1
|
Mansouri V, Bandarian F, Razi F, Razzaghi Z, Rezaei-Tavirani M, Rezaei M, Arjmand B, Rezaei-Tavirani M. NF-kappa B signaling pathway is associated with metformin resistance in type 2 diabetes patients. J Diabetes Metab Disord 2024; 23:2021-2030. [PMID: 39610517 PMCID: PMC11599502 DOI: 10.1007/s40200-024-01458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/18/2024] [Indexed: 11/30/2024]
Abstract
Introduction Metformin is an essential medicine that is most widely prescribed frontline for the treatment of Type 2 diabetes (T2D). Metformin upgraded glycemic control in T2D patients without hypoglycemic effects in patients. This assessment aims to understand molecular mechanism mechanisms in non-responder patients to metformin. Methods Gene expression profiles of responder and non-responder T2D patients to metformin are extracted from Gene Expression Omnibus (GEO) and are evaluated by the GEO2R program to find the significant differentially expressed genes (DEGs). The significant DEGs have been studied via action map gene ontology analyses. Results Results indicate that 563 significant DEGs discriminate non-responders from responder groups. "NF-kappa B signaling pathway" and 11 DEGs including BIRC3, CCL4L2, CXCL2, ICAM1, LYN, MYD88, RELA, SYK, TLR4, TNFAIP3, and TRIM25 were pointed out as core of drug resistance. Conclusion It can be concluded that there are differences between gene expression analysis, the response of diabetic patients to metformin. Results indicate that dysregulation of the "NF-kappa B signaling pathway" and TNFAIP3, BIRC3, RELA, MYD88, TLR4, and ICAM1 is associated with drug resistance in T2D patients.
Collapse
Affiliation(s)
- Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser application in medical sciences research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mitra Rezaei
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Simha N A, Patil SM, M K J, N C, Wong LS, Kijsomporn J, Raj R, Ramu R. From sugar binders to diabetes fighters: the lectin saga of antihyperglycemic activity through systematic review and meta-analysis. Front Pharmacol 2024; 15:1382876. [PMID: 39323638 PMCID: PMC11422237 DOI: 10.3389/fphar.2024.1382876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Lectins are carbohydrate-binding proteins that are extremely selective for sugar groups in the other molecules. As a result, they perform a variety of roles in biological processes involving cell, carbohydrate, and protein recognition at the cellular and molecular levels. Because lectins can bind to carbohydrates, they may play a role in determining the rate of carbohydrate digestion. They also bind to some proteins involved in diabetes mellitus (DM) pathophysiology. The present review aims to summarize the efficiency of lectins from different sources as potential antihyperglycemic agents. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were employed for the drafting. In this regard, published scientific articles on the effects of different lectins on blood glucose (BG), glucose tolerance, hormonal effects, carbohydrate-digesting enzymes, oxidative stress, and insulin production process were collected from reputed journals using electronic databases. Furthermore, the toxicity effects of lectins from different sources were collected. A specific keyword search was completed to collect numerous articles with unique experimental designs and significant results. This was followed by the selection of the requisite articles based on the criteria designed by the authors. Data extraction was based on the common research elements included in the articles. Results and Discussion Of 13 identified studies, 11 studies were considered after double screening based on the inclusion criteria. All 11 pharmacological investigations were considered for review. Subsequent studies reflected on the pharmacological properties of lectins on the levels of BG, oxidative stress, β-cell proliferation, insulin resistance, inhibition of carbohydrate digesting enzymes, body weight, food and water intake, lipid profile, and other parameters. This review highlights lectins as potential anti-diabetic agents. Conclusion However, due to limited research, systematic evaluation is recommended for their development and promotion as effective potential antihyperglycemic agents. The clinical efficacy and safety of lectins against diabetes mellitus must also be evaluated.
Collapse
Affiliation(s)
- Akshaya Simha N
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shashank M Patil
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Jayanthi M K
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Chaitra N
- Division of Medical Statistics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | | | - Ranjith Raj
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
3
|
Hohagen M, Sánchez L, Herbst A, Kählig H, Shin JW, Berry D, Del Favero G, Kleitz F. MANNosylation of Mesoporous Silica Nanoparticles Modifies TLR4 Localization and NF-κB Translocation in T24 Bladder Cancer Cells. Adv Healthc Mater 2024; 13:e2304150. [PMID: 38554019 PMCID: PMC11468387 DOI: 10.1002/adhm.202304150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 04/01/2024]
Abstract
D-mannose is widely used as non-antibiotic treatment for bacterial urinary tract infections. This application is based on a well-studied mechanism of binding to the type 1 bacterial pili and, therefore, blocking bacteria adhesion to the uroepithelial cells. To implement D-mannose into carrier systems, the mechanism of action of the sugar in the bladder environment is also relevant and requires investigation. Herein, two different MANNosylation strategies using mesoporous silica nanoparticles (MSNs) are described. The impact of different chemical linkers on bacterial adhesion and bladder cell response is studied via confocal microscopy imaging of the MSN interactions with the respective organisms. Cytotoxicity is assessed and the expression of Toll-like receptor 4 (TLR4) and caveolin-1 (CAV-1), in the presence or absence of simulated infection with bacterial lipopolysaccharide (LPS), is evaluated using the human urinary bladder cancer cell line T24. Further, localisation of the transcription factor NF-κB due to the MANNosylated materials is examined over time. The results show that MANNosylation modifies bacterial adhesion to the nanomaterials and significantly affects TLR4, caveolin-1, and NF-κB in bladder cells. These elements are essential components of the inflammatory cascade/pathogens response during urinary tract infections. These findings demonstrate that MANNosylation is a versatile tool to design hybrid nanocarriers for targeted biomedical applications.
Collapse
Affiliation(s)
- Mariam Hohagen
- Department of Functional Materials and CatalysisFaculty of ChemistryUniversity of ViennaWähringer Straße 42Vienna1090Austria
| | - Laura Sánchez
- Division of Microbial EcologyDepartment of Microbiology and Ecosystem ScienceCentre for Microbiology and Environmental Systems ScienceUniversity of ViennaDjerassiplatz 1Vienna1030Austria
| | - Ann‐Jacqueline Herbst
- Department of Functional Materials and CatalysisFaculty of ChemistryUniversity of ViennaWähringer Straße 42Vienna1090Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Hanspeter Kählig
- Department of Organic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 38Vienna1090Austria
| | - Jae Won Shin
- Center for Nanomaterials and Chemical ReactionsInstitute for Basic Science (IBS)Daejeon34141Republic of Korea
| | - David Berry
- Division of Microbial EcologyDepartment of Microbiology and Ecosystem ScienceCentre for Microbiology and Environmental Systems ScienceUniversity of ViennaDjerassiplatz 1Vienna1030Austria
| | - Giorgia Del Favero
- Core Facility Multimodal ImagingFaculty of ChemistryUniversity of ViennaWähringer Straße 42Vienna1090Austria
- Department of Food Chemistry and ToxicologyFaculty of ChemistryUniversity of ViennaWähringer Straße 38–40Vienna1090Austria
| | - Freddy Kleitz
- Department of Functional Materials and CatalysisFaculty of ChemistryUniversity of ViennaWähringer Straße 42Vienna1090Austria
| |
Collapse
|
4
|
Chang B, Wang Y, Tu W, Zhang Z, Pu Y, Xie L, Yuan F, Gao Y, Xu N, Yao Q. Regulatory effects of mangiferin on LPS-induced inflammatory responses and intestinal flora imbalance during sepsis. Food Sci Nutr 2024; 12:2068-2080. [PMID: 38455195 PMCID: PMC10916552 DOI: 10.1002/fsn3.3907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 03/09/2024] Open
Abstract
Studies suggest that mangiferin (MAF) has good therapeutic effects on chronic bronchitis and hepatitis. Also, it is one of the antiviral ingredients in Anemarrhena asphodeloides Bunge. However, its effect on the LPS-induced inflammation and intestinal flora during sepsis remains unclear yet. In the present study, LPS-stimulated inflammation RAW264.7 cells and LPS-induced sepsis mice were used to evaluate the efficacy of MAF in vitro and in vivo. 16S rDNA sequencing was performed to analyze the characteristics of intestinal flora of the sepsis mice. It has been demonstrated that MAF (12.5 and 25 μg/mL) significantly inhibited protein expressions of TLR4, MyD88, NF-κB, and TNF-α in the LPS-treated cells and reduced the supernatant TNF-α and IL-6 levels. In vivo, MAF (20 mg/kg) markedly protected the sepsis mice and reduced the serum TNF-α and IL-6 levels. Also, MAF significantly downregulated the protein expressions of TLR4, NF-κB, and MyD88 in the livers. Importantly, MAF significantly attenuated the pathological injuries of the livers and small intestines. Further, MAF significantly increased proportion of Bacteroidota and decreased the proportions of Firmicutes, Desulfobacterota, Actinobacteriota, and Proteobacteria at phylum level, and it markedly reduced the proportions of Escherichia-Shigella, Pseudoalteromonas, Staphylococcus at genus level. Moreover, MAF affects some metabolism-related pathways such as citrate cycle (TCA cycle), lipoic acid metabolism, oxidative phosphorylation, bacterial chemotaxis, fatty acid biosynthesis, and peptidoglycan biosynthesis of the intestinal flora. Thus, it can be concluded that MAF as a treatment reduces the inflammatory responses in vitro and in vivo by inhibiting the TLR4/ MyD88/NF-κB pathway, and corrects intestinal flora imbalance during sepsis to some degree.
Collapse
Affiliation(s)
- Bo‐tao Chang
- Department of PostgraduateGuizhou University of Traditional Chinese MedicineGuiyangChina
| | - Yang Wang
- Department of General SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Wen‐lian Tu
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Zhi‐qing Zhang
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Yan‐fang Pu
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Li Xie
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Fang Yuan
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Ying Gao
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
- The First Affiliated Hospital, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Ning Xu
- Department of Clinical LaboratoryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Qi Yao
- Department of PharmacyThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
- The First Affiliated Hospital, Guizhou University of Traditional Chinese MedicineGuiyangChina
| |
Collapse
|
5
|
Khilwani R, Singh S. Traversing through the Mechanistic Event Analysis in IL-6 and IL-17 Signaling for a New Therapeutic Paradigm in NSCLC. Int J Mol Sci 2024; 25:1216. [PMID: 38279220 PMCID: PMC10816370 DOI: 10.3390/ijms25021216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
IL-6 and IL-17 are paradoxical cytokines that progress inflammatory states in chronic diseases, including cancer. In lung cancer, their role has been elucidated to favor cancer development by modulating signaling mechanisms critical to cellular growth. The intrinsic ability of these cytokines to influence macroautophagy is yet another reason to facilitate lung cancer. Here, we employed a systems immunology approach to discover the mechanistic role of these cytokines in cancer development. In a biological system, at later stages, the activation of NFkB stimulates immunosuppressive phenotypes to achieve tolerating effects in a transformed cell. We found that the upregulation of cytokines signaled M2 macrophages to modulate tumor responses through the activation of autophagic intermediates and inflammasome mediators. This caused immune perturbations in the tumor microenvironment, which were associated with cancer inflammation. To address these inflammatory states, we performed triggered event analysis to examine whether overexpressing immune effectors or downregulating immune suppressors may have an effect on cancer reversal. Interestingly, the inhibition of immune regulators opposed the model outcome to an increased immune response. Therefore, IL6-IL17-mediated regulation of lung cancer may address tumor malignancy and potentiate the development of newer therapeutics for NSCLC.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, NCCS Complex, Ganeshkhind, SPPU Campus, Pune 411007, India;
| |
Collapse
|
6
|
Kim HJ, Jeon HJ, Kim JY, Shim JJ, Lee JH. Lactiplantibacillus plantarum HY7718 Improves Intestinal Integrity in a DSS-Induced Ulcerative Colitis Mouse Model by Suppressing Inflammation through Modulation of the Gut Microbiota. Int J Mol Sci 2024; 25:575. [PMID: 38203747 PMCID: PMC10779067 DOI: 10.3390/ijms25010575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Inflammatory bowel disease (IBD), a chronic condition that causes persistent inflammation in the digestive system, is closely associated with the intestinal microbiome. Here, we evaluated the effects of Lactiplantibacillus plantarum HY7718 (HY7718) on IBD symptoms in mice with dextran sulfate sodium (DSS)-induced colitis. Oral administration of HY7718 led to significant improvement in the disease activity index score and the histological index, as well as preventing weight loss, in model mice. HY7718 upregulated the expression of intestinal tight junction (TJ)-related genes and downregulated the expression of genes encoding pro-inflammatory cytokines and genes involved in the TLR/MyD88/NF-κB signaling pathway. Additionally, HY7718 reduced the blood levels of pro-inflammatory cytokines, as well as reversing DSS-induced changes to the composition of the intestinal microbiome. HY7718 also increased the percentage of beneficial bacteria (Lactiplantibacillus and Bifidobacterium), which correlated positively with the expression of intestinal TJ-related genes. Finally, HY7718 decreased the population of pathogens such as Escherichia, which correlated with IBD symptoms. The data suggest that HY7718 improves intestinal integrity in colitis model mice by regulating the expression of TJ proteins and inflammatory cytokines, as well as the composition of the intestinal microflora. Thus, L. plantarum HY7718 may be suitable as a functional supplement that improves IBD symptoms and gut health.
Collapse
Affiliation(s)
| | | | - Joo-Yun Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.-J.K.); (H.-J.J.); (J.-J.S.); (J.-H.L.)
| | | | | |
Collapse
|
7
|
Mao S, Yao J, Zhang T, Zhang X, Tan W, Li C. Bilobalide attenuates lipopolysaccharide‑induced HepG2 cell injury by inhibiting TLR4‑NF‑κB signaling via the PI3K/Akt pathway. Exp Ther Med 2024; 27:24. [PMID: 38125341 PMCID: PMC10728898 DOI: 10.3892/etm.2023.12312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2023] Open
Abstract
Inflammation is involved in the pathological process underlying a number of liver diseases. Bilobalide (BB) is a natural compound from Ginkgo biloba leaves that was recently demonstrated to exert hepatoprotective effects by inhibiting oxidative stress in the liver cancer cell line HepG2. The anti-inflammatory activity of BB has been reported in recent studies. The major objective of the present study was to investigate whether BB could attenuate inflammation-associated cell damage. HepG2 cells were cultured with lipopolysaccharide (LPS) and BB, and cell damage was evaluated by measuring cell viability using MTT assay. The activity of the NF-κB signaling pathway was assessed by measuring the levels of IκBα, NF-κB p65, phosphorylated (p)-IκBα, p-p65, p65 DNA-binding activity and inflammatory cytokines IL-1β, IL-6 and TNF-α. A toll-like receptor (TLR)4 inhibitor (CLI-095) was used to detect the involvement of TLR4 in cell injury caused by LPS. In addition, the PI3K/Akt inhibitor LY294002 was applied to explore the involvement of the PI3K/Akt axis in mediating the effects of BB. The results demonstrated that LPS induced HepG2 cell injury. LPS also elevated the levels of p-IκBα, p-p65, p65 DNA-binding activity and inflammatory cytokines. However, CLI-095 significantly attenuated the LPS-induced cell damage and inhibited the activation of NF-κB signaling. BB also dose-dependently attenuated the LPS-induced cell damage, activation of NF-κB signaling and TLR4 overexpression. Furthermore, it was observed that LY294002 diminished the cytoprotective effects of BB on cell injury, TLR4 expression and NF-κB activation. These findings indicated that BB could attenuate LPS-induced inflammatory injury to HepG2 cells by regulating TLR4-NF-κB signaling.
Collapse
Affiliation(s)
- Shumei Mao
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jinpeng Yao
- Department of Cardiology, Yantai Kaifaqu Hospital, Yantai, Shandong 264006, P.R. China
| | - Teng Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiang Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Wei Tan
- Department of Respiratory Medicine, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Chengde Li
- Department of Clinical Pharmacy, Key Laboratory of Applied Pharmacology in Universities of Shandong, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
8
|
Debarba LK, Jayarathne HSM, Stilgenbauer L, Terra Dos Santos AL, Koshko L, Scofield S, Sullivan R, Mandal A, Klueh U, Sadagurski M. Microglial NF-κB Signaling Deficiency Protects Against Metabolic Disruptions Caused by Volatile Organic Compound via Modulating the Hypothalamic Transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566279. [PMID: 38014216 PMCID: PMC10680567 DOI: 10.1101/2023.11.08.566279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Prolonged exposure to benzene, a prevalent volatile organic compound (VOC), at concentrations found in smoke, triggers hyperglycemia, and inflammation in mice. Corroborating this with existing epidemiological data, we show a strong correlation between environmental benzene exposure and metabolic impairments in humans. To uncover the underlying mechanisms, we employed a controlled exposure system and continuous glucose monitoring (CGM), revealing rapid blood glucose surges and disturbances in energy homeostasis in mice. These effects were attributed to alterations in the hypothalamic transcriptome, specifically impacting insulin and immune response genes, leading to hypothalamic insulin resistance and neuroinflammation. Moreover, benzene exposure activated microglial transcription characterized by heightened expression of IKKβ/NF-κB-related genes. Remarkably, selective removal of IKKβ in immune cells or adult microglia in mice alleviated benzene-induced hypothalamic gliosis, and protected against hyperglycemia. In summary, our study uncovers a crucial pathophysiological mechanism, establishing a clear link between airborne toxicant exposure and the onset of metabolic diseases.
Collapse
|
9
|
Li M, Zeng A, Tang X, Xu H, Xiong W, Guo Y. Circ_0004535/miR-1827/CASP8 network involved in type 2 diabetes mellitus with nonalcoholic fatty liver disease. Sci Rep 2023; 13:19807. [PMID: 37957232 PMCID: PMC10643362 DOI: 10.1038/s41598-023-47189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
Diagnostic delay in type 2 diabetes mellitus (T2DM) with nonalcoholic fatty liver disease (NAFLD) patients often leads to a serious public health problem. Understanding the pathophysiological mechanisms of disease will help develop more effective treatments. High-throughput sequencing was used to determine the expression levels of circRNAs, and mRNAs in health controls, T2DM patients, and T2DM with NAFLD patients. Differentially expressed genes (DEcircRs, DEmRs) in T2DM with NAFLD were identified by differential analysis. The miRNAs with targeted relationship with the DEcircRs and DEmRs were respectively predicted to construct a ceRNA regulatory network. In addition, enrichment analysis of DEmRs in the ceRNA network was performed. The expression of important DEcircRs was further validated by quantitative real-time PCR (qRT-PCR). The steatosis was detected in glucose treated LO2 cells by overexpressing circ_0004535, and CASP8. There were 586 DEmRs, and 10 DEcircRs in both T2DM and T2DM with NAFLD patients. Combined with predicted results and differential analysis, the ceRNA networks were constructed. The DEmRs in the ceRNA networks were mainly enriched in Toll-like receptor signaling pathway, and apoptosis. Importantly, dual luciferase experiments validated the targeted binding of hsa_circ_0004535 and hsa-miR-1827 or hsa-miR-1827 and CASP8. qRT-PCR experiments validated that hsa_circ_0004535, and CASP8 was downregulated and hsa-miR-1827 was upregulated expression in peripheral blood of T2DM with NAFLD patients. Abnormal cell morphology, and increased lipid droplet fusion were observed in the glucose treated LO2 cells, overexpression of circ_0004535 and CASP8 ameliorated these changes. Our work provides a deeper understanding of ceRNA mediated pathogenesis of T2DM with NAFLD and provides a novel strategy for treatment.
Collapse
Affiliation(s)
- Min Li
- Graduate School of Xinjiang Medical University, Xinshi District, Ürümqi, 830054, China
| | - Ai Zeng
- B Chao Room, The Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Ürümqi, 830092, China
| | - Xinle Tang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Ürümqi, 830092, China
| | - Hui Xu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Ürümqi, 830092, China
| | - Wei Xiong
- Department of Endocrinology, The Sixth Affiliated Hospital of Xinjiang Medical University, Tianshan District, Ürümqi, 830092, China
| | - Yanying Guo
- Department of Endocrinology and Metabolic Diseases, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes Mellitus, Tianshan District, Ürümqi, 830011, China.
| |
Collapse
|
10
|
Deng Z, Li D, Yan X, Lan J, Han D, Fan K, Chang J, Ma Y. Activation of GABA receptor attenuates intestinal inflammation by modulating enteric glial cells function through inhibiting NF-κB pathway. Life Sci 2023; 329:121984. [PMID: 37527767 DOI: 10.1016/j.lfs.2023.121984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
AIMS Emerging research indicates that γ-aminobutyric acid (GABA) provides substantial benefits during enteritis. Nevertheless, GABA signaling roles on enteric glial cells (EGCs) remain unknown. The study's objective was to evaluate the underlying mechanisms of GABA signaling on EGCs in vitro and in vivo. MAIN METHODS We established LPS-induced mouse models and stimulated EGCs with LPS to mimic intestinal inflammation, and combined GABA, GABAA receptor (GABAAR) or GABAB receptor (GABABR) agonists to explore the exact mechanisms of GABA signaling. KEY FINDINGS EGCs were immunopositive for GAD65, GAD67, GAT1, GABAARα1, GABAARα3, and GABABR1, indicating GABAergic and GABAceptive properties. GABA receptor activation significantly inhibited the high secretions of proinflammatory factors in EGCs upon LPS stimulation. Interestingly, we found that EGCs express immune-related molecules such as CD16, CD32, CD80, CD86, MHC II, iNOS, Arg1, and CD206, thus establishing their characterization of E1 and E2 phenotype. EGCs exposed to LPS mainly acted as E1 phenotype, whereas GABABR activation strongly promoted EGCs polarization into E2 phenotype. Transcriptome analysis of EGCs indicated that GABA, GABAAR or GABABR agonists treatment participated in various biological processes, however all of these treatments exhibit inhibitory effects on NF-κB pathway. Notably, in LPS-induced mice, activation of GABABR mitigated intestinal damage through modulating inflammatory factors expressions, strengthening sIgA and IgG levels, inhibiting NF-κB pathway and facilitating EGCs to transform into E2 phenotype. SIGNIFICANCE These data demonstrate that the anti-inflammatory actions of GABA signaling system offer in enteritis via regulating EGCs-polarized function through impeding NF-κB pathway, thus providing potential targets for intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Ziteng Deng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dan Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xue Yan
- New Hope Liuhe Co., Ltd., Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Jing Lan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deping Han
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China; Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Kai Fan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianyu Chang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yunfei Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Quan Y, Su P, Shangguan C, Hao H, Yue L, Chen C. Bergenin ameliorates diabetic nephropathy in C57BL/6 J mice by TLR4/MyD88/NF-κB signalling pathway regulation. Toxicol Appl Pharmacol 2023; 475:116633. [PMID: 37482253 DOI: 10.1016/j.taap.2023.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Bergenin (BG) is a polyphenolic substance which has therapeutic potential in the treatment of diabetic nephropathy (DN), a common complication of type II diabetes. However, the mechanisms underlying these effects remain unclear. We studied the protective effects and mechanisms of BG in DN mice, focusing on the TLR4/MyD88/NF-κB signalling pathway. C57BL/6 J mice were used as experiments (n=60), and 10 animals were randomly selected as normal control. The DN model was developed by administering an intraperitoneal injection of streptozotocin (40 mg/kg BW for three days) and a high-fat diet (n=50). BG (20, 40, and 80 mg/kg BW, once a day) was administered orally for four weeks. After BG treatment, the food and water intake of DN mice decreased, blood glucose levels decreased, and insulin resistance reduced. As a result, serum LDL-C, TC, and TG levels decreased; HDL-C levels increased; SOD, CAT, and GSH-Px levels decreased; and MDA levels increased. BG administration reduced AST, ALT, BUN, and CRE levels and inflammatory factors (including TNF-α, MCP-1, IL-1β, and IL-6). Histopathology revealed a significant improvement in pathological damage to the liver, kidney, and spleen of mice treated with BG, and TLR4, MyD88, and NF-κB p65 were down-regulated at both mRNA and protein levels in the BG-treated group. Based on these results, BG therapeutic type II DN by hypoglycaemia, improving liver and kidney function, and anti-oxidative stress; reducing inflammation; and inhibiting the TLR4/MyD88/NF-κB signalling pathway. The results of this study suggest that BG can be used as an effective treatment for type II DN.
Collapse
Affiliation(s)
- Yiheng Quan
- Chinese-German Joint Laboratory for Natural Product Research/Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Pengchao Su
- Chinese-German Joint Laboratory for Natural Product Research/Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Chenhong Shangguan
- Chinese-German Joint Laboratory for Natural Product Research/Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Hao Hao
- Chinese-German Joint Laboratory for Natural Product Research/Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
| | - Lijuan Yue
- Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, China.
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research/Shaanxi Province Key Laboratory of Bio-Resources/QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C./Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China.
| |
Collapse
|
12
|
Mamdouh Hashiesh H, Sheikh A, Meeran MFN, Saraswathiamma D, Jha NK, Sadek B, Adeghate E, Tariq S, Al Marzooqi S, Ojha S. β-Caryophyllene, a Dietary Phytocannabinoid, Alleviates Diabetic Cardiomyopathy in Mice by Inhibiting Oxidative Stress and Inflammation Activating Cannabinoid Type-2 Receptors. ACS Pharmacol Transl Sci 2023; 6:1129-1142. [PMID: 37588762 PMCID: PMC10425997 DOI: 10.1021/acsptsci.3c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 08/18/2023]
Abstract
Diabetes mellitus (DM) and its associated complications are considered one of the major health risks globally. Among numerous complications, diabetic cardiomyopathy (DCM) is characterized by increased accumulation of lipids and reduced glucose utilization following abnormal lipid metabolism in the myocardium along with oxidative stress, myocardial fibrosis, and inflammation that eventually result in cardiac dysfunction. The abnormal metabolism of lipids plays a fundamental role in cardiac lipotoxicity following the occurrence and development of DCM. Recently, it has been revealed that cannabinoid type-2 (CB2) receptors, an essential component of the endocannabinoid system, play a crucial role in the pathogenesis of obesity, hyperlipidemia, and DM. Provided the role of CB2R in regulating the glucolipid metabolic dysfunction and its antioxidant as well as anti-inflammatory activities, we carried out the current study to investigate the protective effects of a selective CB2R agonist, β-caryophyllene (BCP), a natural dietary cannabinoid in the murine model of DCM and elucidated the underlying pharmacological and molecular mechanisms. Mice were fed a high-fat diet for 4 weeks followed by a single intraperitoneal injection of streptozotocin (100 mg/kg) to induce the model of DCM. BCP (50 mg/kg body weight) was given orally for 12 weeks. AM630, a CB2R antagonist, was given 30 min before BCP treatment to demonstrate the CB2R-dependent mechanism of BCP. DCM mice exhibited hyperglycemia, increased serum lactate dehydrogenase, impaired cardiac function, and hypertrophy. In addition, DCM mice showed alternations in serum lipids and increased oxidative stress concomitant to reduced antioxidant defenses and enhanced cardiac lipid accumulation in the diabetic heart. DCM mice also exhibited activation of TLR4/NF-κB/MAPK signaling and triggered the production of inflammatory cytokines and inflammatory enzyme mediators. However, treatment with BCP exerted remarkable protective effects by favorable modulation of the biochemical and molecular parameters, which were altered in DCM mice. Interestingly, pretreatment with AM630 abrogated the protective effects of BCP in DCM mice. Taken together, the findings of the present study demonstrate that BCP possesses the capability to mitigate the progression of DCM by inhibition of lipotoxicity-mediated cardiac oxidative stress and inflammation and favorable modulation of TLR4/NF-κB/MAPK signaling pathways mediating the CB2R-dependent mechanism.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Azimullah Sheikh
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| | - Dhanya Saraswathiamma
- Department
of Pathology, College of Medicine and Health
Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United
Arab Emirates
| | - Niraj Kumar Jha
- Department
of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Bassem Sadek
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department
of Anatomy, College of Medicine and Health
Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United
Arab Emirates
| | - Saeed Tariq
- Department
of Anatomy, College of Medicine and Health
Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United
Arab Emirates
| | - Saeeda Al Marzooqi
- Department
of Pathology, College of Medicine and Health
Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United
Arab Emirates
| | - Shreesh Ojha
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
- Zayed Bin
Sultan Center for Health Sciences, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| |
Collapse
|
13
|
Trejo-Hurtado CM, Landa-Moreno CI, la Cruz JLD, Peña-Montes DJ, Montoya-Pérez R, Salgado-Garciglia R, Manzo-Avalos S, Cortés-Rojo C, Monribot-Villanueva JL, Guerrero-Analco JA, Saavedra-Molina A. An Ethyl Acetate Extract of Eryngium carlinae Inflorescences Attenuates Oxidative Stress and Inflammation in the Liver of Streptozotocin-Induced Diabetic Rats. Antioxidants (Basel) 2023; 12:1235. [PMID: 37371966 DOI: 10.3390/antiox12061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Secondary metabolites such as flavonoids are promising in the treatment of non-alcoholic fatty liver disease (NAFLD), which is one of the complications of diabetes due to oxidative stress and inflammation. Some plants, such as Eryngium carlinae, have been investigated regarding their medicinal properties in in vitro and in vivo assays, showing favorable results for the treatment of various diseases such as diabetes and obesity. The present study examined the antioxidant and anti-inflammatory effects of the phenolic compounds present in an ethyl acetate extract of the inflorescences of Eryngium carlinae on liver homogenates and mitochondria from streptozotocin (STZ)-induced diabetic rats. Phenolic compounds were identified and quantified by UHPLC-MS. In vitro assays were carried out to discover the antioxidant potential of the extract. Male Wistar rats were administered with a single intraperitoneal injection of STZ (45 mg/kg) and were given the ethyl acetate extract at a level of 30 mg/kg for 60 days. Phytochemical assays showed that the major constituents of the extract were flavonoids; in addition, the in vitro antioxidant activity was dose dependent with IC50 = 57.97 mg/mL and IC50 = 30.90 mg/mL in the DPPH and FRAP assays, respectively. Moreover, the oral administration of the ethyl acetate extract improved the effects of NAFLD, decreasing serum and liver triacylglycerides (TG) levels and oxidative stress markers and increasing the activity of the antioxidant enzymes. Likewise, it attenuated liver damage by decreasing the expression of NF-κB and iNOS, which lead to inflammation and liver damage. We hypothesize that solvent polarity and consequently chemical composition of the ethyl acetate extract of E. carlinae, exert the beneficial effects due to phenolic compounds. These results suggest that the phenolic compounds of the ethyl acetate extract of E. carlinae have antioxidant, anti-inflammatory, hypolipidemic, and hepatoprotective activity.
Collapse
Affiliation(s)
- Cristian M Trejo-Hurtado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Cinthia I Landa-Moreno
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Jenaro Lemus-de la Cruz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Donovan J Peña-Montes
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Rafael Salgado-Garciglia
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Salvador Manzo-Avalos
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | | | | | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| |
Collapse
|
14
|
Yuan H, Tang H, Shi L. Low expression of lncRNA UCA1 assists the diagnosis of type 2 diabetes mellitus and predicts an increased risk of cardiovascular complications. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2138561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Hui Yuan
- Department of Endocrinology, Daqing Oilfield General Hospital, Daqing, People’s Republic of China
| | - Haiyan Tang
- Department of Infectious Diseases, Daqing Oilfield General Hospital, Daqing, People’s Republic of China
| | - Lili Shi
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
15
|
Xu L, Li W, Chen SY, Deng XW, Deng WF, Liu G, Chen YJ, Cao Y. Oenothein B ameliorates hepatic injury in alcoholic liver disease mice by improving oxidative stress and inflammation and modulating the gut microbiota. Front Nutr 2022; 9:1053718. [PMID: 36579073 PMCID: PMC9792150 DOI: 10.3389/fnut.2022.1053718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Alcoholic liver disease (ALD) is a global health problem for which there is no current food and drug administration (FDA)-approved therapy. Oenothein B (OEB) is a macrocyclic dimer ellagic tannin that possesses abundant biological activities including antioxidant, anti-inflammation, antitumor, immunomodulatory, and antimicrobial properties. Materials and methods In this study, the hepatoprotective effect of OEB against ALD was investigated in vivo and in vitro. Results We found that OEB treatment dramatically reduced alcohol-induced hepatic injury, as evidenced by decreased levels of aminotransferases and inflammatory biomarkers and increased antioxidant capacity in OEB-treated groups. Discussion OEB treatment alleviated oxidative stress by upregulating the Keap1/Nrf2 signaling pathway and inhibited inflammation by downregulating the TLR4/NF-κB signaling pathway. Additionally, OEB treatment positively improved alcohol-induced intestinal microbial dysbiosis by modulating the structure and composition of gut microbiota. Interestingly, we observed the increasement of short-chain fatty acid (SCFA) producers (Muribaculaceae) and the decreasement of Gram-negative bacteria (Akkermansia) in the OEB treatment groups, which may contribute to the inhibition of hepatic oxidative stress and inflammation via the gut-liver axis. In summary, our findings indicate that OEB is a promising therapeutic strategy for preventing and treating ALD.
Collapse
Affiliation(s)
- Lu Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wei Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - Shu-yi Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xi-wen Deng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wei-feng Deng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yun-jiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Xie X, Bai G, Zhang L, Liu H, Qiang D, Li L. Changes in plasma IRAK-M in patients with prediabetes and its relationship with related metabolic indexes: a cross-sectional study. J Int Med Res 2022; 50:3000605221111275. [PMID: 36039603 PMCID: PMC9437484 DOI: 10.1177/03000605221111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate whether IL-1R-associated kinase (IRAK)-M is associated with prediabetes and type 2 diabetes (T2D). METHODS In this cross-sectional study, enrolled subjects were assigned to different groups according to their fasting plasma glucose (FPG) values. IRAK-M and metabolic parameters, including fasting insulin (FINS), glycosylated hemoglobin (HbA1c), homeostasis model assessment of insulin resistance (HOMA-IR) and beta-cell function (HOMA-β), and thioredoxin-interacting protein (TXNIP), were evaluated. The area under the receiver operating characteristic curve of IRAK-M and TXNIP for prediabetes and T2D was determined. RESULTS IRAK-M decreased significantly with increasing FPG levels. IRAK-M was negatively correlated with TXNIP, FPG, FINS, HbA1c, and HOMA-IR and positively correlated with HOMA-β. The diagnostic cutoff value of IRAK-M was 3.76 ng/mL for prediabetes and 3.45 ng/mL for T2D. After stratifying by IRAK-M (<3.76 and ≥3.76 ng/mL), patients with a higher TXNIP level showed a greater risk of prediabetes or T2D in the subgroup with low IRAK-M (<3.76 ng/mL). CONCLUSIONS IRAK-M is independently and positively associated with prediabetes and T2D, while TXNIP is independently and negatively associated with prediabetes and T2D. IRAK-M and TXNIP serve as diagnostic factors for prediabetes.
Collapse
Affiliation(s)
- Xiaomin Xie
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Guirong Bai
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Li Zhang
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Huili Liu
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Dan Qiang
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Ling Li
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| |
Collapse
|
17
|
Zhang Y, Li H, Wang C, Lv H, Fu S. Toll like receptor 4 gene Asp299Gly polymorphism increases the risk of diabetic microvascular complications: a meta analysis. Diabetol Metab Syndr 2022; 14:79. [PMID: 35672795 PMCID: PMC9172045 DOI: 10.1186/s13098-022-00849-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/29/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE The relationship between Toll like receptor 4(TLR4) gene Asp299Gly polymorphism and diabetic microvascular complications (DMI) is unclear. Therefore, the aim of this meta analysis was to explore the relationship between TLR4 Asp299Gly polymorphism and DMI. METHODS System search PubMed, Web of science, Springer, Cochrane library, ELSEVIER, Wanfang database, VIP, CNKI, a case-control study of the correlation between TLR4 gene Asp299Gly polymorphism and DMI published before June 2020 was collected. RESULTS We included 6 articles, a total of 11 studies involving patients with type 2 diabetes mellitus (T2DM) complicated by microvascular complications 1834 cases, without corresponding microvascular complications 4069 cases. TLR4 gene Asp299Gly polymorphism increased the risk of microvascular complications in T2DM (dominant model OR = 1.52, 95% CI 1.10-2.09, p = 0.01; allelic model OR = 1.42, 95% CI 1.02-1.96, p = 0.04). Subgroup analysis by race and different type of microvascular complications, we found that TLR4 gene Asp299Gly polymorphism was associated with increased risk of microvascular complications in the Caucasian population (dominant model OR = 1.69, 95% CI 1.22-2.35, P = 0.002; allelic model OR = 1.56, 95% CI 1.10-2.21, P = 0.01) and increased the risk of retinopathy in patients with T2DM(dominant model OR = 1.81, 95% CI 1.04-3.14, P = 0.03; allelic model OR = 1.77, 95% CI 1.05-2.98, P = 0.03). CONCLUSION TLR4 gene Asp299Gly polymorphism was associated with increased risk of microvascular complications in patients with T2DM, especially diabetic retinopathy (DR).
Collapse
Affiliation(s)
- Yuqi Zhang
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000 Gansu People’s Republic of China
| | - Huanhuan Li
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000 Gansu People’s Republic of China
| | - Chenyi Wang
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu People’s Republic of China
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000 Gansu People’s Republic of China
| | - Haihong Lv
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu People’s Republic of China
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 Donggang West Road, Lanzhou, 730000 Gansu People’s Republic of China
| |
Collapse
|
18
|
Muvhulawa N, Dludla PV, Ziqubu K, Mthembu SX, Mthiyane F, Nkambule BB, Mazibuko-Mbeje SE. Rutin ameliorates inflammation and improves metabolic function: A comprehensive analysis of scientific literature. Pharmacol Res 2022; 178:106163. [DOI: 10.1016/j.phrs.2022.106163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/06/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
|
19
|
Huang J, Guan B, Lin L, Wang Y. Improvement of intestinal barrier function, gut microbiota, and metabolic endotoxemia in type 2 diabetes rats by curcumin. Bioengineered 2021; 12:11947-11958. [PMID: 34818970 PMCID: PMC8810160 DOI: 10.1080/21655979.2021.2009322] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is known as a complex genetic disease characterized by genetic and environmental factors. The imbalanced intestinal flora and intestinal mucosal barrier are considered to be related to T2DM. Curcumin has been proved to affect the progression of T2DM. T2DM animal was established by low-dose streptozotocin intraperitoneal injection combined with high-fat diet (HFD) feeding. Hematoxylin and eosin (HE) staining and transfer electron microscopy (TEM) were used to observe morphological changes of intestinal tissues of T2DM rats. Insulin and glucose tolerance tests were performed to investigate the influence of curcumin on blood glucose. Curcumin significantly improved the intestinal integrity, hyperglycemia and insulin resistance in diabetic rats. The metabolic endotoxemia induced by HFD in diabetic rats was inhibited remarkably. Curcumin reversed gut microbiota dysbiosis in diabetic rats caused by HFD. We demonstrated that curcumin could protect intestinal mucosal barrier, improve insulin resistance and reduce blood glucose in diabetic rats. This study might provide experimental evidence for the prevention and treatment in T2DM.
Collapse
Affiliation(s)
- Jingze Huang
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Binbin Guan
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Lijing Lin
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yanping Wang
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|