1
|
Duarte JMN. Challenges of Investigating Compartmentalized Brain Energy Metabolism Using Nuclear Magnetic Resonance Spectroscopy in vivo. Neurochem Res 2025; 50:73. [PMID: 39754627 DOI: 10.1007/s11064-024-04324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
Brain function requires continuous energy supply. Thus, unraveling brain metabolic regulation is critical not only for our basic understanding of overall brain function, but also for the cellular basis of functional neuroimaging techniques. While it is known that brain energy metabolism is exquisitely compartmentalized between astrocytes and neurons, the metabolic and neuro-energetic basis of brain activity is far from fully understood. 1H nuclear magnetic resonance (NMR) spectroscopy has been widely used to detect variations in metabolite levels, including glutamate and GABA, while 13C NMR spectroscopy has been employed to study metabolic compartmentation and to determine metabolic rates coupled brain activity, focusing mainly on the component corresponding to excitatory glutamatergic neurotransmission. The rates of oxidative metabolism in neurons and astrocytes are both associated with the rate of the glutamate-glutamine cycle between neurons and astrocytes. However, any possible correlation between energy metabolism pathways and the inhibitory GABAergic neurotransmission rate in the living brain remains to be experimentally demonstrated. That is due to low GABA levels, and the consequent challenge of determining GABAergic rates in a non-invasive manner. This brief review surveys the state-of-the-art analyses of energy metabolism in neurons and astrocytes contributing to glutamate and GABA synthesis using 13C NMR spectroscopy in vivo, and identifies limitations that need to be overcome in future studies.
Collapse
Affiliation(s)
- João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Rodríguez-Nieto G, Alvarez-Anacona DF, Mantini D, Edden RAE, Oeltzschner G, Sunaert S, Swinnen SP. Association between Inhibitory-Excitatory Balance and Brain Activity Response during Cognitive Flexibility in Young and Older Individuals. J Neurosci 2024; 44:e0355242024. [PMID: 39134417 PMCID: PMC11376334 DOI: 10.1523/jneurosci.0355-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 09/06/2024] Open
Abstract
Cognitive flexibility represents the capacity to switch among different mental schemes, providing an adaptive advantage to a changing environment. The neural underpinnings of this executive function have been deeply studied in humans through fMRI, showing that the left inferior frontal cortex (IFC) and the left inferior parietal lobule (IPL) are crucial. Here, we investigated the inhibitory-excitatory balance in these regions by means of γ-aminobutyric acid (GABA+) and glutamate + glutamine (Glx), measured with magnetic resonance spectroscopy, during a cognitive flexibility task and its relationship with the performance level and the local task-induced blood oxygenation level-dependent (BOLD) response in 40 young (18-35 years; 26 female) and 40 older (18-35 years; 21 female) human adults. As the IFC and the IPL are richly connected regions, we also examined whole-brain effects associated with their local metabolic activity. Results did not show absolute metabolic modulations associated with flexibility performance, but the performance level was related to the direction of metabolic modulation in the IPL with opposite patterns in young and older individuals. The individual inhibitory-excitatory balance modulation showed an inverse relationship with the local BOLD response in the IPL. Finally, the modulation of inhibitory-excitatory balance in IPL was related to whole-brain effects only in older individuals. These findings show disparities in the metabolic mechanisms underlying cognitive flexibility in young and older adults and their association with the performance level and BOLD response. Such metabolic differences are likely to play a role in executive functioning during aging and specifically in cognitive flexibility.
Collapse
Affiliation(s)
- Geraldine Rodríguez-Nieto
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Leuven 3001, Belgium
- Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | | | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Leuven 3001, Belgium
- Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Stefan Sunaert
- Department of Imaging and Pathology, Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Leuven 3001, Belgium
- Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
3
|
Li H, Rodríguez-Nieto G, Chalavi S, Seer C, Mikkelsen M, Edden RAE, Swinnen SP. MRS-assessed brain GABA modulation in response to task performance and learning. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:22. [PMID: 39217354 PMCID: PMC11366171 DOI: 10.1186/s12993-024-00248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Gamma-aminobutyric acid (GABA), the most important inhibitory neurotransmitter in the human brain, has long been considered essential in human behavior in general and learning in particular. GABA concentration can be quantified using magnetic resonance spectroscopy (MRS). Using this technique, numerous studies have reported associations between baseline GABA levels and various human behaviors. However, regional GABA concentration is not fixed and may exhibit rapid modulation as a function of environmental factors. Hence, quantification of GABA levels at several time points during the performance of tasks can provide insights into the dynamics of GABA levels in distinct brain regions. This review reports on findings from studies using repeated measures (n = 41) examining the dynamic modulation of GABA levels in humans in response to various interventions in the perceptual, motor, and cognitive domains to explore associations between GABA modulation and human behavior. GABA levels in a specific brain area may increase or decrease during task performance or as a function of learning, depending on its precise involvement in the process under investigation. Here, we summarize the available evidence and derive two overarching hypotheses regarding the role of GABA modulation in performance and learning. Firstly, training-induced increases in GABA levels appear to be associated with an improved ability to differentiate minor perceptual differences during perceptual learning. This observation gives rise to the 'GABA increase for better neural distinctiveness hypothesis'. Secondly, converging evidence suggests that reducing GABA levels may play a beneficial role in effectively filtering perceptual noise, enhancing motor learning, and improving performance in visuomotor tasks. Additionally, some studies suggest that the reduction of GABA levels is related to better working memory and successful reinforcement learning. These observations inspire the 'GABA decrease to boost learning hypothesis', which states that decreasing neural inhibition through a reduction of GABA in dedicated brain areas facilitates human learning. Additionally, modulation of GABA levels is also observed after short-term physical exercise. Future work should elucidate which specific circumstances induce robust GABA modulation to enhance neuroplasticity and boost performance.
Collapse
Affiliation(s)
- Hong Li
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Geraldine Rodríguez-Nieto
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Caroline Seer
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Mark Mikkelsen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Duarte JMN. Concentrations of glutamate and N-acetylaspartate detected by magnetic resonance spectroscopy in the rat hippocampus correlate with hippocampal-dependent spatial memory performance. Front Mol Neurosci 2024; 17:1458070. [PMID: 39219740 PMCID: PMC11362093 DOI: 10.3389/fnmol.2024.1458070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Magnetic resonance spectroscopy (MRS) has been employed to investigate brain metabolite concentrations in vivo, and they vary during neuronal activation, across brain activity states, or upon disease with neurological impact. Whether resting brain metabolites correlate with functioning in behavioral tasks remains to be demonstrated in any of the widely used rodent models. This study tested the hypothesis that, in the absence of neurological disease or injury, the performance in a hippocampal-dependent memory task is correlated with the hippocampal levels of metabolites that are mainly synthesized in neurons, namely N-acetylaspartate (NAA), glutamate and GABA. Experimentally naïve rats were tested for hippocampal-dependent spatial memory performance by measuring spontaneous alternation in the Y-maze, followed by anatomical magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) in the hippocampus and cortex. Memory performance correlated with hippocampal concentrations of NAA (p = 0.024) and glutamate (p = 0.014) but not GABA. Concentrations of glutamate in the cortex also correlated with spatial memory (p = 0.035). In addition, memory performance was also correlated with the relative volume of the hippocampus (p = 0.041). Altogether, this exploratory study suggests that levels of the neuronal maker NAA and the main excitatory neurotransmitter glutamate are associated with physiological functional capacity.
Collapse
Affiliation(s)
- João M. N. Duarte
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Veréb D, Szabó N, Kincses B, Szücs-Bencze L, Faragó P, Csomós M, Antal S, Kocsis K, Tuka B, Kincses ZT. Imbalanced temporal states of cortical blood-oxygen-level-dependent signal variability during rest in episodic migraine. J Headache Pain 2024; 25:114. [PMID: 39014299 PMCID: PMC11251240 DOI: 10.1186/s10194-024-01824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Migraine has been associated with functional brain changes including altered connectivity and activity both during and between headache attacks. Recent studies established that the variability of the blood-oxygen-level-dependent (BOLD) signal is an important attribute of brain activity, which has so far been understudied in migraine. In this study, we investigate how time-varying measures of BOLD variability change interictally in episodic migraine patients. METHODS Two independent resting state functional MRI datasets acquired on 3T (discovery cohort) and 1.5T MRI scanners (replication cohort) including 99 episodic migraine patients (n3T = 42, n1.5T=57) and 78 healthy controls (n3T = 46, n1.5T=32) were analyzed in this cross-sectional study. A framework using time-varying measures of BOLD variability was applied to derive BOLD variability states. Descriptors of BOLD variability states such as dwell time and fractional occupancy were calculated, then compared between migraine patients and healthy controls using Mann-Whitney U-tests. Spearman's rank correlation was calculated to test associations with clinical parameters. RESULTS Resting-state activity was characterized by states of high and low BOLD signal variability. Migraine patients in the discovery cohort spent more time in the low variability state (mean dwell time: p = 0.014, median dwell time: p = 0.022, maximum dwell time: p = 0.013, fractional occupancy: p = 0.013) and less time in the high variability state (mean dwell time: p = 0.021, median dwell time: p = 0.021, maximum dwell time: p = 0.025, fractional occupancy: p = 0.013). Higher uptime of the low variability state was associated with greater disability as measured by MIDAS scores (maximum dwell time: R = 0.45, p = 0.007; fractional occupancy: R = 0.36, p = 0.035). Similar results were observed in the replication cohort. CONCLUSION Episodic migraine patients spend more time in a state of low BOLD variability during rest in headache-free periods, which is associated with greater disability. BOLD variability states show potential as a replicable functional imaging marker in episodic migraine.
Collapse
Affiliation(s)
- Dániel Veréb
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary.
| | - Nikoletta Szabó
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Bálint Kincses
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, Germany
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Medicine Essen, Essen, Germany
| | - Laura Szücs-Bencze
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Péter Faragó
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Máté Csomós
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Szabolcs Antal
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Krisztián Kocsis
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Bernadett Tuka
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Zsigmond Tamás Kincses
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| |
Collapse
|
6
|
Gil R, Valente M, Shemesh N. Rat superior colliculus encodes the transition between static and dynamic vision modes. Nat Commun 2024; 15:849. [PMID: 38346973 PMCID: PMC10861507 DOI: 10.1038/s41467-024-44934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
The visual continuity illusion involves a shift in visual perception from static to dynamic vision modes when the stimuli arrive at high temporal frequency, and is critical for recognizing objects moving in the environment. However, how this illusion is encoded across the visual pathway remains poorly understood, with disparate frequency thresholds at retinal, cortical, and behavioural levels suggesting the involvement of other brain areas. Here, we employ a multimodal approach encompassing behaviour, whole-brain functional MRI, and electrophysiological measurements, for investigating the encoding of the continuity illusion in rats. Behavioural experiments report a frequency threshold of 18±2 Hz. Functional MRI reveal that superior colliculus signals transition from positive to negative at the behaviourally-driven threshold, unlike thalamic and cortical areas. Electrophysiological recordings indicate that these transitions are underpinned by neural activation/suppression. Lesions in the primary visual cortex reveal this effect to be intrinsic to the superior colliculus (under a cortical gain effect). Our findings highlight the superior colliculus' crucial involvement in encoding temporal frequency shifts, especially the change from static to dynamic vision modes.
Collapse
Affiliation(s)
- Rita Gil
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Mafalda Valente
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
7
|
Yakovlev A, Gritskova A, Manzhurtsev A, Ublinskiy M, Menshchikov P, Vanin A, Kupriyanov D, Akhadov T, Semenova N. Dynamics of γ-aminobutyric acid concentration in the human brain in response to short visual stimulation. MAGMA (NEW YORK, N.Y.) 2024; 37:39-51. [PMID: 37715877 DOI: 10.1007/s10334-023-01118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE To find a possible quantitative relation between activation-induced fast (< 10 s) changes in the γ-aminobutyric acid (GABA) level and the amplitude of a blood oxygen level-dependent contrast (BOLD) response (according to magnetic resonance spectroscopy [MRS] and functional magnetic resonance imaging [fMRI]). MATERIALS AND METHODS fMRI data and MEGA-PRESS magnetic resonance spectra [echo time (TE)/repetition time (TR) = 68 ms/1500 ms] of an activated area in the visual cortex of 33 subjects were acquired using a 3 T MR scanner. Stimulation was performed by presenting an image of a flickering checkerboard for 3 s, repeated with an interval of 13.5 s. The time course of GABA and creatine (Cr) concentrations and the width and height of resonance lines were obtained with a nominal time resolution of 1.5 s. Changes in the linewidth and height of n-acetylaspartate (NAA) and Cr signals were used to determine the BOLD effect. RESULTS In response to the activation, the BOLD-corrected GABA + /Cr ratio increased by 5.0% (q = 0.027) and 3.8% (q = 0.048) at 1.6 and 3.1 s, respectively, after the start of the stimulus. Time courses of Cr and NAA signal width and height reached a maximum change at the 6th second (~ 1.2-1.5%, q < 0.05). CONCLUSION The quick response of the observed GABA concentration to the short stimulus is most likely due to a release of GABA from vesicles followed by its packaging back into vesicles.
Collapse
Affiliation(s)
- Alexey Yakovlev
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Bol'shaya Polyanka St. 22, Moscow, 119180, Russian Federation.
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation.
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation.
| | - Alexandra Gritskova
- Moscow State University, Leninskie Gory Str. 1, Moscow, 119991, Russian Federation
| | - Andrei Manzhurtsev
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Bol'shaya Polyanka St. 22, Moscow, 119180, Russian Federation
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
- Moscow State University, Leninskie Gory Str. 1, Moscow, 119991, Russian Federation
| | - Maxim Ublinskiy
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Bol'shaya Polyanka St. 22, Moscow, 119180, Russian Federation
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
- Moscow State University, Leninskie Gory Str. 1, Moscow, 119991, Russian Federation
| | - Petr Menshchikov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
- LLC Philips Healthcare, 13 Sergeya Makeeva Str., Moscow, 123022, Russian Federation
| | - Anatoly Vanin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
| | - Dmitriy Kupriyanov
- LLC Philips Healthcare, 13 Sergeya Makeeva Str., Moscow, 123022, Russian Federation
| | - Tolib Akhadov
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Bol'shaya Polyanka St. 22, Moscow, 119180, Russian Federation
- Moscow State University, Leninskie Gory Str. 1, Moscow, 119991, Russian Federation
| | - Natalia Semenova
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Bol'shaya Polyanka St. 22, Moscow, 119180, Russian Federation
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
- Moscow State University, Leninskie Gory Str. 1, Moscow, 119991, Russian Federation
| |
Collapse
|
8
|
Xiao Y, Lanz B, Lim S, Tkáč I, Xin L. Improved reproducibility of γ-aminobutyric acid measurement from short-echo-time proton MR spectroscopy by linewidth-matched basis sets in LCModel. NMR IN BIOMEDICINE 2024; 37:e5056. [PMID: 37839823 PMCID: PMC11580110 DOI: 10.1002/nbm.5056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
γ-Aminobutyric acid (GABA), as the primary inhibitory neurotransmitter, is extremely important for maintaining healthy brain function, and deviations from GABA homeostasis are related to various brain diseases. Short-echo-time (short-TE) proton MR spectroscopy (1 H-MRS) has been employed to measure GABA concentration from various human brain regions at high magnetic fields. The aim of this study was to investigate the effect of spectral linewidth on GABA quantification and explore the application of an optimized basis-set preparation approach using a spectral-linewidth-matched (LM) basis set in LCModel to improve the reproducibility of GABA quantification from short-TE 1 H-MRS. In contrast to the fixed-linewidth basis-set approach, the LM basis-set preparation approach, where all metabolite basis spectra were simulated with a linewidth 4 Hz narrower than that of water, showed a smaller standard deviation of estimated GABA concentration from synthetic spectra with varying linewidths and lineshapes. The test-retest reproducibility was assessed by the mean within-subject coefficient of variation, which improved from 19.2% to 12.0% in the thalamus, from 27.9% to 14.9% in the motor cortex, and from 9.7% to 2.8% in the medial prefrontal cortex using LM basis sets at 7 T. We conclude that spectral linewidth has a large effect on GABA quantification from short-TE 1 H-MRS data and that using LM basis sets in LCModel can improve the reproducibility of GABA quantification.
Collapse
Affiliation(s)
- Ying Xiao
- Center for Biomedical Imaging (CIBM)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bernard Lanz
- Center for Biomedical Imaging (CIBM)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Song‐I Lim
- Center for Biomedical Imaging (CIBM)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Ivan Tkáč
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
9
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RAE, Stark CEL. Meta-analysis and open-source database for in vivo brain Magnetic Resonance spectroscopy in health and disease. Anal Biochem 2023; 676:115227. [PMID: 37423487 PMCID: PMC10561665 DOI: 10.1016/j.ab.2023.115227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Alyssa L Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Jocelyn H Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
10
|
Yoo JH, Park YW, Kim D, Park H, Jeong B. Effects of Parental Verbal Abuse Experience on the Glutamate Response to Swear Words in the Ventromedial Prefrontal Cortex: A Functional 1H-magnetic Resonance Spectroscopy Study. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:559-571. [PMID: 37424423 PMCID: PMC10335905 DOI: 10.9758/cpn.22.1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 07/11/2023]
Abstract
Objective Several lines of evidence indicate verbal abuse (VA) critically impacts the developing brain; however, whether VA results in changes in brain neurochemistry has not been established. Here, we hypothesized that exposure to recurrent parental VA elicits heightened glutamate (Glu) responses during the presentation of swear words, which can be measured with functional magnetic resonance spectroscopy (fMRS). Methods During an emotional Stroop task consisting of blocks of color and swear words, metabolite concentration changes were measured in the ventromedial prefrontal cortex (vmPFC) and the left amygdalohippocampal region (AMHC) of healthy adults (14 F/27 M, 23 ± 4 years old) using fMRS. The dynamic changes in Glu and their associations with the emotional state of the participants were finally evaluated based on 36 datasets from the vmPFC and 30 from the AMHC. Results A repeated-measures analysis of covariance revealed a modest effect of parental VA severity on Glu changes in the vmPFC. The total score on the Verbal Abuse Questionnaire by parents (pVAQ) was associated with the Glu response to swear words (ΔGluSwe). The interaction term of ΔGluSwe and baseline N-acetyl aspartate (NAA) level in the vmPFC could be used to predict state-trait anxiety level and depressive mood. We could not find any significant associations between ΔGluSwe in the AMHC and either pVAQ or emotional states. Conclusion Parental VA exposure in individuals is associated with a greater Glu response towards VA-related stimuli in the vmPFC and that the accompanying low NAA level may be associated with anxiety level or depressive mood.
Collapse
Affiliation(s)
- Jae Hyun Yoo
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Young Woo Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dohyun Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Department of Psychiatry, Dankook University College of Medicine, Cheonan, Korea
| | - HyunWook Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Bumseok Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- KAIST Institute for Health Science and Technology and KI for Artificial Intelligence, KAIST, Daejeon, Korea
| |
Collapse
|
11
|
Koolschijn RS, Clarke WT, Ip IB, Emir UE, Barron HC. Event-related functional magnetic resonance spectroscopy. Neuroimage 2023; 276:120194. [PMID: 37244321 PMCID: PMC7614684 DOI: 10.1016/j.neuroimage.2023.120194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Proton-Magnetic Resonance Spectroscopy (MRS) is a non-invasive brain imaging technique used to measure the concentration of different neurochemicals. "Single-voxel" MRS data is typically acquired across several minutes, before individual transients are averaged through time to give a measurement of neurochemical concentrations. However, this approach is not sensitive to more rapid temporal dynamics of neurochemicals, including those that reflect functional changes in neural computation relevant to perception, cognition, motor control and ultimately behaviour. In this review we discuss recent advances in functional MRS (fMRS) that now allow us to obtain event-related measures of neurochemicals. Event-related fMRS involves presenting different experimental conditions as a series of trials that are intermixed. Critically, this approach allows spectra to be acquired at a time resolution in the order of seconds. Here we provide a comprehensive user guide for event-related task designs, choice of MRS sequence, analysis pipelines, and appropriate interpretation of event-related fMRS data. We raise various technical considerations by examining protocols used to quantify dynamic changes in GABA, the primary inhibitory neurotransmitter in the brain. Overall, we propose that although more data is needed, event-related fMRS can be used to measure dynamic changes in neurochemicals at a temporal resolution relevant to computations that support human cognition and behaviour.
Collapse
Affiliation(s)
- Renée S Koolschijn
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - I Betina Ip
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom
| | - Uzay E Emir
- School of Health Sciences, Purdue University, West Lafayette, United States
| | - Helen C Barron
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, United Kingdom; Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
12
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RA, Stark C. Meta-analysis and Open-source Database for In Vivo Brain Magnetic Resonance Spectroscopy in Health and Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528046. [PMID: 37205343 PMCID: PMC10187197 DOI: 10.1101/2023.02.10.528046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proton ( 1 H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo . Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T 2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T. Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Alyssa L. Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Jocelyn H. Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Craig Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| |
Collapse
|
13
|
Lin SHN, Lien YR, Shibata K, Sasaki Y, Watanabe T, Lin CP, Chang LH. The phase of plasticity-induced neurochemical changes of high-frequency repetitive transcranial magnetic stimulation are different from visual perceptual learning. Sci Rep 2023; 13:5720. [PMID: 37029245 PMCID: PMC10082079 DOI: 10.1038/s41598-023-32985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 04/09/2023] Open
Abstract
Numerous studies have found that repetitive transcranial magnetic stimulation (rTMS) modulates plasticity. rTMS has often been used to change neural networks underlying learning, often under the assumption that the mechanism of rTMS-induced plasticity should be highly similar to that associated with learning. The presence of visual perceptual learning (VPL) reveals the plasticity of early visual systems, which is formed through multiple phases. Hence, we tested how high-frequency (HF) rTMS and VPL modulate the effect of visual plasticity by investigating neurometabolic changes in early visual areas. We employed an excitatory-to-inhibitory (E/I) ratio, which refers to glutamate concentration divided by GABA+ concentration, as an index of the degree of plasticity. We compared neurotransmitter concentration changes after applying HF rTMS to the visual cortex with those after training in a visual task, in otherwise identical procedures. Both the time courses of the E/I ratios and neurotransmitter contributions to the E/I ratio significantly differed between HF rTMS and training conditions. The peak E/I ratio occurred 3.5 h after HF rTMS with decreased GABA+, whereas the peak E/I ratio occurred 0.5 h after visual training with increased glutamate. Furthermore, HF rTMS temporally decreased the thresholds for detecting phosphene and perceiving low-contrast stimuli, indicating increased visual plasticity. These results suggest that plasticity in early visual areas induced by HF rTMS is not as involved in the early phase of development of VPL that occurs during and immediately after training.
Collapse
Affiliation(s)
- Shang-Hua N Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun R Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Yuka Sasaki
- Department of Cognitive, Linguistics, and Psychological Sciences, Brown University, Providence, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistics, and Psychological Sciences, Brown University, Providence, USA
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hung Chang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
14
|
Lea-Carnall CA, El-Deredy W, Stagg CJ, Williams SR, Trujillo-Barreto NJ. A mean-field model of glutamate and GABA synaptic dynamics for functional MRS. Neuroimage 2023; 266:119813. [PMID: 36528313 PMCID: PMC7614487 DOI: 10.1016/j.neuroimage.2022.119813] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/31/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Advances in functional magnetic resonance spectroscopy (fMRS) have enabled the quantification of activity-dependent changes in neurotransmitter concentrations in vivo. However, the physiological basis of the large changes in GABA and glutamate observed by fMRS (>10%) over short time scales of less than a minute remain unclear as such changes cannot be accounted for by known synthesis or degradation metabolic pathways. Instead, it has been hypothesized that fMRS detects shifts in neurotransmitter concentrations as they cycle from presynaptic vesicles, where they are largely invisible, to extracellular and cytosolic pools, where they are detectable. The present paper uses a computational modelling approach to demonstrate the viability of this hypothesis. A new mean-field model of the neural mechanisms generating the fMRS signal in a cortical voxel is derived. The proposed macroscopic mean-field model is based on a microscopic description of the neurotransmitter dynamics at the level of the synapse. Specifically, GABA and glutamate are assumed to cycle between three metabolic pools: packaged in the vesicles; active in the synaptic cleft; and undergoing recycling and repackaging in the astrocytic or neuronal cytosol. Computational simulations from the model are used to generate predicted changes in GABA and glutamate concentrations in response to different types of stimuli including pain, vision, and electric current stimulation. The predicted changes in the extracellular and cytosolic pools corresponded to those reported in empirical fMRS data. Furthermore, the model predicts a selective control mechanism of the GABA/glutamate relationship, whereby inhibitory stimulation reduces both neurotransmitters, whereas excitatory stimulation increases glutamate and decreases GABA. The proposed model bridges between neural dynamics and fMRS and provides a mechanistic account for the activity-dependent changes in the glutamate and GABA fMRS signals. Lastly, these results indicate that echo-time may be an important timing parameter that can be leveraged to maximise fMRS experimental outcomes.
Collapse
Affiliation(s)
- Caroline A Lea-Carnall
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, UK.
| | - Wael El-Deredy
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Chile; Valencian Graduate School and Research Network of Artificial Intelligence.; Department of Electronic Engineering, School of Engineering, Universitat de Val..ncia, Spain..
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stephen R Williams
- Division of Informatics, Imaging and Data Science, University of Manchester, Manchester, UK
| | - Nelson J Trujillo-Barreto
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, UK
| |
Collapse
|
15
|
Bell TK, Craven AR, Hugdahl K, Noeske R, Harris AD. Functional Changes in GABA and Glutamate during Motor Learning. eNeuro 2023; 10:ENEURO.0356-20.2023. [PMID: 36754626 PMCID: PMC9961379 DOI: 10.1523/eneuro.0356-20.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Functional magnetic resonance spectroscopy (fMRS) of GABA at 3 T poses additional challenges compared with fMRS of other metabolites because of the difficulties of measuring GABA levels; GABA is present in the brain at relatively low concentrations, and its signal is overlapped by higher concentration metabolites. Using 7 T fMRS, GABA levels have been shown to decrease specifically during motor learning (and not during a control task). Though the use of 7 T is appealing, access is limited. For GABA fMRS to be widely accessible, it is essential to develop this method at 3 T. Nine healthy right-handed participants completed a motor learning and a control button-pressing task. fMRS data were acquired from the left sensorimotor cortex during the task using a continuous GABA-edited MEGA-PRESS acquisition at 3 T. We found no significant changes in GABA+/tCr, Glx/tCr, or Glu/tCr levels in either task; however, we show a positive relationship between motor learning and glutamate levels both at rest and at the start of the task. Though further refinement and validation of this method is needed, this study represents a further step in using fMRS at 3 T to probe GABA levels in both healthy cognition and clinical disorders.
Collapse
Affiliation(s)
- Tiffany K Bell
- Department of Radiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Alexander R Craven
- Department of Biological and Medical Psychology, University of Bergen, NO-5020 Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, NO-5020 Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, N-5021 Bergen, Norway
- Department of Radiology, Haukeland University Hospital, N-5021 Bergen, Norway
- NORMENT Center for the Study of Mental Disorders, Oslo University Hospital HF, N-0450 Bergen, Norway
| | | | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
16
|
Pasanta D, He JL, Ford T, Oeltzschner G, Lythgoe DJ, Puts NA. Functional MRS studies of GABA and glutamate/Glx - A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 144:104940. [PMID: 36332780 PMCID: PMC9846867 DOI: 10.1016/j.neubiorev.2022.104940] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Functional magnetic resonance spectroscopy (fMRS) can be used to investigate neurometabolic responses to external stimuli in-vivo, but findings are inconsistent. We performed a systematic review and meta-analysis on fMRS studies of the primary neurotransmitters Glutamate (Glu), Glx (Glutamate + Glutamine), and GABA. Data were extracted, grouped by metabolite, stimulus domain, and brain region, and analysed by determining standardized effect sizes. The quality of individual studies was rated. When results were analysed by metabolite type small to moderate effect sizes of 0.29-0.47 (p < 0.05) were observed for changes in Glu and Glx regardless of stimulus domain and brain region, but no significant effects were observed for GABA. Further analysis suggests that Glu, Glx and GABA responses differ by stimulus domain or task and vary depending on the time course of stimulation and data acquisition. Here, we establish effect sizes and directionality of GABA, Glu and Glx response in fMRS. This work highlights the importance of standardised reporting and minimal best practice for fMRS research.
Collapse
Affiliation(s)
- Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom; Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom
| | - Talitha Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia; Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Georg Oeltzschner
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 700. N. Broadway, 21207 Baltimore, United States; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N. Wolfe Street, 21205 Baltimore, United States
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom; MRC Centre for Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL London, United Kingdom.
| |
Collapse
|
17
|
Rogan M, Friend AT, Rossetti GM, Edden R, Mikkelsen M, Oliver SJ, Macdonald JH, Mullins PG. Hypoxia alters posterior cingulate cortex metabolism during a memory task: A 1H fMRS study. Neuroimage 2022; 260:119397. [PMID: 35752413 PMCID: PMC9513808 DOI: 10.1016/j.neuroimage.2022.119397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental hypoxia (fraction of inspired oxygen (FIO2) ∼ 0.120) is known to trigger a global increase in cerebral blood flow (CBF). However, regionally, a heterogeneous response is reported, particularly within the posterior cingulate cortex (PCC) where decreased CBF is found after two hours of hypoxic exposure. Furthermore, hypoxia reverses task-evoked BOLD signals within the PCC, and other regions of the default mode network, suggesting a reversal of neurovascular coupling. An alternative explanation is that the neural architecture supporting cognitive tasks is reorganised. Therefore, to confirm if this previous result is neural or vascular in origin, a measure of neural activity that is not haemodynamic-dependant is required. To achieve this, we utilised functional magnetic resonance spectroscopy to probe the glutamate response to memory recall in the PCC during normoxia (FIO2 = 0.209) and after two hours of poikilocapnic hypoxia (FIO2 = 0.120). We also acquired ASL-based measures of CBF to confirm previous findings of reduced CBF within the PCC in hypoxia. Consistent with previous findings, hypoxia induced a reduction in CBF within the PCC and other regions of the default mode network. Under normoxic conditions, memory recall was associated with an 8% increase in PCC glutamate compared to rest (P = 0.019); a change which was not observed during hypoxia. However, exploratory analysis of other neurometabolites showed that PCC glucose was reduced during hypoxia compared to normoxia both at rest (P = 0.039) and during the task (P = 0.046). We conclude that hypoxia alters the activity-induced increase in glutamate, which may reflect a reduction in oxidative metabolism within the PCC. The reduction in glucose in hypoxia reflects continued metabolism, presumably by non-oxidative means, without replacement of glucose due to reduced CBF.
Collapse
Affiliation(s)
- Matthew Rogan
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; The Bangor Imaging Unit, Bangor University, Bangor, United Kingdom; Institute for Applied Human Physiology, Bangor University, Bangor, United Kingdom
| | - Alexander T Friend
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; Institute for Applied Human Physiology, Bangor University, Bangor, United Kingdom
| | - Gabriella Mk Rossetti
- Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading, United Kingdom
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Mark Mikkelsen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Samuel J Oliver
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; Institute for Applied Human Physiology, Bangor University, Bangor, United Kingdom
| | - Jamie H Macdonald
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; Institute for Applied Human Physiology, Bangor University, Bangor, United Kingdom
| | - Paul G Mullins
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; The Bangor Imaging Unit, Bangor University, Bangor, United Kingdom; Institute for Applied Human Physiology, Bangor University, Bangor, United Kingdom.
| |
Collapse
|
18
|
Multi-Echo Investigations of Positive and Negative CBF and Concomitant BOLD Changes: Positive and negative CBF and BOLD changes. Neuroimage 2022; 263:119661. [PMID: 36198353 DOI: 10.1016/j.neuroimage.2022.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
Unlike the positive blood oxygenation level-dependent (BOLD) response (PBR), commonly taken as an indication of an 'activated' brain region, the physiological origin of negative BOLD signal changes (i.e. a negative BOLD response, NBR), also referred to as 'deactivation' is still being debated. In this work, an attempt was made to gain a better understanding of the underlying mechanism by obtaining a comprehensive measure of the contributing cerebral blood flow (CBF) and its relationship to the NBR in the human visual cortex, in comparison to a simultaneously induced PBR in surrounding visual regions. To overcome the low signal-to-noise ratio (SNR) of CBF measurements, a newly developed multi-echo version of a center-out echo planar-imaging (EPI) readout was employed with pseudo-continuous arterial spin labeling (pCASL). It achieved very short echo and inter-echo times and facilitated a simultaneous detection of functional CBF and BOLD changes at 3 T with improved sensitivity. Evaluations of the absolute and relative changes of CBF and the effective transverse relaxation rate,R2* the coupling ratios, and their dependence on CBF at rest, CBFrest indicated differences between activated and deactivated regions. Analysis of the shape of the respective functional responses also revealed faster negative responses with more pronounced post-stimulus transients. Resulting differences in the flow-metabolism coupling ratios were further examined for potential distinctions in the underlying neuronal contributions.
Collapse
|
19
|
Koush Y, Rothman DL, Behar KL, de Graaf RA, Hyder F. Human brain functional MRS reveals interplay of metabolites implicated in neurotransmission and neuroenergetics. J Cereb Blood Flow Metab 2022; 42:911-934. [PMID: 35078383 PMCID: PMC9125492 DOI: 10.1177/0271678x221076570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 01/28/2023]
Abstract
While functional MRI (fMRI) localizes brain activation and deactivation, functional MRS (fMRS) provides insights into the underlying metabolic conditions. There is much interest in measuring task-induced and resting levels of metabolites implicated in neuroenergetics (e.g., lactate, glucose, or β-hydroxybutyrate (BHB)) and neurotransmission (e.g., γ-aminobutyric acid (GABA) or pooled glutamate and glutamine (Glx)). Ultra-high magnetic field (e.g., 7T) has boosted the fMRS quantification precision, reliability, and stability of spectroscopic observations using short echo-time (TE) 1H-MRS techniques. While short TE 1H-MRS lacks sensitivity and specificity for fMRS at lower magnetic fields (e.g., 3T or 4T), most of these metabolites can also be detected by J-difference editing (JDE) 1H-MRS with longer TE to filter overlapping resonances. The 1H-MRS studies show that JDE can detect GABA, Glx, lactate, and BHB at 3T, 4T and 7T. Most recently, it has also been demonstrated that JDE 1H-MRS is capable of reliable detection of metabolic changes in different brain areas at various magnetic fields. Combining fMRS measurements with fMRI is important for understanding normal brain function, but also clinically relevant for mechanisms and/or biomarkers of neurological and neuropsychiatric disorders. We provide an up-to-date overview of fMRS research in the last three decades, both in terms of applications and technological advances. Overall the emerging fMRS techniques can be expected to contribute substantially to our understanding of metabolism for brain function and dysfunction.
Collapse
Affiliation(s)
- Yury Koush
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Kevin L Behar
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robin A de Graaf
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
20
|
Dorst J, Borbath T, Landheer K, Avdievich N, Henning A. Simultaneous detection of metabolite concentration changes, water BOLD signal and pH changes during visual stimulation in the human brain at 9.4T. J Cereb Blood Flow Metab 2022; 42:1104-1119. [PMID: 35060409 PMCID: PMC9121534 DOI: 10.1177/0271678x221075892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
This study presents a method to directly link metabolite concentration changes and BOLD response in the human brain during visual stimulation by measuring the water and metabolite signals simultaneously. Therefore, the metabolite-cycling (MC) non-water suppressed semiLASER localization technique was optimized for functional 1H MRS in the human brain at 9.4 T. Data of 13 volunteers were acquired during a 26:40 min visual stimulation block-design paradigm. Activation-induced BOLD signal was observed in the MC water signal as well as in the NAA-CH3 and tCr-CH3 singlets. During stimulation, glutamate concentration increased 2.3 ± 2.0% to a new steady-state, while a continuous increase over the whole stimulation period could be observed in lactate with a mean increase of 35.6 ± 23.1%. These increases of Lac and Glu during brain activation confirm previous findings reported in literature. A positive correlation of the MC water BOLD signal with glutamate and lactate concentration changes was found. In addition, a pH decrease calculated from a change in the ratio of PCr to Cr was observed during brain activation, particularly at the onset of the stimulation.
Collapse
Affiliation(s)
- Johanna Dorst
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, University of Tübingen, Tübingen, Germany
| | - Tamas Borbath
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Faculty of Science, University of Tübingen, University of Tübingen, Tübingen, Germany
| | | | - Nikolai Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
21
|
Frangou P, Clarke WT. Where functional MRI stops, metabolism starts. eLife 2022; 11:78327. [PMID: 35467531 PMCID: PMC9038188 DOI: 10.7554/elife.78327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Combining techniques that track blood oxygenation and biochemicals during neuronal activity reveals how the brain computes perceived and unperceived stimuli.
Collapse
Affiliation(s)
- Polytimi Frangou
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Yakovlev A, Manzhurtsev A, Menshchikov P, Ublinskiy M, Melnikov I, Kupriyanov D, Akhadov T, Semenova N. Functional Magnetic Resonance Spectroscopy Study of Total Glutamate and Glutamine in the Human Visual Cortex Activated by a Short Stimulus. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
DiNuzzo M, Mangia S, Moraschi M, Mascali D, Hagberg GE, Giove F. Perception is associated with the brain's metabolic response to sensory stimulation. eLife 2022; 11:71016. [PMID: 35225790 PMCID: PMC9038191 DOI: 10.7554/elife.71016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Processing of incoming sensory stimulation triggers an increase of cerebral perfusion and blood oxygenation (neurovascular response) as well as an alteration of the metabolic neurochemical profile (neurometabolic response). Here we show in human primary visual cortex (V1) that perceived and unperceived isoluminant chromatic flickering stimuli designed to have similar neurovascular responses as measured by blood oxygenation level dependent functional MRI (BOLD-fMRI) have markedly different neurometabolic responses as measured by functional MRS. In particular, a significant regional buildup of lactate, an index of aerobic glycolysis, and glutamate, an index of malate-aspartate shuttle, occurred in V1 only when the flickering was perceived, without any relation with behavioral or physiological variables. Whereas the BOLD-fMRI signal in V1, a proxy for input to V1, was insensitive to flickering perception by design, the BOLD-fMRI signal in secondary visual areas was larger during perceived than unperceived flickering, indicating increased output from V1. These results demonstrate that the upregulation of energy metabolism induced by visual stimulation depends on the type of information processing taking place in V1, and that 1H-fMRS provides unique information about local input/output balance that is not measured by BOLD fMRI.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, United States
| | - Marta Moraschi
- Department of Radiation Oncology, University of Rome, Rome, Italy
| | - Daniele Mascali
- Dipartimento di Neuroscienze, Università Gabriele D'Annunzio, Chieti, Italy
| | - Gisela E Hagberg
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics and Biomedical Magnetic Resonance, Tübingen, Germany
| | - Federico Giove
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| |
Collapse
|
24
|
Takado Y, Takuwa H, Sampei K, Urushihata T, Takahashi M, Shimojo M, Uchida S, Nitta N, Shibata S, Nagashima K, Ochi Y, Ono M, Maeda J, Tomita Y, Sahara N, Near J, Aoki I, Shibata K, Higuchi M. MRS-measured glutamate versus GABA reflects excitatory versus inhibitory neural activities in awake mice. J Cereb Blood Flow Metab 2022; 42:197-212. [PMID: 34515548 PMCID: PMC8721779 DOI: 10.1177/0271678x211045449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To assess if magnetic resonance spectroscopy (MRS)-measured Glutamate (Glu) and GABA reflect excitatory and inhibitory neural activities, respectively, we conducted MRS measurements along with two-photon mesoscopic imaging of calcium signals in excitatory and inhibitory neurons of living, unanesthetized mice. For monitoring stimulus-driven activations of a brain region, MRS signals and mesoscopic neural activities were measured during two consecutive sessions of 15-min prolonged sensory stimulations. In the first session, putative excitatory neuronal activities were increased, while inhibitory neuronal activities remained at the baseline level. In the second half, while excitatory neuronal activities remained elevated, inhibitory neuronal activities were significantly enhanced. We assessed regional neurochemical statuses by measuring MRS signals, which were overall in accordance with the neural activities, and neuronal activities and neurochemical statuses in a mouse model of Dravet syndrome under resting condition. Mesoscopic assessments showed that activities of inhibitory neurons in the cortex were diminished relative to wild-type mice in contrast to spared activities of excitatory neurons. Consistent with these observations, the Dravet model exhibited lower concentrations of GABA than wild-type controls. Collectively, the current investigations demonstrate that MRS-measured Glu and GABA can reflect spontaneous and stimulated activities of neurons producing and releasing these neurotransmitters in an awake condition.
Collapse
Affiliation(s)
- Yuhei Takado
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Yuhei Takado, Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Hiroyuki Takuwa
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Hiroyuki Takuwa, Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Kazuaki Sampei
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takuya Urushihata
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Manami Takahashi
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masafumi Shimojo
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shoko Uchida
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Nobuhiro Nitta
- Department of Molecular Imaging and Theranostics, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sayaka Shibata
- Department of Molecular Imaging and Theranostics, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Keisuke Nagashima
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kyoto, Japan
| | - Yoshihiro Ochi
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kyoto, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jun Maeda
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jamie Near
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Canada
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuhisa Shibata
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Laboratory for Human Cognition and Learning, Center for Brain Science, RIKEN, Saitama, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Makoto Higuchi, Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| |
Collapse
|
25
|
Palaniyappan L, Park MTM, Jeon P, Limongi R, Yang K, Sawa A, Théberge J. Is There a Glutathione Centered Redox Dysregulation Subtype of Schizophrenia? Antioxidants (Basel) 2021; 10:1703. [PMID: 34829575 PMCID: PMC8615159 DOI: 10.3390/antiox10111703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia continues to be an illness with poor outcome. Most mechanistic changes occur many years before the first episode of schizophrenia; these are not reversible after the illness onset. A developmental mechanism that is still modifiable in adult life may center on intracortical glutathione (GSH). A large body of pre-clinical data has suggested the possibility of notable GSH-deficit in a subgroup of patients with schizophrenia. Nevertheless, studies of intracortical GSH are not conclusive in this regard. In this review, we highlight the recent ultra-high field magnetic resonance spectroscopic studies linking GSH to critical outcome measures across various stages of schizophrenia. We discuss the methodological steps required to conclusively establish or refute the persistence of GSH-deficit subtype and clarify the role of the central antioxidant system in disrupting the brain structure and connectivity in the early stages of schizophrenia. We propose in-vivo GSH quantification for patient selection in forthcoming antioxidant trials in psychosis. This review offers directions for a promising non-dopaminergic early intervention approach in schizophrenia.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Min Tae M. Park
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
| | - Peter Jeon
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Roberto Limongi
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.Y.); (A.S.)
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.Y.); (A.S.)
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jean Théberge
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
26
|
Lee J, Andronesi OC, Torrado-Carvajal A, Ratai EM, Loggia ML, Weerasekera A, Berry MP, Ellingsen DM, Isaro L, Lazaridou A, Paschali M, Grahl A, Wasan AD, Edwards RR, Napadow V. 3D magnetic resonance spectroscopic imaging reveals links between brain metabolites and multidimensional pain features in fibromyalgia. Eur J Pain 2021; 25:2050-2064. [PMID: 34102707 DOI: 10.1002/ejp.1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Fibromyalgia is a centralized multidimensional chronic pain syndrome, but its pathophysiology is not fully understood. METHODS We applied 3D magnetic resonance spectroscopic imaging (MRSI), covering multiple cortical and subcortical brain regions, to investigate the association between neuro-metabolite (e.g. combined glutamate and glutamine, Glx; myo-inositol, mIno; and combined (total) N-acetylaspartate and N-acetylaspartylglutamate, tNAA) levels and multidimensional clinical/behavioural variables (e.g. pain catastrophizing, clinical pain severity and evoked pain sensitivity) in women with fibromyalgia (N = 87). RESULTS Pain catastrophizing scores were positively correlated with Glx and tNAA levels in insular cortex, and negatively correlated with mIno levels in posterior cingulate cortex (PCC). Clinical pain severity was positively correlated with Glx levels in insula and PCC, and with tNAA levels in anterior midcingulate cortex (aMCC), but negatively correlated with mIno levels in aMCC and thalamus. Evoked pain sensitivity was negatively correlated with levels of tNAA in insular cortex, MCC, PCC and thalamus. CONCLUSIONS These findings support single voxel placement targeting nociceptive processing areas in prior 1 H-MRS studies, but also highlight other areas not as commonly targeted, such as PCC, as important for chronic pain pathophysiology. Identifying target brain regions linked to multidimensional symptoms of fibromyalgia (e.g. negative cognitive/affective response to pain, clinical pain, evoked pain sensitivity) may aid the development of neuromodulatory and individualized therapies. Furthermore, efficient multi-region sampling with 3D MRSI could reduce the burden of lengthy scan time for clinical research applications of molecular brain-based mechanisms supporting multidimensional aspects of fibromyalgia. SIGNIFICANCE This large N study linked brain metabolites and pain features in fibromyalgia patients, with a better spatial resolution and brain coverage, to understand a molecular mechanism underlying pain catastrophizing and other aspects of pain transmission. Metabolite levels in self-referential cognitive processing area as well as pain-processing regions were associated with pain outcomes. These results could help the understanding of its pathophysiology and treatment strategies for clinicians.
Collapse
Affiliation(s)
- Jeungchan Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ovidiu C Andronesi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Angel Torrado-Carvajal
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Eva-Maria Ratai
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Akila Weerasekera
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Michael P Berry
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Dan-Mikael Ellingsen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Laura Isaro
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Asimina Lazaridou
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Myrella Paschali
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arvina Grahl
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ajay D Wasan
- Department of Anesthesiology and Perioperative Medicine, Center for Innovation in Pain Care, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Smart K, Liu H, Matuskey D, Chen MK, Torres K, Nabulsi N, Labaree D, Ropchan J, Hillmer AT, Huang Y, Carson RE. Binding of the synaptic vesicle radiotracer [ 11C]UCB-J is unchanged during functional brain activation using a visual stimulation task. J Cereb Blood Flow Metab 2021; 41:1067-1079. [PMID: 32757741 PMCID: PMC8054713 DOI: 10.1177/0271678x20946198] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
The positron emission tomography radioligand [11C]UCB-J binds to synaptic vesicle glycoprotein 2 A (SV2A), a regulator of vesicle release. Increased neuronal firing could potentially affect tracer concentrations if binding site availability is altered during vesicle exocytosis. This study assessed whether physiological brain activation induces changes in [11C]UCB-J tissue influx (K1), volume of distribution (VT), or binding potential (BPND). Healthy volunteers (n = 7) underwent 60-min [11C]UCB-J PET scans at baseline and during intermittent presentation of 8-Hz checkerboard visual stimulation. Sensitivity to intermittent changes in kinetic parameters was assessed in simulations, and visual stimulation was repeated using functional magnetic resonance imaging to characterize neural responses. VT and K1 were determined using the one-tissue compartment model and BPND using the simplified reference tissue model. In primary visual cortex, K1 increased 34.3 ± 15.5% (p = 0.001) during stimulation, with no change in other regions (ps > 0.12). K1 change was correlated with fMRI BOLD response (r = 0.77, p = 0.043). There was no change in VT (-3.9 ± 8.8%, p = 0.33) or BPND (-0.2 ± 9.6%, p = 0.94) in visual cortex nor other regions (ps > 0.19). Therefore, despite robust increases in regional tracer influx due to blood flow increases, binding measures were unchanged during stimulation. [11C]UCB-J VT and BPND are likely to be stable in vivo measures of synaptic density.
Collapse
Affiliation(s)
- Kelly Smart
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Heather Liu
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT, USA
| | - David Matuskey
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Ming-Kai Chen
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Kristen Torres
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - David Labaree
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Ansel T Hillmer
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT, USA
| |
Collapse
|
28
|
Andronesi OC, Bhattacharyya PK, Bogner W, Choi IY, Hess AT, Lee P, Meintjes E, Tisdall MD, Zaitzev M, van der Kouwe A. Motion correction methods for MRS: experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4364. [PMID: 33089547 PMCID: PMC7855523 DOI: 10.1002/nbm.4364] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 05/07/2023]
Abstract
Long acquisition times due to intrinsically low signal-to-noise ratio and the need for highly homogeneous B0 field make MRS particularly susceptible to motion or scanner instability compared with MRI. Motion-induced changes in both localization and shimming (ie B0 homogeneity) degrade MRS data quality. To mitigate the effects of motion three approaches can be employed: (1) subject immobilization, (2) retrospective correction, and (3) prospective real-time correction using internal and/or external tracking methods. Prospective real-time correction methods can simultaneously update localization and the B0 field to improve MRS data quality. While localization errors can be corrected with both internal (navigators) and external (optical camera, NMR probes) tracking methods, the B0 field correction requires internal navigator methods to measure the B0 field inside the imaged volume and the possibility to update the scanner shim hardware in real time. Internal and external tracking can rapidly update the MRS localization with submillimeter and subdegree precision, while scanner frequency and first-order shims of scanner hardware can be updated by internal methods every sequence repetition. These approaches are most well developed for neuroimaging, for which rigid transformation is primarily applicable. Real-time correction greatly improves the stability of MRS acquisition and quantification, as shown in clinical studies on subjects prone to motion, including children and patients with movement disorders, enabling robust measurement of metabolite signals including those with low concentrations, such as gamma-aminobutyric acid and glutathione. Thus, motion correction is recommended for MRS users and calls for tighter integration and wider availability of such methods by MR scanner manufacturers.
Collapse
Affiliation(s)
- Ovidiu C. Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Corresponding Author: Ovidiu C. Andronesi, MD, PhD, Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Thirteenth Street, Charlestown, MA 02129, USA;
| | | | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - In-Young Choi
- Department of Neurology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Aaron T. Hess
- University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, University of Oxford
| | - Phil Lee
- Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ernesta Meintjes
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town
| | - M. Dylan Tisdall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania
| | - Maxim Zaitzev
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- High Field Magnetic Resonance Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - André van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Koush Y, de Graaf RA, Kupers R, Dricot L, Ptito M, Behar KL, Rothman DL, Hyder F. Metabolic underpinnings of activated and deactivated cortical areas in human brain. J Cereb Blood Flow Metab 2021; 41:986-1000. [PMID: 33472521 PMCID: PMC8054719 DOI: 10.1177/0271678x21989186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/04/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
Neuroimaging with functional MRI (fMRI) identifies activated and deactivated brain regions in task-based paradigms. These patterns of (de)activation are altered in diseases, motivating research to understand their underlying biochemical/biophysical mechanisms. Essentially, it remains unknown how aerobic metabolism of glucose to lactate (aerobic glycolysis) and excitatory-inhibitory balance of glutamatergic and GABAergic neuronal activities vary in these areas. In healthy volunteers, we investigated metabolic distinctions of activating visual cortex (VC, a task-positive area) using a visual task and deactivating posterior cingulate cortex (PCC, a task-negative area) using a cognitive task. We used fMRI-guided J-edited functional MRS (fMRS) to measure lactate, glutamate plus glutamine (Glx) and γ-aminobutyric acid (GABA), as indicators of aerobic glycolysis and excitatory-inhibitory balance, respectively. Both lactate and Glx increased upon activating VC, but did not change upon deactivating PCC. Basal GABA was negatively correlated with BOLD responses in both brain areas, but during functional tasks GABA decreased in VC upon activation and GABA increased in PCC upon deactivation, suggesting BOLD responses in relation to baseline are impacted oppositely by task-induced inhibition. In summary, opposite relations between BOLD response and GABAergic inhibition, and increases in aerobic glycolysis and glutamatergic activity distinguish the BOLD response in (de)activated areas.
Collapse
Affiliation(s)
- Yury Koush
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Robin A de Graaf
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ron Kupers
- BRAINlab, Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurence Dricot
- Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Belgium
| | - Maurice Ptito
- School of Optometry, Université de Montreal, Montreal, Canada
| | - Kevin L Behar
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
30
|
Dwyer GE, Craven AR, Bereśniewicz J, Kazimierczak K, Ersland L, Hugdahl K, Grüner R. Simultaneous Measurement of the BOLD Effect and Metabolic Changes in Response to Visual Stimulation Using the MEGA-PRESS Sequence at 3 T. Front Hum Neurosci 2021; 15:644079. [PMID: 33841118 PMCID: PMC8024522 DOI: 10.3389/fnhum.2021.644079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
The blood oxygen level dependent (BOLD) effect that provides the contrast in functional magnetic resonance imaging (fMRI) has been demonstrated to affect the linewidth of spectral peaks as measured with magnetic resonance spectroscopy (MRS) and through this, may be used as an indirect measure of cerebral blood flow related to neural activity. By acquiring MR-spectra interleaved with frames without water suppression, it may be possible to image the BOLD effect and associated metabolic changes simultaneously through changes in the linewidth of the unsuppressed water peak. The purpose of this study was to implement this approach with the MEGA-PRESS sequence, widely considered to be the standard sequence for quantitative measurement of GABA at field strengths of 3 T and lower, to observe how changes in both glutamate (measured as Glx) and GABA levels may relate to changes due to the BOLD effect. MR-spectra and fMRI were acquired from the occipital cortex (OCC) of 20 healthy participants whilst undergoing intrascanner visual stimulation in the form of a red and black radial checkerboard, alternating at 8 Hz, in 90 s blocks comprising 30 s of visual stimulation followed by 60 s of rest. Results show very strong agreement between the changes in the linewidth of the unsuppressed water signal and the canonical haemodynamic response function as well as a strong, negative, but not statistically significant, correlation with the Glx signal as measured from the OFF spectra in MEGA-PRESS pairs. Findings from this experiment suggest that the unsuppressed water signal provides a reliable measure of the BOLD effect and that correlations with associated changes in GABA and Glx levels may also be measured. However, discrepancies between metabolite levels as measured from the difference and OFF spectra raise questions regarding the reliability of the respective methods.
Collapse
Affiliation(s)
- Gerard Eric Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Alexander R Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Justyna Bereśniewicz
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Katarzyna Kazimierczak
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Lars Ersland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Renate Grüner
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.,Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, University of Bergen, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Physics and Technology, University of Bergen, Bergen, Norway
| |
Collapse
|
31
|
Visual Attention Modulates Glutamate-Glutamine Levels in Vestibular Cortex: Evidence from Magnetic Resonance Spectroscopy. J Neurosci 2021; 41:1970-1981. [PMID: 33452222 DOI: 10.1523/jneurosci.2018-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/12/2020] [Accepted: 12/22/2020] [Indexed: 11/21/2022] Open
Abstract
Attending to a stimulus enhances the neuronal responses to it, while responses to nonattended stimuli are not enhanced and may even be suppressed. Although the neural mechanisms of response enhancement for attended stimuli have been intensely studied, the neural mechanisms underlying attentional suppression remain largely unknown. It is uncertain whether attention acts to suppress the processing in sensory cortical areas that would otherwise process the nonattended stimulus or the subcortical input to these cortical areas. Moreover, the neurochemical mechanisms inducing a reduction or suppression of neuronal responses to nonattended stimuli are as yet unknown. Here, we investigated how attention directed toward visual processing cross-modally acts to suppress vestibular responses in the human brain. By using functional magnetic resonance spectroscopy in a group of female and male subjects, we find that attention to visual motion downregulates in a load-dependent manner the concentration of excitatory neurotransmitter (glutamate and its precursor glutamine, referred to together as Glx) within the parietoinsular vestibular cortex (PIVC), a core cortical area of the vestibular system, while leaving the concentration of inhibitory neurotransmitter (GABA) in PIVC unchanged. This makes PIVC less responsive to excitatory thalamic vestibular input, as corroborated by functional magnetic resonance imaging. Together, our results suggest that attention acts to suppress the processing of nonattended sensory cues cortically by neurochemically rendering the core cortical area of the nonattended sensory modality less responsive to excitatory thalamic input.SIGNIFICANCE STATEMENT Here, we address a fundamental problem that has eluded attention research for decades, namely, how the brain ignores irrelevant stimuli. To date, three classes of solutions to this problem have been proposed: (1) enhancement of GABAergic interneuron activity in cortex, (2) downregulation of glutamatergic cell activity in cortex; and (3) downregulation of neural activity in thalamic projection areas, which would then provide the cortex with less input. Here, we use magnetic resonance spectroscopy in humans and find support for the second hypothesis, implying that attention to one sensory modality involves the suppression of irrelevant stimuli of another sensory modality by downregulating glutamate in the cortex.
Collapse
|
32
|
Increased Glutamate concentrations during prolonged motor activation as measured using functional Magnetic Resonance Spectroscopy at 3T. Neuroimage 2020; 223:117338. [DOI: 10.1016/j.neuroimage.2020.117338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/20/2023] Open
|
33
|
Wilson R, Thomas A, Mayhew SD. Spatially congruent negative BOLD responses to different stimuli do not summate in visual cortex. Neuroimage 2020; 218:116891. [DOI: 10.1016/j.neuroimage.2020.116891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 01/07/2023] Open
|
34
|
Keogh R, Bergmann J, Pearson J. Cortical excitability controls the strength of mental imagery. eLife 2020; 9:50232. [PMID: 32369016 PMCID: PMC7200162 DOI: 10.7554/elife.50232] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/09/2020] [Indexed: 11/13/2022] Open
Abstract
Mental imagery provides an essential simulation tool for remembering the past and planning the future, with its strength affecting both cognition and mental health. Research suggests that neural activity spanning prefrontal, parietal, temporal, and visual areas supports the generation of mental images. Exactly how this network controls the strength of visual imagery remains unknown. Here, brain imaging and transcranial magnetic phosphene data show that lower resting activity and excitability levels in early visual cortex (V1-V3) predict stronger sensory imagery. Further, electrically decreasing visual cortex excitability using tDCS increases imagery strength, demonstrating a causative role of visual cortex excitability in controlling visual imagery. Together, these data suggest a neurophysiological mechanism of cortical excitability involved in controlling the strength of mental images.
Collapse
Affiliation(s)
- Rebecca Keogh
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Johanna Bergmann
- School of Psychology, University of New South Wales, Sydney, Australia.,Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt, Germany.,Brain Imaging Center Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany
| | - Joel Pearson
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
35
|
Laranjinha J, Nunes C, Ledo A, Lourenço C, Rocha B, Barbosa RM. The Peculiar Facets of Nitric Oxide as a Cellular Messenger: From Disease-Associated Signaling to the Regulation of Brain Bioenergetics and Neurovascular Coupling. Neurochem Res 2020; 46:64-76. [PMID: 32193753 DOI: 10.1007/s11064-020-03015-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
In this review, we address the regulatory and toxic role of ·NO along several pathways, from the gut to the brain. Initially, we address the role on ·NO in the regulation of mitochondrial respiration with emphasis on the possible contribution to Parkinson's disease via mechanisms that involve its interaction with a major dopamine metabolite, DOPAC. In parallel with initial discoveries of the inhibition of mitochondrial respiration by ·NO, it became clear the potential for toxic ·NO-mediated mechanisms involving the production of more reactive species and the post-translational modification of mitochondrial proteins. Accordingly, we have proposed a novel mechanism potentially leading to dopaminergic cell death, providing evidence that NO synergistically interact with DOPAC in promoting cell death via mechanisms that involve GSH depletion. The modulatory role of NO will be then briefly discussed as a master regulator on brain energy metabolism. The energy metabolism in the brain is central to the understanding of brain function and disease. The core role of ·NO in the regulation of brain metabolism and vascular responses is further substantiated by discussing its role as a mediator of neurovascular coupling, the increase in local microvessels blood flow in response to spatially restricted increase of neuronal activity. The many facets of NO as intracellular and intercellular messenger, conveying information associated with its spatial and temporal concentration dynamics, involve not only the discussion of its reactions and potential targets on a defined biological environment but also the regulation of its synthesis by the family of nitric oxide synthases. More recently, a novel pathway, out of control of NOS, has been the subject of a great deal of controversy, the nitrate:nitrite:NO pathway, adding new perspectives to ·NO biology. Thus, finally, this novel pathway will be addressed in connection with nitrate consumption in the diet and the beneficial effects of protein nitration by reactive nitrogen species.
Collapse
Affiliation(s)
- João Laranjinha
- Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal. .,Center for Neuroscience and Cell Biology, University of Coimbra, Pólo 1, 3000-504, Coimbra, Portugal.
| | - Carla Nunes
- Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Pólo 1, 3000-504, Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Pólo 1, 3000-504, Coimbra, Portugal
| | - Cátia Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Pólo 1, 3000-504, Coimbra, Portugal
| | - Bárbara Rocha
- Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Pólo 1, 3000-504, Coimbra, Portugal
| | - Rui M Barbosa
- Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Pólo 1, 3000-504, Coimbra, Portugal
| |
Collapse
|
36
|
Gröhn H, Gillick BT, Tkáč I, Bednařík P, Mascali D, Deelchand DK, Michaeli S, Meekins GD, Leffler-McCabe MJ, MacKinnon CD, Eberly LE, Mangia S. Influence of Repetitive Transcranial Magnetic Stimulation on Human Neurochemistry and Functional Connectivity: A Pilot MRI/MRS Study at 7 T. Front Neurosci 2019; 13:1260. [PMID: 31827419 PMCID: PMC6890551 DOI: 10.3389/fnins.2019.01260] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation method commonly used in the disciplines of neuroscience, neurology, and neuropsychiatry to examine or modulate brain function. Low frequency rTMS (e.g., 1 Hz) is associated with a net suppression of cortical excitability, whereas higher frequencies (e.g., 5 Hz) purportedly increase excitability. Magnetic resonance spectroscopy (MRS) and resting-state functional MRI (rsfMRI) allow investigation of neurochemistry and functional connectivity, respectively, and can assess the influence of rTMS in these domains. This pilot study investigated the effects of rTMS on the primary motor cortex using pre and post MRS and rsfMRI assessments at 7 T. Seven right-handed males (age 27 ± 7 y.o.) underwent single-voxel MRS and rsfMRI before and about 30-min after rTMS was administered outside the scanner for 20-min over the primary motor cortex of the left (dominant) hemisphere. All participants received 1-Hz rTMS; one participant additionally received 5-Hz rTMS in a separate session. Concentrations of 17 neurochemicals were quantified in left and right motor cortices. Connectivity metrics included fractional amplitude of low-frequency fluctuations (fALFF) and regional homogeneity (ReHo) of both motor cortices, strength of related brain networks, and inter-hemispheric connectivity. The group-analysis revealed few trends (i.e., uncorrected for multiple comparisons), including a mean increase in the concentration of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) after the inhibitory rTMS protocol as compared to baseline in the stimulated (left) motor cortex (+8%, p = 0.043), along with a slight increase of total creatine (+2%, p = 0.018), and decrease of aspartate (-18%, p = 0.016). Additionally, GABA tended to decrease in the contralateral hemisphere (-6%, p = 0.033). No other changes of metabolite concentrations were found. Whereas functional connectivity outcomes did not exhibit trends of significant changes induced by rTMS, the percent changes of few connectivity metrics in both hemispheres were negatively correlated with GABA changes in the contralateral hemisphere. While studies in larger cohorts are needed to confirm these preliminary findings, our results indicate the safety and feasibility of detecting changes in key metabolites associated with neurotransmission after a single 1-Hz rTMS session, establishing the construct for future exploration of the neurochemical, and connectivity mechanisms of cortical responses to neuromodulation.
Collapse
Affiliation(s)
- Heidi Gröhn
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Ivan Tkáč
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Petr Bednařík
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States.,Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria
| | - Daniele Mascali
- Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy
| | - Dinesh K Deelchand
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Shalom Michaeli
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Gregg D Meekins
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | | | - Colum D MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Lynn E Eberly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
37
|
Comparison of Neurochemical and BOLD Signal Contrast Response Functions in the Human Visual Cortex. J Neurosci 2019; 39:7968-7975. [PMID: 31358655 DOI: 10.1523/jneurosci.3021-18.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 01/20/2023] Open
Abstract
We investigated the relationship between neurochemical and hemodynamic responses as a function of image contrast in the human primary visual cortex (V1). Simultaneously acquired BOLD-fMRI and single voxel proton MR spectroscopy signals were measured in V1 of 24 healthy human participants of either sex at 7 tesla field strength, in response to presentations (64 s blocks) of different levels of image contrast (3%, 12.5%, 50%, 100%). Our results suggest that complementary measures of neurotransmission and energy metabolism are in partial agreement: BOLD and glutamate signals were linear with image contrast; however, a significant increase in glutamate concentration was evident only at the highest intensity level. In contrast, GABA signals were steady across all intensity levels. These results suggest that neurochemical concentrations are maintained at lower ranges of contrast levels, which match the statistics of natural vision, and that high stimulus intensity may be critical to increase sensitivity to visually modulated glutamate signals in the early visual cortex using MR spectroscopy.SIGNIFICANCE STATEMENT Glutamate and GABA are the major excitatory and inhibitory neurotransmitters of the brain. To better understand the relationship between MRS-visible neurochemicals, the BOLD signal change, and stimulus intensity, we measured combined neurochemical and BOLD signals (combined fMRI-MRS) to different image contrasts in human V1 at 7 tesla. While a linear change to contrast was present for both signals, the increase in glutamate was significant only at the highest stimulus intensity. These results suggest that hemodynamic and neurochemical signals reflect common metabolic markers of neural activity, whereas the mismatch at lower contrast levels may indicate a sensitivity threshold for detecting neurochemical changes during visual processing. Our results highlight the challenge and importance of reconciling cellular and metabolic measures of neural activity in the human brain.
Collapse
|