1
|
Deng W, Zhang J, Yang J, Wang Z, Pan Z, Yue X, Zhao R, Qian Y, Yu Y, Li X. Changes in brain susceptibility in Wilson's disease patients: a quantitative susceptibility mapping study. Clin Radiol 2024; 79:e282-e286. [PMID: 38087682 DOI: 10.1016/j.crad.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 01/02/2024]
Abstract
AIM To assess changes in the susceptibility of the caudate nucleus (CN), putamen, and globus pallidus (GP) in patients with neurological and hepatic Wilson's disease (WD) by quantitative susceptibility mapping (QSM). MATERIAL AND METHODS The brain MRI images of 33 patients diagnosed with WD and 20 age-matched controls were analysed retrospectively. All participants underwent brain T1-weighted, T2-weighted, and QSM imaging using a 1.5 T magnetic resonance imaging (MRI) machine. QSM maps were evaluated with the STISuite toolbox. The quantitative susceptibility levels of the CN, putamen, and GP were analysed using region of interest analysis on QSM maps. Differences among neurological WD patients, hepatic patients, and controls were determined. RESULTS Susceptibility levels were significantly higher for all examined structures (CN, putamen and GP) in patients with neurological WD compared with controls (all p<0.05) and hepatic WD patients (all p<0.05). No statistically significant differences were found in susceptibility levels between patients with hepatic WD and controls (all p>0.05). CONCLUSION The QSM technique is a valuable tool for detecting changes in brain susceptibility in WD patients, indicating abnormal metal deposition. Notably, the current findings suggest that neurological WD patients exhibit more severe susceptibility changes compared with hepatic WD patients. Therefore, QSM can be utilised as a complementary method to detect brain injury in WD patients.
Collapse
Affiliation(s)
- W Deng
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, No. 218 Jixi Road, Hefei, 230022, China
| | - J Zhang
- Department of Neurology, Institute of Neurology, Anhui University of Traditional Chinese Medicine, Anhui, China
| | - J Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, No. 218 Jixi Road, Hefei, 230022, China
| | - Z Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, No. 218 Jixi Road, Hefei, 230022, China
| | - Z Pan
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, No. 218 Jixi Road, Hefei, 230022, China
| | - X Yue
- Philips Healthcare, Beijing, China
| | - R Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Y Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, No. 218 Jixi Road, Hefei, 230022, China
| | - Y Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, No. 218 Jixi Road, Hefei, 230022, China
| | - X Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, No. 218 Jixi Road, Hefei, 230022, China.
| |
Collapse
|
2
|
Huang Z, Yang J, Chen D, Zhou X, Xiao X, Wang J, Wang M, Zhao J, Chu J. Metal deposits associated with brain atrophy in the deep gray matter nucleus in Wilson's disease. Cereb Cortex 2023:bhad182. [PMID: 37365842 DOI: 10.1093/cercor/bhad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/03/2023] [Indexed: 06/28/2023] Open
Abstract
Regional atrophy and metal deposition are typical manifestations in Wilson's disease, but their relationship has not been systematically investigated. We aim to investigate the association of regional brain atrophy and metal deposition in the deep gray matter nucleus at MRI in Wilson's disease. We acquired the structural and susceptibility mapping and performed a cross-sectional comparison of volume and susceptibility in deep gray matter nucleus. The most extensive and severe atrophy was detected in brain regions in neuro-Wilson's disease, as well as the most widespread and heaviest metal deposits. Metal deposits were significantly negatively correlated with volume in the bilateral thalamus, caudate, and putamen. None of correlation was found between the clinical score with volume or susceptibility in the focused regions. In the 1-year follow-up analysis, the volume of right thalamus, globus pallidus, and brainstem and the susceptibility of the left caudate have decreased significantly as the symptom improvement. In Wilson's disease, phenotypes have varied scope and extend of volumetric atrophy and metal deposits. This study is expected to take the lead in revealing that in neuro-Wilson's disease, greater regional atrophy associated with heavier metal deposits in Wilson's disease. Moreover, after 1-year treatment, the imaging data have changed as the patient's condition improvement.
Collapse
Affiliation(s)
- Zihuan Huang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Jie Yang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518000, Guangdong Province, China
| | - Dingbang Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Xiangxue Zhou
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Xia Xiao
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Junqiao Wang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Mengzhu Wang
- Department of MR Scientific Marketing, Siemens Healthineers, Guangzhou 510120, Guangdong Province, China
| | - Jing Zhao
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| | - Jianping Chu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| |
Collapse
|
3
|
Li G, Tong R, Zhang M, Gillen KM, Jiang W, Du Y, Wang Y, Li J. Age-dependent changes in brain iron deposition and volume in deep gray matter nuclei using quantitative susceptibility mapping. Neuroimage 2023; 269:119923. [PMID: 36739101 DOI: 10.1016/j.neuroimage.2023.119923] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Microstructural changes in deep gray matter (DGM) nuclei are related to physiological behavior, cognition, and memory. Therefore, it is critical to study age-dependent trajectories of biomarkers in DGM nuclei for understanding brain development and aging, as well as predicting cognitive or neurodegenerative diseases. OBJECTIVES We aimed to (1) characterize age-dependent trajectories of mean susceptibility, adjusted volume, and total iron content simultaneously in DGM nuclei using quantitative susceptibility mapping (QSM); (2) examine potential contributions of sex related effects to the different age-dependence trajectories of volume and iron deposition; and (3) evaluate the ability of brain age prediction by combining mean magnetic susceptibility and volume of DGM nuclei. METHODS Magnetic susceptibilities and volumetric values of DGM nuclei were obtained from 220 healthy participants (aged 10-70 years) scanned on a 3T MRI system. Regions of interest (ROIs) were drawn manually on the QSM images. Univariate regression analysis between age and each of the MRI measurements in a single ROI was performed. Pearson correlation coefficients were calculated between magnetic susceptibility and adjusted volume in a single ROI. The statistical significance of sex differences in age-dependent trajectories of magnetic susceptibilities and adjusted volumes were determined using one-way ANCOVA. Multiple regression analysis was used to evaluate the ability to estimate brain age using a combination of the mean susceptibilities and adjusted volumes in multiple DGM nuclei. RESULTS Mean susceptibility and total iron content increased linearly, quadratically, or exponentially with age in all six DGM nuclei. Negative linear correlation was observed between adjusted volume and age in the head of the caudate nucleus (CN; R2 = 0.196, p < 0.001). Quadratic relationships were found between adjusted volume and age in the putamen (PUT; R2 = 0.335, p < 0.001), globus pallidus (GP; R2 = 0.062, p = 0.001), and dentate nucleus (DN; R2 = 0.077, p < 0.001). Males had higher mean magnetic susceptibility than females in the PUT (p = 0.001), red nucleus (RN; p = 0.002), and substantia nigra (SN; p < 0.001). Adjusted volumes of the CN (p < 0.001), PUT (p = 0.030), GP (p = 0.007), SN (p = 0.021), and DN (p < 0.001) were higher in females than those in males throughout the entire age range (10-70 years old). The total iron content of females was higher than that of males in the CN (p < 0.001), but lower than that of males in the PUT (p = 0.014) and RN (p = 0.043) throughout the entire age range (10-70 years old). Multiple regression analyses revealed that the combination of the mean susceptibility value of the PUT, and the volumes of the CN and PUT had the strongest associations with brain age (R2 = 0.586). CONCLUSIONS QSM can be used to simultaneously investigate age- and sex- dependent changes in magnetic susceptibility and volume of DGM nuclei, thus enabling a comprehensive understanding of the developmental trajectories of iron accumulation and volume in DGM nuclei during brain development and aging.
Collapse
Affiliation(s)
- Gaiying Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062
| | - Rui Tong
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062
| | - Miao Zhang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062
| | - Kelly M Gillen
- Department of Radiology, Weill Medical College of Cornell University, 407 East 61st St., New York, New York, United States 10065
| | - Wenqing Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Road, Shanghai, China 200030
| | - Yasong Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Road, Shanghai, China 200030
| | - Yi Wang
- Department of Radiology, Weill Medical College of Cornell University, 407 East 61st St., New York, New York, United States 10065
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062; Institute of Brain and Education Innovation, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062.
| |
Collapse
|
4
|
Jing XZ, Yuan XZ, Li GY, Chen JL, Wu R, Yang LL, Zhang SY, Wang XP, Li JQ. Increased Magnetic Susceptibility in the Deep Gray Matter Nuclei of Wilson's Disease: Have We Been Ignoring Atrophy? Front Neurosci 2022; 16:794375. [PMID: 35720701 PMCID: PMC9198485 DOI: 10.3389/fnins.2022.794375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Histopathological studies in Wilson's disease (WD) have revealed increased copper and iron concentrations in the deep gray matter nuclei. However, the commonly used mean bulk susceptibility only reflects the regional metal concentration rather than the total metal content, and regional atrophy may affect the assessment of mean bulk susceptibility. Our study aimed to quantitatively assess the changes of metal concentration and total metal content in deep gray matter nuclei by quantitative susceptibility mapping to distinguish patients with neurological and hepatic WD from healthy controls. Methods Quantitative susceptibility maps were obtained from 20 patients with neurological WD, 10 patients with hepatic WD, and 25 healthy controls on a 3T magnetic resonance imaging system. Mean bulk susceptibility, volumes, and total susceptibility of deep gray matter nuclei in different groups were compared using a linear regression model. The area under the curve (AUC) was calculated by receiver characteristic curve to analyze the diagnostic capability of mean bulk susceptibility and total susceptibility. Results Mean bulk susceptibility and total susceptibility of multiple deep gray matter nuclei in patients with WD were higher than those in healthy controls. Compared with patients with hepatic WD, patients with neurological WD had higher mean bulk susceptibility but similar total susceptibility in the head of the caudate nuclei, globus pallidus, and putamen. Mean bulk susceptibility of putamen demonstrated the best diagnostic capability for patients with neurological WD, the AUC was 1, and the sensitivity and specificity were all equal to 1. Total susceptibility of pontine tegmentum was most significant for the diagnosis of patients with hepatic WD, the AUC was 0.848, and the sensitivity and specificity were 0.7 and 0.96, respectively. Conclusion Brain atrophy may affect the assessment of mean bulk susceptibility in the deep gray matter nuclei of patients with WD, and total susceptibility should be an additional metric for total metal content assessment. Mean bulk susceptibility and total susceptibility of deep gray matter nuclei may be helpful for the early diagnosis of WD.
Collapse
Affiliation(s)
- Xiao-Zhong Jing
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Zhen Yuan
- Department of Neurology, Weifang People's Hospital, Weifang, China
| | - Gai-Ying Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jia-Lin Chen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Rong Wu
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling-Li Yang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Yun Zhang
- Department of Neurology, Weifang People's Hospital, Weifang, China
| | - Xiao-Ping Wang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Qi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| |
Collapse
|
5
|
Smith HJ. The history of magnetic resonance imaging and its reflections in Acta Radiologica. Acta Radiol 2021; 62:1481-1498. [PMID: 34657480 DOI: 10.1177/02841851211050857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first reports in Acta Radiologica on magnetic resonance imaging (MRI) were published in 1984, four years after the first commercial MR scanners became available. For the first two years, all MR papers originated from the USA. Nordic contributions started in 1986, and until 2020, authors from 44 different countries have published MR papers in Acta Radiologica. Papers on MRI have constituted, on average, 30%-40% of all published original articles in Acta Radiologica, with a high of 49% in 2019. The MR papers published since 1984 document tremendous progress in several areas such as magnet and coil design, motion compensation techniques, faster image acquisitions, new image contrast, contrast-enhanced MRI, functional MRI, and image analysis. In this historical review, all of these aspects of MRI are discussed and related to Acta Radiologica papers.
Collapse
Affiliation(s)
- Hans-Jørgen Smith
- Department of Radiology and Nuclear Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Ravanfar P, Loi SM, Syeda WT, Van Rheenen TE, Bush AI, Desmond P, Cropley VL, Lane DJR, Opazo CM, Moffat BA, Velakoulis D, Pantelis C. Systematic Review: Quantitative Susceptibility Mapping (QSM) of Brain Iron Profile in Neurodegenerative Diseases. Front Neurosci 2021; 15:618435. [PMID: 33679303 PMCID: PMC7930077 DOI: 10.3389/fnins.2021.618435] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Iron has been increasingly implicated in the pathology of neurodegenerative diseases. In the past decade, development of the new magnetic resonance imaging technique, quantitative susceptibility mapping (QSM), has enabled for the more comprehensive investigation of iron distribution in the brain. The aim of this systematic review was to provide a synthesis of the findings from existing QSM studies in neurodegenerative diseases. We identified 80 records by searching MEDLINE, Embase, Scopus, and PsycInfo databases. The disorders investigated in these studies included Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Wilson's disease, Huntington's disease, Friedreich's ataxia, spinocerebellar ataxia, Fabry disease, myotonic dystrophy, pantothenate-kinase-associated neurodegeneration, and mitochondrial membrane protein-associated neurodegeneration. As a general pattern, QSM revealed increased magnetic susceptibility (suggestive of increased iron content) in the brain regions associated with the pathology of each disorder, such as the amygdala and caudate nucleus in Alzheimer's disease, the substantia nigra in Parkinson's disease, motor cortex in amyotrophic lateral sclerosis, basal ganglia in Huntington's disease, and cerebellar dentate nucleus in Friedreich's ataxia. Furthermore, the increased magnetic susceptibility correlated with disease duration and severity of clinical features in some disorders. Although the number of studies is still limited in most of the neurodegenerative diseases, the existing evidence suggests that QSM can be a promising tool in the investigation of neurodegeneration.
Collapse
Affiliation(s)
- Parsa Ravanfar
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Samantha M Loi
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.,Neuropsychiatry, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Warda T Syeda
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.,Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Patricia Desmond
- Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, The University of Melbourne, Parkville, VIC, Australia.,Department of Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.,Centre for Mental Health, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Carlos M Opazo
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Bradford A Moffat
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.,Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, The University of Melbourne, Parkville, VIC, Australia
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.,Neuropsychiatry, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Yuan XZ, Yang RM, Wang XP. Management Perspective of Wilson's Disease: Early Diagnosis and Individualized Therapy. Curr Neuropharmacol 2021; 19:465-485. [PMID: 32351182 PMCID: PMC8206458 DOI: 10.2174/1570159x18666200429233517] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 02/05/2023] Open
Abstract
Wilson's disease (WD) is an inherited disease caused by mutations in ATP7B and is characterized by the pathological accumulation of copper in the liver and brain. Common clinical manifestations of WD include a wide range of liver disease and neurological symptoms. In some patients, psychiatric symptoms may be the only manifestation at the time of diagnosis. The clinical features of WD are highly variable and can mimic any disease of internal medicine. Therefore, for unexplained medical diseases, the possibility of WD should not be ignored. Early diagnosis and treatment can improve the prognosis of WD patients and reduce disability and early death. Gene sequencing is becoming a valuable method to diagnose WD, and if possible, all WD patients and their siblings should be genetically sequenced. Copper chelators including D-penicillamine, trientine, and dimercaptosuccinic acid can significantly improve the liver injury and symptoms of WD patients but may have a limited effect on neurological symptoms. Zinc salts may be more appropriate for the treatment of asymptomatic patients or for the maintenance treatment of symptomatic patients. High-quality clinical trials for the drug treatment of WD are still lacking, therefore, individualized treatment options for patients are recommended. Individualized treatment can be determined based on the clinical features of the WD patients, efficacy and adverse effects of the drugs, and the experience of the physician. Liver transplantation is the only effective method to save patients with acute liver failure or with severe liver disease who fail drug treatment.
Collapse
Affiliation(s)
| | | | - Xiao-Ping Wang
- Address correspondence to this author at the Department of Neurology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, No.1111 Xianxia Road, 200336, Shanghai, China; Tel: +86-021-52039999-72223; Fax: +86-021-52039999-72223; E-mail:
| |
Collapse
|
8
|
Han Y, Dong J, Xu C, Rao R, Shu S, Li G, Cheng N, Wu Y, Yang H, Han Y, Zhong K. Application of 9.4T MRI in Wilson Disease Model TX Mice With Quantitative Susceptibility Mapping to Assess Copper Distribution. Front Behav Neurosci 2020; 14:59. [PMID: 32390811 PMCID: PMC7189732 DOI: 10.3389/fnbeh.2020.00059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/26/2020] [Indexed: 01/14/2023] Open
Abstract
In the current study, we used 9.4-tesla magnetic resonance imaging (9.4T MRI) and inductively coupled plasma mass spectrometry (ICP-MS) to investigate the distribution of copper in the brain samples of a murine model of Wilson's disease (WD) following penicillamine (PCA) treatment. We also evaluated if the distribution of copper in the brain samples of mice was correlated with behavioral symptoms. Results from the behavioral experiments showed that 7 days of PCA treatment decreased the total distance traveled in the open field and the number of rearing and climbing instances among the toxic milk (TX) mice as compared with model group. We also observed that the open arm ratio in the elevated plus-maze (EPM) was reduced, escape latency in the Barnes maze test was increased, and avoidance in the open field was enhanced in TX mice following 14 days of PCA treatment as compared with those in untreated TX mice. We found that PCA treatment for 21-28 days improved the cognitive abilities, exploratory behavior, and movement behavior of TX mice. The PCA-treated mice also exhibited varying degrees of magnetic susceptibilities in the cortex, corpus striatum, hippocampus, and amygdaloid nucleus across the treatment period. Low copper concentrations were found in all of the analyzed brain regions of PCA-treated mice after 21-28 days as compared with the model group (P < 0.05). However, copper concentrations were increased in the primary motor cortex and cerebellum at 7 days post-PCA treatment as compared with those in the model group (P < 0.05). After 14 days of PCA treatment, the copper concentrations in the sensorimotor cortex, corpus striatum, hippocampus, and amygdaloid nucleus were higher than those detected without treatment. The results from a Pearson's correlation analysis revealed that there was a significant (P < 0.05) correlation between copper concentrations and magnetic susceptibility in all of the brain regions that were analyzed. Therefore, our results indicate that copper concentration and magnetic susceptibility are associated with alterations in mood-related behavior, recognition memory, and movement behaviors in TX mice that are treated with PCA. The redistribution of copper in the TX mouse brain during PCA treatment may aggravate changes in behavioral performance.
Collapse
Affiliation(s)
- Yongsheng Han
- Hospital Affiliated to the Institute of Neurology Anhui University of TCM, Hefei, China
| | - Jianjian Dong
- Hospital Affiliated to the Institute of Neurology Anhui University of TCM, Hefei, China.,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| | - Chenchen Xu
- Hospital Affiliated to the Institute of Neurology Anhui University of TCM, Hefei, China
| | - Rao Rao
- Hospital Affiliated to the Institute of Neurology Anhui University of TCM, Hefei, China
| | - Shan Shu
- Hospital Affiliated to the Institute of Neurology Anhui University of TCM, Hefei, China
| | - Guangda Li
- Hospital Affiliated to the Institute of Neurology Anhui University of TCM, Hefei, China
| | - Nan Cheng
- Hospital Affiliated to the Institute of Neurology Anhui University of TCM, Hefei, China
| | - Yun Wu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| | - Hongyi Yang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| | - Yongzhu Han
- Hospital Affiliated to the Institute of Neurology Anhui University of TCM, Hefei, China
| | - Kai Zhong
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, China
| |
Collapse
|
9
|
Lin F, Prince MR, Spincemaille P, Wang Y. Patents on Quantitative Susceptibility Mapping (QSM) of Tissue Magnetism. Recent Pat Biotechnol 2018; 13:90-113. [PMID: 30556508 DOI: 10.2174/1872208313666181217112745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) depicts biodistributions of tissue magnetic susceptibility sources, including endogenous iron and calcifications, as well as exogenous paramagnetic contrast agents and probes. When comparing QSM with simple susceptibility weighted MRI, QSM eliminates blooming artifacts and shows reproducible tissue susceptibility maps independent of field strength and scanner manufacturer over a broad range of image acquisition parameters. For patient care, QSM promises to inform diagnosis, guide surgery, gauge medication, and monitor drug delivery. The Bayesian framework using MRI phase data and structural prior knowledge has made QSM sufficiently robust and accurate for routine clinical practice. OBJECTIVE To address the lack of a summary of US patents that is valuable for QSM product development and dissemination into the MRI community. METHOD We searched the USPTO Full-Text and Image Database for patents relevant to QSM technology innovation. We analyzed the claims of each patent to characterize the main invented method and we investigated data on clinical utility. RESULTS We identified 17 QSM patents; 13 were implemented clinically, covering various aspects of QSM technology, including the Bayesian framework, background field removal, numerical optimization solver, zero filling, and zero-TE phase. CONCLUSION Our patent search identified patents that enable QSM technology for imaging the brain and other tissues. QSM can be applied to study a wide range of diseases including neurological diseases, liver iron disorders, tissue ischemia, and osteoporosis. MRI manufacturers can develop QSM products for more seamless integration into existing MRI scanners to improve medical care.
Collapse
Affiliation(s)
- Feng Lin
- School of Law, City University of Hong Kong, Hong Kong, China
| | - Martin R Prince
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
| | - Pascal Spincemaille
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
| | - Yi Wang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|