1
|
Cheng P, Li Y, Wang S, Liang L, Zhang M, Liu H, Shen W, Zhou W. Coupling analysis of diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) with abnormal cerebral blood flow in methamphetamine-dependent patients and its application in machine-learning-based classification. J Affect Disord 2025; 376:463-472. [PMID: 39961448 DOI: 10.1016/j.jad.2025.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) analysis along the perivascular space (ALPS) index is currently widely employed to evaluate the neurophysiological activity in various neuropsychiatric disorders. However, there remains a scarcity of studies assessing the DTI-ALPS index in individuals with methamphetamine (MA) dependence. Recent studies on animals have demonstrated a significant correlation between glymphatic activity and alterations in cerebral blood flow (CBF). Hence, investigating the DTI-ALPS index and its coupling with CBF could yield novel insights for MA-dependent patients. METHODS In this study, we employed DTI and arterial spin labeling to investigate the ALPS index and CBF in 46 MA-dependent patients and 46 control subjects. By using DTI-ALPS, we evaluated a comprehensive diffusivity parameter that encompasses contributions from both the perivascular spaces and fiber tracts. Furthermore, a two-sample t-test was employed to assess inter-group differences. Partial correlation analysis was used to evaluate the correlations of the ALPS index with age, clinical parameters, and CBF, respectively. In addition, a causal mediation analysis was conducted to explore whether CBF mediates the causal relationship between MA-related clinical characteristics and the ALPS index. Finally, a support vector machine (SVM) was trained by the ALPS-related features and CBF features for the purpose of distinguishing MA-dependent subjects from control subjects. RESULTS Compared to the control group, the MA-dependent group presented a decreased ALPS index, particularly in the right hemisphere. Moreover, increased diffusivities were observed along the projection fibers in the right Y-axis and the association fibers in the right Z-axis, while the AI of the diffusivity along the Z-axis association fibers decreased in patients with MA dependence. The study observed a tight coupling between the ALPS index and CBF in MA-dependent patients, and revealed significant positive correlations between the ALPS index and CBF in specific brain regions, including the right precentral sulcus, right anterior transverse collateral sulcus, left postcentral sulcus, left superior parietal lobule, left superior occipital sulcus and transverse occipital sulcus, and right temporal pole. The causal mediation analysis suggested that CBF partially mediated the alteration of the ALPS index induced by the duration of MA consumption in MA-dependent patients. Additionally, CBF/ALPS ratio was lower in the MA-dependent group compared to the controls group. An SVM trained with the ALPS-related indicators and CBF indicators achieved classification accuracy, sensitivity, specificity, and kappa values of 93.31 % ± 5.72 %, 91.56 % ± 9.14 %, 95.05 % ± 7.91 % and 86.60 % ± 11.44 %, respectively, for identifying patients with MA dependence. CONCLUSIONS The study identified abnormal ALPS index, which has the potential to be a meaningful imaging marker for MA-dependent patients. The findings emphasized the strong coupling between the ALPS index and CBF in MA-dependent individuals, providing indirect imaging references for future research on the relationship between the glymphatic system and CBF. Moreover, the abnormal ALPS-related features and CBF features hold promise as valuable features for developing highly effective classification models.
Collapse
Affiliation(s)
- Ping Cheng
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yadi Li
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China.
| | - Shuyuan Wang
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Liang Liang
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Mingyu Zhang
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Huifen Liu
- Department of psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wenwen Shen
- Department of psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wenhua Zhou
- Department of psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Karkoska KA, Gollamudi J, Sawyer RP, Woo D, Hyacinth HI. Quantifying dilated perivascular spaces in children with sickle cell disease. Pediatr Blood Cancer 2024; 71:e31150. [PMID: 38953143 PMCID: PMC11327878 DOI: 10.1002/pbc.31150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024]
Abstract
Sickle cell disease (SCD)-related neurological effects are particularly devastating. Dilated perivascular spaces (dPVS) are a well-described component of cerebral small vessel disease in older adults without SCD. However, the burden and association of dPVS with neurological complications in children with SCD have not been described. In this study, we used the international consensus criteria to quantify dPVS in the centrum semiovale and basal ganglia in T2-weighted magnetic resonance images (MRI) of children with SCD who were randomized as part of the Silent Cerebral Infarct Transfusion (SIT) trial. We examined the relationship between global and/or regional dPVS burden and presence or area of silent cerebral infarctions, hematological measures, demographic variables, and full-scale intelligence quotient (FSIQ) scores. The study included 156 SIT trial participants who had pre-randomization and study exit MRI. Their median age was 9.6 (5-15) years, 39% were female, and 94 (60%) participants had a high dPVS burden. Participants randomized to the blood transfusion arm and who had a high dPVS burden at baseline had a moderate decline in dPVS score over 36 months compared to no change in the observation group. On multivariable logistic regression, intelligence quotient was not associated with dPVS burden. Children with SCD included in the SIT trial have a high burden of dPVS compared to children without SCD. However, dPVS do not appear to have the same pathophysiology of silent cerebral infarcts. Further study is needed to determine both their etiology and clinical relevance.
Collapse
Affiliation(s)
- Kristine A Karkoska
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jahnavi Gollamudi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Russell P Sawyer
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Daniel Woo
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hyacinth I Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Seidler RD, Mao XW, Tays GD, Wang T, Zu Eulenburg P. Effects of spaceflight on the brain. Lancet Neurol 2024; 23:826-835. [PMID: 38945144 DOI: 10.1016/s1474-4422(24)00224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/06/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
The number of long duration human spaceflights has increased substantially over the past 15 years, leading to the discovery of numerous effects on the CNS. Microgravity results in headward fluid shifts, ventricular expansion, an upward shift of the brain within the skull, and remodelling of grey and white matter. The fluid changes are correlated with changes to perivascular space and spaceflight associated neuro-ocular syndrome. Microgravity alters the vestibular processing of head tilt and results in reduced tactile and proprioceptive inputs during spaceflight. Sensory adaptation is reflected in postflight effects, evident as transient sensorimotor impairment. Another major concern is that galactic cosmic radiation, which spacefarers will be exposed to when going beyond the magnetosphere around Earth, might have a negative effect on CNS function. Research with rodents points to the potential disruptive effects of space radiation on blood-brain barrier integrity and brain structures. More work is needed to understand and mitigate these effects on the CNS before humans travel to Mars, as the flight durations will be longer than anyone has previously experienced.
Collapse
Affiliation(s)
- Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Grant D Tays
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Tianyi Wang
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Peter Zu Eulenburg
- Institute for Neuroradiology, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
4
|
Haley MJ, Barroso R, Jasim DA, Haigh M, Green J, Dickie B, Craig AG, Brough D, Couper KN. Lymphatic network drainage resolves cerebral edema and facilitates recovery from experimental cerebral malaria. Cell Rep 2024; 43:114217. [PMID: 38728141 DOI: 10.1016/j.celrep.2024.114217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/29/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
While brain swelling, associated with fluid accumulation, is a known feature of pediatric cerebral malaria (CM), how fluid and macromolecules are drained from the brain during recovery from CM is unknown. Using the experimental CM (ECM) model, we show that fluid accumulation in the brain during CM is driven by vasogenic edema and not by perivascular cerebrospinal fluid (CSF) influx. We identify that fluid and molecules are removed from the brain extremely quickly in mice with ECM to the deep cervical lymph nodes (dcLNs), predominantly through basal routes and across the cribriform plate and the nasal lymphatics. In agreement, we demonstrate that ligation of the afferent lymphatic vessels draining to the dcLNs significantly impairs fluid drainage from the brain and lowers anti-malarial drug recovery from the ECM syndrome. Collectively, our results provide insight into the pathways that coordinate recovery from CM.
Collapse
Affiliation(s)
- Michael J Haley
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Ruben Barroso
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Dhifaf A Jasim
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester M13 9PT, UK; Medicines Discovery Catapult (MDC), Alderley Park, Macclesfield SK10 4TG, UK
| | - Megan Haigh
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Jack Green
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Ben Dickie
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; Division of Informatics, Imaging & Data Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Alister G Craig
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK
| | - Kevin N Couper
- Division of Immunology, Immunity to Infection & Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK; The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|
5
|
Astara K, Tsimpolis A, Kalafatakis K, Vavougios GD, Xiromerisiou G, Dardiotis E, Christodoulou NG, Samara MT, Lappas AS. Sleep disorders and Alzheimer's disease pathophysiology: The role of the Glymphatic System. A scoping review. Mech Ageing Dev 2024; 217:111899. [PMID: 38163471 DOI: 10.1016/j.mad.2023.111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is highly intertwined with sleep disturbances throughout its whole natural history. Sleep consists of a major compound of the functionality of the glymphatic system, as the synchronized slow-wave activity during NREM facilitates cerebrospinal and interstitial long-distance mixing. OBJECTIVE The present study undertakes a scoping review of research on the involvement of the glymphatic system in AD-related sleep disturbances. DESIGN we searched Medline, Embase, PsychInfo and HEAL-link databases, without limitations on date and language, along with reference lists of relevant reviews and all included studies. We included in vivo, in vitro and post-mortem studies examining glymphatic implications of sleep disturbances in human populations with AD spectrum pathology. A thematic synthesis of evidence based on the extracted content was applied and presented in a narrative way. RESULTS In total, 70 original research articles were included and were grouped as following: a) Protein aggregation and toxicity, after sleep deprivation, along with its effects on sleep architecture, b) Glymphatic Sequalae in SDB, yielding potential glymphatic markers c) Circadian Dysregulation, d) Possible Interventions. CONCLUSIONS this review sought to provide insight into the role of sleep disturbances in AD pathogenesis, in the context of the glymphatic disruption.
Collapse
Affiliation(s)
- Kyriaki Astara
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Neurology, 417 Army Equity Fund Hospital (NIMTS), Athens, Greece
| | - Alexandros Tsimpolis
- Department of Pharmacology, Medical School, University of Crete & Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Crete, Greece
| | - Konstantinos Kalafatakis
- Faculty of Medicine & Dentistry (Malta campus), Queen Mary University of London, VCT 2520, Victoria, Gozo, Malta.
| | - George D Vavougios
- Department of Neurology, Faculty of Medicine, University of Cyprus, Lefkosia, Cyprus; Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Neurology, Athens Naval Hospital, Athens, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Nikos G Christodoulou
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece; Medical School, University of Nottingham, Lenton, Nottingham, UK
| | - Myrto T Samara
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Andreas S Lappas
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece; Aneurin Bevan University Health Board, Wales, UK
| |
Collapse
|
6
|
Peng T, Xie Y, Liu F, Lian Y, Xie Y, Ma Y, Wang C, Xie N. The cerebral lymphatic drainage system and its implications in epilepsy. J Neurosci Res 2024; 102:e25267. [PMID: 38284855 DOI: 10.1002/jnr.25267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/18/2023] [Accepted: 10/08/2023] [Indexed: 01/30/2024]
Abstract
The central nervous system has long been thought to lack a clearance system similar to the peripheral lymphatic system. Therefore, the clearance of metabolic waste in the central nervous system has been a subject of great interest in neuroscience. Recently, the cerebral lymphatic drainage system, including the parenchymal clearance system and the meningeal lymphatic network, has attracted considerable attention. It has been extensively studied in various neurological disorders. Solute accumulation and neuroinflammation after epilepsy impair the blood-brain barrier, affecting the exchange and clearance between cerebrospinal fluid and interstitial fluid. Restoring their normal function may improve the prognosis of epilepsy. However, few studies have focused on providing a comprehensive overview of the brain clearance system and its significance in epilepsy. Therefore, this review addressed the structural composition, functions, and methods used to assess the cerebral lymphatic system, as well as the neglected association with epilepsy, and provided a theoretical basis for therapeutic approaches in epilepsy.
Collapse
Affiliation(s)
- Tingting Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, P.R. China
| | - Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, P.R. China
| | - Fengxia Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yunqing Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Cui Wang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
7
|
Sosa MJ, Shih AY, Bonney SK. The elusive brain perivascular fibroblast: a potential role in vascular stability and homeostasis. Front Cardiovasc Med 2023; 10:1283434. [PMID: 38075961 PMCID: PMC10704358 DOI: 10.3389/fcvm.2023.1283434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
In the brain, perivascular fibroblasts (PVFs) reside within the perivascular spaces (PVSs) of arterioles and large venules, however their physiological and pathophysiological roles remain largely unknown. PVFs express numerous extracellular matrix proteins that are found in the basement membrane and PVS surrounding large diameter vessels. PVFs are sandwiched between the mural cell layer and astrocytic endfeet, where they are poised to interact with mural cells, perivascular macrophages, and astrocytes. We draw connections between the more well-studied PVF pro-fibrotic response in ischemic injury and the less understood thickening of the vascular wall and enlargement of the PVS described in dementia and neurodegenerative diseases. We postulate that PVFs may be responsible for stability and homeostasis of the brain vasculature, and may also contribute to changes within the PVS during disease.
Collapse
Affiliation(s)
- Maria J. Sosa
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Stephanie K. Bonney
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, United States
| |
Collapse
|
8
|
Hussain R, Graham U, Elder A, Nedergaard M. Air pollution, glymphatic impairment, and Alzheimer's disease. Trends Neurosci 2023; 46:901-911. [PMID: 37777345 DOI: 10.1016/j.tins.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/12/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
Epidemiological evidence demonstrates a link between air pollution exposure and the onset and progression of cognitive impairment and Alzheimer's disease (AD). However, current understanding of the underlying pathophysiological mechanisms is limited. This opinion article examines the hypothesis that air pollution-induced impairment of glymphatic clearance represents a crucial etiological event in the development of AD. Exposure to airborne particulate matter (PM) leads to systemic inflammation and neuroinflammation, increased metal load, respiratory and cardiovascular dysfunction, and sleep abnormalities. All these factors are known to reduce the efficiency of glymphatic clearance. Rescuing glymphatic function by restricting the impact of causative agents, and improving sleep and cardiovascular system health, may increase the efficiency of waste metabolite clearance and subsequently slow the progression of AD. In sum, we introduce air pollution-mediated glymphatic impairment as an important mechanistic factor to be considered when interpreting the etiology and progression of AD as well as its responsiveness to therapeutic interventions.
Collapse
Affiliation(s)
- Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA.
| | | | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA; Center for Translational Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
9
|
Singhal D, Börner K, Chaikof EL, Detmar M, Hollmén M, Iliff JJ, Itkin M, Makinen T, Oliver G, Padera TP, Quardokus EM, Radtke AJ, Suami H, Weber GM, Rovira II, Muratoglu SC, Galis ZS. Mapping the lymphatic system across body scales and expertise domains: A report from the 2021 National Heart, Lung, and Blood Institute workshop at the Boston Lymphatic Symposium. Front Physiol 2023; 14:1099403. [PMID: 36814475 PMCID: PMC9939837 DOI: 10.3389/fphys.2023.1099403] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Enhancing our understanding of lymphatic anatomy from the microscopic to the anatomical scale is essential to discern how the structure and function of the lymphatic system interacts with different tissues and organs within the body and contributes to health and disease. The knowledge of molecular aspects of the lymphatic network is fundamental to understand the mechanisms of disease progression and prevention. Recent advances in mapping components of the lymphatic system using state of the art single cell technologies, the identification of novel biomarkers, new clinical imaging efforts, and computational tools which attempt to identify connections between these diverse technologies hold the potential to catalyze new strategies to address lymphatic diseases such as lymphedema and lipedema. This manuscript summarizes current knowledge of the lymphatic system and identifies prevailing challenges and opportunities to advance the field of lymphatic research as discussed by the experts in the workshop.
Collapse
Affiliation(s)
- Dhruv Singhal
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Katy Börner
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, United States
| | - Elliot L. Chaikof
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Maija Hollmén
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Jeffrey J. Iliff
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Healthcare System, Department of Psychiatry and Behavioral Science, Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| | - Maxim Itkin
- Center for Lymphatic Imaging and Interventions, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taija Makinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, United States
| | - Timothy P. Padera
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ellen M. Quardokus
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, United States
| | - Andrea J. Radtke
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Hiroo Suami
- Department of Clinical Medicine, Australian Lymphoedema Education, Research and Treatment Centre, Macquarie University, Sydney, NSW, Australia
| | - Griffin M. Weber
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ilsa I. Rovira
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Selen C. Muratoglu
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Zorina S. Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
10
|
Gu W, Bai Y, Cai J, Mi H, Bao Y, Zhao X, Lu C, Zhang F, Li YH, Lu Q. Hypothermia impairs glymphatic drainage in traumatic brain injury as assessed by dynamic contrast-enhanced MRI with intrathecal contrast. Front Neurosci 2023; 17:1061039. [PMID: 36816105 PMCID: PMC9932501 DOI: 10.3389/fnins.2023.1061039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The impact of hypothermia on the impaired drainage function of the glymphatic system in traumatic brain injury (TBI) is not understood. Methods Male Sprague-Dawley rats undergoing controlled cortical impact injury (CCI) were subjected to hypothermia or normothermia treatment. The rats undergoing sham surgery without CCI were used as the control. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with intrathecal administration of low- and high-molecular-weight contrast agents (Gd-DTPA and hyaluronic acid conjugated Gd-DTPA) was performed after TBI and head temperature management. The semiquantitative kinetic parameters characterizing the contrast infusion and cleanout in the brain, including influx rate, efflux rate, and clearance duration, were calculated from the average time-intensity curves. Results and discussion The qualitative and semiquantitative results of DCE-MRI obtained from all examined perivascular spaces and most brain tissue regions showed a significantly increased influx rate and efflux rate and decreased clearance duration among all TBI animals, demonstrating a significant impairment of glymphatic drainage function. This glymphatic drainage dysfunction was exacerbated when additional hypothermia was applied. The early glymphatic drainage reduction induced by TBI and aggravated by hypothermia was linearly related to the late increased deposition of p-tau and beta-amyloid revealed by histopathologic and biochemical analysis and cognitive impairment assessed by the Barnes maze and novel object recognition test. The glymphatic system dysfunction induced by hypothermia may be an indirect alternative pathophysiological factor indicating injury to the brain after TBI. Longitudinal studies and targeted glymphatic dysfunction management are recommended to explore the potential effect of hypothermia in TBI.
Collapse
Affiliation(s)
- Wenquan Gu
- Department of Radiology, Shanghai Punan Hospital of Pudong New Area, Shanghai, China
| | - Yingnan Bai
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianguo Cai
- Department of Radiology, Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglan Mi
- Department of Radiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yinghui Bao
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xinxin Zhao
- Department of Radiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Lu
- Shanghai Weiyu International School, Shanghai, China
| | - Fengchen Zhang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yue-hua Li
- Department of Radiology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Yue-hua Li,
| | - Qing Lu
- School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China,Qing Lu,
| |
Collapse
|
11
|
Bolte AC, Shapiro DA, Dutta AB, Ma WF, Bruch KR, Kovacs MA, Royo Marco A, Ennerfelt HE, Lukens JR. The meningeal transcriptional response to traumatic brain injury and aging. eLife 2023; 12:e81154. [PMID: 36594818 PMCID: PMC9810333 DOI: 10.7554/elife.81154] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence suggests that the meningeal compartment plays instrumental roles in various neurological disorders, however, we still lack fundamental knowledge about meningeal biology. Here, we utilized high-throughput RNA sequencing (RNA-seq) techniques to investigate the transcriptional response of the meninges to traumatic brain injury (TBI) and aging in the sub-acute and chronic time frames. Using single-cell RNA sequencing (scRNA-seq), we first explored how mild TBI affects the cellular and transcriptional landscape in the meninges in young mice at one-week post-injury. Then, using bulk RNA-seq, we assessed the differential long-term outcomes between young and aged mice following TBI. In our scRNA-seq studies, we highlight injury-related changes in differential gene expression seen in major meningeal cell populations including macrophages, fibroblasts, and adaptive immune cells. We found that TBI leads to an upregulation of type I interferon (IFN) signature genes in macrophages and a controlled upregulation of inflammatory-related genes in the fibroblast and adaptive immune cell populations. For reasons that remain poorly understood, even mild injuries in the elderly can lead to cognitive decline and devastating neuropathology. To better understand the differential outcomes between the young and the elderly following brain injury, we performed bulk RNA-seq on young and aged meninges 1.5 months after TBI. Notably, we found that aging alone induced upregulation of meningeal genes involved in antibody production by B cells and type I IFN signaling. Following injury, the meningeal transcriptome had largely returned to its pre-injury signature in young mice. In stark contrast, aged TBI mice still exhibited upregulation of immune-related genes and downregulation of genes involved in extracellular matrix remodeling. Overall, these findings illustrate the dynamic transcriptional response of the meninges to mild head trauma in youth and aging.
Collapse
Affiliation(s)
- Ashley C Bolte
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Daniel A Shapiro
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - Arun B Dutta
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Wei Feng Ma
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Katherine R Bruch
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - Michael A Kovacs
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Ana Royo Marco
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Hannah E Ennerfelt
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| |
Collapse
|
12
|
The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discov 2022; 21:763-779. [PMID: 35948785 DOI: 10.1038/s41573-022-00500-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 12/14/2022]
Abstract
In the past decade, evidence for a fluid clearance pathway in the central nervous system known as the glymphatic system has grown. According to the glymphatic system concept, cerebrospinal fluid flows directionally through the brain and non-selectively clears the interstitium of metabolic waste. Importantly, the glymphatic system may be modulated by particular drugs such as anaesthetics, as well as by non-pharmacological factors such as sleep, and its dysfunction has been implicated in central nervous system disorders such as Alzheimer disease. Although the glymphatic system is best described in rodents, reports using multiple neuroimaging modalities indicate that a similar transport system exists in the human brain. Here, we overview the evidence for the glymphatic system and its role in disease and discuss opportunities to harness the glymphatic system therapeutically; for example, by improving the effectiveness of intrathecally delivered drugs.
Collapse
|
13
|
Yildiz S, Grinstead J, Hildebrand A, Oshinski J, Rooney WD, Lim MM, Oken B. Immediate impact of yogic breathing on pulsatile cerebrospinal fluid dynamics. Sci Rep 2022; 12:10894. [PMID: 35764793 PMCID: PMC9240010 DOI: 10.1038/s41598-022-15034-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/16/2022] [Indexed: 01/10/2023] Open
Abstract
Cerebrospinal fluid (CSF), a clear fluid bathing the central nervous system (CNS), undergoes pulsatile movements. Together with interstitial fluid, CSF plays a critical role for the removal of waste products from the brain, and maintenance of the CNS health. As such, understanding the mechanisms driving CSF movement is of high scientific and clinical impact. Since pulsatile CSF dynamics is sensitive and synchronous to respiratory movements, we are interested in identifying potential integrative therapies such as yogic breathing to regulate CSF dynamics, which has not been reported before. Here, we investigated the pre-intervention baseline data from our ongoing randomized controlled trial, and examined the impact of four yogic breathing patterns: (i) slow, (ii) deep abdominal, (iii) deep diaphragmatic, and (iv) deep chest breathing with the last three together forming a yogic breathing called three-part breath. We utilized our previously established non-invasive real-time phase contrast magnetic resonance imaging approach using a 3T MRI instrument, computed and tested differences in single voxel CSF velocities (instantaneous, respiratory, cardiac 1st and 2nd harmonics) at the level of foramen magnum during spontaneous versus yogic breathing. In examinations of 18 healthy participants (eight females, ten males; mean age 34.9 ± 14 (SD) years; age range: 18-61 years), we observed immediate increase in cranially-directed velocities of instantaneous-CSF 16-28% and respiratory-CSF 60-118% during four breathing patterns compared to spontaneous breathing, with the greatest changes during deep abdominal breathing (28%, p = 0.0008, and 118%, p = 0.0001, respectively). Cardiac pulsation was the primary source of pulsatile CSF motion except during deep abdominal breathing, when there was a comparable contribution of respiratory and cardiac 1st harmonic power [0.59 ± 0.78], suggesting respiration can be the primary regulator of CSF depending on the individual differences in breathing techniques. Further work is needed to investigate the impact of sustained training yogic breathing on pulsatile CSF dynamics for CNS health.
Collapse
Affiliation(s)
- Selda Yildiz
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - John Grinstead
- Siemens Medical Solutions USA, Inc, Portland, OR, 97239, USA
| | - Andrea Hildebrand
- Biostatistics and Design Program, Oregon Health & Science University, Portland, OR, 97239, USA
| | - John Oshinski
- Radiology & Imaging Sciences and Biomedical Engineering, Emory School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - William D Rooney
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Miranda M Lim
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- VA Portland Health Care System, Portland, OR, 97239, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Barry Oken
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
14
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
15
|
Fang Y, Huang L, Wang X, Si X, Lenahan C, Shi H, Shao A, Tang J, Chen S, Zhang J, Zhang JH. A new perspective on cerebrospinal fluid dynamics after subarachnoid hemorrhage: From normal physiology to pathophysiological changes. J Cereb Blood Flow Metab 2022; 42:543-558. [PMID: 34806932 PMCID: PMC9051143 DOI: 10.1177/0271678x211045748] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
Knowledge about the dynamic metabolism and function of cerebrospinal fluid (CSF) physiology has rapidly progressed in recent decades. It has traditionally been suggested that CSF is produced by the choroid plexus and drains to the arachnoid villi. However, recent findings have revealed that the brain parenchyma produces a large portion of CSF and drains through the perivascular glymphatic system and meningeal lymphatic vessels into the blood. The primary function of CSF is not limited to maintaining physiological CNS homeostasis but also participates in clearing waste products resulting from neurodegenerative diseases and acute brain injury. Aneurysmal subarachnoid hemorrhage (SAH), a disastrous subtype of acute brain injury, is associated with high mortality and morbidity. Post-SAH complications contribute to the poor outcomes associated with SAH. Recently, abnormal CSF flow was suggested to play an essential role in the post-SAH pathophysiological changes, such as increased intracerebral pressure, brain edema formation, hydrocephalus, and delayed blood clearance. An in-depth understanding of CSF dynamics in post-SAH events would shed light on potential development of SAH treatment options. This review summarizes and updates the latest physiological characteristics of CSF dynamics and discusses potential pathophysiological changes and therapeutic targets after SAH.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoli Si
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Hui Shi
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
16
|
Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 2022; 19:9. [PMID: 35115036 PMCID: PMC8815211 DOI: 10.1186/s12987-021-00282-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
The glymphatic hypothesis proposes a mechanism for extravascular transport into and out of the brain of hydrophilic solutes unable to cross the blood-brain barrier. It suggests that there is a circulation of fluid carrying solutes inwards via periarterial routes, through the interstitium and outwards via perivenous routes. This review critically analyses the evidence surrounding the mechanisms involved in each of these stages. There is good evidence that both influx and efflux of solutes occur along periarterial routes but no evidence that the principal route of outflow is perivenous. Furthermore, periarterial inflow of fluid is unlikely to be adequate to provide the outflow that would be needed to account for solute efflux. A tenet of the hypothesis is that flow sweeps solutes through the parenchyma. However, the velocity of any possible circulatory flow within the interstitium is too small compared to diffusion to provide effective solute movement. By comparison the earlier classical hypothesis describing extravascular transport proposed fluid entry into the parenchyma across the blood-brain barrier, solute movements within the parenchyma by diffusion, and solute efflux partly by diffusion near brain surfaces and partly carried by flow along "preferred routes" including perivascular spaces, white matter tracts and subependymal spaces. It did not suggest fluid entry via periarterial routes. Evidence is still incomplete concerning the routes and fate of solutes leaving the brain. A large proportion of the solutes eliminated from the parenchyma go to lymph nodes before reaching blood but the proportions delivered directly to lymph or indirectly via CSF which then enters lymph are as yet unclear. In addition, still not understood is why and how the absence of AQP4 which is normally highly expressed on glial endfeet lining periarterial and perivenous routes reduces rates of solute elimination from the parenchyma and of solute delivery to it from remote sites of injection. Neither the glymphatic hypothesis nor the earlier classical hypothesis adequately explain how solutes and fluid move into, through and out of the brain parenchyma. Features of a more complete description are discussed. All aspects of extravascular transport require further study.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
17
|
Liu X, Wu G, Tang N, Li L, Liu C, Wang F, Ke S. Glymphatic Drainage Blocking Aggravates Brain Edema, Neuroinflammation via Modulating TNF-α, IL-10, and AQP4 After Intracerebral Hemorrhage in Rats. Front Cell Neurosci 2022; 15:784154. [PMID: 34975411 PMCID: PMC8718698 DOI: 10.3389/fncel.2021.784154] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Objective: The “Glymphatic” system, a network of perivascular tunnels wrapped by astrocyte endfeet, was reported to be closely associated with the diseases of the central nervous system. Here, we investigated the role of the glymphatic system in intracerebral hemorrhage (ICH) and its protective mechanism. Method: Experimental ICH model was induced by type IV collagenase in rats. Cerebral lymphatic blockage was induced by ligation and removal of cervical lymph nodes. The experimental rats were divided into sham-operated (SO) group, ICH group, and cerebral lymphatic blocking and ICH (ICH + CLB) group. Neurological scores were measured using the Garcia scoring system on the third and seventh day after ICH. Active caspase-3 was immunostained to evaluate neuronal apoptosis. Brain water content was calculated using the dry-wet specific gravity method. The expression of inflammatory factors TNF-α, IL-1β, and IL-10 were detected using ELISA. Aquaporins-4 (AQP-4) and glial fibrillary acidic protein (GFAP) were detected using western blot analysis. Results: The neurological scores of rats in the CLB + ICH group were significantly lower than those in the in ICH group. The number of active caspase-3 neurons was significantly higher in the CLB + ICH group compared to the ICH group. CLB significantly aggravated ICH-induced brain edema 3 d after ICH. There was an increase in the expression of TNF-α, IL-1β, IL-10, AQP-4, GFAP after ICH. The expression of TNF-α was significantly higher in the CLB + ICH group compared to ICH group 3 d after ICH while there was no difference 7 d after ICH. There was no statistical difference in the expression of IL-1β between the ICH group and CLB + ICH group. However, the expression of IL-10 in the CLB + ICH group was significantly lower than that in the ICH group. Lastly, AQP-4 expression was significantly lower in the CLB + ICH group compared to the ICH group while the expression of GFAP was higher in the CLB + ICH group compared to the ICH group. Conclusion: CLB exacerbated cerebral edema, neuroinflammation, neuronal apoptosis and caused neurological deficits in rats with ICH via down-regulating AQP-4, up-regulating inflammatory TNF-α and inhibiting IL-10 expression. The glymphatic drainage system protects against neurologic injury after ICH induction in rats under normal physiological conditions.
Collapse
Affiliation(s)
- Xichang Liu
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Gang Wu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Na Tang
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Li Li
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Cuimin Liu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Feng Wang
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shaofa Ke
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
18
|
Schreiner TG, Popescu BO. Amyloid Beta Dynamics in Biological Fluids-Therapeutic Impact. J Clin Med 2021; 10:5986. [PMID: 34945282 PMCID: PMC8706225 DOI: 10.3390/jcm10245986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Despite the significant impact of Alzheimer's disease (AD) at individual and socioeconomic levels and the numerous research studies carried out on this topic over the last decades, the treatments available in daily clinical practice remain less than satisfactory. Among the accepted etiopathogenic hypotheses, the amyloidogenic pathway theory, although intensively studied and even sometimes controversial, is still providing relevant theoretical elements for understanding the etiology of AD and for the further development of possible therapeutic tools. In this sense, this review aims to offer new insights related to beta amyloid (Aβ), an essential biomarker in AD. First the structure and function of Aβ in normal and pathological conditions are presented in detail, followed by a discussion on the dynamics of Aβ at the level of different biological compartments. There is focus on Aβ elimination modalities at central nervous system (CNS) level, and clearance via the blood-brain barrier seems to play a crucial/dominant role. Finally, different theoretical and already-applied therapeutic approaches for CNS Aβ elimination are presented, including the recent "peripheral sink therapeutic strategy" and "cerebrospinal fluid sinks therapeutic strategy". These data outline the need for a multidisciplinary approach designed to deliver a solution to stimulate Aβ clearance in more direct ways, including from the cerebrospinal fluid level.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- Neurology Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
19
|
Cao J, Yao D, Li R, Guo X, Hao J, Xie M, Li J, Pan D, Luo X, Yu Z, Wang M, Wang W. Digoxin Ameliorates Glymphatic Transport and Cognitive Impairment in a Mouse Model of Chronic Cerebral Hypoperfusion. Neurosci Bull 2021; 38:181-199. [PMID: 34704235 PMCID: PMC8821764 DOI: 10.1007/s12264-021-00772-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/04/2021] [Indexed: 02/03/2023] Open
Abstract
The glymphatic system plays a pivotal role in maintaining cerebral homeostasis. Chronic cerebral hypoperfusion, arising from small vessel disease or carotid stenosis, results in cerebrometabolic disturbances ultimately manifesting in white matter injury and cognitive dysfunction. However, whether the glymphatic system serves as a potential therapeutic target for white matter injury and cognitive decline during hypoperfusion remains unknown. Here, we established a mouse model of chronic cerebral hypoperfusion via bilateral common carotid artery stenosis. We found that the hypoperfusion model was associated with significant white matter injury and initial cognitive impairment in conjunction with impaired glymphatic system function. The glymphatic dysfunction was associated with altered cerebral perfusion and loss of aquaporin 4 polarization. Treatment of digoxin rescued changes in glymphatic transport, white matter structure, and cognitive function. Suppression of glymphatic functions by treatment with the AQP4 inhibitor TGN-020 abolished this protective effect of digoxin from hypoperfusion injury. Our research yields new insight into the relationship between hemodynamics, glymphatic transport, white matter injury, and cognitive changes after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Jie Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Di Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Rong Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xuequn Guo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Department of Respiratory Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 China
| | - Jiahuan Hao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jia Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Dengji Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
20
|
Jiaerken Y, Lian C, Huang P, Yu X, Zhang R, Wang S, Hong H, Luo X, Yap PT, Shen D, Zhang M. Dilated perivascular space is related to reduced free-water in surrounding white matter among healthy adults and elderlies but not in patients with severe cerebral small vessel disease. J Cereb Blood Flow Metab 2021; 41:2561-2570. [PMID: 33818186 PMCID: PMC8504939 DOI: 10.1177/0271678x211005875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Perivascular space facilitates cerebral interstitial water clearance. However, it is unclear how dilated perivascular space (dPVS) affects the interstitial water of surrounding white matter. We aimed to determine the presence and extent of changes in normal-appearing white matter water components around dPVS in different populations. Twenty healthy elderly subjects and 15 elderly subjects with severe cerebral small vessel disease (CSVD, with lacunar infarction 6 months before the scan) were included in our study. And other 28 healthy adult subjects were enrolled under a different scanning parameter to see if the results are comparable. The normal-appearing white matter around dPVS was categorized into 10 layers (1 mm thickness each) based on their distance to dPVS. We evaluated the mean isotropic-diffusing water volume fraction in each layer. We discovered a significantly reduced free-water content in the layers closely adjacent to the dPVS in the healthy elderlies. however, this reduction around dPVS was weaker in the CSVD subjects. We also discovered an elevated free-water content within dPVS. DPVS played different roles in healthy subjects or CSVD subjects. The reduced water content around dPVS in healthy subjects suggests these MR-visible PVSs are not always related to the stagnation of fluid.
Collapse
Affiliation(s)
- Yeerfan Jiaerken
- Department of Radiology, School of Medicine, Second Affiliated Hospital of Zhejiang University, Zhejiang, China.,Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chunfeng Lian
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peiyu Huang
- Department of Radiology, School of Medicine, Second Affiliated Hospital of Zhejiang University, Zhejiang, China
| | - Xinfeng Yu
- Department of Radiology, School of Medicine, Second Affiliated Hospital of Zhejiang University, Zhejiang, China
| | - Ruiting Zhang
- Department of Radiology, School of Medicine, Second Affiliated Hospital of Zhejiang University, Zhejiang, China
| | - Shuyue Wang
- Department of Radiology, School of Medicine, Second Affiliated Hospital of Zhejiang University, Zhejiang, China
| | - Hui Hong
- Department of Radiology, School of Medicine, Second Affiliated Hospital of Zhejiang University, Zhejiang, China
| | - Xiao Luo
- Department of Radiology, School of Medicine, Second Affiliated Hospital of Zhejiang University, Zhejiang, China
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dinggang Shen
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.,Shanghai United Imaging Intelligence Co., Ltd, Shanghai, China.,Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea
| | - Minming Zhang
- Department of Radiology, School of Medicine, Second Affiliated Hospital of Zhejiang University, Zhejiang, China
| |
Collapse
|
21
|
Liu K, Zhu J, Chang Y, Lin Z, Shi Z, Li X, Chen X, Lin C, Pan S, Huang K. Attenuation of cerebral edema facilitates recovery of glymphatic system function after status epilepticus. JCI Insight 2021; 6:e151835. [PMID: 34494549 PMCID: PMC8492308 DOI: 10.1172/jci.insight.151835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Status epilepticus (SE) is a neurological emergency usually accompanied by acute cerebral edema and long-term cognitive impairment, and is characterized by neurodegeneration and aberrant hyperphosphorylated tau protein (p-tau) aggregation. The glia-lymphatic (glymphatic) system plays a central role in facilitating the clearance of metabolic waste from the brain, but its relationship with cerebral edema and cognitive dysfunction after SE is unclear. We hypothesized that cerebral edema after SE might impair glymphatic system function through compression, thus leading to impaired removal of metabolic waste, and ultimately affecting long-term cognitive function. Our results showed that glymphatic system function was temporarily impaired, as evidenced by 2-photon imaging, MRI enhancement, imaging of brain sections, and astrocytic water channel aquaporin 4 (AQP4) protein polarization. The severity of cerebral edema on MRI correlated well with glymphatic system dysfunction within 8 days following SE. Moreover, when cerebral edema was alleviated by glibenclamide treatment or genetic deletion of Trpm4, post-SE glymphatic system function recovered earlier, along with fewer p-tau–deposited neurons and neuronal degeneration and better cognitive function. These findings suggest that SE-induced cerebral edema may cause glymphatic system dysfunction and render the post-SE brain vulnerable to p-tau aggregation and neurocognitive impairment.
Collapse
Affiliation(s)
- Kewei Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Juan Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Chang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenzhou Lin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhu Shi
- Department of Neurology, Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Xing Li
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xing Chen
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuman Lin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Bothwell SW, Omileke D, Hood RJ, Pepperall DG, Azarpeykan S, Patabendige A, Spratt NJ. Altered Cerebrospinal Fluid Clearance and Increased Intracranial Pressure in Rats 18 h After Experimental Cortical Ischaemia. Front Mol Neurosci 2021; 14:712779. [PMID: 34434088 PMCID: PMC8380845 DOI: 10.3389/fnmol.2021.712779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
Oedema-independent intracranial pressure (ICP) rise peaks 20-22-h post-stroke in rats and may explain early neurological deterioration. Cerebrospinal fluid (CSF) volume changes may be involved. Cranial CSF clearance primarily occurs via the cervical lymphatics and movement into the spinal portion of the cranio-spinal compartment. We explored whether impaired CSF clearance at these sites could explain ICP rise after stroke. We recorded ICP at baseline and 18-h post-stroke, when we expect changes contributing to peak ICP to be present. CSF clearance was assessed in rats receiving photothrombotic stroke or sham surgery by intraventricular tracer infusion. Tracer concentration was quantified in the deep cervical lymph nodes ex vivo and tracer transit to the spinal subarachnoid space was imaged in vivo. ICP rose significantly from baseline to 18-h post-stroke in stroke vs. sham rats [median = 5 mmHg, interquartile range (IQR) = 0.1-9.43, n = 12, vs. -0.3 mmHg, IQR = -1.9-1.7, n = 10], p = 0.03. There was a bimodal distribution of rats with and without ICP rise. Tracer in the deep cervical lymph nodes was significantly lower in stroke with ICP rise (0 μg/mL, IQR = 0-0.11) and without ICP rise (0 μg/mL, IQR = 0-4.47) compared with sham rats (4.17 μg/mL, IQR = 0.74-8.51), p = 0.02. ICP rise was inversely correlated with faster CSF transit to the spinal subarachnoid space (R = -0.59, p = 0.006, Spearman's correlation). These data suggest that reduced cranial clearance of CSF via cervical lymphatics may contribute to post-stroke ICP rise, partially compensated via increased spinal CSF outflow.
Collapse
Affiliation(s)
- Steven W Bothwell
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Daniel Omileke
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Rebecca J Hood
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Debbie-Gai Pepperall
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Sara Azarpeykan
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Adjanie Patabendige
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Neil J Spratt
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Hunter New England Local Health District, Newcastle, NSW, Australia
| |
Collapse
|
23
|
Ludwig HC, Dreha-Kulaczewski S, Bock HC. Neurofluids-Deep inspiration, cilia and preloading of the astrocytic network. J Neurosci Res 2021; 99:2804-2821. [PMID: 34323313 DOI: 10.1002/jnr.24935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 01/20/2023]
Abstract
With the advent of real-time MRI, the motion and passage of cerebrospinal fluid can be visualized without gating and exclusion of low-frequency waves. This imaging modality gives insights into low-volume, rapidly oscillating cardiac-driven movement as well as sustained, high-volume, slowly oscillating inspiration-driven movement. Inspiration means a spontaneous or artificial increase in the intrathoracic dimensions independent of body position. Alterations in thoracic diameter enable the thoracic and spinal epidural venous compartments to be emptied and filled, producing an upward surge of cerebrospinal fluid inside the spine during inspiration; this surge counterbalances the downward pooling of venous blood toward the heart. Real-time MRI, as a macroscale in vivo observation method, could expand our knowledge of neurofluid dynamics, including how astrocytic fluid preloading is adjusted and how brain buoyancy and turgor are maintained in different postures and zero gravity. Along with these macroscale findings, new microscale insights into aquaporin-mediated fluid transfer, its sensing by cilia, and its tuning by nitric oxide will be reviewed. By incorporating clinical knowledge spanning several disciplines, certain disorders-congenital hydrocephalus with Chiari malformation, idiopathic intracranial hypertension, and adult idiopathic hydrocephalus-are interpreted and reviewed according to current concepts, from the basics of the interrelated systems to their pathology.
Collapse
Affiliation(s)
- Hans C Ludwig
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Hans C Bock
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Mogensen FLH, Delle C, Nedergaard M. The Glymphatic System (En)during Inflammation. Int J Mol Sci 2021; 22:7491. [PMID: 34299111 PMCID: PMC8305763 DOI: 10.3390/ijms22147491] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023] Open
Abstract
The glymphatic system is a fluid-transport system that accesses all regions of the brain. It facilitates the exchange of cerebrospinal fluid and interstitial fluid and clears waste from the metabolically active brain. Astrocytic endfeet and their dense expression of the aquaporin-4 water channels promote fluid exchange between the perivascular spaces and the neuropil. Cerebrospinal and interstitial fluids are together transported back to the vascular compartment by meningeal and cervical lymphatic vessels. Multiple lines of work show that neurological diseases in general impair glymphatic fluid transport. Insofar as the glymphatic system plays a pseudo-lymphatic role in the central nervous system, it is poised to play a role in neuroinflammation. In this review, we discuss how the association of the glymphatic system with the meningeal lymphatic vessel calls for a renewal of established concepts on the CNS as an immune-privileged site. We also discuss potential approaches to target the glymphatic system to combat neuroinflammation.
Collapse
Affiliation(s)
- Frida Lind-Holm Mogensen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
| | - Christine Delle
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (F.L.-H.M.); (C.D.)
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
25
|
Liu X, Xie Y, Wan X, Wu J, Fan Z, Yang L. Protective Effects of Aquaporin-4 Deficiency on Longer-term Neurological Outcomes in a Mouse Model. Neurochem Res 2021; 46:1380-1389. [PMID: 33651262 DOI: 10.1007/s11064-021-03272-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Traumatic brain injury (TBI) has been a crucial health problem, with more than 50 million patients worldwide each year. Glymphatic system is a fluid exchange system that relies on the polarized water channel aquaporin-4 (AQP4) at the astrocytes, accounting for the clearance of abnormal proteins and metabolites from brain tissues. However, the dysfunction of glymphatic system and alteration of AQP4 polarization during the progression of TBI remain unclear. AQP4-/- and Wild Type (WT) mice were used to establish the TBI mouse model respectively. Brain edema and Evans blue extravasation were conducted 24 h post-injury to evaluate the acute TBI. Morris water maze (MWM) was used to establish the long-term cognitive functions of AQP4-/- and WT mice post TBI. Western-blot and qRT-PCR assays were performed to demonstrate protective effects of AQP4 deficiency to blood-brain barrier (BBB) integrity and amyloid-β clearance. The inflammation of cerebral tissues post TBI was estimated by ELISA assay. AQP4 deficiency alleviated the brain edema and neurological deficit in TBI mice. AQP4-knockout led to improved cognitive outcomes in mice post TBI. The BBB integrity and cerebral amyloid-β clearance were protected by AQP4 deficiency in TBI mice. AQP4 deficiency ameliorated the TBI-induced inflammation. AQP4 deficiency improved longer-term neurological outcomes in a mouse model of TBI.
Collapse
Affiliation(s)
- Xiaosong Liu
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, No.215, Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Yingxin Xie
- Department of Doppler Ultrasound, the Second Hospital of Hebei Medical University, No.215, Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Xiangdong Wan
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, No.215, Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Jianliang Wu
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, No.215, Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Zhenzeng Fan
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, No.215, Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Lijun Yang
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, No.215, Heping Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
26
|
Keep RF, Jones HC, Drewes LR. Brain Barriers and brain fluids research in 2020 and the fluids and barriers of the CNS thematic series on advances in in vitro modeling of the blood-brain barrier and neurovascular unit. Fluids Barriers CNS 2021; 18:24. [PMID: 34020685 PMCID: PMC8138848 DOI: 10.1186/s12987-021-00258-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This editorial discusses advances in brain barrier and brain fluid research in 2020. Topics include: the cerebral endothelium and the neurovascular unit; the choroid plexus; the meninges; cerebrospinal fluid and the glymphatic system; disease states impacting the brain barriers and brain fluids; drug delivery to the brain. This editorial also highlights the recently completed Fluids Barriers CNS thematic series entitled, Advances in in vitro modeling of the bloodbrain barrier and neurovascular unit. Such in vitro modeling is progressing rapidly.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48105, USA. .,Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, R5018 BSRB, MI, 48109-2200, USA.
| | - Hazel C Jones
- Gagle Brook House, Chesterton, Bicester, OX26 1UF, UK
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
27
|
Stanton EH, Persson NDÅ, Gomolka RS, Lilius T, Sigurðsson B, Lee H, Xavier ALR, Benveniste H, Nedergaard M, Mori Y. Mapping of CSF transport using high spatiotemporal resolution dynamic contrast-enhanced MRI in mice: Effect of anesthesia. Magn Reson Med 2021; 85:3326-3342. [PMID: 33426699 DOI: 10.1002/mrm.28645] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Dynamic contrast-enhanced MRI (DCE-MRI) represents the only available approach for glymphatic cerebrospinal fluid (CSF) flow 3D mapping in the brain of living animals and humans. The purpose of this study was to develop a novel DCE-MRI protocol for mapping of the glymphatic system transport with improved spatiotemporal resolution, and to validate the new protocol by comparing the transport in mice anesthetized with either isoflurane or ketamine/xylazine. METHODS The contrast agent, gadobutrol, was administered into the CSF of the cisterna magna and its transport visualized continuously on a 9.4T preclinical scanner using 3D fast-imaging with a steady-state free-precession sequence (3D-FISP), which has a spatial resolution of 0.001 mm3 and a temporal resolution of 30 s. The MR signals were measured dynamically for 60 min in multiple volumes of interest covering the entire CSF space and brain parenchyma. RESULTS The results confirm earlier findings that glymphatic CSF influx is higher under ketamine/xylazine than with isoflurane anesthesia. This was extended to account for new details about the distinct CSF efflux pathways under the two anesthetic regimens. Dynamic contrast MR shows that CSF clearance occurs mainly along the vagus nerve near the jugular vein under isoflurane and via the olfactory bulb under ketamine/xylazine. CONCLUSION The improved spatial and temporal sampling rates afforded by 3D-FISP shed new light on the pharmacological modulation of CSF efflux paths. The present observations may have the potential to set a new standard for future experimental DCE-MRI studies of the glymphatic system.
Collapse
Affiliation(s)
- Evan Hunter Stanton
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Daniel Åke Persson
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ryszard Stefan Gomolka
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas Lilius
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Björn Sigurðsson
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anna Lenice Ribeiro Xavier
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Bolte AC, Dutta AB, Hurt ME, Smirnov I, Kovacs MA, McKee CA, Ennerfelt HE, Shapiro D, Nguyen BH, Frost EL, Lammert CR, Kipnis J, Lukens JR. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat Commun 2020; 11:4524. [PMID: 32913280 PMCID: PMC7483525 DOI: 10.1038/s41467-020-18113-4] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/06/2020] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading global cause of death and disability. Here we demonstrate in an experimental mouse model of TBI that mild forms of brain trauma cause severe deficits in meningeal lymphatic drainage that begin within hours and last out to at least one month post-injury. To investigate a mechanism underlying impaired lymphatic function in TBI, we examined how increased intracranial pressure (ICP) influences the meningeal lymphatics. We demonstrate that increased ICP can contribute to meningeal lymphatic dysfunction. Moreover, we show that pre-existing lymphatic dysfunction before TBI leads to increased neuroinflammation and negative cognitive outcomes. Finally, we report that rejuvenation of meningeal lymphatic drainage function in aged mice can ameliorate TBI-induced gliosis. These findings provide insights into both the causes and consequences of meningeal lymphatic dysfunction in TBI and suggest that therapeutics targeting the meningeal lymphatic system may offer strategies to treat TBI.
Collapse
Affiliation(s)
- Ashley C Bolte
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, 22908, USA
- Immunology Training Program, University of Virginia, Charlottesville, VA, 22908, USA
| | - Arun B Dutta
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Mariah E Hurt
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Igor Smirnov
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Michael A Kovacs
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, 22908, USA
- Immunology Training Program, University of Virginia, Charlottesville, VA, 22908, USA
| | - Celia A McKee
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Hannah E Ennerfelt
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908, USA
| | - Daniel Shapiro
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Bao H Nguyen
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Elizabeth L Frost
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Catherine R Lammert
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908, USA
| | - John R Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA.
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, 22908, USA.
- Immunology Training Program, University of Virginia, Charlottesville, VA, 22908, USA.
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
29
|
Ghali MGZ, Marchenko V, Yaşargil MG, Ghali GZ. Structure and function of the perivascular fluid compartment and vertebral venous plexus: Illumining a novel theory on mechanisms underlying the pathogenesis of Alzheimer's, cerebral small vessel, and neurodegenerative diseases. Neurobiol Dis 2020; 144:105022. [PMID: 32687942 DOI: 10.1016/j.nbd.2020.105022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/13/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Blood dynamically and richly supplies the cerebral tissue via microvessels invested in pia matter perforating the cerebral substance. Arteries penetrating the cerebral substance derive an investment from one or two successive layers of pia mater, luminally apposed to the pial-glial basal lamina of the microvasculature and abluminally apposed to a series of aquaporin IV-studded astrocytic end feet constituting the soi-disant glia limitans. The full investment of successive layers forms the variably continuous walls of the periarteriolar, pericapillary, and perivenular divisions of the perivascular fluid compartment. The pia matter disappears at the distal periarteriolar division of the perivascular fluid compartment. Plasma from arteriolar blood sequentially transudates into the periarteriolar division of the perivascular fluid compartment and subarachnoid cisterns in precession to trickling into the neural interstitium. Fluid from the neural interstitium successively propagates into the venules through the subarachnoid cisterns and perivenular division of the perivascular fluid compartment. Fluid fluent within the perivascular fluid compartment flows gegen the net direction of arteriovenular flow. Microvessel oscillations at the central tendency of the cerebral vasomotion generate corresponding oscillations of within the surrounding perivascular fluid compartment, interposed betwixt the abluminal surface of the vessels and internal surface of the pia mater. The precise microanatomy of this most fascinating among designable spaces has eluded the efforts of various investigators to interrogate its structure, though most authors non-consensusly concur the investing layers effectively and functionally segregate the perivascular and subarachnoid fluid compartments. Enlargement of the perivascular fluid compartment in a variety of neurological disorders, including senile dementia of the Alzheimer's type and cerebral small vessel disease, may alternately or coordinately constitute a correlative marker of disease severity and a possible cause implicated in the mechanistic pathogenesis of these conditions. Venular pressures modulating oscillatory dynamic flow within the perivascular fluid compartment may similarly contribute to the development of a variety among neurological disorders. An intimate understanding of subtle features typifying microanatomy and microphysiology of the investing structures and spaces of the cerebral microvasculature may powerfully inform mechanistic pathophysiology mediating a variety of neurovascular ischemic, neuroinfectious, neuroautoimmune, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Street, San Francisco, CA 94143, United States; Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States.
| | - Vitaliy Marchenko
- Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States; Department of Neurophysiology, Bogomoletz Institute, Kyiv, Ukraine; Department of Neuroscience, Московский государственный университет имени М. В., Ломоносова GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
| | - M Gazi Yaşargil
- Department of Neurosurgery, University Hospital Zurich Rämistrasse 100, 8091 Zurich, Switzerland
| | - George Zaki Ghali
- United States Environmental Protection Agency, Arlington, Virginia, USA; Emeritus Professor of Toxicology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
30
|
Liu X, Gao C, Yuan J, Xiang T, Gong Z, Luo H, Jiang W, Song Y, Huang J, Quan W, Wang D, Tian Y, Ge X, Lei P, Zhang J, Jiang R. Subdural haematomas drain into the extracranial lymphatic system through the meningeal lymphatic vessels. Acta Neuropathol Commun 2020; 8:16. [PMID: 32059751 PMCID: PMC7023797 DOI: 10.1186/s40478-020-0888-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/27/2020] [Indexed: 11/10/2022] Open
Abstract
Subdural haematomas (SDHs) are characterized by rapidly or gradually accumulated haematomas between the arachnoid and dura mater. The mechanism of haematoma clearance has not been clearly elucidated until now. The meningeal lymphatic vessel (mLV) drainage pathway is a novel system that takes part in the clearance of waste products in the central nervous system (CNS). This study aimed to explore the roles of the mLV drainage pathway in SDH clearance and its impacting factors. We injected FITC-500D, A488-fibrinogen and autologous blood into the subdural space of mice/rats and found that these substances drained into deep cervical lymph nodes (dCLNs). FITC-500D was also observed in the lymphatic vessels (LYVE+) of the meninges and the dCLNs in mice. The SDH clearance rate in SDH rats that received deep cervical lymph vessel (dCLV) ligation surgery was significantly lower than that in the control group, as evaluated by haemoglobin quantification and MRI scanning. The drainage rate of mLVs was significantly slower after the SDH model was established, and the expression of lymphangiogenesis-related proteins, including LYVE1, FOXC2 and VEGF-C, in meninges was downregulated. In summary, our findings proved that SDH was absorbed through the mLV drainage pathway and that haematomas could inhibit the function of mLVs.
Collapse
|