysfunction and cognitive decline. We measured middle cerebral artery (MCA) function, free radical formation, and working memory in 6-month-old C57BL/6 mice who underwent 8 weeks of control conditions or unpredictable chronic mild stress (UCMS) with or without febuxostat (50 mg/L), a XO inhibitor. UCMS mice had an impaired MCA dilation to acetylcholine vs. controls (p < 0.0001), and increased total free radical formation, XOR protein levels, and hydrogen peroxide production in the liver compared to controls. UCMS increased hydrogen peroxide production in the brain and cerebrovasculature compared to controls. Working memory, using the y-maze test, was impaired (p < 0.05) in UCMS mice compared to control mice. However, blocking XO using febuxostat prevented the UCMS-induced impaired MCA response, while free radical production and hydrogen peroxide levels were similar to controls in the liver and brain of UCMS mice treated with febuxostat. Further, UCMS + Feb mice did not have a significant reduction in working memory. These data suggest that the cerebrovascular dysfunction associated with chronic stress may be driven by XO, which leads to a reduction in working memory.
Collapse
Affiliation(s)
- Emily N Burrage
- Department of Neuroscience, West
Virginia University School of Medicine, Morgantown, WV, USA
| | - Tyler Coblentz
- Division of Exercise Physiology,
West Virginia University School of Medicine, Morgantown, WV, USA
| | - Saina S Prabhu
- Department of Pharmaceutical
Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Ryan Childers
- Division of Exercise Physiology,
West Virginia University School of Medicine, Morgantown, WV, USA
| | - Randy W Bryner
- Division of Exercise Physiology,
West Virginia University School of Medicine, Morgantown, WV, USA
| | - Sarah E Lewis
- Department of Physiology and
Pharmacology, West Virginia University School of Medicine, Morgantown, WV,
USA
| | - Evan DeVallance
- Department of Physiology and
Pharmacology, West Virginia University School of Medicine, Morgantown, WV,
USA
| | - Eric E Kelley
- Department of Physiology and
Pharmacology, West Virginia University School of Medicine, Morgantown, WV,
USA
| | - Paul D Chantler
- Department of Neuroscience, West
Virginia University School of Medicine, Morgantown, WV, USA
- Division of Exercise Physiology,
West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
11
|
Abstract
eNOS (endothelial nitric oxide synthase) is critically important enzyme responsible for regulation of cardiovascular homeostasis. Under physiological conditions, constitutive eNOS activity and production of endothelial nitric oxide (NO) exert essential neurovascular protective functions. In this review, we first discuss the roles of endothelial NO in prevention of neuronal amyloid accumulation and formation of neurofibrillary tangles, hallmarks of Alzheimer disease pathology. Next, we review existing evidence suggesting that NO released from endothelium prevents activation of microglia, stimulates glycolysis in astrocytes, and increases biogenesis of mitochondria. We also address major risk factors for cognitive impairment including aging and ApoE4 (apolipoprotein 4) genotype with focus on their detrimental effects on eNOS/NO signaling. Relevant to this review, recent studies suggested that aged eNOS heterozygous mice are unique model of spontaneous cerebral small vessel disease. In this regard, we review contribution of dysfunctional eNOS to deposition of Aβ (amyloid-β) into blood vessel wall leading to development of cerebral amyloid angiopathy. We conclude that endothelial dysfunction manifested by the loss of neurovascular protective functions of NO may significantly contribute to development of cognitive impairment.
Collapse
Affiliation(s)
- Zvonimir S. Katusic
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Livius V. d’Uscio
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Tongrong He
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55902, USA
| |
Collapse
|
12
|
Ishihara K, Takata K, Mizutani KI. Involvement of an Aberrant Vascular System in Neurodevelopmental, Neuropsychiatric, and Neuro-Degenerative Diseases. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010221. [PMID: 36676170 PMCID: PMC9866034 DOI: 10.3390/life13010221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The vascular system of the prenatal brain is crucial for the development of the central nervous system. Communication between vessels and neural cells is bidirectional, and dysfunctional communication can lead to neurodevelopmental diseases. In the present review, we introduce neurodevelopmental and neuropsychiatric diseases potentially caused by disturbances in the neurovascular system and discuss candidate genes responsible for neurovascular system impairments. In contrast to diseases that can manifest during the developing stage, we have also summarized the disturbances of the neurovascular system in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Furthermore, we discussed the role of abnormal vascularization and dysfunctional vessels in the development of neurovascular-related diseases.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4656
| | - Kazuyuki Takata
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| |
Collapse
|
13
|
Role of Vitamin D Deficiency in the Pathogenesis of Cardiovascular and Cerebrovascular Diseases. Nutrients 2023; 15:nu15020334. [PMID: 36678205 PMCID: PMC9864832 DOI: 10.3390/nu15020334] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Deficiency in vitamin D (VitD), a lipid-soluble vitamin and steroid hormone, affects approximately 24% to 40% of the population of the Western world. In addition to its well-documented effects on the musculoskeletal system, VitD also contributes importantly to the promotion and preservation of cardiovascular health via modulating the immune and inflammatory functions and regulating cell proliferation and migration, endothelial function, renin expression, and extracellular matrix homeostasis. This brief overview focuses on the cardiovascular and cerebrovascular effects of VitD and the cellular, molecular, and functional changes that occur in the circulatory system in VitD deficiency (VDD). It explores the links among VDD and adverse vascular remodeling, endothelial dysfunction, vascular inflammation, and increased risk for cardiovascular and cerebrovascular diseases. Improved understanding of the complex role of VDD in the pathogenesis of atherosclerotic cardiovascular diseases, stroke, and vascular cognitive impairment is crucial for all cardiologists, dietitians, and geriatricians, as VDD presents an easy target for intervention.
Collapse
|
14
|
Pacheco Pachado M, Casas AI, Elbatreek MH, Nogales C, Guney E, Espay AJ, Schmidt HH. Re-Addressing Dementia by Network Medicine and Mechanism-Based Molecular Endotypes. J Alzheimers Dis 2023; 96:47-56. [PMID: 37742653 PMCID: PMC10657714 DOI: 10.3233/jad-230694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/26/2023]
Abstract
Alzheimer's disease (AD) and other forms of dementia are together a leading cause of disability and death in the aging global population, imposing a high personal, societal, and economic burden. They are also among the most prominent examples of failed drug developments. Indeed, after more than 40 AD trials of anti-amyloid interventions, reduction of amyloid-β (Aβ) has never translated into clinically relevant benefits, and in several cases yielded harm. The fundamental problem is the century-old, brain-centric phenotype-based definitions of diseases that ignore causal mechanisms and comorbidities. In this hypothesis article, we discuss how such current outdated nosology of dementia is a key roadblock to precision medicine and articulate how Network Medicine enables the substitution of clinicopathologic phenotypes with molecular endotypes and propose a new framework to achieve precision and curative medicine for patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Mayra Pacheco Pachado
- Department of Pharmacology and Personalised Medicine, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Ana I. Casas
- Department of Pharmacology and Personalised Medicine, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Universitätsklinikum Essen, Klinik für Neurologie, Essen, Germany
| | - Mahmoud H. Elbatreek
- Department of Pharmacology and Personalised Medicine, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Cristian Nogales
- Department of Pharmacology and Personalised Medicine, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Emre Guney
- Discovery and Data Science (DDS) Unit, STALICLA R&D SL, Barcelona, Spain
| | - Alberto J. Espay
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Harald H.H.W. Schmidt
- Department of Pharmacology and Personalised Medicine, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
15
|
Petrovskaya AV, Tverskoi AM, Barykin EP, Varshavskaya KB, Dalina AA, Mitkevich VA, Makarov AA, Petrushanko IY. Distinct Effects of Beta-Amyloid, Its Isomerized and Phosphorylated Forms on the Redox Status and Mitochondrial Functioning of the Blood-Brain Barrier Endothelium. Int J Mol Sci 2022; 24:ijms24010183. [PMID: 36613623 PMCID: PMC9820675 DOI: 10.3390/ijms24010183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The Alzheimer's disease (AD)-associated breakdown of the blood-brain barrier (BBB) promotes the accumulation of beta-amyloid peptide (Aβ) in the brain as the BBB cells provide Aβ transport from the brain parenchyma to the blood, and vice versa. The breakdown of the BBB during AD may be caused by the emergence of blood-borne Aβ pathogenic forms, such as structurally and chemically modified Aβ species; their effect on the BBB cells has not yet been studied. Here, we report that the effects of Aβ42, Aβ42, containing isomerized Asp7 residue (iso-Aβ42) or phosphorylated Ser8 residue (p-Aβ42) on the mitochondrial potential and respiration are closely related to the redox status changes in the mouse brain endothelial cells bEnd.3. Aβ42 and iso-Aβ42 cause a significant increase in nitric oxide, reactive oxygen species, glutathione, cytosolic calcium and the mitochondrial potential after 4 h of incubation. P-Aβ42 either does not affect or its effect develops after 24 h of incubation. Aβ42 and iso-Aβ42 activate mitochondrial respiration compared to p-Aβ42. The isomerized form promotes a greater cytotoxicity and mitochondrial dysfunction, causing maximum oxidative stress. Thus, Aβ42, p-Aβ42 and iso-Aβ42 isoforms differently affect the BBBs' cell redox parameters, significantly modulating the functioning of the mitochondria. The changes in the level of modified Aβ forms can contribute to the BBBs' breakdown during AD.
Collapse
|
16
|
He T, d’Uscio LV, Sun R, Santhanam AVR, Katusic ZS. Inactivation of BACE1 increases expression of endothelial nitric oxide synthase in cerebrovascular endothelium. J Cereb Blood Flow Metab 2022; 42:1920-1932. [PMID: 35673977 PMCID: PMC9536128 DOI: 10.1177/0271678x221105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022]
Abstract
Cerebrovascular effects of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) inactivation have not been systematically studied. In the present study we employed cultured human brain microvascular endothelial cells (BMECs), BACE1-knockout (BACE1-/-) mice and conditional (tamoxifen-induced) endothelium-specific BACE1-knockout (eBACE1-/-) mice to determine effect of BACE1 inhibition on expression and function of endothelial nitric oxide synthase (eNOS). Deletion of BACE1 caused upregulation of eNOS and glypican-1 (GPC1) in human BMECs treated with BACE1-siRNA, and cerebral microvessels of male BACE1-/- mice and male eBACE1-/- mice. In addition, BACE1siRNA treatment increased NO production in human BMECs. These effects appeared to be independent of amyloid β-peptide production. Furthermore, adenoviral-mediated overexpression of BACE1 in human BMECs down-regulated GPC1 and eNOS. Treatment of human BMECs with GPC1siRNA suppressed mRNA and protein levels of eNOS. In basilar arteries of male eBACE1-/- mice, endothelium-dependent relaxations to acetylcholine and endothelium-independent relaxations to NO donor, DEA-NONOate, were not affected, consistent with unchanged expression of eNOS and phosphorylation of eNOS at Ser1177 in large cerebral arteries. In aggregate, our findings suggest that under physiological conditions, inactivation of endothelial BACE1 increases expression of eNOS in cerebral microvessels but not in large brain arteries. This effect appears to be mediated by increased GPC1 expression.
Collapse
Affiliation(s)
- Tongrong He
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Livius V d’Uscio
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ruohan Sun
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Anantha Vijay R Santhanam
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Deng C, Chen H, Meng Z, Meng S. Roles of traditional chinese medicine regulating neuroendocrinology on AD treatment. Front Endocrinol (Lausanne) 2022; 13:955618. [PMID: 36213283 PMCID: PMC9533021 DOI: 10.3389/fendo.2022.955618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
The incidence of sporadic Alzheimer's disease (AD) is increasing in recent years. Studies have shown that in addition to some genetic abnormalities, the majority of AD patients has a history of long-term exposure to risk factors. Neuroendocrine related risk factors have been proved to be strongly associated with AD. Long-term hormone disorder can have a direct detrimental effect on the brain by producing an AD-like pathology and result in cognitive decline by impairing neuronal metabolism, plasticity and survival. Traditional Chinese Medicine(TCM) may regulate the complex process of endocrine disorders, and improve metabolic abnormalities, as well as the resulting neuroinflammation and oxidative damage through a variety of pathways. TCM has unique therapeutic advantages in treating early intervention of AD-related neuroendocrine disorders and preventing cognitive decline. This paper reviewed the relationship between neuroendocrine and AD as well as the related TCM treatment and its mechanism. The advantages of TCM intervention on endocrine disorders and some pending problems was also discussed, and new insights for TCM treatment of dementia in the future was provided.
Collapse
Affiliation(s)
- Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
18
|
Wu HH, Chang SH, Lee TH, Tu HT, Liu CH, Chang TY. Concurrent use of statins decreases major bleeding and intracerebral hemorrhage in non-valvular atrial fibrillation patients taking direct oral anticoagulants—A nationwide cohort study. Front Cardiovasc Med 2022; 9:969259. [PMID: 36003918 PMCID: PMC9393418 DOI: 10.3389/fcvm.2022.969259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Background Statins are frequently prescribed with direct oral anticoagulants (DOACs), and previous studies have raised concerns about the increased risk of intracerebral hemorrhage or other major bleeding in concurrent statins and DOACs use. The objective of this study is to evaluate the risk of major bleeding in non-valvular atrial fibrillation patients taking DOACs with or without statins. Methods This nationwide, retrospective cohort study used data from the Taiwan National Health Insurance Research Database, enrolled a total of 90,731 non-valvular atrial fibrillation patients receiving rivaroxaban, dabigatran, apixaban or edoxaban from January 1st, 2012 to December 31st, 2017. Major bleeding was defined as a hospitalization or emergency department visit with a primary diagnosis of intracerebral hemorrhage, gastrointestinal tract bleeding, urogenital tract bleeding, or other sites of bleeding. Adjusted incidence rate ratios (IRR) and differences of major bleeding between person-quarters of DOACs with or without statins were estimated using a Poisson regression and inverse probability of treatment weighting using the propensity score. Results 50,854 (56.0%) of them were male with a mean age of 74.9 (SD, 10.4) years. Using DOACs without statins as a reference, the adjusted IRR for all major bleedings in concurrent use of DOACs and statins was 0.8 (95% CI 0.72–0.81). Lower major bleeding risk was seen in both low-to-moderate-intensity statins (IRR: 0.8, 95% CI 0.74–0.84) and high-intensity statins (IRR: 0.8, 95% CI 0.74–0.88). Concurrent use of DOACs and statins decreased the risk for intracerebral hemorrhage with an IRR of 0.8 (95% CI 0.66–0.93), and gastrointestinal tract bleeding with an IRR of 0.7 (95% CI 0.69–0.79). The protective effect of statins on intracerebral hemorrhage was observed only in female patients (IRR 0.67, 95% CI 0.51–0.89), but not in male patients (IRR 0.87, 95% CI 0.70–1.08). Conclusions Among non-valvular atrial fibrillation patients who were taking DOACs, concurrent use of statins decreased major bleeding risk, including intracerebral hemorrhage and gastrointestinal tract bleeding. Considering this and other cardioprotective effects, statins should be considered in all eligible patients prescribed with DOACs.
Collapse
Affiliation(s)
- Hsin-Hsu Wu
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shang-Hung Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Cardiovascular Department, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tsong-Hai Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, Stroke Section, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hui-Tzu Tu
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chi-Hung Liu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, Stroke Section, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ting-Yu Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, Stroke Section, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- *Correspondence: Ting-Yu Chang
| |
Collapse
|
19
|
Ahmed S, Jing Y, Mockett BG, Zhang H, Abraham WC, Liu P. Partial Endothelial Nitric Oxide Synthase Deficiency Exacerbates Cognitive Deficit and Amyloid Pathology in the APPswe/PS1ΔE9 Mouse Model of Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23137316. [PMID: 35806318 PMCID: PMC9266765 DOI: 10.3390/ijms23137316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/25/2023] Open
Abstract
Increasing evidence implicates endothelial dysfunction in the pathogenesis of Alzheimer’s disease (AD). Nitric oxide (NO) derived from endothelial NO synthase (eNOS) is essential in maintaining cerebrovascular function and can modulate the production and clearance of amyloid beta (Aβ). APPswe/PSdE1 (APP/PS1) mice display age-related Aβ accumulation and memory deficits. In order to make the model more clinically relevant with an element of endothelial dysfunction, we generated APP/PS1/eNOS+/− mice by crossing complete eNOS deficient (eNOS−/−) mice and APP/PS1 mice. APP/PS1/eNOS+/− mice at 8 months of age displayed a more severe spatial working memory deficit relative to age-matched APP/PS1 mice. Moreover, immunohistochemistry and immunoblotting revealed significantly increased Aβ plaque load in the brains of APP/PS1/eNOS+/− mice, concomitant with upregulated BACE-1 (hence increased Aβ production), downregulated insulin-degrading enzyme (hence reduced Aβ clearance) and increased immunoreactivity and expression of microglia. The present study, for the first time, demonstrated that partial eNOS deficiency exacerbated behavioral dysfunction, Aβ brain deposition, and microglial pathology in APP/PS1 mice, further implicating endothelial dysfunction in the pathogenesis of AD. The present findings also provide the scientific basis for developing preventive and/or therapeutic strategies by targeting endothelial dysfunction.
Collapse
Affiliation(s)
- Sara Ahmed
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; (S.A.); (Y.J.)
| | - Yu Jing
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; (S.A.); (Y.J.)
| | - Bruce G. Mockett
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; (B.G.M.); (W.C.A.)
| | - Hu Zhang
- School of Pharmacy, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand;
| | - Wickliffe C. Abraham
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; (B.G.M.); (W.C.A.)
| | - Ping Liu
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; (S.A.); (Y.J.)
- Correspondence:
| |
Collapse
|
20
|
Cerebral small vessel disease alters neurovascular unit regulation of microcirculation integrity involved in vascular cognitive impairment. Neurobiol Dis 2022; 170:105750. [DOI: 10.1016/j.nbd.2022.105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/09/2022] [Accepted: 05/08/2022] [Indexed: 12/25/2022] Open
|
21
|
Rustia AJ, Paterson JS, Best G, Sokoya EM. Microbial disruption in the gut promotes cerebral endothelial dysfunction. Physiol Rep 2021; 9:e15100. [PMID: 34755466 PMCID: PMC8578899 DOI: 10.14814/phy2.15100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebrovascular disease is a group of conditions characterized by disorders of the cerebral vessels. Endothelial dysfunction renders the vasculature at risk of impaired blood flow and increases the potential of developing cerebrovascular disease. The gut microbiota has been recently identified as a possible risk factor of cerebrovascular disease. However, a direct link between gut microbiota and cerebral vascular function has not been established. Therefore, the aim of this study was to determine the effect of gut bacterial disruption on cerebral endothelial function. Male inbred Sprague-Dawley rats were randomly assigned to receive either drinking water with (n = 4) or without (n = 4) a cocktail of nonabsorbable broad-spectrum antibiotics (streptomycin, neomycin, bacitracin, and polymyxin B). Three weeks of antibiotic treatment resulted in a significant reduction in bacterial load and shifts within the bacterial sub-populations as assessed using flow cytometry. Using pressure myography, we found that spontaneous tone significantly increased and L-NAME-induced vasoconstriction was significantly blunted in middle cerebral arteries (MCAs) harvested from antibiotic-treated rats. ATP-mediated dilations were significantly blunted in MCAs from antibiotic-treated rats compared to their control counterparts. Immunoblotting revealed that the eNOS-P/total eNOS ratio was significantly reduced in cerebral artery lysates from antibiotic-treated rats compared to controls. Our findings suggest that disruption of the gut microbiota leads to cerebral endothelial dysfunction through reduction of eNOS activity. This study highlights the potential of the microbiota as a target to reverse endothelial dysfunction and a preventative approach to reducing risk of stroke and aneurysms.
Collapse
Affiliation(s)
- April J. Rustia
- Chronic Disease Research LaboratoryFlinders Health and Medical InstituteCollege of Medicine and Public HealthFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - James S. Paterson
- Microbial Systems LaboratoryCollege of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Giles Best
- Flow Cytometry FacilityFlinders Health and Medical Research InstituteCollege of Medicine and Public HealthFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Elke M. Sokoya
- Chronic Disease Research LaboratoryFlinders Health and Medical InstituteCollege of Medicine and Public HealthFlinders UniversityBedford ParkSouth AustraliaAustralia
| |
Collapse
|
22
|
d'Uscio LV, Katusic ZS. Endothelium-specific deletion of amyloid-β precursor protein exacerbates endothelial dysfunction induced by aging. Aging (Albany NY) 2021; 13:19165-19185. [PMID: 34382945 PMCID: PMC8386539 DOI: 10.18632/aging.203401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/30/2021] [Indexed: 01/03/2023]
Abstract
The physiological function of amyloid precursor protein (APP) in the control of endothelial function during aging is unclear. Aortas of young (4-6 months old) and aged (23-26 months old) wild-type (WT) and endothelium-specific APP-deficient (eAPP−/−) mice were used to study aging-induced changes in vascular phenotype. Unexpectedly, aging significantly increased protein expression of APP in aortas of WT mice but not in aortas of eAPP−/− mice thereby demonstrating selective upregulation APP expression in vascular endothelium of aged aortas. Most notably, endothelial dysfunction (impairment of endothelium-dependent relaxations) induced by aging was significantly exacerbated in aged eAPP−/− mice aortas as compared to age-matched WT mice. Consistent with this observations, endothelial nitric oxide synthase (eNOS) protein expression was significantly decreased in aged eAPP−/− mice as compared to age matched WT mice. In addition, protein expression of cyclooxygenase 2 and release of prostaglandins were significantly increased in both aged WT and eAPP−/− mice. Notably, treatment with cyclooxygenase inhibitor, indomethacin, normalized endothelium-dependent relaxations in aged WT mice, but not in aged eAPP−/− mice. In aggregate, our findings support the concept that aging-induced upregulation of APP in vascular endothelium is an adaptive response designed to protect and preserve expression and function of eNOS.
Collapse
Affiliation(s)
- Livius V d'Uscio
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
23
|
Ludwig HC, Dreha-Kulaczewski S, Bock HC. Neurofluids-Deep inspiration, cilia and preloading of the astrocytic network. J Neurosci Res 2021; 99:2804-2821. [PMID: 34323313 DOI: 10.1002/jnr.24935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 01/20/2023]
Abstract
With the advent of real-time MRI, the motion and passage of cerebrospinal fluid can be visualized without gating and exclusion of low-frequency waves. This imaging modality gives insights into low-volume, rapidly oscillating cardiac-driven movement as well as sustained, high-volume, slowly oscillating inspiration-driven movement. Inspiration means a spontaneous or artificial increase in the intrathoracic dimensions independent of body position. Alterations in thoracic diameter enable the thoracic and spinal epidural venous compartments to be emptied and filled, producing an upward surge of cerebrospinal fluid inside the spine during inspiration; this surge counterbalances the downward pooling of venous blood toward the heart. Real-time MRI, as a macroscale in vivo observation method, could expand our knowledge of neurofluid dynamics, including how astrocytic fluid preloading is adjusted and how brain buoyancy and turgor are maintained in different postures and zero gravity. Along with these macroscale findings, new microscale insights into aquaporin-mediated fluid transfer, its sensing by cilia, and its tuning by nitric oxide will be reviewed. By incorporating clinical knowledge spanning several disciplines, certain disorders-congenital hydrocephalus with Chiari malformation, idiopathic intracranial hypertension, and adult idiopathic hydrocephalus-are interpreted and reviewed according to current concepts, from the basics of the interrelated systems to their pathology.
Collapse
Affiliation(s)
- Hans C Ludwig
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Hans C Bock
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Hakim MA, Behringer EJ. Development of Alzheimer's Disease Progressively Alters Sex-Dependent KCa and Sex-Independent KIR Channel Function in Cerebrovascular Endothelium. J Alzheimers Dis 2021; 76:1423-1442. [PMID: 32651315 DOI: 10.3233/jad-200085] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Development of Alzheimer's disease (AD) pathology is associated with impaired blood flow delivery of oxygen and nutrients throughout the brain. Cerebrovascular endothelium regulates vasoreactivity of blood vessel networks for optimal cerebral blood flow. OBJECTIVE We tested the hypothesis that cerebrovascular endothelial Gq-protein-coupled receptor (GPCR; purinergic and muscarinic) and K+ channel [Ca2+-activated (KCa2.3/SK3 and KCa3.1/IK1) and inward-rectifying (KIR2.x)] function declines during progressive AD pathology. METHODS We applied simultaneous measurements of intracellular Ca2+ ([Ca2+]i) and membrane potential (Vm) in freshly isolated endothelium from posterior cerebral arteries of 3×Tg-AD mice [young, no pathology (1- 2 mo), cognitive impairment (CI; 4- 5 mo), extracellular Aβ plaques (Aβ; 6- 8 mo), and Aβ plaques + neurofibrillary tangles (AβT; 12- 15 mo)]. RESULTS The coupling of ΔVm-to-Δ[Ca2+]i during AβT pathology was lowest for both sexes but, overall, ATP-induced purinergic receptor function was stable throughout AD pathology. SKCa/IKCa channel function itself was enhanced by ∼20% during AD (Aβ+ AβT) versus pre-AD (Young + CI) in males while steady in females. Accordingly, hyperpolarization-induced [Ca2+]i increases following SKCa/IKCa channel activation and Δ[Ca2+]i-to-ΔVm coupling was enhanced by ≥two-fold during AD pathology in males but not females. Further, KIR channel function decreased by ∼50% during AD conditions versus young regardless of sex. Finally, other than a ∼40% increase in females versus males during Aβ pathology, [Ca2+]i responses to the mitochondrial uncoupler FCCP were similar among AD versus pre-AD conditions. CONCLUSION Altogether, AD pathology represents a condition of altered KCa and KIR channel function in cerebrovascular endothelium in a sex-dependent and sex-independent manner respectively.
Collapse
Affiliation(s)
- Md A Hakim
- Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | | |
Collapse
|
25
|
An L, Shen Y, Chopp M, Zacharek A, Venkat P, Chen Z, Li W, Qian Y, Landschoot-Ward J, Chen J. Deficiency of Endothelial Nitric Oxide Synthase (eNOS) Exacerbates Brain Damage and Cognitive Deficit in A Mouse Model of Vascular Dementia. Aging Dis 2021; 12:732-746. [PMID: 34094639 PMCID: PMC8139201 DOI: 10.14336/ad.2020.0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022] Open
Abstract
Vascular Dementia (VaD) accounts for nearly 20% of all cases of dementia. eNOS plays an important role in neurovascular remodeling, anti-inflammation, and cognitive functional recovery after stroke. In this study, we investigated whether eNOS regulates brain damage, cognitive function in mouse model of bilateral common carotid artery stenosis (BCAS) induced VaD. Late-adult (6-8 months) C57BL/6J and eNOS knockout (eNOS-/-) mice were subjected to BCAS (n=12/group) or sham group (n=8/group). BCAS was performed by applying microcoils to both common carotid arteries. Cerebral blood flow (CBF) and blood pressure were measured. A battery of cognitive functional tests was performed, and mice were sacrificed 30 days after BCAS. Compared to corresponding sham mice, BCAS in wild-type (WT) and eNOS-/- mice significantly: 1) induces short term, long term memory loss, spatial learning and memory deficits; 2) decreases CBF, increases ischemic cell damage, including apoptosis, white matter (WM) and axonal damage; 3) increases blood brain barrier (BBB) leakage, decreases aquaporin-4 (AQP4) expression and vessel density; 4) increases microglial, astrocyte activation and oxidative stress in the brain; 5) increases inflammatory factor interleukin-1 receptor-associated kinase-1(IRAK-1) and amyloid beta (Aβ) expression in brain; 6) increases IL-6 and IRAK4 expression in brain. eNOS-/-sham mice exhibit increased blood pressure, decreased iNOS and nNOS in brain compared to WT-sham mice. Compared to WT-BCAS mice, eNOS-/-BCAS mice exhibit worse vascular and WM/axonal damage, increased BBB leakage and inflammatory response, increased cognitive deficit, decreased iNOS, nNOS in brain. eNOS deficit exacerbates BCAS induced brain damage and cognitive deficit.
Collapse
Affiliation(s)
- Lulu An
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Yi Shen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA.,2Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (Current address)
| | - Michael Chopp
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA.,3Department of Physics, Oakland University, Rochester, MI-48309, USA
| | - Alex Zacharek
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Poornima Venkat
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Zhili Chen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Wei Li
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Yu Qian
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | | | - Jieli Chen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| |
Collapse
|
26
|
Baranowski BJ, Allen MD, Nyarko JN, Rector RS, Padilla J, Mousseau DD, Rau CD, Wang Y, Laughlin MH, Emter CA, MacPherson RE, Olver TD. Cerebrovascular insufficiency and amyloidogenic signaling in Ossabaw swine with cardiometabolic heart failure. JCI Insight 2021; 6:143141. [PMID: 34027891 PMCID: PMC8262360 DOI: 10.1172/jci.insight.143141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Individuals with heart failure (HF) frequently present with comorbidities, including obesity, insulin resistance, hypertension, and dyslipidemia. Many patients with HF experience cardiogenic dementia, yet the pathophysiology of this disease remains poorly understood. Using a swine model of cardiometabolic HF (Western diet+aortic banding; WD-AB), we tested the hypothesis that WD-AB would promote a multidementia phenotype involving cerebrovascular dysfunction alongside evidence of Alzheimer’s disease (AD) pathology. The results provide evidence of cerebrovascular insufficiency coupled with neuroinflammation and amyloidosis in swine with experimental cardiometabolic HF. Although cardiac ejection fraction was normal, indices of arterial compliance and cerebral blood flow were reduced, and cerebrovascular regulation was impaired in the WD-AB group. Cerebrovascular dysfunction occurred concomitantly with increased MAPK signaling and amyloidogenic processing (i.e., increased APP, BACE1, CTF, and Aβ40 in the prefrontal cortex and hippocampus) in the WD-AB group. Transcriptomic profiles of the stellate ganglia revealed the WD-AB group displayed an enrichment of gene networks associated with MAPK/ERK signaling, AD, frontotemporal dementia, and a number of behavioral phenotypes implicated in cognitive impairment. These provide potentially novel evidence from a swine model that cerebrovascular and neuronal pathologies likely both contribute to the dementia profile in a setting of cardiometabolic HF.
Collapse
Affiliation(s)
- Bradley J Baranowski
- Department of Health Sciences and.,Centre for Neuroscience, Brock University, St. Catharines, Ontario, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jennifer Nk Nyarko
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Darrell D Mousseau
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christoph D Rau
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yibin Wang
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - M Harold Laughlin
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Rebecca Ek MacPherson
- Department of Health Sciences and.,Centre for Neuroscience, Brock University, St. Catharines, Ontario, Canada
| | - T Dylan Olver
- Department of Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
27
|
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Front Mol Biosci 2021; 8:651215. [PMID: 33855048 PMCID: PMC8039307 DOI: 10.3389/fmolb.2021.651215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The average age of the world's elderly population is steadily increasing. This unprecedented rise in the aged world population will increase the prevalence of age-related disorders such as cardiovascular disease (CVD) and neurodegeneration. In recent years, there has been an increased interest in the potential interplay between CVDs and neurodegenerative syndromes, as several vascular risk factors have been associated with Alzheimer's disease (AD). Along these lines, arterial stiffness is an independent risk factor for both CVD and AD. In this review, we discuss several inflammaging-related disease mechanisms including acute tissue-specific inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance which may contribute to the proposed synergism between arterial stiffness and AD.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
28
|
Nizari S, Wells JA, Carare RO, Romero IA, Hawkes CA. Loss of cholinergic innervation differentially affects eNOS-mediated blood flow, drainage of Aβ and cerebral amyloid angiopathy in the cortex and hippocampus of adult mice. Acta Neuropathol Commun 2021; 9:12. [PMID: 33413694 PMCID: PMC7791879 DOI: 10.1186/s40478-020-01108-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
Vascular dysregulation and cholinergic basal forebrain degeneration are both early pathological events in the development of Alzheimer’s disease (AD). Acetylcholine contributes to localised arterial dilatation and increased cerebral blood flow (CBF) during neurovascular coupling via activation of endothelial nitric oxide synthase (eNOS). Decreased vascular reactivity is suggested to contribute to impaired clearance of β-amyloid (Aβ) along intramural periarterial drainage (IPAD) pathways of the brain, leading to the development of cerebral amyloid angiopathy (CAA). However, the possible relationship between loss of cholinergic innervation, impaired vasoreactivity and reduced clearance of Aβ from the brain has not been previously investigated. In the present study, intracerebroventricular administration of mu-saporin resulted in significant death of cholinergic neurons and fibres in the medial septum, cortex and hippocampus of C57BL/6 mice. Arterial spin labelling MRI revealed a loss of CBF response to stimulation of eNOS by the Rho-kinase inhibitor fasudil hydrochloride in the cortex of denervated mice. By contrast, the hippocampus remained responsive to drug treatment, in association with altered eNOS expression. Fasudil hydrochloride significantly increased IPAD in the hippocampus of both control and saporin-treated mice, while increased clearance from the cortex was only observed in control animals. Administration of mu-saporin in the TetOAPPSweInd mouse model of AD was associated with a significant and selective increase in Aβ40-positive CAA. These findings support the importance of the interrelationship between cholinergic innervation and vascular function in the aetiology and/or progression of CAA and suggest that combined eNOS/cholinergic therapies may improve the efficiency of Aβ removal from the brain and reduce its deposition as CAA.
Collapse
|
29
|
Prpar Mihevc S, Zakošek Pipan M, Štrbenc M, Rogelj B, Majdič G. Nitrosative Stress in the Frontal Cortex From Dogs With Canine Cognitive Dysfunction. Front Vet Sci 2020; 7:573155. [PMID: 33330694 PMCID: PMC7717931 DOI: 10.3389/fvets.2020.573155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Canine cognitive dysfunction (CCD) is an age-related disorder similar to human Alzheimer's disease (AD) that occurs in elderly dogs. Nitrosative stress has been implicated as one of the causes leading to neurodegenerative diseases, particularly AD. Its involvement in the development of CCD has not been studied so far. In the present study, immunohistochemical staining detected all three isoforms of nitric oxide synthases (nNOS, eNOS, and iNOS) and 3-nitrotyrosine (3-NT) in brains from CCD-affected dogs and non-demented control dogs in all layers of the canine frontal cortex. In CCD-affected and non-demented brains, nNOS was highly expressed in pyramidal-like neurons in the upper cortical layers. nNOS has also been observed in astrocytes in the CCD frontal cortex. The nNOS immunohistochemical staining was statistically significantly elevated in dogs with CCD in comparison to non-demented dogs. Blood vessel wall cells were positive for eNOS, which was also expressed in astrocytes and neurons. Intense 3-NT immunoreactivity was observed in the upper cortical layers, where amyloid-beta deposits spread in the last stage of CCD. Brain cells in the same area were highly immunoreactive for iNOS. This infers that neuroinflammation and nitrosative stress might exacerbate the neurodegenerative process in CCD-affected brains, ultimately leading to cognitive impairment.
Collapse
Affiliation(s)
- Sonja Prpar Mihevc
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Zakošek Pipan
- Veterinary Faculty, Clinic for Reproduction and Large Animals, University of Ljubljana, Ljubljana, Slovenia
| | - Malan Štrbenc
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Biomedical Research Institute (BRIS), Ljubljana, Slovenia.,Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
30
|
Zlokovic BV, Gottesman RF, Bernstein KE, Seshadri S, McKee A, Snyder H, Greenberg SM, Yaffe K, Schaffer CB, Yuan C, Hughes TM, Daemen MJ, Williamson JD, González HM, Schneider J, Wellington CL, Katusic ZS, Stoeckel L, Koenig JI, Corriveau RA, Fine L, Galis ZS, Reis J, Wright JD, Chen J. Vascular contributions to cognitive impairment and dementia (VCID): A report from the 2018 National Heart, Lung, and Blood Institute and National Institute of Neurological Disorders and Stroke Workshop. Alzheimers Dement 2020; 16:1714-1733. [PMID: 33030307 DOI: 10.1002/alz.12157] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) are characterized by the aging neurovascular unit being confronted with and failing to cope with biological insults due to systemic and cerebral vascular disease, proteinopathy including Alzheimer's biology, metabolic disease, or immune response, resulting in cognitive decline. This report summarizes the discussion and recommendations from a working group convened by the National Heart, Lung, and Blood Institute and the National Institute of Neurological Disorders and Stroke to evaluate the state of the field in VCID research, identify research priorities, and foster collaborations. As discussed in this report, advances in understanding the biological mechanisms of VCID across the wide spectrum of pathologies, chronic systemic comorbidities, and other risk factors may lead to potential prevention and new treatment strategies to decrease the burden of dementia. Better understanding of the social determinants of health that affect risks for both vascular disease and VCID could provide insight into strategies to reduce racial and ethnic disparities in VCID.
Collapse
Affiliation(s)
| | | | | | - Sudha Seshadri
- University of Texas Health Science Center, San Antonio and Boston University, San Antonio, Texas, USA
| | - Ann McKee
- VA Boston Healthcare System and Boston University, Boston, Massachusetts, USA
| | | | - Steven M Greenberg
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kristine Yaffe
- University of California, San Francisco, San Francisco, California, USA
| | | | - Chun Yuan
- University of Washington, Seattle, Washington, USA
| | - Timothy M Hughes
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mat J Daemen
- Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | - Luke Stoeckel
- National Institute on Aging, Bethesda, Maryland, USA
| | - James I Koenig
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Roderick A Corriveau
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Lawrence Fine
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Zorina S Galis
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Jared Reis
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | | - Jue Chen
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Ristori E, Donnini S, Ziche M. New Insights Into Blood-Brain Barrier Maintenance: The Homeostatic Role of β-Amyloid Precursor Protein in Cerebral Vasculature. Front Physiol 2020; 11:1056. [PMID: 32973564 PMCID: PMC7481479 DOI: 10.3389/fphys.2020.01056] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular homeostasis is maintained by the blood-brain barrier (BBB), a highly selective structure that separates the peripheral blood circulation from the brain and protects the central nervous system (CNS). Dysregulation of BBB function is the precursor of several neurodegenerative diseases including Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA), both related to β-amyloid (Aβ) accumulation and deposition. The origin of BBB dysfunction before and/or during CAA and AD onset is not known. Several studies raise the possibility that vascular dysfunction could be an early step in these diseases and could even precede significant Aβ deposition. Though accumulation of neuron-derived Aβ peptides is considered the primary influence driving AD and CAA pathogenesis, recent studies highlighted the importance of the physiological role of the β-amyloid precursor protein (APP) in endothelial cell homeostasis, suggesting a potential role of this protein in maintaining vascular stability. In this review, we will discuss the physiological function of APP and its cleavage products in the vascular endothelium. We further suggest how loss of APP homeostatic regulation in the brain vasculature could lead toward pathological outcomes in neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Ristori
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Marina Ziche
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
32
|
Dubey H, Gulati K, Ray A. Alzheimer's Disease: A Contextual Link with Nitric Oxide Synthase. Curr Mol Med 2020; 20:505-515. [PMID: 31782366 DOI: 10.2174/1566524019666191129103117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is a gasotransmitter with pleiotropic effects which has made a great impact on biology and medicine. A multidimensional neuromodulatory role of NO has been shown in the brain with specific reference to neurodegenerative disorders like Alzheimer's disease (AD) and cognitive dysfunction. It has been found that NO/cGMP signalling pathway has an important role in learning and memory. Initially, it was considered that indirectly NO exerted neurotoxicity in AD via glutamatergic excitotoxicity. However, considering the early development of cognitive functions involved in the learning memory process including long term potentiation and synaptic plasticity, NO has a crucial role. Increasing evidence uncovered the above facts that isoforms of NOS viz endothelial NO synthase (eNOS), neuronal NO synthase (nNOS) and inducible NO synthase (iNOS) having a variable expression in AD are mainly responsible for learning and memory activities. In this review, we focus on the role of NOS isoforms in AD parallel to NO. Further, this review provides convergent evidence that NO could provide a therapeutic avenue in AD via modulation of the relevant NOS expression.
Collapse
Affiliation(s)
- Harikesh Dubey
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Kavita Gulati
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Arunabha Ray
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| |
Collapse
|
33
|
Gatti L, Tinelli F, Scelzo E, Arioli F, Di Fede G, Obici L, Pantoni L, Giaccone G, Caroppo P, Parati EA, Bersano A. Understanding the Pathophysiology of Cerebral Amyloid Angiopathy. Int J Mol Sci 2020; 21:ijms21103435. [PMID: 32414028 PMCID: PMC7279405 DOI: 10.3390/ijms21103435] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA), one of the main types of cerebral small vessel disease, is a major cause of spontaneous intracerebral haemorrhage and an important contributor to cognitive decline in elderly patients. Despite the number of experimental in vitro studies and animal models, the pathophysiology of CAA is still largely unknown. Although several pathogenic mechanisms including an unbalance between production and clearance of amyloid beta (Aβ) protein as well as ‘the prion hypothesis’ have been invoked as possible disease triggers, they do not explain completely the disease pathogenesis. This incomplete disease knowledge limits the implementation of treatments able to prevent or halt the clinical progression. The continuous increase of CAA patients makes imperative the development of suitable experimental in vitro or animal models to identify disease biomarkers and new pharmacological treatments that could be administered in the early disease stages to prevent irreversible changes and disease progression.
Collapse
Affiliation(s)
- Laura Gatti
- Neurobiology Laboratory, Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (L.G.); (F.T.); (F.A.)
| | - Francesca Tinelli
- Neurobiology Laboratory, Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (L.G.); (F.T.); (F.A.)
| | - Emma Scelzo
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.S.); (E.A.P.)
| | - Francesco Arioli
- Neurobiology Laboratory, Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (L.G.); (F.T.); (F.A.)
| | - Giuseppe Di Fede
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.D.F.); (G.G.); (P.C.)
| | - Laura Obici
- Amyloidosis Research and Treatment Centre, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Leonardo Pantoni
- “Luigi Sacco” Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy;
| | - Giorgio Giaccone
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.D.F.); (G.G.); (P.C.)
| | - Paola Caroppo
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.D.F.); (G.G.); (P.C.)
| | - Eugenio Agostino Parati
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.S.); (E.A.P.)
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.S.); (E.A.P.)
- Correspondence: ; Tel.: +39-0223943310
| |
Collapse
|
34
|
Abstract
Cerebral small vessel disease (SVD) is characterized by changes in the pial and parenchymal microcirculations. SVD produces reductions in cerebral blood flow and impaired blood-brain barrier function, which are leading contributors to age-related reductions in brain health. End-organ effects are diverse, resulting in both cognitive and noncognitive deficits. Underlying phenotypes and mechanisms are multifactorial, with no specific treatments at this time. Despite consequences that are already considerable, the impact of SVD is predicted to increase substantially with the growing aging population. In the face of this health challenge, the basic biology, pathogenesis, and determinants of SVD are poorly defined. This review summarizes recent progress and concepts in this area, highlighting key findings and some major unanswered questions. We focus on phenotypes and mechanisms that underlie microvascular aging, the greatest risk factor for cerebrovascular disease and its subsequent effects.
Collapse
Affiliation(s)
- T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne Campus, Bundoora, Victoria 3086, Australia;
| | - Frank M Faraci
- Departments of Internal Medicine, Neuroscience, and Pharmacology, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA;
| |
Collapse
|