1
|
He Z, Sun J. The role of the neurovascular unit in vascular cognitive impairment: Current evidence and future perspectives. Neurobiol Dis 2025; 204:106772. [PMID: 39710068 DOI: 10.1016/j.nbd.2024.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
Vascular cognitive impairment (VCI) is a progressive cognitive impairment caused by cerebrovascular disease or vascular risk factors. It is the second most common type of cognitive impairment after Alzheimer's disease. The pathogenesis of VCI is complex, and neurovascular unit destruction is one of its important mechanisms. The neurovascular unit (NVU) is responsible for combining blood flow with brain activity and includes endothelial cells, pericytes, astrocytes and many regulatory nerve terminals. The concept of an NVU emphasizes that interactions between different types of cells are essential for maintaining brain homeostasis. A stable NVU is the basis of normal brain function. Therefore, understanding the structure and function of the neurovascular unit and its role in VCI development is crucial for gaining insights into its pathogenesis. This article reviews the structure and function of the neurovascular unit and its contribution to VCI, providing valuable information for early diagnosis and prevention.
Collapse
Affiliation(s)
- Zhidong He
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130031, Jilin, China
| | - Jing Sun
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130031, Jilin, China..
| |
Collapse
|
2
|
Diwan D, Mehla J, Nelson JW, Quirk JD, Song S, Cao S, Meron B, Mostofa A, Zipfel GJ. Development and Validation of a Prechiasmatic Mouse Model of Subarachnoid Hemorrhage to Measure Long-Term Cognitive Deficits. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403977. [PMID: 39443821 PMCID: PMC11633547 DOI: 10.1002/advs.202403977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Controllable and reproducible animal models of aneurysmal subarachnoid hemorrhage (SAH) are crucial for the systematic study of the pathophysiology and treatment of this debilitating condition. However, current animal models have not been successful in replicating the pathology and disabilities seen in SAH patients, especially the long-term neurocognitive deficits that affect the survivor's quality of life. Therefore, there is an unmet need to develop experimental models that reliably replicate the long-term clinical ramifications of SAH - especially in mice where genetic manipulations are straightforward and readily available. To address this need, a standardized mouse SAH model is developed that reproducibly produced significant and trackable long-term cognitive deficits. SAH is induced by performing double blood injections into the prechiasmatic cistern - a simple modification to the well-characterized single prechiasmatic injection mouse model of SAH. Following SAH, mice recapitulated key characteristics of SAH patients, including cerebral edema measured by MRI - an indicator of early brain injury (EBI), neuroinflammation, apoptosis, and long-term cognitive impairment. This newly developed SAH mouse model is considered an ideal paradigm for investigating the complex SAH pathophysiology and identifying novel druggable therapeutic targets for treating SAH severity and SAH-associated long-term neurocognitive deficits in patients.
Collapse
Affiliation(s)
- Deepti Diwan
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMO63110USA
| | - Jogender Mehla
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMO63110USA
| | - James W. Nelson
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMO63110USA
| | - James D. Quirk
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMO63110USA
| | - Sheng‐Kwei Song
- Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. LouisMO63110USA
| | - Sarah Cao
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMO63110USA
| | - Benjamin Meron
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMO63110USA
| | - Aminah Mostofa
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMO63110USA
| | - Gregory J. Zipfel
- Department of Neurological SurgeryWashington University School of MedicineSt. LouisMO63110USA
| |
Collapse
|
3
|
Zhang F, Zhou J, Lu P, Zhang X, Yang L, Wu J, Zhang L, Zhang L, Pang J, Xie H, Xie B, Jiang Y, Peng J. Lactylation of histone by BRD4 regulates astrocyte polarization after experimental subarachnoid hemorrhage. J Neuroinflammation 2024; 21:186. [PMID: 39080649 PMCID: PMC11290164 DOI: 10.1186/s12974-024-03185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Under subarachnoid hemorrhage (SAH) conditions, astrocytes undergo a marked intensification of glycolytic activity, resulting in the generation of substantial amounts of lactate to maintain the energy demand for neurons and other brain cells. Lactate has garnered increasing attention in recent years because of its emerging role in critical biological processes such as inflammation regulation and neuroprotection, particularly through its histone lactylation. Bromodomain-containing protein 4 (BRD4) plays a crucial role in maintaining neural development and promoting memory formation in the central nervous system. Nonetheless, the function and regulatory mechanism of BRD4 and histone lactylation in astrocytes following SAH remain elusive. Our findings indicate that BRD4, a crucial epigenetic regulator, plays a definitive role in histone lactylation. Both in vitro and in vivo, these results demonstrated that targeted silencing of BRD4 in astrocytes can significantly reduce H4K8la lactylation, thereby aggravating the A1 polarization of astrocytes and ultimately affecting the recovery of neural function and prognosis in mice after SAH. In summary, BRD4 plays a pivotal role in modulating astrocyte polarization following SAH via histone lactylation. Targeting this mechanism might offer an efficient therapeutic strategy for SAH.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jian Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Peng Lu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xianhui Zhang
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lei Yang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jinpeng Wu
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lihan Zhang
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Brain Science, Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China.
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Institute of Brain Science, Southwest Medical University, Luzhou, China.
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, NO. 25 of Taiping Street, Luzhou, Sichuan, 646000, China.
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Guo P, Ru X, Zhou J, Chen M, Li Y, Duan M, Li Y, Li W, Chen Y, Zuo S, Feng H. TIMP-3 Alleviates White Matter Injury After Subarachnoid Hemorrhage in Mice by Promoting Oligodendrocyte Precursor Cell Maturation. Cell Mol Neurobiol 2024; 44:33. [PMID: 38625414 PMCID: PMC11021342 DOI: 10.1007/s10571-024-01469-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/09/2024] [Indexed: 04/17/2024]
Abstract
Subarachnoid hemorrhage (SAH) is associated with high mortality and disability rates, and secondary white matter injury is an important cause of poor prognosis. However, whether brain capillary pericytes can directly affect the differentiation and maturation of oligodendrocyte precursor cells (OPCs) and subsequently affect white matter injury repair has still been revealed. This study was designed to investigate the effect of tissue inhibitor of metalloproteinase-3 (TIMP-3) for OPC differentiation and maturation. PDGFRβret/ret and wild-type C57B6J male mice were used to construct a mouse model of SAH via endovascular perforation in this study. Mice were also treated with vehicle, TIMP-3 RNAi or TIMP-3 RNAi + TIMP-3 after SAH. The effect of TIMP-3 on the differentiation and maturation of OPCs was determined using behavioral score, ELISA, transmission electron microscopy, immunofluorescence staining and cell culture. We found that TIMP-3 was secreted mainly by pericytes and that SAH and TIMP-3 RNAi caused a significant decrease in the TIMP-3 content, reaching a nadir at 24 h, followed by gradual recovery. In vitro, the myelin basic protein content of oligodendrocytes after oxyhemoglobin treatment was increased by TIMP-3 overexpression. The data indicates TIMP-3 could promote the differentiation and maturation of OPCs and subsequently improve neurological outcomes after SAH. Therefore, TIMP-3 could be beneficial for repair after white matter injury and could be a potential therapeutic target in SAH.
Collapse
Affiliation(s)
- Peiwen Guo
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xufang Ru
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiru Zhou
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Mao Chen
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Yanling Li
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Mingxu Duan
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanshu Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wenyan Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Shilun Zuo
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), 83 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
5
|
Diwan D, Mehla J, Nelson JW, Zipfel GJ. Development and validation of prechiasmatic mouse model of subarachnoid hemorrhage to measure long-term neurobehavioral impairment. RESEARCH SQUARE 2024:rs.3.rs-4176908. [PMID: 38645258 PMCID: PMC11030500 DOI: 10.21203/rs.3.rs-4176908/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Controllable and reproducible animal models of aneurysmal subarachnoid hemorrhage (SAH) are crucial for the systematic study of the pathophysiology and treatment of this debilitating condition. Despite the variety of animal models of SAH currently available, attempts to translate promising therapeutic strategies from preclinical studies to humans have largely failed. This failure is likely due, at least in part, to poor replication of pathology and disabilities in these preclinical models, especially the long-term neurocognitive deficits that drive poor quality of life / return to work in SAH survivors. Therefore, there is an unmet need to develop experimental models that reliably replicate the long-term clinical ramifications of SAH - especially in mice where genetic manipulations are straightforward and readily available. To address this need, we developed a standardized mouse model of SAH that reproducibly produced significant and trackable long-term neurobehavioral deficits. SAH was induced by performing double blood injections into the prechiasmatic cistern - a simple modification to the well-characterized single prechiasmatic injection mouse model of SAH. Following SAH, mice recapitulated key characteristics of SAH patients including long-term cognitive impairment as observed by a battery of behavioral testing and delayed pathophysiologic processes assayed by neuroinflammatory markers. We believe that this new SAH mouse model will be an ideal paradigm for investigating the complex pathophysiology of SAH and identifying novel druggable therapeutic targets for treating SAH-associated long-term neurocognitive deficits in patients.
Collapse
|
6
|
Crouzet C, Phan T, Wilson RH, Shin TJ, Choi B. Intrinsic, widefield optical imaging of hemodynamics in rodent models of Alzheimer's disease and neurological injury. NEUROPHOTONICS 2023; 10:020601. [PMID: 37143901 PMCID: PMC10152182 DOI: 10.1117/1.nph.10.2.020601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
The complex cerebrovascular network is critical to controlling local cerebral blood flow (CBF) and maintaining brain homeostasis. Alzheimer's disease (AD) and neurological injury can result in impaired CBF regulation, blood-brain barrier breakdown, neurovascular dysregulation, and ultimately impaired brain homeostasis. Measuring cortical hemodynamic changes in rodents can help elucidate the complex physiological dynamics that occur in AD and neurological injury. Widefield optical imaging approaches can measure hemodynamic information, such as CBF and oxygenation. These measurements can be performed over fields of view that range from millimeters to centimeters and probe up to the first few millimeters of rodent brain tissue. We discuss the principles and applications of three widefield optical imaging approaches that can measure cerebral hemodynamics: (1) optical intrinsic signal imaging, (2) laser speckle imaging, and (3) spatial frequency domain imaging. Future work in advancing widefield optical imaging approaches and employing multimodal instrumentation can enrich hemodynamic information content and help elucidate cerebrovascular mechanisms that lead to the development of therapeutic agents for AD and neurological injury.
Collapse
Affiliation(s)
- Christian Crouzet
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Thinh Phan
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
| | - Robert H. Wilson
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Medicine, Irvine, California, United States
| | - Teo Jeon Shin
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Seoul National University, Department of Pediatric Dentistry and Dental Research Institute, Seoul, Republic of Korea
| | - Bernard Choi
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
- University of California, Irvine, Department of Surgery, Irvine, California, United States
- University of California, Irvine, Edwards Lifesciences Foundation Cardiovascular Innovation Research Center, California, United States
| |
Collapse
|
7
|
Jung H, Youn DH, Park JJ, Jeon JP. Bone-Marrow-Derived Mesenchymal Stem Cells Attenuate Behavioral and Cognitive Dysfunction after Subarachnoid Hemorrhage via HMGB1-RAGE Axis Mediation. Life (Basel) 2023; 13:881. [PMID: 37109411 PMCID: PMC10145212 DOI: 10.3390/life13040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
We evaluated the therapeutic effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on behavioral and cognitive function in a mouse model of mild subarachnoid hemorrhage (SAH) and explored the underlying mechanisms in conjunction with the HMGB1-RAGE axis. The SAH models were generated in a total of 126 male C57BL/6J mice via endovascular perforation and evaluated 24 h and 72 h after the intravenous administration of BMSCs (3 × 105 cells). The BMSCs were administered once, at 3 h, or twice, at 3 h and 48 h after the model induction. The therapeutic effects of the BMSCs were compared to those of the saline administration. Compared to saline-treated SAH-model mice, at 3 h, the mice with mild SAH treated with the BMSCs showed significant improvements in their neurological scores and cerebral edema. The administration of the BMSCs decreased the mRNA expression of HMGB1, RAGE, TLR4, and MyD88, as well as the protein expression of HMGB1 and phosphorylated NF-kB p65. Furthermore, the numbers of slips per walking time, impairments in short-term memory, and the recognition of novel objects were improved. There was some improvement in inflammatory-marker levels and cognitive function according to the BMSCs' administration times, but no large differences were seen. The administration of BMSCs improved behavioral and cognitive dysfunction by ameliorating HMGB1-RAGE axis-mediated neuroinflammation after SAH.
Collapse
Affiliation(s)
- Harry Jung
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul 05030, Republic of Korea
- Department of Neurosurgery, Kangwon National University College of Medicine, Chuncheon 24341, Republic of Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| |
Collapse
|
8
|
Sunil S, Jiang J, Shah S, Kura S, Kilic K, Erdener SE, Ayata C, Devor A, Boas DA. Neurovascular coupling is preserved in chronic stroke recovery after targeted photothrombosis. Neuroimage Clin 2023; 38:103377. [PMID: 36948140 PMCID: PMC10034641 DOI: 10.1016/j.nicl.2023.103377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Functional neuroimaging, which measures hemodynamic responses to brain activity, has great potential for monitoring recovery in stroke patients and guiding rehabilitation during recovery. However, hemodynamic responses after stroke are almost always altered relative to responses in healthy subjects and it is still unclear if these alterations reflect the underlying brain physiology or if the alterations are purely due to vascular injury. In other words, we do not know the effect of stroke on neurovascular coupling and are therefore limited in our ability to use functional neuroimaging to accurately interpret stroke pathophysiology. To address this challenge, we simultaneously captured neural activity, through fluorescence calcium imaging, and hemodynamics, through intrinsic optical signal imaging, during longitudinal stroke recovery. Our data suggest that neurovascular coupling was preserved in the chronic phase of recovery (2 weeks and 4 weeks post-stoke) and resembled pre-stroke neurovascular coupling. This indicates that functional neuroimaging faithfully represents the underlying neural activity in chronic stroke. Further, neurovascular coupling in the sub-acute phase of stroke recovery was predictive of long-term behavioral outcomes. Stroke also resulted in increases in global brain oscillations, which showed distinct patterns between neural activity and hemodynamics. Increased neural excitability in the contralesional hemisphere was associated with increased contralesional intrahemispheric connectivity. Additionally, sub-acute increases in hemodynamic oscillations were associated with improved sensorimotor outcomes. Collectively, these results support the use of hemodynamic measures of brain activity post-stroke for predicting functional and behavioral outcomes.
Collapse
Affiliation(s)
- Smrithi Sunil
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - John Jiang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Shashwat Shah
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sreekanth Kura
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kivilcim Kilic
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Cenk Ayata
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
9
|
Fang J, Song F, Chang C, Yao M. Intracerebral Hemorrhage Models and Behavioral Tests in Rodents. Neuroscience 2023; 513:1-13. [PMID: 36690062 DOI: 10.1016/j.neuroscience.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
Intracerebral hemorrhage (ICH) is one of the common types of stroke, which can cause neurological dysfunction. In preclinical ICH studies, researchers often established rodent models by donor/autologous whole blood or a collagenase injection. White matter injury (WMI) can result from primary and secondary injuries after ICH. WMI can lead to short- and long-term neurological impairment, and functional recovery can assess the effect of drug therapy after ICH. Therefore, researchers have devised various behavioral tests to assess dysfunction. This review compares the two ICH modeling methods in rodents and summarizes the pathological mechanisms underlying dysfunction after ICH. We also summarize the functions and characteristics of various behavioral methods, including sensation, motion, emotion, and cognition, to assist researchers in selecting the appropriate tests for preclinical ICH research.
Collapse
Affiliation(s)
- Jie Fang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Fanglai Song
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Min Yao
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen 518060, China; Shenzhen SMQ Group Medical Laboratory, Shenzhen Academy of Measurement and Quality Inspection, Shenzhen 518060, China.
| |
Collapse
|
10
|
Li H, Wang Z, Xie X, Luo M, Shen H, Li X, Li H, Wang Z, Li X, Chen G. Peroxiredoxin-3 plays a neuroprotective role in early brain injury after experimental subarachnoid hemorrhage in rats. Brain Res Bull 2023; 193:95-105. [PMID: 36566946 DOI: 10.1016/j.brainresbull.2022.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Subarachnoid hemorrhage (SAH), a type of hemorrhagic stroke, is a neurological emergency associated with a high morbidity and mortality rate. After SAH, early brain injury (EBI) is the leading cause of poor prognosis in SAH patients. Peroxiredoxins (PRDXs) are a family of sulphhydryl-dependent peroxidases. Peroxiredoxin-3 (PRDX3) is mainly located in the mitochondria of neurons, which can remove hydrogen peroxide (H2O2); however, the effect of PRDX3 on EBI after SAH remains unclear. In this study, an endovascular perforation model was used to mimic SAH in Sprague Dawley rats in vivo. The results revealed that after SAH, PRDX3 levels decreased in the neurons. PRDX3 overexpression by neuron-specific adeno-associated viruses upregulated PRDX3 levels. Furthermore, PRDX3 overexpression improved long- and short-term behavioral outcomes and alleviated neuronal impairment in rats. Nissl staining revealed that the upregulation of PRDX3 promoted cortical neuron survival. PRDX3 overexpression decreased the H2O2 content and downregulated caspase-9 expression. In conclusion, PRDX3 participates in neuronal protection by inhibiting the neuronal mitochondria-mediated death pathway; PRDX3 may be an important target for EBI intervention after SAH.
Collapse
Affiliation(s)
- Haibo Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Xueshun Xie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Muyun Luo
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China; Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou 341000, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Xiangdong Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
11
|
Liu L, Liu J, Li M, Lyu J, Su W, Feng S, Ji X. Selective brain hypothermia attenuates focal cerebral ischemic injury and improves long-term neurological outcome in aged female mice. CNS Neurosci Ther 2022; 29:129-139. [PMID: 36341958 PMCID: PMC9804044 DOI: 10.1111/cns.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
AIMS This study aimed to investigate the effects of mild selective brain hypothermia on aged female ischemic mice. METHODS A distal middle cerebral artery occlusion (dMCAO) model was established in aged female mice, who were then subjected to mild selective brain hypothermia immediately after the dMCAO procedure. Neurological behavioral examinations were conducted prior to and up to 35 days post-ischemia. Infarct volume, brain atrophy, pro-inflammation, and anti-inflammation microglia/macrophages phenotype and white matter injury were evaluated by immunofluorescence staining. Correlations between neurological behaviors and histological parameters were evaluated by Pearson product linear regression analysis. RESULTS Sensorimotor and cognitive function tests confirmed the protective effect of mild selective brain hypothermia in elderly female ischemic mice. In addition, hypothermia decreased the infarct volume and brain atrophy induced by focal cerebral ischemia. Furthermore, hypothermia alleviated ischemia-induced short-term and long-term white matter injury, which was correlated with behavioral deficits. Finally, hypothermia suppressed the harmful immunological response by promoting the transformation of pro-inflammatory microglia/macrophages to anti-inflammatory phenotype. This polarization was negatively correlated with neuronal loss and white matter injury. CONCLUSION Mild selective brain hypothermia promoted long-term functional recovery by alleviating white matter damage in an aged female mouse model of ischemia.
Collapse
Affiliation(s)
- Liqiang Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Ming Li
- Beijing Institute of Geriatrics, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Junxuan Lyu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Wei Su
- Department of Neurosurgery, Beijing Tsing Hua Chang Gung Hospital, School of Clinical MedicineTsing Hua UniversityBeijingChina
| | - Shejun Feng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina,Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
12
|
Chen F, Cai J, Dai L, Lin Y, Yu L, Lin Z, Kang Y, Yu T, Wang D, Kang D. Altered hippocampal functional connectivity after the rupture of anterior communicating artery aneurysm. Front Aging Neurosci 2022; 14:997231. [PMID: 36420312 PMCID: PMC9677126 DOI: 10.3389/fnagi.2022.997231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/17/2022] [Indexed: 09/23/2024] Open
Abstract
BACKGROUND AND PURPOSE Aneurysmal subarachnoid hemorrhage (SAH) predisposes hippocampal injury, a major cause of follow-up cognitive impairment. Our previous study has revealed an abnormal resting-state brain network in patients after the rupture of anterior communicating artery (ACoA) aneurysm. However, the functional connectivity (FC) characteristics of the hippocampus and its relationship with cognitive performance in these patients remain unknown. METHODS This study ultimately included 26 patients and 19 age- and sex-matched controls who completed quality control for resting-state functional magnetic resonance imaging (fMRI). The mean time series for each side of the hippocampus was extracted from individuals and then a seed-to-voxel analysis was performed. We compared the difference in FC strength between the two groups and subsequently analyzed the correlations between abnormal FC and their cognitive performance. RESULTS The results of bilateral hippocampus-based FC analysis were largely consistent. Compared with the healthy controls, patients after the rupture of ACoA aneurysm exhibited significantly decreased FC between the hippocampus and other brain structures within the Papez circuit, including bilateral anterior and middle cingulate cortex (MCC), bilateral medial superior frontal gyrus, and left inferior temporal gyrus (ITG). Instead, increased FC between the hippocampus and bilateral insula was observed. Correlation analyses showed that more subjective memory complaints or lower total cognitive scores were associated with decreased connectivity in the hippocampus and several brain regions such as left anterior cingulate cortex (ACC) and frontotemporal cortex. CONCLUSION These results extend our previous findings and suggest that patients with ruptured ACoA aneurysm exist hypoconnectivity between the hippocampus and multiple brain regions within the Papez circuit. Deactivation of the Papez circuit may be a crucial neural mechanism related to cognitive deficits in patients after the rupture of ACoA aneurysm.
Collapse
Affiliation(s)
- Fuxiang Chen
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jiawei Cai
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Linsun Dai
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lianghong Yu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhangya Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yaqing Kang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ting Yu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dengliang Wang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Aykan SA, Xie H, Zheng Y, Chung DY, Kura S, Han Lai J, Erdogan TD, Morais A, Tamim I, Yagmur D, Ishikawa H, Arai K, Abbas Yaseen M, Boas DA, Sakadzic S, Ayata C. Rho-Kinase Inhibition Improves the Outcome of Focal Subcortical White Matter Lesions. Stroke 2022; 53:2369-2376. [PMID: 35656825 DOI: 10.1161/strokeaha.121.037358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Subcortical white matter lesions are exceedingly common in cerebral small vessel disease and lead to significant cumulative disability without an available treatment. Here, we tested a rho-kinase inhibitor on functional recovery after focal white matter injury. METHODS A focal corpus callosum lesion was induced by stereotactic injection of N5-(1-iminoethyl)-L-ornithine in mice. Fasudil (10 mg/kg) or vehicle was administered daily for 2 weeks, starting one day after lesion induction. Resting-state functional connectivity and grid walk performance were studied longitudinally, and lesion volumes were determined at one month. RESULTS Resting-state interhemispheric functional connectivity significantly recovered between days 1 and 14 in the fasudil group (P<0.001), despite worse initial connectivity loss than vehicle before treatment onset. Grid walk test revealed an increased number of foot faults in the vehicle group compared with baseline, which persisted for at least 4 weeks. In contrast, the fasudil arm did not show an increase in foot faults and had smaller lesions at 4 weeks. Immunohistochemical examination of reactive astrocytosis, synaptic density, and mature oligodendrocytes did not reveal a significant difference between treatment arms. CONCLUSIONS These data show that delayed fasudil posttreatment improves functional outcomes after a focal subcortical white matter lesion in mice. Future work will aim to elucidate the mechanisms.
Collapse
Affiliation(s)
- Sanem A Aykan
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Hongyu Xie
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.).,Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China (H.X.)
| | - Yi Zheng
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - David Y Chung
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.).,Stroke Service, Department of Neurology, Massachusetts General Hospital, Charlestown, MA. (C.A., D.Y.C.)
| | - Sreekanth Kura
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, MA (S.K., D.A.B.)
| | - James Han Lai
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Taylan D Erdogan
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Andreia Morais
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Isra Tamim
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Damla Yagmur
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown. (H.I., K.A.)
| | - Ken Arai
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown. (H.I., K.A.)
| | - M Abbas Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA. (D.A.B., M.A.Y., S.S.)
| | - David A Boas
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, MA (S.K., D.A.B.).,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA. (D.A.B., M.A.Y., S.S.)
| | - Sava Sakadzic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA. (D.A.B., M.A.Y., S.S.)
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.).,Stroke Service, Department of Neurology, Massachusetts General Hospital, Charlestown, MA. (C.A., D.Y.C.)
| |
Collapse
|
14
|
Mosley N, Chung JY, Jin G, Franceschini MA, Whalen MJ, Chung DY. Cortical Spreading Depolarization, Blood Flow, and Cognitive Outcomes in a Closed Head Injury Mouse Model of Traumatic Brain Injury. Neurocrit Care 2022; 37:102-111. [PMID: 35378664 PMCID: PMC9262867 DOI: 10.1007/s12028-022-01474-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/15/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cortical spreading depolarizations (CSDs) are associated with worse outcomes in many forms of acute brain injury, including traumatic brain injury (TBI). Animal models could be helpful in developing new therapies or biomarkers to improve outcomes in survivors of TBI. Recently, investigators have observed CSDs in murine models of mild closed head injury (CHI). We designed the currently study to determine additional experimental conditions under which CSDs can be observed, from mild to relatively more severe TBI. METHODS Adult male C57Bl/6J mice (8-14 weeks old) were anesthetized with isoflurane and subjected to CHI with an 81-g weight drop from 152 or 183 cm. CSDs were detected with minimally invasive visible light optical intrinsic signal imaging. Cerebral blood flow index (CBFi) was measured in the 152-cm drop height cohort using diffuse correlation spectroscopy at baseline before and 4 min after CHI. Cognitive outcomes were assessed at 152- and 183-cm drop heights for the Morris water maze hidden platform, probe, and visible platform tests. RESULTS CSDs occurred in 43% (n = 12 of 28) of 152-cm and 58% (n = 15 of 26) of 183-cm drop height CHI mice (p = 0.28). A lower baseline preinjury CBFi was associated with development of CSDs in CHI mice (1.50 ± 0.07 × 10-7 CHI without CSD [CSD-] vs. 1.17 ± 0.04 × 10-7 CHI with CSD [CSD+], p = 0.0001). Furthermore, in CHI mice that developed CSDs, the ratio of post-CHI to pre-CHI CBFi was lower in the hemisphere ipsilateral to a CSD compared with non-CSD hemispheres (0.19 ± 0.07 less in the CSD hemisphere, p = 0.028). At a 152-cm drop height, there were no detectable differences between sham injured (n = 10), CHI CSD+ (n = 12), and CHI CSD- (n = 16) mice on Morris water maze testing at 4 weeks. At a 183-cm drop height, CHI CSD+ mice had worse performance on the hidden platform test at 1-2 weeks versus sham mice (n = 15 CHI CSD+, n = 9 sham, p = 0.045), but there was no appreciable differences compared with CHI CSD- mice (n = 11 CHI CSD-). CONCLUSIONS The data suggest that a lower baseline cerebral blood flow prior to injury may contribute to the occurrence of a CSD. Furthermore, a CSD at the time of injury can be associated with worse cognitive outcome under the appropriate experimental conditions in a mouse CHI model of TBI.
Collapse
Affiliation(s)
- Nathaniel Mosley
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joon Y Chung
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gina Jin
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria A Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Michael J Whalen
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Y Chung
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA, 02129, USA.
- Division of Neurocritical Care, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA.
| |
Collapse
|
15
|
Lai JH, Qin T, Sakadžić S, Ayata C, Chung DY. Cortical Spreading Depolarizations in a Mouse Model of Subarachnoid Hemorrhage. Neurocrit Care 2022; 37:123-132. [PMID: 34981426 PMCID: PMC9250554 DOI: 10.1007/s12028-021-01397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cortical spreading depolarizations (CSDs) are associated with worse outcomes in patients with aneurysmal subarachnoid hemorrhage (SAH). Animal models are required to assess whether CSDs can worsen outcomes or are an epiphenomenon; however, little is known about the presence of CSDs in existing animal models. Therefore, we designed a study to determine whether CSDs occur in a mouse model of SAH. METHODS A total of 36 mice were included in the study. We used the anterior prechiasmatic injection model of SAH under isoflurane anesthesia. A needle was inserted through the mouse olfactory bulb with the point terminating at the base of the skull, and arterial blood or saline (100 µl) was injected over 10 s. Changes in cerebral blood volume over the entire dorsal cortical surface were assessed with optical intrinsic signal imaging for 5 min following needle insertion. RESULTS CSDs occurred in 100% of mice in the hemisphere ipsilateral to olfactory bulb needle insertion (CSD1). Saline-injected mice had 100% survival (n = 10). Blood-injected mice had 88% survival (n = 23 of 26). A second, delayed, CSD ipsilateral to CSD1 occurred in 31% of blood-injected mice. An increase in the time interval between CSD1 and blood injection was associated with the occurrence of a second CSD in blood-injected mice (mean intervals 26.4 vs. 72.7 s, p < 0.0001, n = 18 and 8). We observed one blood-injected animal with a second CSD in the contralateral hemisphere and observed terminal CSDs in mice that died following SAH injection. CONCLUSIONS The prechiasmatic injection model of SAH includes CSDs that occur at the time of needle insertion. The occurrence of subsequent CSDs depends on the timing between CSD1 and blood injection. The mouse prechiasmatic injection model could be considered an SAH plus CSD model of the disease. Further work is needed to determine the effect of multiple CSDs on outcomes following SAH.
Collapse
Affiliation(s)
- James H Lai
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA, 02129, USA
- Division of Neurocritical Care, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Tao Qin
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA, 02129, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA, 02129, USA
- Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Y Chung
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA, 02129, USA.
- Division of Neurocritical Care, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
16
|
Enhancing S-nitrosoglutathione reductase decreases S-nitrosylation of Drp1 and reduces neuronal apoptosis in experimental subarachnoid hemorrhage both in vivo and in vitro. Brain Res Bull 2022; 183:184-200. [PMID: 35304287 DOI: 10.1016/j.brainresbull.2022.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a hemorrhagic stroke with a high mortality and disability rate. Nitric oxide (NO) can promote blood supply through vasodilation, leading to protein S-nitrosylation. However, the function of S-nitrosylation in neurons after SAH remains unclear. Excessive NO in the pathological state is converted into S-nitrosoglutathione (GSNO) and stored in cells, which leads to high S-nitrosylation of intracellular proteins and causes nitrosative stress. S-nitrosoglutathione reductase (GSNOR) promotes GSNO degradation and protects cells from excessive S-nitrosylation. We conducted an in vivo rat carotid puncture model and an in vitro neuron hemoglobin intervention. The results showed that SAH induction increased NO, GSNO, neuron protein S-nitrosylation, and neuronal apoptosis, while decreasing the level and activity of GSNOR. GSNOR overexpression by lentivirus decreased GSNO but had little effect on NO. GSNOR overexpression also improved short- and long-term neurobehavioral outcomes in rats and alleviated nitrosative stress. Furthermore, GSNOR reduced neuronal apoptosis and played a neuroprotective role by alleviating Drp1 S-nitrosylation, reducing mitochondrial division. Thus, the regulation of GSNOR in early brain injury and neuronal denitrosylation may play an important role in neuroprotection.
Collapse
|
17
|
Regnier-Golanov AS, Gulinello M, Hernandez MS, Golanov EV, Britz GW. Subarachnoid Hemorrhage Induces Sub-acute and Early Chronic Impairment in Learning and Memory in Mice. Transl Stroke Res 2022; 13:625-640. [PMID: 35260988 DOI: 10.1007/s12975-022-00987-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/20/2022]
Abstract
Subarachnoid hemorrhage (SAH) leads to significant long-term cognitive deficits, so-called the post-SAH syndrome. Existing neurological scales used to assess outcomes of SAH are focused on sensory-motor functions. To better evaluate short-term and chronic consequences of SAH, we explored and validated a battery of neurobehavioral tests to gauge the functional outcomes in mice after the circle of Willis perforation-induced SAH. The 18-point Garcia scale, applied up to 4 days, detected impairment only at 24-h time point and showed no significant difference between the Sham and SAH group. A decrease in locomotion was detected at 4-days post-surgery in the open field test but recovered at 30 days in Sham and SAH groups. However, an anxiety-like behavior undetected at 4 days developed at 30 days in SAH mice. At 4-days post-surgery, Y-maze revealed an impairment in working spatial memory in SAH mice, and dyadic social interactions showed a decrease in the sociability in SAH mice, which spent less time interacting with the stimulus mouse. At 30 days after ictus, SAH mice displayed mild spatial learning and memory deficits in the Barnes maze as they committed significantly more errors and used more time to find the escape box but still were able to learn the task. We also observed cognitive dysfunction in the SAH mice in the novel object recognition test. Taken together, these data suggest dysfunction of the limbic system and hippocampus in particular. We suggest a battery of 5 basic behavioral tests allowing to detect neurocognitive deficits in a sub-acute and chronic phase following the SAH.
Collapse
Affiliation(s)
| | - M Gulinello
- Rodent Behavior Core, Department of Neuroscience, Albert Einstein University, Bronx, NY, 10461, USA
| | - M S Hernandez
- Department of Neurosurgery, Houston Methodist Hospital, Houston, USA
| | - E V Golanov
- Department of Neurosurgery, Houston Methodist Hospital, Houston, USA
| | - G W Britz
- Department of Neurosurgery, Houston Methodist Hospital, Houston, USA.
| |
Collapse
|
18
|
Peng K, Koduri S, Ye F, Yang J, Keep RF, Xi G, Hua Y. A timeline of oligodendrocyte death and proliferation following experimental subarachnoid hemorrhage. CNS Neurosci Ther 2022; 28:842-850. [PMID: 35150055 PMCID: PMC9062564 DOI: 10.1111/cns.13812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS White matter (WM) injury is a critical factor associated with worse outcomes following subarachnoid hemorrhage (SAH). However, the detailed pathological changes are not completely understood. This study investigates temporal changes in the corpus callosum (CC), including WM edema and oligodendrocyte death after SAH, and the role of lipocalin-2 (LCN2) in those changes. METHODS Subarachnoid hemorrhage was induced in adult wild-type or LCN2 knockout mice via endovascular perforation. Magnetic resonance imaging was performed 4 hours, 1 day, and 8 days after SAH, and T2 hyperintensity changes within the CC were quantified to represent WM edema. Immunofluorescence staining was performed to evaluate oligodendrocyte death and proliferation. RESULTS Subarachnoid hemorrhage induced significant CC T2 hyperintensity at 4 hours and 1 day that diminished significantly by 8 days post-procedure. Comparing changes between the 4 hours and 1 day, each individual mouse had an increase in CC T2 hyperintensity volume. Oligodendrocyte death was observed at 4 hours, 1 day, and 8 days after SAH induction, and there was progressive loss of mature oligodendrocytes, while immature oligodendrocytes/oligodendrocyte precursor cells (OPCs) proliferated back to baseline by Day 8 after SAH. Moreover, LCN2 knockout attenuated WM edema and oligodendrocyte death at 24 hours after SAH. CONCLUSIONS Subarachnoid hemorrhage leads to T2 hyperintensity change within the CC, which indicates WM edema. Oligodendrocyte death was observed in the CC within 1 day of SAH, with a partial recovery by Day 8. SAH-induced WM injury was alleviated in an LCN2 knockout mouse model.
Collapse
Affiliation(s)
- Kang Peng
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA,Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Sravanthi Koduri
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Fenghui Ye
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Jinting Yang
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Richard F. Keep
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Guohua Xi
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Ya Hua
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
19
|
Zheng C, Zhang RS, Wan T, Zhao JS. Topological Alterations of Working Memory Impairment in Aged Patients With Vascular Dementia. Front Aging Neurosci 2021; 13:741445. [PMID: 34675799 PMCID: PMC8524126 DOI: 10.3389/fnagi.2021.741445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a common disease causing vascular dementia. Survivors often suffer from cognitive impairment especially working memory deficit. Currently, lack of theoretical support limits the improvement of cognitive intervention or rehabilitation. It is unclear how the large-scale network differs and to what extent is the brain network affected? Our study aims to provide novel information about the topological characteristics of brain organization, especially "small-world" property. A total of 62 aSAH patients are enrolled in this study. They are divided into two groups according to the syndrome of working memory deficit. Their working memory function is evaluated by TMT-B and AVLT (Chinese version). Functional MRI scan is also performed for detecting resting-state cortical plasticity. We utilized ICA to extract functional sub-networks including working memory network from imaging data. And then we establish binarized network and calculate the small-worldness property as well as local and global efficiency of networks. aSAH group with working memory deficit shows no significant difference of clustering coefficient with control group. Our study discovered significant decrease of characteristic path length indicating an increase of overall routing efficiency. We reason that patients with working memory deficit have to recruit more neuronal resources and thus develops higher overall routing efficiency of local network. This study provides novel information about the neural alterations of aSAH patients with working memory deficit. It might contribute to the understanding of neural mechanism and the improvement of current intervention for vascular dementia.
Collapse
Affiliation(s)
- Cao Zheng
- Department of Radiation Intervention, Central Hospital of Huanggang City, Huanggang, China.,Department of Radiology, Central Hospital of Huanggang City, Huanggang, China
| | - Rong-Sheng Zhang
- Department of Radiation Intervention, Central Hospital of Huanggang City, Huanggang, China
| | - Ting Wan
- Department of Radiation Intervention, Central Hospital of Huanggang City, Huanggang, China
| | - Jun-Sheng Zhao
- Department of Radiation Intervention, Central Hospital of Huanggang City, Huanggang, China
| |
Collapse
|
20
|
Peterson C, Umoye AO, Puglisi CH, Waldau B. Mechanisms of memory impairment in animal models of nontraumatic intracranial hemorrhage: A systematic review of the literature. BRAIN HEMORRHAGES 2021; 3:77-93. [DOI: 10.1016/j.hest.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|