1
|
Chaimow D, Lorenz R, Weiskopf N. Closed-loop fMRI at the mesoscopic scale of columns and layers: Can we do it and why would we want to? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230085. [PMID: 39428874 PMCID: PMC11513163 DOI: 10.1098/rstb.2023.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 10/22/2024] Open
Abstract
Technological advances in fMRI including ultra-high magnetic fields (≥ 7 T) and acquisition methods that increase spatial specificity have paved the way for studies of the human cortex at the scale of layers and columns. This mesoscopic scale promises an improved mechanistic understanding of human cortical function so far only accessible to invasive animal neurophysiology. In recent years, an increasing number of studies have applied such methods to better understand the cortical function in perception and cognition. This future perspective article asks whether closed-loop fMRI studies could equally benefit from these methods to achieve layer and columnar specificity. We outline potential applications and discuss the conceptual and concrete challenges, including data acquisition and volitional control of mesoscopic brain activity. We anticipate an important role of fMRI with mesoscopic resolution for closed-loop fMRI and neurofeedback, yielding new insights into brain function and potentially clinical applications.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Denis Chaimow
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Romy Lorenz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Cognitive Neuroscience & Neurotechnology Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, LondonWC1N 3AR, UK
| |
Collapse
|
2
|
Niendorf T, Gladytz T, Cantow K, Klein T, Tasbihi E, Velasquez Vides JR, Zhao K, Millward JM, Waiczies S, Seeliger E. MRI of kidney size matters. MAGMA (NEW YORK, N.Y.) 2024; 37:651-669. [PMID: 38960988 PMCID: PMC11417087 DOI: 10.1007/s10334-024-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE To highlight progress and opportunities of measuring kidney size with MRI, and to inspire research into resolving the remaining methodological gaps and unanswered questions relating to kidney size assessment. MATERIALS AND METHODS This work is not a comprehensive review of the literature but highlights valuable recent developments of MRI of kidney size. RESULTS The links between renal (patho)physiology and kidney size are outlined. Common methodological approaches for MRI of kidney size are reviewed. Techniques tailored for renal segmentation and quantification of kidney size are discussed. Frontier applications of kidney size monitoring in preclinical models and human studies are reviewed. Future directions of MRI of kidney size are explored. CONCLUSION MRI of kidney size matters. It will facilitate a growing range of (pre)clinical applications, and provide a springboard for new insights into renal (patho)physiology. As kidney size can be easily obtained from already established renal MRI protocols without the need for additional scans, this measurement should always accompany diagnostic MRI exams. Reconciling global kidney size changes with alterations in the size of specific renal layers is an important topic for further research. Acute kidney size measurements alone cannot distinguish between changes induced by alterations in the blood or the tubular volume fractions-this distinction requires further research into cartography of the renal blood and the tubular volumes.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Thomas Gladytz
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Kathleen Cantow
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Tobias Klein
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Digital Health-Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
| | - Ehsan Tasbihi
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jose Raul Velasquez Vides
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institute for Medical Engineering, Otto Von Guericke University, Magdeburg, Germany
| | - Kaixuan Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jason M Millward
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| |
Collapse
|
3
|
Yun SD, Küppers F, Shah NJ. Submillimeter fMRI Acquisition Techniques for Detection of Laminar and Columnar Level Brain Activation. J Magn Reson Imaging 2024; 59:747-766. [PMID: 37589385 DOI: 10.1002/jmri.28911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023] Open
Abstract
Since the first demonstration in the early 1990s, functional MRI (fMRI) has emerged as one of the most powerful, noninvasive neuroimaging tools to probe brain functions. Subsequently, fMRI techniques have advanced remarkably, enabling the acquisition of functional signals with a submillimeter voxel size. This innovation has opened the possibility of investigating subcortical neural activities with respect to the cortical depths or cortical columns. For this purpose, numerous previous works have endeavored to design suitable functional contrast mechanisms and dedicated imaging techniques. Depending on the choice of the functional contrast, functional signals can be detected with high sensitivity or with improved spatial specificity to the actual activation site, and the pertaining issues have been discussed in a number of earlier works. This review paper primarily aims to provide an overview of the subcortical fMRI techniques that allow the acquisition of functional signals with a submillimeter resolution. Here, the advantages and disadvantages of the imaging techniques will be described and compared. We also summarize supplementary imaging techniques that assist in the analysis of the subcortical brain activation for more accurate mapping with reduced geometric deformation. This review suggests that there is no single universally accepted method as the gold standard for subcortical fMRI. Instead, the functional contrast and the corresponding readout imaging technique should be carefully determined depending on the purpose of the study. Due to the technical limitations of current fMRI techniques, most subcortical fMRI studies have only targeted partial brain regions. As a future prospect, the spatiotemporal resolution of fMRI will be pushed to satisfy the community's need for a deeper understanding of whole-brain functions and the underlying connectivity in order to achieve the ultimate goal of a time-resolved and layer-specific spatial scale. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Seong Dae Yun
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Fabian Küppers
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Choi S, Hike D, Pohmann R, Avdievich N, Gomez-Cid L, Man W, Scheffler K, Yu X. Alpha-180 spin-echo based line-scanning method for high resolution laminar-specific fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.09.540065. [PMID: 37214920 PMCID: PMC10197646 DOI: 10.1101/2023.05.09.540065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Laminar-specific functional magnetic resonance imaging (fMRI) has been widely used to study circuit-specific neuronal activity by mapping spatiotemporal fMRI response patterns across cortical layers. Hemodynamic responses reflect indirect neuronal activity given limit of spatial and temporal resolution. Previous gradient-echo based line-scanning fMRI (GELINE) method was proposed with high temporal (50 ms) and spatial (50 µm) resolution to better characterize the fMRI onset time across cortical layers by employing 2 saturation RF pulses. However, the imperfect RF saturation performance led to poor boundary definition of the reduced region of interest (ROI) and aliasing problems outside of the ROI. Here, we propose α (alpha)-180 spin-echo-based line-scanning fMRI (SELINE) method to resolve this issue by employing a refocusing 180° RF pulse perpendicular to the excitation slice. In contrast to GELINE signals peaked at the superficial layer, we detected varied peaks of laminar-specific BOLD signals across deeper cortical layers with the SELINE method, indicating the well-defined exclusion of the large drain-vein effect with the spin-echo sequence. Furthermore, we applied the SELINE method with 200 ms TR to sample the fast hemodynamic changes across cortical layers with a less draining vein effect. In summary, this SELINE method provides a novel acquisition scheme to identify microvascular-sensitive laminar-specific BOLD responses across cortical depth.
Collapse
|
5
|
Heij J, Raimondo L, Siero JCW, Dumoulin SO, van der Zwaag W, Knapen T. A selection and targeting framework of cortical locations for line-scanning fMRI. Hum Brain Mapp 2023; 44:5471-5484. [PMID: 37608563 PMCID: PMC10543358 DOI: 10.1002/hbm.26459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Depth-resolved functional magnetic resonance imaging (fMRI) is an emerging field growing in popularity given the potential of separating signals from different computational processes in cerebral cortex. Conventional acquisition schemes suffer from low spatial and temporal resolutions. Line-scanning methods allow depth-resolved fMRI by sacrificing spatial coverage to sample blood oxygenated level-dependent (BOLD) responses at ultra-high temporal and spatial resolution. For neuroscience applications, it is critical to be able to place the line accurately to (1) sample the right neural population and (2) target that neural population with tailored stimuli or tasks. To this end, we devised a multi-session framework where a target cortical location is selected based on anatomical and functional properties. The line is then positioned according to this information in a separate second session, and we tailor the experiment to focus on the target location. Anatomically, the precision of the line placement was confirmed by projecting a nominal representation of the acquired line back onto the surface. Functional estimates of neural selectivities in the line, as quantified by a visual population-receptive field model, resembled the target selectivities well for most subjects. This functional precision was quantified in detail by estimating the distance between the visual field location of the targeted vertex and the location in visual cortex (V1) that most closely resembled the line-scanning estimates; this distance was on average ~5.5 mm. Given the dimensions of the line, differences in acquisition, session, and stimulus design, this validates that line-scanning can be used to probe local neural sensitivities across sessions. In summary, we present an accurate framework for line-scanning MRI; we believe such a framework is required to harness the full potential of line-scanning and maximize its utility. Furthermore, this approach bridges canonical fMRI experiments with electrophysiological experiments, which in turn allows novel avenues for studying human physiology non-invasively.
Collapse
Affiliation(s)
- Jurjen Heij
- Spinoza Centre for NeuroimagingAmsterdamNetherlands
- Department of Computational Cognitive Neuroscience and NeuroimagingNetherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Experimental and Applied PsychologyVU UniversityAmsterdamNetherlands
| | - Luisa Raimondo
- Spinoza Centre for NeuroimagingAmsterdamNetherlands
- Department of Computational Cognitive Neuroscience and NeuroimagingNetherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Experimental and Applied PsychologyVU UniversityAmsterdamNetherlands
| | - Jeroen C. W. Siero
- Spinoza Centre for NeuroimagingAmsterdamNetherlands
- Department of Computational Cognitive Neuroscience and NeuroimagingNetherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Serge O. Dumoulin
- Spinoza Centre for NeuroimagingAmsterdamNetherlands
- Department of Computational Cognitive Neuroscience and NeuroimagingNetherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Experimental and Applied PsychologyVU UniversityAmsterdamNetherlands
- Department of Experimental PsychologyUtrecht UniversityUtrechtNetherlands
| | - Wietske van der Zwaag
- Spinoza Centre for NeuroimagingAmsterdamNetherlands
- Department of Computational Cognitive Neuroscience and NeuroimagingNetherlands Institute for NeuroscienceAmsterdamNetherlands
| | - Tomas Knapen
- Spinoza Centre for NeuroimagingAmsterdamNetherlands
- Department of Computational Cognitive Neuroscience and NeuroimagingNetherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Experimental and Applied PsychologyVU UniversityAmsterdamNetherlands
| |
Collapse
|
6
|
Ramawat S, Marc IB, Ceccarelli F, Ferrucci L, Bardella G, Ferraina S, Pani P, Brunamonti E. The transitive inference task to study the neuronal correlates of memory-driven decision making: A monkey neurophysiology perspective. Neurosci Biobehav Rev 2023; 152:105258. [PMID: 37268179 DOI: 10.1016/j.neubiorev.2023.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
A vast amount of literature agrees that rank-ordered information as A>B>C>D>E>F is mentally represented in spatially organized schemas after learning. This organization significantly influences the process of decision-making, using the acquired premises, i.e. deciding if B is higher than D is equivalent to comparing their position in this space. The implementation of non-verbal versions of the transitive inference task has provided the basis for ascertaining that different animal species explore a mental space when deciding among hierarchically organized memories. In the present work, we reviewed several studies of transitive inference that highlighted this ability in animals and, consequently, the animal models developed to study the underlying cognitive processes and the main neural structures supporting this ability. Further, we present the literature investigating which are the underlying neuronal mechanisms. Then we discuss how non-human primates represent an excellent model for future studies, providing ideal resources for better understanding the neuronal correlates of decision-making through transitive inference tasks.
Collapse
Affiliation(s)
- Surabhi Ramawat
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Isabel Beatrice Marc
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy; Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | | | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| |
Collapse
|
7
|
Uludağ K. Physiological modeling of the BOLD signal and implications for effective connectivity: A primer. Neuroimage 2023; 277:120249. [PMID: 37356779 DOI: 10.1016/j.neuroimage.2023.120249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023] Open
Abstract
In this primer, I provide an overview of the physiological processes that contribute to the observed BOLD signal (i.e., the generative biophysical model), including their time course properties within the framework of the physiologically-informed dynamic causal modeling (P-DCM). The BOLD signal is primarily determined by the change in paramagnetic deoxygenated hemoglobin, which results from combination of changes in oxygen metabolism, and cerebral blood flow and volume. Specifically, the physiological origin of the so-called BOLD signal "transients" will be discussed, including the initial overshoot, steady-state activation and the post-stimulus undershoot. I argue that incorrect physiological assumptions in the generative model of the BOLD signal can lead to incorrect inferences pertaining to both local neuronal activity and effective connectivity between brain regions. In addition, I introduce the recent laminar BOLD signal model, which extends P-DCM to cortical depths-resolved BOLD signals, allowing for laminar neuronal activity to be determined using high-resolution fMRI data.
Collapse
Affiliation(s)
- Kâmil Uludağ
- Krembil Brain Institute, University Health Network Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Center for Neuroscience Imaging Research, Institute for Basic Science & Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
8
|
Poplawsky AJ, Cover C, Reddy S, Chishti HB, Vazquez A, Fukuda M. Odor-evoked layer-specific fMRI activities in the awake mouse olfactory bulb. Neuroimage 2023; 274:120121. [PMID: 37080347 PMCID: PMC10240534 DOI: 10.1016/j.neuroimage.2023.120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Awake rodent fMRI is increasingly common over the use of anesthesia since it permits behavioral paradigms and does not confound normal brain function or neurovascular coupling. It is well established that adequate acclimation to the loud fMRI environment and head fixation reduces stress in the rodents and allows for whole brain imaging with little contamination from motion. However, it is unknown whether high-resolution fMRI with increased susceptibility to motion and lower sensitivity can measure small, but spatially discrete, activations in awake mice. To examine this, we used contrast-enhanced cerebral blood volume-weighted (CBVw) fMRI in the mouse olfactory bulb for its enhanced sensitivity and neural specificity. We determined that activation patterns in the glomerular layer to four different odors were spatially distinct and were consistent with previously established histological patterns. In addition, odor-evoked laminar activations were greatest in superficial layers that decreased with laminar depth, similar to previous observations. Interestingly, the fMRI response strengths in the granule cell layer were greater in awake mice than our previous anesthetized rat studies, suggesting that feedback neural activities were intact with wakefulness. We finally determined that fMRI signal changes to repeated odor exposure (i.e., olfactory adaptation) attenuated relatively more in the feedback granule cell layer compared to the input glomerular layer, which is consistent with prior observations. We, therefore, conclude that high-resolution CBVw fMRI can measure odor-specific activation patterns and distinguish changes in laminar activity of head and body restrained awake mice.
Collapse
Affiliation(s)
- Alexander John Poplawsky
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States.
| | - Christopher Cover
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sujatha Reddy
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| | - Harris B Chishti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto Vazquez
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| |
Collapse
|
9
|
Choi S, Chen Y, Zeng H, Biswal B, Yu X. Identifying the distinct spectral dynamics of laminar-specific interhemispheric connectivity with bilateral line-scanning fMRI. J Cereb Blood Flow Metab 2023; 43:1115-1129. [PMID: 36803280 PMCID: PMC10291453 DOI: 10.1177/0271678x231158434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 02/23/2023]
Abstract
Despite extensive efforts to identify interhemispheric functional connectivity (FC) with resting-state (rs-) fMRI, correlated low-frequency rs-fMRI signal fluctuation across homotopic cortices originates from multiple sources. It remains challenging to differentiate circuit-specific FC from global regulation. Here, we developed a bilateral line-scanning fMRI method to detect laminar-specific rs-fMRI signals from homologous forepaw somatosensory cortices with high spatial and temporal resolution in rat brains. Based on spectral coherence analysis, two distinct bilateral fluctuation spectral features were identified: ultra-slow fluctuation (<0.04 Hz) across all cortical laminae versus Layer (L) 2/3-specific evoked BOLD at 0.05 Hz based on 4 s on/16 s off block design and resting-state fluctuations at 0.08-0.1 Hz. Based on the measurements of evoked BOLD signal at corpus callosum (CC), this L2/3-specific 0.05 Hz signal is likely associated with neuronal circuit-specific activity driven by the callosal projection, which dampened ultra-slow oscillation less than 0.04 Hz. Also, the rs-fMRI power variability clustering analysis showed that the appearance of L2/3-specific 0.08-0.1 Hz signal fluctuation is independent of the ultra-slow oscillation across different trials. Thus, distinct laminar-specific bilateral FC patterns at different frequency ranges can be identified by the bilateral line-scanning fMRI method.
Collapse
Affiliation(s)
- Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yi Chen
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Hang Zeng
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Bharat Biswal
- Department of Biomedical Engineering, NJIT, Newark, NJ, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
10
|
Kotoula V, Evans JW, Punturieri CE, Zarate CA. Review: The use of functional magnetic resonance imaging (fMRI) in clinical trials and experimental research studies for depression. FRONTIERS IN NEUROIMAGING 2023; 2:1110258. [PMID: 37554642 PMCID: PMC10406217 DOI: 10.3389/fnimg.2023.1110258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/12/2023] [Indexed: 08/10/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is a non-invasive technique that can be used to examine neural responses with and without the use of a functional task. Indeed, fMRI has been used in clinical trials and pharmacological research studies. In mental health, it has been used to identify brain areas linked to specific symptoms but also has the potential to help identify possible treatment targets. Despite fMRI's many advantages, such findings are rarely the primary outcome measure in clinical trials or research studies. This article reviews fMRI studies in depression that sought to assess the efficacy and mechanism of action of compounds with antidepressant effects. Our search results focused on selective serotonin reuptake inhibitors (SSRIs), the most commonly prescribed treatments for depression and ketamine, a fast-acting antidepressant treatment. Normalization of amygdala hyperactivity in response to negative emotional stimuli was found to underlie successful treatment response to SSRIs as well as ketamine, indicating a potential common pathway for both conventional and fast-acting antidepressants. Ketamine's rapid antidepressant effects make it a particularly useful compound for studying depression with fMRI; its effects on brain activity and connectivity trended toward normalizing the increases and decreases in brain activity and connectivity associated with depression. These findings highlight the considerable promise of fMRI as a tool for identifying treatment targets in depression. However, additional studies with improved methodology and study design are needed before fMRI findings can be translated into meaningful clinical trial outcomes.
Collapse
|
11
|
Raimondo L, Priovoulos N, Passarinho C, Heij J, Knapen T, Dumoulin SO, Siero JCW, van der Zwaag W. Robust high spatio-temporal line-scanning fMRI in humans at 7T using multi-echo readouts, denoising and prospective motion correction. J Neurosci Methods 2023; 384:109746. [PMID: 36403778 DOI: 10.1016/j.jneumeth.2022.109746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/12/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI), typically using blood oxygenation level-dependent (BOLD) contrast weighted imaging, allows the study of brain function with millimeter spatial resolution and temporal resolution of one to a few seconds. At a mesoscopic scale, neurons in the human brain are spatially organized in structures with dimensions of hundreds of micrometers, while they communicate at the millisecond timescale. For this reason, it is important to develop an fMRI method with simultaneous high spatial and temporal resolution. Line-scanning promises to reach this goal at the cost of volume coverage. NEW METHOD Here, we release a comprehensive update to human line-scanning fMRI. First, we investigated multi-echo line-scanning with five different protocols varying the number of echoes and readout bandwidth while keeping the TR constant. In these, we compared different echo combination approaches in terms of BOLD activation (sensitivity) and temporal signal-to-noise ratio. Second, we implemented an adaptation of NOise reduction with DIstribution Corrected principal component analysis (NORDIC) thermal noise removal for line-scanning fMRI data. Finally, we tested three image-based navigators for motion correction and investigated different ways of performing fMRI analysis on the timecourses which were influenced by the insertion of the navigators themselves. RESULTS The presented improvements are relatively straightforward to implement; multi-echo readout and NORDIC denoising together, significantly improve data quality in terms of tSNR and t-statistical values, while motion correction makes line-scanning fMRI more robust. COMPARISON WITH EXISTING METHODS Multi-echo acquisitions and denoising have previously been applied in 3D magnetic resonance imaging. Their combination and application to 1D line-scanning is novel. The current proposed method greatly outperforms the previous line-scanning acquisitions with single-echo acquisition, in terms of tSNR (4.0 for single-echo line-scanning and 36.2 for NORDIC-denoised multi-echo) and t-statistical values (3.8 for single-echo line-scanning and 25.1 for NORDIC-denoised multi-echo line-scanning). CONCLUSIONS Line-scanning fMRI was advanced compared to its previous implementation in order to improve sensitivity and reliability. The improved line-scanning acquisition could be used, in the future, for neuroscientific and clinical applications.
Collapse
Affiliation(s)
- Luisa Raimondo
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands; Experimental and Applied Psychology, VU University, De Boelelaan 1105, 1081 HV Amsterdam, Netherlands.
| | - Nikos Priovoulos
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands.
| | - Catarina Passarinho
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Institute for Systems and Robotics, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.
| | - Jurjen Heij
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands; Experimental and Applied Psychology, VU University, De Boelelaan 1105, 1081 HV Amsterdam, Netherlands.
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands; Experimental and Applied Psychology, VU University, De Boelelaan 1105, 1081 HV Amsterdam, Netherlands.
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands; Experimental Psychology, Utrecht University, PO Box 80125, 3508 TC Utrecht, Netherlands.
| | - Jeroen C W Siero
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Radiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands.
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK Amsterdam, Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands.
| |
Collapse
|
12
|
Towards functional spin-echo BOLD line-scanning in humans at 7T. MAGMA (NEW YORK, N.Y.) 2023; 36:317-327. [PMID: 36625959 PMCID: PMC10140128 DOI: 10.1007/s10334-022-01059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Neurons cluster into sub-millimeter spatial structures and neural activity occurs at millisecond resolutions; hence, ultimately, high spatial and high temporal resolutions are required for functional MRI. In this work, we implemented a spin-echo line-scanning (SELINE) sequence to use in high spatial and temporal resolution fMRI. MATERIALS AND METHODS A line is formed by simply rotating the spin-echo refocusing gradient to a plane perpendicular to the excited slice and by removing the phase-encoding gradient. This technique promises a combination of high spatial and temporal resolution (250 μm, 500 ms) and microvascular specificity of functional responses. We compared SELINE data to a corresponding gradient-echo version (GELINE). RESULTS We demonstrate that SELINE showed much-improved line selection (i.e. a sharper line profile) compared to GELINE, albeit at the cost of a significant drop in functional sensitivity. DISCUSSION This low functional sensitivity needs to be addressed before SELINE can be applied for neuroscientific purposes.
Collapse
|
13
|
Toi PT, Jang HJ, Min K, Kim SP, Lee SK, Lee J, Kwag J, Park JY. In vivo direct imaging of neuronal activity at high temporospatial resolution. Science 2022; 378:160-168. [PMID: 36227975 DOI: 10.1126/science.abh4340] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There has been a long-standing demand for noninvasive neuroimaging methods that can detect neuronal activity at both high temporal and high spatial resolution. We present a two-dimensional fast line-scan approach that enables direct imaging of neuronal activity with millisecond precision while retaining the high spatial resolution of magnetic resonance imaging (MRI). This approach was demonstrated through in vivo mouse brain imaging at 9.4 tesla during electrical whisker-pad stimulation. In vivo spike recording and optogenetics confirmed the high correlation of the observed MRI signal with neural activity. It also captured the sequential and laminar-specific propagation of neuronal activity along the thalamocortical pathway. This high-resolution, direct imaging of neuronal activity will open up new avenues in brain science by providing a deeper understanding of the brain's functional organization, including the temporospatial dynamics of neural networks.
Collapse
Affiliation(s)
- Phan Tan Toi
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Jae Jang
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
- Division of Computer Engineering, Baekseok University, Cheonan 31065, Republic of Korea
| | - Kyeongseon Min
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seung-Kyun Lee
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeehyun Kwag
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jang-Yeon Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
14
|
Demirayak P, Deshpande G, Visscher K. Laminar functional magnetic resonance imaging in vision research. Front Neurosci 2022; 16:910443. [PMID: 36267240 PMCID: PMC9577024 DOI: 10.3389/fnins.2022.910443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) scanners at ultra-high magnetic fields have become available to use in humans, thus enabling researchers to investigate the human brain in detail. By increasing the spatial resolution, ultra-high field MR allows both structural and functional characterization of cortical layers. Techniques that can differentiate cortical layers, such as histological studies and electrode-based measurements have made critical contributions to the understanding of brain function, but these techniques are invasive and thus mainly available in animal models. There are likely to be differences in the organization of circuits between humans and even our closest evolutionary neighbors. Thus research on the human brain is essential. Ultra-high field MRI can observe differences between cortical layers, but is non-invasive and can be used in humans. Extensive previous literature has shown that neuronal connections between brain areas that transmit feedback and feedforward information terminate in different layers of the cortex. Layer-specific functional MRI (fMRI) allows the identification of layer-specific hemodynamic responses, distinguishing feedback and feedforward pathways. This capability has been particularly important for understanding visual processing, as it has allowed researchers to test hypotheses concerning feedback and feedforward information in visual cortical areas. In this review, we provide a general overview of successful ultra-high field MRI applications in vision research as examples of future research.
Collapse
Affiliation(s)
- Pinar Demirayak
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Pinar Demirayak,
| | - Gopikrishna Deshpande
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
- Alabama Advanced Imaging Consortium, Birmingham, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
- School of Psychology, Capital Normal University, Beijing, China
- Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Kristina Visscher
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
15
|
Bhogal AA, Sayin ES, Poublanc J, Duffin J, Fisher JA, Sobcyzk O, Mikulis DJ. Quantifying cerebral blood arrival times using hypoxia-mediated arterial BOLD contrast. Neuroimage 2022; 261:119523. [PMID: 35907499 DOI: 10.1016/j.neuroimage.2022.119523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
Abstract
Cerebral blood arrival and tissue transit times are sensitive measures of the efficiency of tissue perfusion and can provide clinically meaningful information on collateral blood flow status. We exploit the arterial blood oxygen level dependent (BOLD) signal contrast established by precisely decreasing, and then increasing, arterial hemoglobin saturation using respiratory re-oxygenation challenges to quantify arterial blood arrival times throughout the brain. We term this approach the Step Hemoglobin re-Oxygenation Contrast Stimulus (SHOCS). Carpet plot analysis yielded measures of signal onset (blood arrival), global transit time (gTT) and calculations of relative total blood volume. Onset times averaged across 12 healthy subjects were 1.1 ± 0.4 and 1.9 ± 0.6 for cortical gray and deep white matter, respectively. The average whole brain gTT was 4.5 ± 0.9 seconds. The SHOCS response was 1.7 fold higher in grey versus white matter; in line with known differences in tissue-specific blood volume fraction. SHOCS was also applied in a patient with unilateral carotid artery occlusion revealing ipsilateral prolonged signal onset with normal perfusion in the unaffected hemisphere. We anticipate that SHOCS will further inform on the extent of collateral blood flow in patients with upstream steno-occlusive vascular disease, including those already known to manifest reductions in vasodilatory reserve capacity or vascular steal.
Collapse
Affiliation(s)
- Alex A Bhogal
- Center of Imaging Sciences, High Field Department, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, CX 3584, the Netherlands.
| | - Ece Su Sayin
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, Toronto, Canada
| | - Joseph A Fisher
- Department of Physiology, University of Toronto, Toronto, Canada; Department of Anesthesiology and Pain Medicine, University Health Network and University of Toronto, Toronto, Canada
| | - Olivia Sobcyzk
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada; Department of Anesthesiology and Pain Medicine, University Health Network and University of Toronto, Toronto, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| |
Collapse
|
16
|
Balasubramanian M, Mulkern RV, Polimeni JR. In vivo irreversible and reversible transverse relaxation rates in human cerebral cortex via line scans at 7 T with 250 micron resolution perpendicular to the cortical surface. Magn Reson Imaging 2022; 90:44-52. [PMID: 35398027 PMCID: PMC9930184 DOI: 10.1016/j.mri.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/10/2022] [Accepted: 04/02/2022] [Indexed: 01/15/2023]
Abstract
Understanding how and why MR signals and their associated relaxation rates vary with cortical depth could ultimately enable the noninvasive investigation of the laminar architecture of cerebral cortex in the living human brain. However, cortical gray matter is typically only a few millimeters thick, making it challenging to sample many cortical depths with the voxel sizes commonly used in MRI studies. Line-scan techniques provide a way to overcome this challenge and here we implemented a novel line-scan GESSE pulse sequence that allowed us to measure irreversible and reversible transverse relaxation rates-R2 and R2´, respectively-with extremely high resolution (250 μm) in the radial direction, perpendicular to the cortical surface. Eight healthy human subjects were scanned at 7 T using this sequence, with primary visual cortex (V1) targeted in three subjects and primary motor (M1) and somatosensory cortex (S1) targeted in the other five. In all three cortical areas, a peak in R2 values near the central depths was seen consistently across subjects-an observation that has not been made before, to our knowledge. On the other hand, no consistent pattern was apparent for R2´ values as a function of cortical depth. The intracortical R2 peak reported here is unlikely to be explained by myelin content or by deoxyhemoglobin in the microvasculature; however, this peak is in accord with the laminar distribution of non-heme iron in these cortical areas, known from prior histology studies. Obtaining information about tissue microstructure via measurements of transverse relaxation (and other quantitative MR contrast mechanisms) at the extremely high radial resolutions achievable through the use of line-scan techniques could therefore bring us closer to being able to perform "in vivo histology" of the cerebral cortex.
Collapse
Affiliation(s)
- Mukund Balasubramanian
- Harvard Medical School, Boston, MA, USA; Department of Radiology, Boston Children's Hospital, Boston, MA, USA.
| | - Robert V. Mulkern
- Harvard Medical School, Boston, MA, USA,Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
| | - Jonathan R. Polimeni
- Harvard Medical School, Boston, MA, USA,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
17
|
Miletić S, Keuken MC, Mulder M, Trampel R, de Hollander G, Forstmann BU. 7T functional MRI finds no evidence for distinct functional subregions in the subthalamic nucleus during a speeded decision-making task. Cortex 2022; 155:162-188. [DOI: 10.1016/j.cortex.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/18/2022] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
|
18
|
Chen Y, Wang Q, Choi S, Zeng H, Takahashi K, Qian C, Yu X. Focal fMRI signal enhancement with implantable inductively coupled detectors. Neuroimage 2022; 247:118793. [PMID: 34896291 PMCID: PMC8842502 DOI: 10.1016/j.neuroimage.2021.118793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Despite extensive efforts to increase the signal-to-noise ratio (SNR) of fMRI images for brain-wide mapping, technical advances of focal brain signal enhancement are lacking, in particular, for animal brain imaging. Emerging studies have combined fMRI with fiber optic-based optogenetics to decipher circuit-specific neuromodulation from meso to macroscales. High-resolution fMRI is needed to integrate hemodynamic responses into cross-scale functional dynamics, but the SNR remains a limiting factor given the complex implantation setup of animal brains. Here, we developed a multimodal fMRI imaging platform with an implanted inductive coil detector. This detector boosts the tSNR of MRI images, showing a 2-3-fold sensitivity gain over conventional coil configuration. In contrast to the cryoprobe or array coils with limited spaces for implanted brain interface, this setup offers a unique advantage to study brain circuit connectivity with optogenetic stimulation and can be further extended to other multimodal fMRI mapping schemes.
Collapse
Affiliation(s)
- Yi Chen
- Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
| | - Qi Wang
- Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Sangcheon Choi
- Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Hang Zeng
- Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Kengo Takahashi
- Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Graduate Training Centre of Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|