1
|
Lee YJ, Cao D, Subhadra B, De Castro C, Speciale I, Inzana TJ. Relationship between capsule production and biofilm formation by Mannheimia haemolytica, and establishment of a poly-species biofilm with other Pasteurellaceae. Biofilm 2024; 8:100223. [PMID: 39492819 PMCID: PMC11530854 DOI: 10.1016/j.bioflm.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024] Open
Abstract
Mannheimia haemolytica is one of the bacterial agents responsible for bovine respiratory disease (BRD). The capability of M. haemolytica to form a biofilm may contribute to the development of chronic BRD infection by making the bacteria more resistant to host innate immunity and antibiotics. To improve therapy and prevent BRD, a greater understanding of the association between M. haemolytica surface components and biofilm formation is needed. M. haemolytica strain 619 (wild-type) made a poorly adherent, low-biomass biofilm. To examine the relationship between capsule and biofilm formation, a capsule-deficient mutant of wild-type M. haemolytica was obtained following mutagenesis with ethyl methanesulfonate to obtain mutant E09. Loss of capsular polysaccharide (CPS) in mutant E09 was supported by transmission electron microscopy and Maneval's staining. Mutant E09 attached to polyvinyl chloride plates more effectively, and produced a significantly denser and more uniform biofilm than the wild-type, as determined by crystal violet staining, scanning electron microscopy, and confocal laser scanning microscopy with COMSTAT analysis. The biofilm matrix of E09 contained predominately protein and significantly more eDNA than the wild-type, but not a distinct exopolysaccharide. Furthermore, treatment with DNase I significantly reduced the biofilm content of both the wild-type and E09 mutant. DNA sequencing of E09 showed that a point mutation occurred in the capsule biosynthesis gene wecB. The complementation of wecB in trans in mutant E09 successfully restored CPS production and reduced bacterial attachment/biofilm to levels similar to that of the wild-type. Fluorescence in-situ hybridization microscopy showed that M. haemolytica formed a poly-microbial biofilm with Histophilus somni and Pasteurella multocida. Overall, CPS production by M. haemolytica was inversely correlated with biofilm formation, the integrity of which required eDNA. A poly-microbial biofilm was readily formed between M. haemolytica, H. somni, and P. multocida, suggesting a mutualistic or synergistic interaction that may benefit bacterial colonization of the bovine respiratory tract.
Collapse
Affiliation(s)
- Yue-Jia Lee
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
- Institute of Food Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan, ROC
| | - Dianjun Cao
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| | - Bindu Subhadra
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| | - Cristina De Castro
- Department of Chemical Sciences, Università di Napoli FedericoII, Naples, Italy
| | | | - Thomas J. Inzana
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| |
Collapse
|
2
|
Goldkamp AK, Menghwar H, Dassanayake RP, Tatum FM, Briggs RE, Casas E. Complete hybrid genome assembly of Mannheimia haemolytica serotype A2 strain D95 isolated from ovine lung. Microbiol Resour Announc 2024; 13:e0055224. [PMID: 39400145 PMCID: PMC11556040 DOI: 10.1128/mra.00552-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/16/2024] [Indexed: 10/15/2024] Open
Abstract
Mannheimia haemolytica is a major bacterial pathogen associated with broncho- and fibrinous pneumonia in ruminants. Here, we report the complete genome sequence of an isolate of serotype A2 M. haemolytica (D95) recovered from a pneumonic ovine lung. The D95 genome has a size of 2.7 Mb and contains 2,720 genes.
Collapse
Affiliation(s)
- Anna K. Goldkamp
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, USA
| | - Harish Menghwar
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, USA
- ARS Research Participation Program, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, USA
| | - Rohana P. Dassanayake
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, USA
| | - Fred M. Tatum
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, USA
| | - Robert E. Briggs
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, USA
| | - Eduardo Casas
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, USA
| |
Collapse
|
3
|
Ruiz-Mazón L, Ramírez-Rico G, de la Garza M. Lactoferrin Affects the Viability of Bacteria in a Biofilm and the Formation of a New Biofilm Cycle of Mannheimia haemolytica A2. Int J Mol Sci 2024; 25:8718. [PMID: 39201405 PMCID: PMC11355051 DOI: 10.3390/ijms25168718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Respiratory diseases in ruminants are responsible for enormous economic losses for the dairy and meat industry. The main causative bacterial agent of pneumonia in ovine is Mannheimia haemolytica A2. Due to the impact of this disease, the effect of the antimicrobial protein, bovine lactoferrin (bLf), against virulence factors of this bacterium has been studied. However, its effect on biofilm formation has not been reported. In this work, we evaluated the effect on different stages of the biofilm. Our results reveal a decrease in biofilm formation when bacteria were pre-incubated with bLf. However, when bLf was added at the start of biofilm formation and on mature biofilm, an increase was observed, which was visualized by greater bacterial aggregation and secretion of biofilm matrix components. Additionally, through SDS-PAGE, a remarkable band of ~80 kDa was observed when bLf was added to biofilms. Therefore, the presence of bLf on the biofilm was determined through the Western blot and Microscopy techniques. Finally, by using Live/Dead staining, we observed that most of the bacteria in a biofilm with bLf were not viable. In addition, bLf affects the formation of a new biofilm cycle. In conclusion, bLf binds to the biofilm of M. haemolytica A2 and affects the viability of bacteria and the formation a new biofilm cycle.
Collapse
Affiliation(s)
- Lucero Ruiz-Mazón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico; (L.R.-M.); (G.R.-R.)
| | - Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico; (L.R.-M.); (G.R.-R.)
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Km 2.5 Carretera Cuautitlán-Teoloyucan, Cuautitlán Izcalli 54714, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico; (L.R.-M.); (G.R.-R.)
| |
Collapse
|
4
|
Ramírez-Rico G, Ruiz-Mazón L, Reyes-López M, Rivillas Acevedo L, Serrano-Luna J, de la Garza M. Apo-Lactoferrin Inhibits the Proteolytic Activity of the 110 kDa Zn Metalloprotease Produced by Mannheimia haemolytica A2. Int J Mol Sci 2024; 25:8232. [PMID: 39125801 PMCID: PMC11311601 DOI: 10.3390/ijms25158232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Mannheimia haemolytica is the main etiological bacterial agent in ruminant respiratory disease. M. haemolytica secretes leukotoxin, lipopolysaccharides, and proteases, which may be targeted to treat infections. We recently reported the purification and in vivo detection of a 110 kDa Zn metalloprotease with collagenase activity (110-Mh metalloprotease) in a sheep with mannheimiosis, and this protease may be an important virulence factor. Due to the increase in the number of multidrug-resistant strains of M. haemolytica, new alternatives to antibiotics are being explored; one option is lactoferrin (Lf), which is a multifunctional iron-binding glycoprotein from the innate immune system of mammals. Bovine apo-lactoferrin (apo-bLf) possesses many properties, and its bactericidal and bacteriostatic effects have been highlighted. The present study was conducted to investigate whether apo-bLf inhibits the secretion and proteolytic activity of the 110-Mh metalloprotease. This enzyme was purified and sublethal doses of apo-bLf were added to cultures of M. haemolytica or co-incubated with the 110-Mh metalloprotease. The collagenase activity was evaluated using zymography and azocoll assays. Our results showed that apo-bLf inhibited the secretion and activity of the 110-Mh metalloprotease. Molecular docking and overlay assays showed that apo-bLf bound near the active site of the 110-Mh metalloprotease, which affected its enzymatic activity.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rico
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México 54714, Mexico;
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| | - Lucero Ruiz-Mazón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| | - Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| | - Lina Rivillas Acevedo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| |
Collapse
|
5
|
Xiao J, Yu S, Jiang K, He X, Bi L, Zhao P, Wang T, Yang N, Guo D. Identification of linear B cell epitopes on the leukotoxin protein of Fusobacterium necrophorum. Anaerobe 2024; 90:102884. [PMID: 39059623 DOI: 10.1016/j.anaerobe.2024.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE Fusobacterium necrophorum can casuse Lemierre's syndrome in humans and a range of illnesses, including foot rot and liver abscesses, in animals. The main virulence factor released by F. necrophorum is leukotoxin, which has been shown to have a strong correlation with the severity of the disease. Leukotoxin is commonly employed as the key antigen in the formulation of subunit vaccines. Therefore, identification of the B-cell epitope of F. necrophorum leukotoxin is necessary. METHODS In this research, we utilized lymphocyte hybridoma technology to develop a monoclonal antibody (mAb), 3D7, targeting the F. necrophorum leukotoxin protein. Identification of B-cell epitopes recognized by 3D7 mAb was achieved through Western blot, ELISA and dot blots using leukotoxin-truncated recombinant proteins and peptides, and through SWISS-MODEL homology modeling and PyMOL visualization. RESULTS The 3D7 mAb was identified as belonging to the IgG1 subclass with a κ-chain light chain. It demonstrated reactivity with the natural leukotoxin. The results showed that the 3D7 mAb recognizes a B-cell epitope of the F. necrophorum leukotoxin protein, I2168SSFGVGV2175 (EP-3D7). Sequence comparison analysis showed that EP-3D7 was highly conserved in F. necrophorum strains, but less conserved in other bacteria, indicating the specificity of EP-3D7. EP-3D7 is present on the surface of leukotoxin proteins in a β-folded manner. CONCLUSIONS In summary, these results establish EP-3D7 as a conserved antigenic epitope of F. necrophorum leukotoxin. It could be valuable in the development of vaccines and diagnostic reagents for F. necrophorum epitopes.
Collapse
Affiliation(s)
- Jiawei Xiao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China
| | - Siwen Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China
| | - Kai Jiang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China
| | - Xianjing He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China
| | - Lan Bi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China
| | - Pengyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China
| | - Tianshuo Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China
| | - Ning Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China; Ministry of Agriculture and Rural Affairs Key Laboratory of Prevention and Control of Bovine Diseases, No. 5 Xinyang Road, Sartu District, Daqing, 163319, Heilongjiang Province, China.
| |
Collapse
|
6
|
Baz AA, Hao H, Lan S, Li Z, Liu S, Jin X, Chen S, Chu Y. Emerging insights into macrophage extracellular traps in bacterial infections. FASEB J 2024; 38:e23767. [PMID: 38924166 DOI: 10.1096/fj.202400739r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Macrophages possess a diverse range of well-defined capabilities and roles as phagocytes, encompassing the regulation of inflammation, facilitation of wound healing, maintenance of tissue homeostasis, and serving as a crucial element in the innate immune response against microbial pathogens. The emergence of extracellular traps is a novel strategy of defense that has been observed in several types of innate immune cells. In response to infection, macrophages are stimulated and produce macrophage extracellular traps (METs), which take the form of net-like structures, filled with strands of DNA and adorned with histones and other cellular proteins. METs not only capture and eliminate microorganisms but also play a role in the development of certain diseases such as inflammation and autoimmune disorders. The primary objective of this study is to examine the latest advancements in METs for tackling bacterial infections. We also delve into the current knowledge and tactics utilized by bacteria to elude or endure the effects of METs. Through this investigation, we hope to shed light on the intricate interactions between bacteria and the host's immune system, particularly in the context of microbicidal effector mechanisms of METs. The continued exploration of METs and their impact on host defense against various pathogens opens up new avenues for understanding and potentially manipulating the immune system's response to infections.
Collapse
Affiliation(s)
- Ahmed Adel Baz
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Xiangrui Jin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| |
Collapse
|
7
|
Rosales-Islas V, Ramírez-Paz-Y-Puente GA, Montes-García F, Vázquez-Cruz C, Sánchez-Alonso P, Zenteno E, Negrete-Abascal E. Isolation and characterization of a Mannheimiahaemolytica secreted serine protease that degrades sheep and bovine fibrinogen. Microb Pathog 2024; 192:106706. [PMID: 38763316 DOI: 10.1016/j.micpath.2024.106706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Mannheimiahaemolytica is an opportunistic agent of the respiratory tract of bovines, a member of the Pasteurellaceae family, and the causal agent of fibrinous pleuropneumonia. This bacterium possesses different virulence factors, allowing it to colonize and infect its host. The present work describes the isolation and characterization of a serine protease secreted by M. haemolytica serotype 1. This protease was isolated from M. haemolytica cultured media by precipitation with 50 % methanol and ion exchange chromatography on DEAE-cellulose. It is a 70-kDa protease able to degrade sheep and bovine fibrinogen or porcine gelatin but not bovine IgG, hemoglobin, or casein. Mass spectrometric analysis indicates its identity with protease IV of M. haemolytica. The proteolytic activity was active between pH 5 and 9, with an optimal pH of 8. It was stable at 50 °C for 10 min but inactivated at 60 °C. The sera of bovines with chronic or acute pneumonia recognized this protease. Still, it showed no cross-reactivity with rabbit hyperimmune serum against the secreted metalloprotease from Actinobacilluspleuropneumoniae, another member of the Pasteurellaceae family. M. haemolytica secreted proteases could contribute to the pathogenesis of this bacterium through fibrinogen degradation, a characteristic of this fibrinous pleuropneumonia.
Collapse
Affiliation(s)
- Verónica Rosales-Islas
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico
| | | | - Fernando Montes-García
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico
| | | | | | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Erasmo Negrete-Abascal
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico.
| |
Collapse
|
8
|
Pérez E, Uzal FA, de Miguel R, Rodríguez-Largo A, Reséndiz R, Streitenberger N, Macías-Rioseco M, Gómez Á, Calvo-Sánchez N, Pérez M, Luján L, Asín J. Mannheimia haemolytica-associated fibrinonecrotizing abomasitis in lambs. Vet Pathol 2024; 61:604-608. [PMID: 38440930 PMCID: PMC11264574 DOI: 10.1177/03009858241235393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Mannheimia haemolytica-associated abomasitis has been clinically described as a cause of sudden death in lambs, but it is poorly characterized. We describe the pathological features of a severe fibrinonecrotizing abomasitis in 3 lambs that died suddenly. All 3 abomasums had a thickened submucosa due to edema and necrotic areas delimited by bands of degenerate neutrophils with slender nuclei (oat cells) and angiocentric distributions. The overlying mucosa was congested. Myriads of gram-negative coccobacilli were observed within the oat cell bands. M. haemolytica was isolated from the abomasum in all 3 animals and was serotyped as A2 in one of them. Pericarditis and pleuritis were observed in 2 of the lambs. Clostridium spp. were isolated in 1 lamb and detected by immunohistochemistry in the 3 animals, suggesting clostridial co-infection. M. haemolytica should be considered among the differential diagnoses of necrotizing abomasitis in lambs.
Collapse
Affiliation(s)
- Estela Pérez
- University of Zaragoza, Zaragoza, Spain
- AgriFood Institute of Aragon, Zaragoza, Spain
| | | | | | - Ana Rodríguez-Largo
- University of Zaragoza, Zaragoza, Spain
- AgriFood Institute of Aragon, Zaragoza, Spain
| | | | | | | | - Álex Gómez
- University of Zaragoza, Zaragoza, Spain
- AgriFood Institute of Aragon, Zaragoza, Spain
| | - Natalia Calvo-Sánchez
- University of Zaragoza, Zaragoza, Spain
- AgriFood Institute of Aragon, Zaragoza, Spain
| | - Marta Pérez
- University of Zaragoza, Zaragoza, Spain
- AgriFood Institute of Aragon, Zaragoza, Spain
| | - Lluís Luján
- University of Zaragoza, Zaragoza, Spain
- AgriFood Institute of Aragon, Zaragoza, Spain
| | - Javier Asín
- University of California-Davis, San Bernardino, CA
| |
Collapse
|
9
|
Kostova V, Hanke D, Kaspar H, Fiedler S, Schwarz S, Krüger-Haker H. Macrolide resistance in Mannheimia haemolytica isolates associated with bovine respiratory disease from the German national resistance monitoring program GE RM-Vet 2009 to 2020. Front Microbiol 2024; 15:1356208. [PMID: 38495516 PMCID: PMC10940430 DOI: 10.3389/fmicb.2024.1356208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Data collected from the German national resistance monitoring program GERM-Vet showed slowly increasing prevalence of macrolide resistance among bovine respiratory disease (BRD)-associated Pasteurellacae from cattle over the last decade. The focus of this study was to analyze the genetic basis of antimicrobial resistance (AMR) and the prevalence of multidrug-resistance (MDR)-mediating integrative and conjugative elements (ICEs) in 13 German BRD-associated Mannheimia haemolytica isolates collected between 2009 and 2020 via whole-genome sequencing. Antimicrobial susceptibility testing (AST) was performed via broth microdilution according to the recommendations of the Clinical and Laboratory Standards Institute for the macrolides erythromycin, tilmicosin, tulathromycin, gamithromycin, tildipirosin, and tylosin as well as 25 other antimicrobial agents. All isolates either had elevated MICs or were resistant to at least one of the macrolides tested. Analysis of whole-genome sequences obtained by hybrid assembly of Illumina MiSeq and Oxford Nanopore MinION reads revealed the presence of seven novel Tn7406-like ICEs, designated Tn7694, and Tn7724- Tn7729. These ICEs harbored the antimicrobial resistance genes erm(T), mef (C), mph(G), floR, catA3, aad(3")(9), aph(3')-Ia, aac(3)-IIa, strA, strB, tet(Y), and sul2 in different combinations. In addition, mutational changes conferring resistance to macrolides, nalidixic acid or streptomycin, respectively, were detected among the M. haemolytica isolates. In addition, four isolates carried a 4,613-bp plasmid with the β-lactamase gene blaROB - 1. The detection of the macrolide resistance genes erm(T), mef (C), and mph(G) together with other resistance genes on MDR-mediating ICEs in bovine M. haemolytica may explain the occurrence of therapeutic failure when treating BRD with regularly used antimicrobial agents, such as phenicols, penicillins, tetracyclines, or macrolides. Finally, pathogen identification and subsequent AST is essential to ensure the efficacy of the antimicrobial agents applied to control BRD in cattle.
Collapse
Affiliation(s)
- Valeria Kostova
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Stefan Fiedler
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
10
|
Ahmed S, El-Fatah Mahmoud MA, Nemr WA, Abdel-Rahman EH, El-Shershaby A, Fouad EA, Liaqat F, Wijewardana V. Detection of immune effects of the Mannheimia haemolytica gamma irradiated vaccine in sheep. Vet Res Commun 2024; 48:245-257. [PMID: 37642819 DOI: 10.1007/s11259-023-10207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Exposure to gamma rays from cobalt 60 (Co60) can induce a complete inactivation of Mannheimia haemolytica. The inactivated bacterial pathogen is a potential vaccine candidate for immunization of ruminants such as sheep. The subcutaneous administration of irradiated vaccine in a two-dose regimen (4.0 × 109 colony forming unit (CFU) per dose) results in no mortality in any of the vaccinated sheep during immunization and after subsequent challenge of the live bacteria of the same strain of M. haemolytica. A significant rise in serum IgG titer, detected through ELISA, is observed after the passage of two weeks from the inoculation of the first dose whereas, the peak of the mean serum antibody titer occurred after two weeks of booster dose. The vaccination does not bring significant change to the IFN-γ levels in serum. The bacterial challenge of the vaccinated sheep does not induce a further seroconversion relative to serum antibody titer. In conclusion, the vaccinated sheep are protected by the elevated IgG titer and increased levels of IL-4 (Th-2 response) compared to the non-vaccinated sheep. Radiation technology can provide the opportunity for mass production of immunologically safe vaccines against animal and zoonotic diseases. Ethics Approval by the National Research Center Ethics Committee (Trial Registration Number (TRN) no 13,602,023, 13/5/2023) was obtained.
Collapse
Affiliation(s)
- Sahar Ahmed
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, Giza, Egypt.
| | - Mohamed Abd El-Fatah Mahmoud
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Waleed Abdelgaber Nemr
- Department of Radiation Microbiology, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Eman Hussein Abdel-Rahman
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Asmaa El-Shershaby
- Department of Molecular Biology, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Ehab Ali Fouad
- Department of Zoonosis, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Fatima Liaqat
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
11
|
Robi DT, Mossie T, Temteme S. A Comprehensive Review of the Common Bacterial Infections in Dairy Calves and Advanced Strategies for Health Management. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2024; 15:1-14. [PMID: 38288284 PMCID: PMC10822132 DOI: 10.2147/vmrr.s452925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
Dairy farming faces a significant challenge of bacterial infections in dairy calves, which can have detrimental effects on their health and productivity. This review offers a comprehensive overview of the most prevalent bacterial infections in dairy calves, including Escherichia coli, Salmonella typhimurium, Salmonella dublin, Salmonella enterica, Clostridium perfringens, Pasteurella multocida, Listeria monocytogenes, Mycoplasma bovis, and Haemophilus somnus. These pathogens can cause various clinical signs and symptoms, leading to diarrhea, respiratory distress, septicemia, and even mortality. Factors such as management practices, environmental conditions, and herd health influence the incidence and severity of the infections. Efficient management and prevention strategies include good colostrum and nutrient feeding, early detection, appropriate treatment, hygiene practices, and supportive care. Regular health monitoring and diagnostic tests facilitate early detection and intervention. The use of antibiotics should be judicious to prevent antimicrobial resistance and supportive care such as fluid therapy and nutritional support promotes recovery. Diagnostic methods, including immunological tests, culture, polymerase chain reaction (PCR), and serology, aid in the identification of specific pathogens. This review also explores recent advancements in the diagnosis, treatment, and prevention of bacterial infections in dairy calves, providing valuable insights for dairy farmers, veterinarians, and researchers. By synthesizing pertinent scientific literature, this review contributes to the development of effective strategies aimed at mitigating the impact of bacterial infections on the health, welfare, and productivity of young calves. Moreover, more research is required to enhance the understanding of the epidemiology and characterization of bacterial infections in dairy calves.
Collapse
Affiliation(s)
- Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, Tepi, Ethiopia
| | - Tesfa Mossie
- Ethiopian Institute of Agriculture Research, Jimma Agriculture Research Center, Jimma, Ethiopia
| | - Shiferaw Temteme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, Tepi, Ethiopia
| |
Collapse
|
12
|
Ramírez-Rico G, Martinez-Castillo M, Ruiz-Mazón L, Meneses-Romero EP, Palacios JAF, Díaz-Aparicio E, Abascal EN, de la Garza M. Identification, Biochemical Characterization, and In Vivo Detection of a Zn-Metalloprotease with Collagenase Activity from Mannheimia haemolytica A2. Int J Mol Sci 2024; 25:1289. [PMID: 38279292 PMCID: PMC10816954 DOI: 10.3390/ijms25021289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Respiratory diseases in ruminants are a main cause of economic losses to farmers worldwide. Approximately 25% of ruminants experience at least one episode of respiratory disease during the first year of life. Mannheimia haemolytica is the main etiological bacterial agent in the ruminant respiratory disease complex. M. haemolytica can secrete several virulence factors, such as leukotoxin, lipopolysaccharide, and proteases, that can be targeted to treat infections. At present, little information has been reported on the secretion of M. haemolytica A2 proteases and their host protein targets. Here, we obtained evidence that M. haemolytica A2 proteases promote the degradation of hemoglobin, holo-lactoferrin, albumin, and fibrinogen. Additionally, we performed biochemical characterization for a specific 110 kDa Zn-dependent metalloprotease (110-Mh metalloprotease). This metalloprotease was purified through ion exchange chromatography and characterized using denaturing and chaotropic agents and through zymography assays. Furthermore, mass spectrometry identification and 3D modeling were performed. Then, antibodies against the 110 kDa-Mh metalloprotease were produced, which achieved great inhibition of proteolytic activity. Finally, the antibodies were used to perform immunohistochemical tests on postmortem lung samples from sheep with suggestive histology data of pneumonic mannheimiosis. Taken together, our results strongly suggest that the 110-Mh metalloprotease participates as a virulence mechanism that promotes damage to host tissues.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rico
- Faculty of Professional Studies Cuautitlan, Autonomous National University of Mexico (UNAM), Mexico City 54714, Mexico;
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico;
| | - Moises Martinez-Castillo
- Liver, Pancreas and Motility Laboratory, Unit of Research in Experimental Medicine, School of Medicine, Autonomous National University of Mexico (UNAM), Mexico City 06726, Mexico;
| | - Lucero Ruiz-Mazón
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico;
| | | | | | - Efrén Díaz-Aparicio
- National Center for Disciplinary Research in Animal Health and Safety, National Institute of Forestry, Agricultural and Livestock Research (INIFAP), Mexico City 05110, Mexico
| | - Erasmo Negrete Abascal
- Faculty of Professional Studies Iztacala, Autonomous National University of Mexico (UNAM), Mexico City 54090, Mexico;
| | - Mireya de la Garza
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico;
| |
Collapse
|
13
|
Jiao Z, Jiang J, Meng Y, Wu G, Tang J, Chen T, Fu Y, Chen Y, Zhang Z, Gao H, Man C, Chen Q, Du L, Wang F, Chen S. Immune Cells in the Spleen of Mice Mediate the Inflammatory Response Induced by Mannheimia haemolytica A2 Serotype. Animals (Basel) 2024; 14:317. [PMID: 38275777 PMCID: PMC10812571 DOI: 10.3390/ani14020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
(1) Background: Mannheimia haemolytica (M. haemolytica) is an opportunistic pathogen and is mainly associated with respiratory diseases in cattle, sheep, and goats. (2) Methods: In this study, a mouse infection model was established using a M. haemolytica strain isolated from goats. Histopathological observations were conducted on various organs of the mice, and bacterial load determination and RNA-seq analysis were specifically performed on the spleens of the mice. (3) Results: The findings of this study suggest that chemokines, potentially present in the spleen of mice following a M. haemolytica challenge, may induce the migration of leukocytes to the spleen and suppress the release of pro-inflammatory factors through a negative feedback regulation mechanism. Additionally, an interesting observation was made regarding the potential of hematopoietic stem/progenitor cells congregating in the spleen to differentiate into immune cells, which could potentially collaborate with leukocytes in their efforts to counteract M. haemolytica invasion. (4) Conclusions: This study revealed the immune regulation mechanism induced by M. haemolytica in the mouse spleen, providing valuable insights into host-pathogen interactions and offering a theoretical basis for the prevention, control, and treatment of mannheimiosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.J.); (J.J.); (Y.M.); (G.W.); (J.T.); (T.C.); (Y.F.); (Y.C.); (Z.Z.); (H.G.); (C.M.); (Q.C.); (L.D.)
| | - Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.J.); (J.J.); (Y.M.); (G.W.); (J.T.); (T.C.); (Y.F.); (Y.C.); (Z.Z.); (H.G.); (C.M.); (Q.C.); (L.D.)
| |
Collapse
|
14
|
Menghwar H, Tatum FM, Briggs RE, Casas E, Kaplan BS, Azadi P, Dassanayake RP. Enhanced phagocytosis and complement-mediated killing of Mannheimia haemolytica serotype 1 following in-frame CMP-sialic acid synthetase ( neuA) gene deletion. Microbiol Spectr 2023; 11:e0294423. [PMID: 37850751 PMCID: PMC10714724 DOI: 10.1128/spectrum.02944-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE The Gram-negative coccobacillus Mannheimia haemolytica is a natural inhabitant of the upper respiratory tract in ruminants and the most common bacterial agent involved in bovine respiratory disease complex development. Key virulence factors harbored by M. haemolytica are leukotoxin, lipopolysaccharide, capsule, adhesins, and neuraminidase which are involved in evading innate and adaptive immune responses. In this study, we have shown that CMP-sialic acid synthetase (neuA) is necessary for the incorporation of sialic acid onto the membrane, and inactivation of neuA results in increased phagocytosis and complement-mediated killing of M. haemolytica, thus demonstrating that sialylation contributes to the virulence of M. haemolytica.
Collapse
Affiliation(s)
- Harish Menghwar
- Ruminant Diseases and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Fred M. Tatum
- Ruminant Diseases and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Robert E. Briggs
- Ruminant Diseases and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Eduardo Casas
- Ruminant Diseases and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Bryan S. Kaplan
- Ruminant Diseases and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Rohana P. Dassanayake
- Ruminant Diseases and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| |
Collapse
|
15
|
Abd El-Ghany WA, Algammal AM, Hetta HF, Elbestawy AR. Gallibacterium anatis infection in poultry: a comprehensive review. Trop Anim Health Prod 2023; 55:383. [PMID: 37889324 PMCID: PMC10611880 DOI: 10.1007/s11250-023-03796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Gallibacterium anatis (G. anatis), a member of the Pasteurellaceae family, normally inhabits the upper respiratory and lower genital tracts of poultry. However, under certain circumstances of immunosuppression, co-infection (especially with Escherichia coli or Mycoplasma), or various stressors, G. anatis caused respiratory, reproductive, and systemic diseases. Infection with G. anatis has emerged in different countries worldwide. The bacterium affects mainly chickens; however, other species of domestic and wild birds may get infected. Horizontal, vertical, and venereal routes of G. anatis infection have been reported. The pathogenicity of G. anatis is principally related to the presence of some essential virulence factors such as Gallibacterium toxin A, fimbriae, haemagglutinin, outer membrane vesicles, capsule, biofilms, and protease. The clinical picture of G. anatis infection is mainly represented as tracheitis, oophoritis, salpingitis, and peritonitis, while other lesions may be noted in cases of concomitant infection. Control of such infection depends mainly on applying biosecurity measures and vaccination. The antimicrobial sensitivity test is necessary for the correct treatment of G. anatis. However, the development of multiple drug resistance is common. This review article sheds light on G. anatis regarding history, susceptibility, dissemination, virulence factors, pathogenesis, clinical picture, diagnosis, and control measures.
Collapse
Affiliation(s)
- Wafaa A Abd El-Ghany
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Abdelazeem M Algammal
- Bacteriology, Immunology, and Mycology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Helal F Hetta
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, 22511, Egypt
| |
Collapse
|
16
|
Azhar NA, Paul BT, Jesse FFA, Mohd-Lila MA, Chung ELT, Kamarulrizal MI. Pro-inflammatory cytokines and reproductive hormone responses in bucks post-challenge with Mannheimia haemolytica A2 and its outer membrane protein. Trop Anim Health Prod 2023; 55:291. [PMID: 37589856 DOI: 10.1007/s11250-023-03706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
The lipopolysaccharide (LPS) endotoxin and outer membrane protein (OMP) are among the virulence factors of Gram-negative bacteria responsible for inducing pathogenicity in the infected host. OMP and LPS occur on the outer membrane of M. haemolytica A2, the primary aetiological agent of pneumonic mannheimiosis in small ruminants. While the LPS is known to mediate Gram-negative bacterial infection by activating downstream inflammatory pathways, the potential role of OMP during inflammatory responses remained unclear. Hence, this study determined the effect of the OMP of M. haemolytica A2 on the serum concentration of pro-inflammatory cytokines and the male reproductive hormones (testosterone and Luteinizing Hormone). We randomly assigned twelve bucks to three groups (n = 4 bucks each): Group 1 was challenged with 2 mL PBS buffer (pH 7.0) intranasally; Group 2 received 2 mL of 1.2 X 109 CFU/mL whole M. haemolytica A2 intranasally; and Group 3 received 2 mL of OMP extract obtained from 1.2 X 109 CFU/mL M. haemolytica A2 intramuscularly. Serum samples collected at pre-determined intervals were used for the quantitative determination of the pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) and reproductive hormones (testosterone and LH) using commercial sandwich enzyme-linked immunosorbent assay (ELISA). The serum concentration of IL1β was initially increased within the first-hour post-challenge in Groups 2 and 3, followed by a significant decrease in concentration at 21d and 35d (p < 0.05) in Group 3. Only mild fluctuations in IL-6 occurred in group 2, as opposed to the 1.7-fold rapid increase in TNFα within 2 h post-challenge before decreasing at 6 h. An increase in pro-inflammatory cytokines was accompanied by an acute febrile response of 39.5 ± 0.38 °C (p < 0.05) at 2 h and 40.1 ± 0.29 °C (p < 0.05) at 4 h in Group 2 and Group 3, respectively. Serum testosterone decreased significantly (p < 0.05) in both treatment groups but remained significantly (p > 0.05) lower than in Group 1 throughout the study. There was a moderate negative association between testosterone and IL1β (r = -0.473; p > 0.05) or TNFα (r = -0.527; p < 0.05) in Group 2. Serum LH also showed moderate negative associations with TNFα in Group 2 (r = -0.63; p < 0.05) and Group 3 (r = -0.54; p > 0.05). The results of this study demonstrated that M. haemolytica A2 and its OMP produced marked alterations in serum levels of pro-inflammatory cytokines and male reproductive hormones. The negative correlations between serum testosterone and inflammatory cytokines would suggest the potential role of OMP in causing male infertility by mediating innate inflammatory responses to suppress testosterone production in bucks.
Collapse
Affiliation(s)
- Nur Amira Azhar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Bura Thlama Paul
- Department of Animal Science and Fisheries, Faculty of Agriculture and Forestry Science, Universiti Putra Malaysia Campus Bintulu Sarawak, 97003, Bintulu, Malaysia
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Maiduguri, 600230, Maiduguri, Borno State, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Mohd-Azmi Mohd-Lila
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, 43400 UPM, Serdang, Selangor, Malaysia
| | - Eric Lim Teik Chung
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mat Isa Kamarulrizal
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
17
|
Gandhi NN, Inzana TJ, Rajagopalan P. Bovine Airway Models: Approaches for Investigating Bovine Respiratory Disease. ACS Infect Dis 2023; 9:1168-1179. [PMID: 37257116 DOI: 10.1021/acsinfecdis.2c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bovine respiratory disease (BRD) is a multifactorial condition where different genera of bacteria, such as Mannheimia haemolytica, Histophilus somni, Pasteurella multocida, and Mycoplasma bovis, and viruses, like bovine respiratory syncytial virus, bovine viral diarrhea virus, and bovine herpes virus-1, infect the lower respiratory tract of cattle. These pathogens can co-infect cells in the respiratory system, thereby making specific treatment very difficult. Currently, the most common models for studying BRD include a submerged tissue culture (STC), where monolayers of epithelial cells are typically covered either in cellular or spent biofilm culture medium. Another model is an air-liquid interface (ALI), where epithelial cells are exposed on their apical side and allowed to differentiate. However, limited work has been reported on the study of three-dimensional (3D) bovine models that incorporate multiple cell types to represent the architecture of the respiratory tract. The roles of different defense mechanisms in an infected bovine respiratory system, such as mucin production, tight junction barriers, and the production of antimicrobial peptides in in vitro cultures require further investigation in order to provide a comprehensive understanding of the disease pathogenesis. In this report, we describe the different aspects of BRD, including the most implicated pathogens and the respiratory tract, which are important to incorporate in disease models assembled in vitro. Although current advancements of bovine respiratory cultures have led to knowledge of the disease, 3D multicellular organoids that better recapitulate the in vivo environment exhibit potential for future investigations.
Collapse
Affiliation(s)
- Neeti N Gandhi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Thomas J Inzana
- College of Veterinary Medicine, Long Island University, Brookville, New York 11548, United States
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
18
|
Poonsuk K, Kordik C, Hille M, Cheng TY, Crosby WB, Woolums AR, Clawson ML, Chitko-McKown C, Brodersen B, Loy JD. Detection of Mannheimia haemolytica-Specific IgG, IgM and IgA in Sera and Their Relationship to Respiratory Disease in Cattle. Animals (Basel) 2023; 13:ani13091531. [PMID: 37174567 PMCID: PMC10177094 DOI: 10.3390/ani13091531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Mannheimia haemolytica is one of the major causes of bovine respiratory disease in cattle. The organism is the primary bacterium isolated from calves and young cattle affected with enzootic pneumonia. Novel indirect ELISAs were developed and evaluated to enable quantification of antibody responses to whole cell antigens using M. haemolytica A1 strain P1148. In this study, the ELISAs were initially developed using sera from both M. haemolytica-culture-free and clinically infected cattle, then the final prototypes were tested in the validation phase using a larger set of known-status M. haemolytica sera (n = 145) collected from feedlot cattle. The test showed good inter-assay and intra-assay repeatability. Diagnostic sensitivity and specificity were estimated at 91% and 87% for IgG at a cutoff of S/P ≥ 0.8. IgM diagnostic sensitivity and specificity were 91% and 81% at a cutoff of sample to positive (S/P) ratio ≥ 0.8. IgA diagnostic sensitivity was 89% whereas specificity was 78% at a cutoff of S/P ≥ 0.2. ELISA results of all isotypes were related to the diagnosis of respiratory disease and isolation of M. haemolytica (p-value < 0.05). These data suggest that M. haemolytica ELISAs can be adapted to the detection and quantification of antibody in serum specimens and support the use of these tests for the disease surveillance and disease prevention research in feedlot cattle.
Collapse
Affiliation(s)
- Korakrit Poonsuk
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Carita Kordik
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Matthew Hille
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - William B Crosby
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Michael L Clawson
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), United States Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Carol Chitko-McKown
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), United States Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Bruce Brodersen
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - John Dustin Loy
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| |
Collapse
|
19
|
NMR-based metabolomics of plasma from dairy calves infected with two primary causal agents of bovine respiratory disease (BRD). Sci Rep 2023; 13:2671. [PMID: 36792613 PMCID: PMC9930073 DOI: 10.1038/s41598-023-29234-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Each year, bovine respiratory disease (BRD) results in significant economic loss in the cattle sector, and novel metabolic profiling for early diagnosis represents a promising tool for developing effective measures for disease management. Here, 1H-nuclear magnetic resonance (1H-NMR) spectra were used to characterize metabolites from blood plasma collected from male dairy calves (n = 10) intentionally infected with two of the main BRD causal agents, bovine respiratory syncytial virus (BRSV) and Mannheimia haemolytica (MH), to generate a well-defined metabolomic profile under controlled conditions. In response to infection, 46 metabolites (BRSV = 32, MH = 33) changed in concentration compared to the uninfected state. Fuel substrates and products exhibited a particularly strong effect, reflecting imbalances that occur during the immune response. Furthermore, 1H-NMR spectra from samples from the uninfected and infected stages were discriminated with an accuracy, sensitivity, and specificity ≥ 95% using chemometrics to model the changes associated with disease, suggesting that metabolic profiles can be used for further development, understanding, and validation of novel diagnostic tools.
Collapse
|
20
|
The trehalose glycolipid C18Brar promotes antibody and T-cell immune responses to Mannheimia haemolytica and Mycoplasma ovipneumoniae whole cell antigens in sheep. PLoS One 2023; 18:e0278853. [PMID: 36656850 PMCID: PMC9851559 DOI: 10.1371/journal.pone.0278853] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/23/2022] [Indexed: 01/20/2023] Open
Abstract
Bronchopneumonia is a common respiratory disease in livestock. Mannheimia haemolytica is considered the main causative pathogen leading to lung damage in sheep, with Mycoplasma ovipneumoniae and ParaInfluenza virus type 3, combined with adverse physical and physiological stress, being predisposing factors. A balance of humoral and cellular immunity is thought to be important for protection against developing respiratory disease. In the current study, we compared the ability of the trehalose glycolipid adjuvant C18Brar (C18-alkylated brartemicin analogue) and three commercially available adjuvant systems i.e., Quil-A, Emulsigen-D, and a combination of Quil-A and aluminium hydroxide gel, to stimulate antibody and cellular immune responses to antigens from inactivated whole cells of M. haemolytica and M. ovipneumoniae in sheep. C18Brar and Emulsigen-D induced the strongest antigen-specific antibody responses to both M. haemolytica and M. ovipneumoniae, while C18Brar and Quil-A promoted the strongest antigen-specific IL-17A responses. The expression of genes with known immune functions was determined in antigen-stimulated blood cultures using Nanostring nCounter technology. The expression levels of CD40, IL22, TGFB1, and IL2RA were upregulated in antigen-stimulated blood cultures from animals vaccinated with C18Brar, which is consistent with T-cell activation. Collectively, the results demonstrate that C18Brar can promote both antibody and cellular responses, notably Th17 immune responses in a ruminant species.
Collapse
|
21
|
Sexual Dimorphic Innate Immune Response to a Viral-Bacterial Respiratory Disease Challenge in Beef Calves. Vet Sci 2022; 9:vetsci9120696. [PMID: 36548857 PMCID: PMC9785962 DOI: 10.3390/vetsci9120696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The potential for sexually dimorphic innate immune responses to respiratory disease was evaluated, where eight steers and seven heifers (280 ± 4 kg) were subjected to a viral−bacterial respiratory disease challenge utilizing bovine herpesvirus-1 (BoHV-1; intranasal; 1 × 108 PFU/nostril) and Mannheimia haemolytica (MH; intratracheal; 1.3 × 107 CFU/head) administered 72 h later. Body temperature was lesser in heifers than steers (p < 0.01). There was a sex × time interaction (p = 0.05) for white blood cells where heifers had reduced concentrations compared with steers at −72 and 0 h but greater concentrations from 36 to 60 h post-MH. Concentrations of neutrophils were lesser in heifers compared to steers from 0 to 4 h, and from 8 to 12 h (p = 0.03). Lymphocytes were greater in heifers compared to steers at 12 h and from 36 to 60 h post-MH (p < 0.01). The neutrophil−lymphocyte ratio was lesser in heifers compared to steers from 2 to 24 h and at 48 h post-MH (p < 0.01). Monocytes were greater in heifers compared to steers from 24 to 60 h post-MH (p < 0.01), while eosinophils were greater in heifers compared to steers at 48 and 60 h (p < 0.01). Serum IL-4 was lesser in heifers compared to steers at 0 h and from 2 to 72 h post-MH challenge (p = 0.02). Non-esterified fatty acid concentrations were lesser (p < 0.01) in heifers compared to steers from 2 to 4 h post-MH challenge. Urea nitrogen concentrations were greater (p < 0.01) in heifers than steers at 36 h post-MH challenge. Data from this study reveal distinct differences in the acute phase response following a respiratory disease challenge where steers produced an early response, while the response in heifers appeared to be delayed.
Collapse
|
22
|
Mansour GH, Razzak LA, Suvik A, Wahid MEA. Stimulating immunoglobulin response by intramuscular delivery of exopolysaccharides-adjuvanted mannheimiosis vaccine in goats. Vet World 2022; 15:2945-2952. [PMID: 36718330 PMCID: PMC9880838 DOI: 10.14202/vetworld.2022.2945-2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/09/2022] [Indexed: 12/29/2022] Open
Abstract
Background and Aim Pneumonic mannheimiosis (PM) is a common respiratory bacterial disease among small ruminants. Despite numerous management methods, vaccination remains a suitable strategy to combat or reduce PM in goats and sheep. Thus, a study was conducted in Malaysia to evaluate the immunogenicity of exopolysaccharide-adjuvanted Mannheimia haemolytica A2 vaccine (EPS-MHA2) under laboratory and field conditions for its potential use as an efficient vaccine against PM. Materials and Methods This study induced immunoglobulin (Ig) responses following intramuscular (IM) delivery of the EPS-MHA2 vaccine on 12 goats for about 7 months. Goats were divided into three groups, with three goats per group, and they were vaccinated intramuscularly as follows: Group 1 was vaccinated with an adjuvanted vaccine prepared from formalin-killed M. haemolytica serotypes A2 and EPS excipient; Group 2 was vaccinated with formalin-killed M. haemolytica seed only, whereas Group 3 was injected with phosphate-buffered saline (PBS) as the negative control. Measures of specific immunity included serum IgM, IgG, and IgA as well as bronchoalveolar lavage fluid secretory IgA and the size and number of the bronchus-associated lymphoid tissue (BALT). Results From the 1st day of vaccination, Groups 1 and 2 showed a significant (p < 0.05) increase in serum IgM, IgG, and IgA levels. However, the antibodies started to decline 5-week post-vaccination, indicating that the booster dose was necessary. On the second exposure to the same vaccine (booster), the level of antibodies showed a significant increase (p < 0.05), particularly IgG. All groups were challenged intratracheally by virulent MHA2 2 weeks after the decline of second antibodies on the administration of booster. All goats were euthanatized and necropsied 4-week post-challenge. The number and size of the BALT in Group 1 goats significantly increased compared with those in Group 2 and the unvaccinated control. Bacteriological parameters were evaluated, in which MHA2 was reisolated successfully from lung samples in Group 3. The IgA level produced by the group vaccinated with EPS-MHA2 was significantly (p < 0.001) higher than that the MHA2 vaccine and PBS groups. All data obtained were analyzed statistically using a one-way analysis of variance. The results indicate that IM injection of EPS-MHA2 vaccine significantly enhanced the immune response against MHA2. Conclusion Therefore, the addition of EPS to MHA2 (EPS-MHA2 vaccine) can effectively protect goats from lethal mannheimiosis infection. Factors such as the ideal concentration of EPS should be further studied to verify its application potential as a vaccine adjuvant, and the extraction of EPS from different microalgae species should be further investigated. This study showed a novel and exciting set of data and a vaccination system, in which the suppressive effects of mannheimiosis may be further investigated.
Collapse
Affiliation(s)
- Ghaith Hussein Mansour
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia
| | - Laith Abdul Razzak
- Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia
| | - A. Suvik
- Faculty of Science and Marine Environment Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia
| | - Mohd Effendy Abd. Wahid
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia,Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia,Corresponding author: Mohd Effendy Abd. Wahid, e-mail: Co-authors: GHM: , LAR: , AS:
| |
Collapse
|
23
|
Cai Y, Folkerts G, Braber S. Non-Digestible Oligosaccharides: A Novel Treatment for Respiratory Infections? Nutrients 2022; 14:nu14235033. [PMID: 36501062 PMCID: PMC9736878 DOI: 10.3390/nu14235033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Emerging antimicrobial resistance in respiratory infections requires novel intervention strategies. Non-digestible oligosaccharides (NDOs) are a diverse group of carbohydrates with broad protective effects. In addition to promoting the colonization of beneficial gut microbiota and maintaining the intestinal homeostasis, NDOs act as decoy receptors, effectively blocking the attachment of pathogens on host cells. NDOs also function as a bacteriostatic agent, inhibiting the growth of specific pathogenic bacteria. Based on this fact, NDOs potentiate the actions of antimicrobial drugs. Therefore, there is an increasing interest in characterizing the anti-infective properties of NDOs. This focused review provides insights into the mechanisms by which representative NDOs may suppress respiratory infections by targeting pathogens and host cells. We summarized the most interesting mechanisms of NDOs, including maintenance of gut microbiota homeostasis, interference with TLR-mediated signaling, anti-oxidative effects and bacterial toxin neutralization, bacteriostatic and bactericidal effects, and anti-adhesion or anti-invasive properties. A detailed understanding of anti-infective mechanisms of NDOs against respiratory pathogens may contribute to the development of add-on therapy or alternatives to antimicrobials.
Collapse
Affiliation(s)
- Yang Cai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
- Correspondence: (Y.C.); (S.B.)
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: (Y.C.); (S.B.)
| |
Collapse
|
24
|
Cowick CA, Russ BP, Bales AR, Nanduri B, Meyer F. Mannheimia haemolytica Negatively Affects Bovine Herpesvirus Type 1.1 Replication Capacity In Vitro. Microorganisms 2022; 10:microorganisms10112158. [PMID: 36363750 PMCID: PMC9697469 DOI: 10.3390/microorganisms10112158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Bovine Respiratory Disease (BRD) is a multifactorial condition affecting cattle worldwide resulting in high rates of morbidity and mortality. The disease can be triggered by Bovine Herpesvirus-1 (BoHV-1) infection, stress, and the subsequent proliferation and lung colonization by commensal bacteria such as Mannheimia haemolytica, ultimately inducing severe pneumonic inflammation. Due to its polymicrobial nature, the study of BRD microbes requires co-infection models. While several past studies have mostly focused on the effects of co-infection on host gene expression, we focused on the relationship between BRD pathogens during co-infection, specifically on M. haemolytica’s effect on BoHV-1 replication. This study shows that M. haemolytica negatively impacts BoHV-1 replication in a dose-dependent manner in different in vitro models. The negative effect was observed at very low bacterial doses while increasing the viral dose counteracted this effect. Viral suppression was also dependent on the time at which each microbe was introduced to the cell culture. While acidification of the culture medium did not grossly affect cell viability, it significantly inhibited viral replication. We conclude that M. haemolytica and BoHV-1 interaction is dose and time-sensitive, wherein M. haemolytica proliferation induces significant viral suppression when the viral replication program is not fully established.
Collapse
Affiliation(s)
- Caitlyn A. Cowick
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 408 Dorman Hall, 32 Creelman St., Box 9655, Starkville, MS 39762, USA
| | - Brynnan P. Russ
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 408 Dorman Hall, 32 Creelman St., Box 9655, Starkville, MS 39762, USA
| | - Anna R. Bales
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 408 Dorman Hall, 32 Creelman St., Box 9655, Starkville, MS 39762, USA
| | - Bindu Nanduri
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Florencia Meyer
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 408 Dorman Hall, 32 Creelman St., Box 9655, Starkville, MS 39762, USA
- Correspondence: ; Tel.: +1-(662)-325-2640; Fax: +1-(662)-325-8955
| |
Collapse
|
25
|
Figueroa-Valenzuela C, Montes-García JF, Vazquez-Cruz C, Zenteno E, Pereyra MA, Negrete-Abascal E. Mannheimia haemolytica OmpH binds fibrinogen and fibronectin and participates in biofilm formation. Microb Pathog 2022; 172:105788. [PMID: 36126788 DOI: 10.1016/j.micpath.2022.105788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
Mannheimia haemolytica is the causal agent of the shipping fever in bovines and produces high economic losses worldwide. This bacterium possesses different virulence attributes to achieve a successful infection. One of the main virulence factors expressed by a pathogen is through adhesion molecules; however, the components participating in this process are not totally known. The present work identified a M. haemolytica 41 kDa outer membrane protein (Omp) that participates in bacterial adhesion. This protein showed 100% identity with the OmpH from M. haemolytica as determined by mass spectrometry and it interacts with sheep fibrinogen. The 41 kDa M. haemolytica OmpH interacts with bovine monocytes; a previous incubation of M. haemolytica with a rabbit hyperimmune serum against this Omp diminished 45% cell adhesion. The OmpH was recognized by serum from bovines affected by acute or chronic pneumonia, indicating its in vivo expression; moreover, it showed immune cross-reaction with the serum of rabbit infected with Pasteurella multocida. The OmpH is present in biofilms and previous incubation of M. haemolytca with rabbit serum against this protein diminished biofilm, indicating this protein's participation in biofilm formation. M. haemolytica OmpH is proposed as a relevant immunogen in bovine pneumonia protection.
Collapse
Affiliation(s)
- Cecilia Figueroa-Valenzuela
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, UNAM; Av. de los Barrios # 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, Mexico; Departamento de Ciencias Veterinarias, Campus Nuevo Casas Grandes, UACJ, C.P. 31803, Chihuahua, Mexico
| | - J Fernando Montes-García
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, UNAM; Av. de los Barrios # 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, Mexico
| | - Candelario Vazquez-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, BUAP, Apdo. Postal 1622, Puebla, 72560, Puebla, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mohamed Alí Pereyra
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Erasmo Negrete-Abascal
- Carrera de Biología, Facultad de Estudios Superiores Iztacala, UNAM; Av. de los Barrios # 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, 54090, Mexico.
| |
Collapse
|
26
|
Chai J, Liu X, Usdrowski H, Deng F, Li Y, Zhao J. Geography, niches, and transportation influence bovine respiratory microbiome and health. Front Cell Infect Microbiol 2022; 12:961644. [PMID: 36171758 PMCID: PMC9510686 DOI: 10.3389/fcimb.2022.961644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine respiratory disease (BRD), one of the most common and infectious diseases in the beef industry, is associated with the respiratory microbiome and stressors of transportation. The impacts of the bovine respiratory microbiota on health and disease across different geographic locations and sampling niches are poorly understood, resulting in difficult identification of BRD causes. In this study, we explored the effects of geography and niches on the bovine respiratory microbiome and its function by re-analyzing published metagenomic datasets and estimated the main opportunistic pathogens that changed after transportation. The results showed that diversity, composition, structure, and function of the bovine nasopharyngeal microbiota were different across three worldwide geographic locations. The lung microbiota also showed distinct microbial composition and function compared with nasopharyngeal communities from different locations. Although different signature microbiota for each geographic location were identified, a module with co-occurrence of Mycoplasma species was observed in all bovine respiratory communities regardless of geography. Moreover, transportation, especially long-distance shipping, could increase the relative abundance of BRD-associated pathogens. Lung microbiota from BRD calves shaped clusters dominated with different pathogens. In summary, geography, sampling niches, and transportation are important factors impacting the bovine respiratory microbiome and disease, and clusters of lung microbiota by different bacterial species may explain BRD pathogenesis, suggesting the importance of a deeper understanding of bovine respiratory microbiota in health.
Collapse
Affiliation(s)
- Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, China
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| | - Xinting Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hunter Usdrowski
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
27
|
Gaudino M, Nagamine B, Ducatez MF, Meyer G. Understanding the mechanisms of viral and bacterial coinfections in bovine respiratory disease: a comprehensive literature review of experimental evidence. Vet Res 2022; 53:70. [PMID: 36068558 PMCID: PMC9449274 DOI: 10.1186/s13567-022-01086-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine respiratory disease (BRD) is one of the most important diseases impacting the global cattle industry, resulting in significant economic loss. Commonly referred to as shipping fever, BRD is especially concerning for young calves during transport when they are most susceptible to developing disease. Despite years of extensive study, managing BRD remains challenging as its aetiology involves complex interactions between pathogens, environmental and host factors. While at the beginning of the twentieth century, scientists believed that BRD was only caused by bacterial infections ("bovine pasteurellosis"), we now know that viruses play a key role in BRD induction. Mixtures of pathogenic bacteria and viruses are frequently isolated from respiratory secretions of animals with respiratory illness. The increased diagnostic screening data has changed our understanding of pathogens contributing to BRD development. In this review, we aim to comprehensively examine experimental evidence from all existing studies performed to understand coinfections between respiratory pathogens in cattle. Despite the fact that pneumonia has not always been successfully reproduced by in vivo calf modelling, several studies attempted to investigate the clinical significance of interactions between different pathogens. The most studied model of pneumonia induction has been reproduced by a primary viral infection followed by a secondary bacterial superinfection, with strong evidence suggesting this could potentially be one of the most common scenarios during BRD onset. Different in vitro studies indicated that viral priming may increase bacterial adherence and colonization of the respiratory tract, suggesting a possible mechanism underpinning bronchopneumonia onset in cattle. In addition, a few in vivo studies on viral coinfections and bacterial coinfections demonstrated that a primary viral infection could also increase the pathogenicity of a secondary viral infection and, similarly, dual infections with two bacterial pathogens could increase the severity of BRD lesions. Therefore, different scenarios of pathogen dynamics could be hypothesized for BRD onset which are not limited to a primary viral infection followed by a secondary bacterial superinfection.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
28
|
Azhar NA, Paul BT, Jesse FFA, Chung ELT, Kamarulrizal MI, Mohd Lila MA. Seminal and histopathological alterations in bucks challenged with Mannheimia haemolytica serotype a2 and its LPS endotoxin. Trop Anim Health Prod 2022; 54:265. [PMID: 35962250 DOI: 10.1007/s11250-022-03262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022]
Abstract
Pneumonic mannheimiosis is a widespread respiratory bacterial disease of small ruminants caused by Mannheimia haemolytica serotype A2. The disease is known to affect the respiratory organs of infected animals, but its effect on other vital and reproductive organs has not been fully explored. Previous studies have demonstrated increased serum pro-inflammatory cytokine concentration post-challenge with M. haemolytica A2 and its LPS, indicating systemic inflammation in the host. This study determined the potential tissue changes and alterations of sperm parameters due to infection of M. haemolytica A2 and its LPS endotoxin. In this study, twelve experimental bucks were randomly assigned to three groups of four bucks each: group 1 (control group) were intranasally inoculated with 2 mL of PBS pH 7.0, group 2 received 2 mL of 1.2 × 109 CFU/mL M. haemolytica A2 intranasally, and group 3 received 2 mL of LPS extracted from 1.2 × 109 CFU/mL of M. haemolytica A2 intravenously. Semen samples were collected at pre-determined intervals using an electro-ejaculator and analysed immediately after collection. All experimental bucks were slaughtered via exsanguination on day 60 to collect their vital and reproductive organs at necropsy, and the samples were processed and analysed for histopathological changes. The current study has revealed that bucks challenged with M. haemolytica A2 and its LPS exhibited alterations in semen parameters such as motility, wave pattern, viability, and morphological abnormalities. Mild to moderate histopathological changes of the lung, liver, testis, epididymis, vas deferens, prostate, and lymph nodes were also observed in both challenged groups. Therefore, this study revealed the potential harmful effects of respiratory mannheimiosis on the reproductive organs of the infected bucks and sheds light on the expanse of systemic effects of this disease.
Collapse
Affiliation(s)
- Nur Amira Azhar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
| | - Bura Thlama Paul
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, 600230, Borno State, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia. .,Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Eric Lim Teik Chung
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
| | - Mat Isa Kamarulrizal
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Azmi Mohd Lila
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
| |
Collapse
|
29
|
Cai Y, van Putten JP, Gilbert MS, Gerrits WJ, Folkerts G, Braber S. Galacto-oligosaccharides as an anti-bacterial and anti-invasive agent in lung infections. Biomaterials 2022; 283:121461. [DOI: 10.1016/j.biomaterials.2022.121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 11/02/2022]
|
30
|
Dao X, Hung CC, Yang Y, Wang J, Yang F. Development and validation of an insulated isothermal PCR assay for the rapid detection of Mannheimia haemolytica. J Vet Diagn Invest 2022; 34:302-305. [PMID: 35139720 PMCID: PMC8921796 DOI: 10.1177/10406387211068447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We developed a rapid insulated isothermal PCR (iiPCR) assay for on-site detection of Mannheimia haemolytica using a primer and probe set targeting the superoxide dismutase (sodA) gene. Our iiPCR assay detected M. haemolytica clinical isolates successfully and produced negative results on other bovine or ovine respiratory pathogens, including Histophilus somni, Bibersteinia trehalosi, Trueperella pyogenes, Streptococcus suis, and Mycoplasma spp., indicating that the PCR reactions were specific. Additionally, our iiPCR assay detected as few as 21 copies of genomic DNA and 17.2 cfu/mL of bacterial culture, which was 10 and 100 times more sensitive than conventional PCR, respectively. Our iiPCR assay can be performed on a portable device in a total of 58 min and may be a useful tool for the detection of M. haemolytica in bovine and ovine respiratory disease in the field.
Collapse
Affiliation(s)
- Xiaofang Dao
- Department of Veterinary Medicine, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Chien-Che Hung
- Veterinary Diagnostic Laboratory, Department of Clinical Science, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Youwen Yang
- Department of Veterinary Medicine, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Juan Wang
- Department of Veterinary Medicine, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Falong Yang
- Falong Yang, Department of Veterinary Medicine, College of Animal & Veterinary Sciences, Southwest Minzu University, No. 16, South Section, 1st Ring Rd, Chengdu 610041, China.
| |
Collapse
|
31
|
Centeno-Martinez RE, Glidden N, Mohan S, Davidson JL, Fernández-Juricic E, Boerman JP, Schoonmaker J, Pillai D, Koziol J, Ault A, Verma MS, Johnson TA. Identification of bovine respiratory disease through the nasal microbiome. Anim Microbiome 2022; 4:15. [PMID: 35193707 PMCID: PMC8862248 DOI: 10.1186/s42523-022-00167-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/04/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Bovine respiratory disease (BRD) is an ongoing health and economic challenge in the dairy and beef cattle industries. Multiple risk factors make an animal susceptible to BRD. The presence of Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis in lung tissues have been associated with BRD mortalities, but they are also commonly present in the upper respiratory tract of healthy animals. This study aims to compare the cattle nasal microbiome (diversity, composition and community interaction) and the abundance of BRD pathogens (by qPCR) in the nasal microbiome of Holstein steers that are apparently healthy (Healthy group, n = 75) or with BRD clinical signs (BRD group, n = 58). We then used random forest models based on nasal microbial community and qPCR results to classify healthy and BRD-affected animals and determined the agreement with the visual clinical signs. Additionally, co-occurring species pairs were identified in visually BRD or healthy animal groups. RESULTS Cattle in the BRD group had lower alpha diversity than pen-mates in the healthy group. Amplicon sequence variants (ASVs) from Trueperella pyogenes, Bibersteinia and Mycoplasma spp. were increased in relative abundance in the BRD group, while ASVs from Mycoplasma bovirhinis and Clostridium sensu stricto were increased in the healthy group. Prevalence of H. somni (98%) and P. multocida (97%) was high regardless of BRD clinical signs whereas M. haemolytica (81 and 61%, respectively) and M. bovis (74 and 51%, respectively) were more prevalent in the BRD group than the healthy group. In the BRD group, the abundance of M. haemolytica and M. bovis was increased, while H. somni abundance was decreased. Visual observation of clinical signs agreed with classification by the nasal microbial community (misclassification rate of 32%) and qPCR results (misclassification rate 34%). Co-occurrence analysis demonstrated that the nasal microbiome of BRD-affected cattle presented fewer bacterial associations than healthy cattle. CONCLUSIONS This study offers insight into the prevalence and abundance of BRD pathogens and the differences in the nasal microbiome between healthy and BRD animals. This suggests that nasal bacterial communities provide a potential platform for future studies and potential pen-side diagnostic testing.
Collapse
Affiliation(s)
| | - Natalie Glidden
- Department of Animal Science, Purdue University, West Lafayette, IN, USA
| | - Suraj Mohan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Josiah Levi Davidson
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | | | | | - Jon Schoonmaker
- Department of Animal Science, Purdue University, West Lafayette, IN, USA
| | - Deepti Pillai
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Jennifer Koziol
- Department of Veterinary Clinical Science, Purdue University, West Lafayette, IN, USA
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
| | - Aaron Ault
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Mohit S Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Timothy A Johnson
- Department of Animal Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
32
|
Chai J, Capik SF, Kegley B, Richeson JT, Powell JG, Zhao J. Bovine respiratory microbiota of feedlot cattle and its association with disease. Vet Res 2022; 53:4. [PMID: 35022062 PMCID: PMC8756723 DOI: 10.1186/s13567-021-01020-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Bovine respiratory disease (BRD), as one of the most common and costly diseases in the beef cattle industry, has significant adverse impacts on global food security and the economic stability of the industry. The bovine respiratory microbiome is strongly associated with health and disease and may provide insights for alternative therapy when treating BRD. The niche-specific microbiome communities that colonize the inter-surface of the upper and the lower respiratory tract consist of a dynamic and complex ecological system. The correlation between the disequilibrium in the respiratory ecosystem and BRD has become a hot research topic. Hence, we summarize the pathogenesis and clinical signs of BRD and the alteration of the respiratory microbiota. Current research techniques and the biogeography of the microbiome in the healthy respiratory tract are also reviewed. We discuss the process of resident microbiota and pathogen colonization as well as the host immune response. Although associations between the microbiota and BRD have been revealed to some extent, interpreting the development of BRD in relation to respiratory microbial dysbiosis will likely be the direction for upcoming studies, which will allow us to better understand the importance of the airway microbiome and its contributions to animal health and performance.
Collapse
Affiliation(s)
- Jianmin Chai
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Sarah F Capik
- Texas A&M AgriLife Research and Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, Canyon, TX, 79015, USA
| | - Beth Kegley
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - John T Richeson
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, 79016, USA
| | - Jeremy G Powell
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
33
|
Slate JR, Chriswell BO, Briggs RE, McGill JL. The Effects of Ursolic Acid Treatment on Immunopathogenesis Following Mannheimia haemolytica Infections. Front Vet Sci 2021; 8:782872. [PMID: 34869750 PMCID: PMC8637451 DOI: 10.3389/fvets.2021.782872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022] Open
Abstract
Bovine respiratory disease complex (BRDC) is a costly economic and health burden for the dairy and feedlot cattle industries. BRDC is a multifactorial disease, often involving viral and bacterial pathogens, which makes it difficult to effectively treat or vaccinate against. Mannheimia haemolytica (MH) are common commensal bacteria found in the nasopharynx of healthy cattle; however, following environmental and immunological stressors, these bacteria can rapidly proliferate and spread to the lower respiratory tract, giving rise to pneumonic disease. Severe MH infections are often characterized by leukocyte infiltration and dysregulated inflammatory responses in the lungs. IL-17A is thought to play a key role in this inflammatory response by inducing neutrophilia, activating innate and adaptive immune cells, and further exacerbating lung congestion. Herein, we used a small molecule inhibitor, ursolic acid (UA), to suppress IL-17A production and to determine the downstream impact on the immune response and disease severity following MH infection in calves. We hypothesized that altering IL-17A signaling during MH infections may have therapeutic effects by reducing immune-mediated lung inflammation and improving disease outcome. Two independent studies were performed (Study 1 = 32 animals and Study 2 = 16 animals) using 4-week-old male Holstein calves, which were divided into 4 treatment group including: (1) non-treated and non-challenged, (2) non-treated and MH-challenged, (3) UA-treated and non-challenged, and (4) UA-treated and MH-challenged. Based on the combined studies, we observed a tendency (p = 0.0605) toward reduced bacterial burdens in the lungs of UA-treated animals, but did not note a significant difference in gross (p = 0.3343) or microscopic (p = 0.1917) pathology scores in the lungs. UA treatment altered the inflammatory environment in the lung tissues following MH infection, reducing the expression of IL-17A (p = 0.0870), inflammatory IL-6 (p = 0.0209), and STAT3 (p = 0.0205) compared to controls. This reduction in IL-17A signaling also appeared to alter the downstream expression of genes associated with innate defenses (BAC5, DEFB1, and MUC5AC) and lung remodeling (MMP9 and TIMP-1). Taken together, these results support our hypothesis that IL-17A signaling may contribute to lung immunopathology following MH infections, and further understanding of this inflammatory pathway could expand therapeutic intervention strategies for managing BRDC.
Collapse
Affiliation(s)
- Jamison R Slate
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Bradley O Chriswell
- Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, Ames, IA, United States
| | - Robert E Briggs
- Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, Ames, IA, United States
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
34
|
Cai Y, Gilbert MS, Gerrits WJ, Folkerts G, Braber S. Galacto-oligosaccharides alleviate lung inflammation by inhibiting NLRP3 inflammasome activation in vivo and in vitro. J Adv Res 2021; 39:305-318. [PMID: 35777914 PMCID: PMC9263649 DOI: 10.1016/j.jare.2021.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/29/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
GOS suppress both local and systemic inflammation in lung infections. GOS reduce the M. haemolytica positivity in calves with lung infections. GOS inhibit NLRP3 inflammasome activation in vivo and in vitro. GOS decrease ATP production in PBECs induced by M. haemolytica. Direct anti-oxidative effects of GOS on lung cells are involved.
Introduction Objectives Methods Results Conclusion
Collapse
|
35
|
Hasankhani A, Bahrami A, Sheybani N, Fatehi F, Abadeh R, Ghaem Maghami Farahani H, Bahreini Behzadi MR, Javanmard G, Isapour S, Khadem H, Barkema HW. Integrated Network Analysis to Identify Key Modules and Potential Hub Genes Involved in Bovine Respiratory Disease: A Systems Biology Approach. Front Genet 2021; 12:753839. [PMID: 34733317 PMCID: PMC8559434 DOI: 10.3389/fgene.2021.753839] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Bovine respiratory disease (BRD) is the most common disease in the beef and dairy cattle industry. BRD is a multifactorial disease resulting from the interaction between environmental stressors and infectious agents. However, the molecular mechanisms underlying BRD are not fully understood yet. Therefore, this study aimed to use a systems biology approach to systematically evaluate this disorder to better understand the molecular mechanisms responsible for BRD. Methods: Previously published RNA-seq data from whole blood of 18 healthy and 25 BRD samples were downloaded from the Gene Expression Omnibus (GEO) and then analyzed. Next, two distinct methods of weighted gene coexpression network analysis (WGCNA), i.e., module-trait relationships (MTRs) and module preservation (MP) analysis were used to identify significant highly correlated modules with clinical traits of BRD and non-preserved modules between healthy and BRD samples, respectively. After identifying respective modules by the two mentioned methods of WGCNA, functional enrichment analysis was performed to extract the modules that are biologically related to BRD. Gene coexpression networks based on the hub genes from the candidate modules were then integrated with protein-protein interaction (PPI) networks to identify hub-hub genes and potential transcription factors (TFs). Results: Four significant highly correlated modules with clinical traits of BRD as well as 29 non-preserved modules were identified by MTRs and MP methods, respectively. Among them, two significant highly correlated modules (identified by MTRs) and six nonpreserved modules (identified by MP) were biologically associated with immune response, pulmonary inflammation, and pathogenesis of BRD. After aggregation of gene coexpression networks based on the hub genes with PPI networks, a total of 307 hub-hub genes were identified in the eight candidate modules. Interestingly, most of these hub-hub genes were reported to play an important role in the immune response and BRD pathogenesis. Among the eight candidate modules, the turquoise (identified by MTRs) and purple (identified by MP) modules were highly biologically enriched in BRD. Moreover, STAT1, STAT2, STAT3, IRF7, and IRF9 TFs were suggested to play an important role in the immune system during BRD by regulating the coexpressed genes of these modules. Additionally, a gene set containing several hub-hub genes was identified in the eight candidate modules, such as TLR2, TLR4, IL10, SOCS3, GZMB, ANXA1, ANXA5, PTEN, SGK1, IFI6, ISG15, MX1, MX2, OAS2, IFIH1, DDX58, DHX58, RSAD2, IFI44, IFI44L, EIF2AK2, ISG20, IFIT5, IFITM3, OAS1Y, HERC5, and PRF1, which are potentially critical during infection with agents of bovine respiratory disease complex (BRDC). Conclusion: This study not only helps us to better understand the molecular mechanisms responsible for BRD but also suggested eight candidate modules along with several promising hub-hub genes as diagnosis biomarkers and therapeutic targets for BRD.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhang Fatehi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Roxana Abadeh
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sadegh Isapour
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
36
|
Anti-Inflammatory Properties of Fructo-Oligosaccharides in a Calf Lung Infection Model and in Mannheimia haemolytica-Infected Airway Epithelial Cells. Nutrients 2021; 13:nu13103514. [PMID: 34684515 PMCID: PMC8537102 DOI: 10.3390/nu13103514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 01/18/2023] Open
Abstract
Emerging antimicrobial-resistant pathogens highlight the importance of developing novel interventions. Here, we investigated the anti-inflammatory properties of Fructo-oligosaccharides (FOS) in calf lung infections and in airway epithelial cells stimulated with pathogens, and/or bacterial components. During a natural exposure, 100 male calves were fed milk replacer with or without FOS for 8 weeks. Then, immune parameters and cytokine/chemokine levels in the bronchoalveolar lavage fluid (BALF) and blood were measured, and clinical scores were investigated. Calf primary bronchial epithelial cells (PBECs) and human airway epithelial cells (A549) were treated with Mannheimia haemolytica, lipopolysaccharides (LPS), and/or flagellin, with or without FOS pretreatment. Thereafter, the cytokine/chemokine levels and epithelial barrier function were examined. Relative to the control (naturally occurring lung infections), FOS-fed calves had greater macrophage numbers in BALF and lower interleukin (IL)-8, IL-6, and IL-1β concentrations in the BALF and blood. However, FOS did not affect the clinical scores. At slaughter, FOS-fed calves had a lower severity of lung lesions compared to the control. Ex vivo, FOS prevented M. haemolytica-induced epithelial barrier dysfunction. Moreover, FOS reduced M. haemolytica- and flagellin-induced (but not LPS-induced) IL-8, TNF-α, and IL-6 release in PBECs and A549 cells. Overall, FOS had anti-inflammatory properties during the natural incidence of lung infections but had no effects on clinical symptoms.
Collapse
|
37
|
Wynn EL, Clawson M. Differences between Predicted Outer Membrane Proteins of Pasteurella multocida, Histophilus somni, and Genotype 1 and 2 Mannheimia haemolytica Strains Isolated from Cattle. Genome 2021; 65:115-121. [PMID: 34348051 DOI: 10.1139/gen-2021-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Common bacterial causes of bovine respiratory disease (BRD) include Histophilus somni, Mannheimia haemolytica, and Pasteurella multocida. Within M. haemolytica, two major genotypes are commonly found in cattle (1 and 2), however, genotype 2 strains are isolated from diseased lungs much more frequently than genotype 1 strains. Outer membrane proteins (OMPs) of H. somni, P. multocida, and genotype 2 M. haemolytica may be important factors for acquired host immunity. Predicted OMP differences between genotype 1 and 2 M. haemolytica have been previously identified. In this study, we expanded that focus to include bovine-isolated strain genomes representing all three species and the two M. haemolytica genotypes. Reported here are the core genomes unique to each of them, core genomes shared between some or all combinations of the three species and two M. haemolytica genotypes, and predicted OMPs within these core genomes. The OMPs identified in this study are potential candidates for further study and the development of interventions against BRD.
Collapse
Affiliation(s)
- Emily L Wynn
- USDA-ARS Roman L Hruska US Meat Animal Research Center, 57652, Clay Center, Nebraska, United States;
| | - Michael Clawson
- USDA-ARS Roman L Hruska US Meat Animal Research Center, 57652, Clay Center, Nebraska, United States;
| |
Collapse
|
38
|
Miller A, Matera-Witkiewicz A, Mikołajczyk A, Wątły J, Wilcox D, Witkowska D, Rowińska-Żyrek M. Zn-Enhanced Asp-Rich Antimicrobial Peptides: N-Terminal Coordination by Zn(II) and Cu(II), Which Distinguishes Cu(II) Binding to Different Peptides. Int J Mol Sci 2021; 22:ijms22136971. [PMID: 34203496 PMCID: PMC8267837 DOI: 10.3390/ijms22136971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
The antimicrobial activity of surfactant-associated anionic peptides (SAAPs), which are isolated from the ovine pulmonary surfactant and are selective against the ovine pathogen Mannheimia haemolytica, is strongly enhanced in the presence of Zn(II) ions. Both calorimetry and ITC measurements show that the unique Asp-only peptide SAAP3 (DDDDDDD) and its analogs SAAP2 (GDDDDDD) and SAAP6 (GADDDDD) have a similar micromolar affinity for Zn(II), which binds to the N-terminal amine and Asp carboxylates in a net entropically-driven process. All three peptides also bind Cu(II) with a net entropically-driven process but with higher affinity than they bind Zn(II) and coordination that involves the N-terminal amine and deprotonated amides as the pH increases. The parent SAAP3 binds Cu(II) with the highest affinity; however, as shown with potentiometry and absorption, CD and EPR spectroscopy, Asp residues in the first and/or second positions distinguish Cu(II) binding to SAAP3 and SAAP2 from their binding to SAAP6, decreasing the Cu(II) Lewis acidity and suppressing its square planar amide coordination by two pH units. We also show that these metal ions do not stabilize a membrane disrupting ability nor do they induce the antimicrobial activity of these peptides against a panel of human pathogens.
Collapse
Affiliation(s)
- Adriana Miller
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.M.); (J.W.)
| | - Agnieszka Matera-Witkiewicz
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.M.-W.); (A.M.)
| | - Aleksandra Mikołajczyk
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.M.-W.); (A.M.)
| | - Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.M.); (J.W.)
| | - Dean Wilcox
- Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, NH 03755, USA;
| | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland
- Correspondence: (D.W.); (M.R.-Ż.)
| | - Magdalena Rowińska-Żyrek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (A.M.); (J.W.)
- Correspondence: (D.W.); (M.R.-Ż.)
| |
Collapse
|
39
|
Dhingra H, Kaur K, Singh B. Engineering and characterization of human β-defensin-3 and its analogues and microcin J25 peptides against Mannheimia haemolytica and bovine neutrophils. Vet Res 2021; 52:83. [PMID: 34112244 PMCID: PMC8194028 DOI: 10.1186/s13567-021-00956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/03/2021] [Indexed: 11/10/2022] Open
Abstract
Mannheimia haemolytica-induced bovine respiratory disease causes loss of millions of dollars to Canadian cattle industry. Current antimicrobials are proving to be ineffective and leave residues in meat. Antimicrobial peptides (AMPs) may be effective against M. haemolytica while minimizing the risk of drug residues. Cationic AMPs can kill bacteria through interactions with the anionic bacterial membrane. Human β-Defensin 3 (HBD3) and microcin J25 (MccJ25) are AMPs with potent activity against many Gram-negative bacteria. We tested the microbicidal activity of wild-type HBD3, three HBD3 peptide analogues (28 amino acid, 20AA, and 10AA) derived from the sequence of natural HBD3, and MccJ25 in vitro against M. haemolytica. Three C-terminal analogues of HBD3 with all cysteines replaced with valines were manually synthesized using solid phase peptide synthesis. Since AMPs can act as chemoattractant we tested the chemotactic effect of HBD3, 28AA, 20AA, and 10AA peptides on bovine neutrophils in Boyden chamber. Minimum bactericidal concentration (MBC) assay showed that M. haemolytica was intermediately sensitive to HBD3, 28AA and 20AA analogues with an MBC of 50 µg/mL. The 10AA analogue had MBC 6.3 µg/mL which is likely a result of lower final inoculum size. MccJ25 didn't have significant bactericidal effect below an MBC < 100 µg/mL. Bovine neutrophils showed chemotaxis towards HBD3 and 20AA peptides (P < 0.05) but not towards 28AA analogue. Co-incubation of neutrophils with any of the peptides did not affect their chemotaxis towards N-formyl-L-methionyl-L-leucyl-phenylalanine (fMLP). The data show that these peptides are effective against M. haemolytica and are chemotactic for neutrophils in vitro.
Collapse
Affiliation(s)
- Harpreet Dhingra
- Department of Veterinary Biomedical Science, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA, 92618-1908, USA
| | - Baljit Singh
- Department of Veterinary Biomedical Science, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
40
|
Responses of testosterone hormone and important inflammatory cytokines in bucks after challenge with Mannheimia haemolytica A2 and its LPS endotoxin. Trop Anim Health Prod 2021; 53:242. [PMID: 33811523 DOI: 10.1007/s11250-021-02683-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Previous studies have shown that Mannheimia haemolytica A2 is the principal microorganism causing pneumonic mannheimiosis, a major bacterial respiratory disease among sheep and goats. The effect of this bacteria on the respiratory system is well-established. However, its effect on the reproductive physiology remains unclear. Therefore, this study aimed to determine the alterations in the level of pro-inflammatory cytokines and testosterone hormone post-inoculation with M. haemolytica serotype A2 and its lipopolysaccharide (LPS) endotoxin which were hypothesized to affect the reproductive functions of bucks. Twelve clinically healthy adult male goats were divided equally into three groups. Goats in group 1 were treated with 2 ml of sterile phosphate-buffered saline (PBS) pH 7.0 intranasally (negative control), group 2 with 2 ml of 109 colony-forming unit (CFU) of M. haemolytica serotype A2 intranasally (positive control), and group 3 were treated with 2 ml of lipopolysaccharide extracted from 109 CFU of M. haemolytica serotype A2 intravenously. Following inoculation, blood samples were collected via jugular venipuncture into plain tubes at pre-determined intervals for serum collection to determine the concentration of interleukin (IL)-1β, IL6, tumor necrosis factor (TNF)-α, and testosterone hormone by using commercial ELISA test kits. Results from this study demonstrated that the inoculation of M. haemolytica A2 and its LPS increases the concentration of pro-inflammatory cytokines but decreases the concentration of testosterone hormone in challenged animals at most time points throughout the 56 days experimental period (p < 0.05). This study suggests that the M. haemolytica A2 and its LPS could alter the concentration of pro-inflammatory cytokines and testosterone hormone, which in turn, may negatively affect the reproductive functions of bucks.
Collapse
|
41
|
The Bacterial and Viral Agents of BRDC: Immune Evasion and Vaccine Developments. Vaccines (Basel) 2021; 9:vaccines9040337. [PMID: 33916119 PMCID: PMC8066859 DOI: 10.3390/vaccines9040337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Bovine respiratory disease complex (BRDC) is a multifactorial disease of cattle which presents as bacterial and viral pneumonia. The causative agents of BRDC work in synergy to suppress the host immune response and increase the colonisation of the lower respiratory tracts by pathogenic bacteria. Environmental stress and/or viral infection predispose cattle to secondary bacterial infections via suppression of key innate and adaptive immune mechanisms. This allows bacteria to descend the respiratory tract unchallenged. BRDC is the costliest disease among feedlot cattle, and whilst vaccines exist for individual pathogens, there is still a lack of evidence for the efficacy of these vaccines and uncertainty surrounding the optimum timing of delivery. This review outlines the immunosuppressive actions of the individual pathogens involved in BRDC and highlights the key issues in the development of vaccinations against them.
Collapse
|
42
|
Molecular characterization of Mannheimia haemolytica associated with ovine and caprine pneumonic lung lesions. Microb Pathog 2021; 153:104791. [PMID: 33581280 DOI: 10.1016/j.micpath.2021.104791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/13/2020] [Accepted: 02/04/2021] [Indexed: 11/22/2022]
Abstract
This study investigated via polymerase chain reaction (PCR) three main serotypes (A1, A2, and A6) and nine virulence-associated genes in 71 ovine and caprine Mannheimia haemolytica isolates obtained from lungs (n = 349) with pneumonic lesions from a slaughterhouse in Iran. The lung specimens were collected from sheep (n = 197) and goats (n = 152) between December 2018 and January 2020. A total of 71 M. haemolytica isolates were identified in sheep (37/197; 18.8%) and goat (34/152; 22.4%) pneumonic lungs. Serotypes A2 (30/71; 42.3%) and A6 (29/71; 40.9%) were the most frequently detected, whereas the A1 serotype was detected with a frequency of less than 10% (7/71; 9.9%) and five isolates remained unknown. The virulence genes lkt, pomA, and nanH were present in all the isolates. The detection rates for the remaining virulence-associated genes were: gcp (95.8%), lpsA (93%), fhaC (90%), irp (70.4%), hf (57.7%), and sodC (21%). The sodC gene was exclusively detected among A2 isolates (50%), while the irp gene was more prevalent among A2 isolates and the hf gene among A1 and A6 isolates. These data may be useful for the typing of isolates in epidemiological studies. This study provides information about the main serotypes and the prevalence of virulence-associated genes among M. haemolytica ovine and caprine isolates in Iran.
Collapse
|
43
|
Profiling Mannheimia haemolytica infection in dairy calves using near infrared spectroscopy (NIRS) and multivariate analysis (MVA). Sci Rep 2021; 11:1392. [PMID: 33446786 PMCID: PMC7809125 DOI: 10.1038/s41598-021-81032-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 11/08/2022] Open
Abstract
Bovine respiratory disease (BRD) linked with Mannheimia haemolytica is the principal cause of pneumonia in cattle. Diagnosis of BRD traditionally relies on visual assessment, which can be untimely, insensitive, and nonspecific leading to inadequate treatment and further spread of disease. Near Infrared Spectroscopy (NIRS) is a rapid acquisition vibrational spectroscopy that can profile changes in biofluids, and when used in combination with multivariate analysis, has potential for disease diagnosis. This study characterizes the NIR spectral profile of blood plasma from dairy calves infected with M. haemolytica and validates the spectral biochemistry using standardized clinical and hematological reference parameters. Blood samples were collected for four days prior to (baseline), and 23 days after, a controlled intrabronchial challenge. NIR spectral profiles of blood plasma discriminated and predicted Baseline and Infected states of animal disease progression with accuracy, sensitivity, and specificity ≥ 90% using PCA–LDA models. These results show that physiological and biochemical changes occurring in the bloodstream of dairy calves during M. haemolytica infection are reflected in the NIR spectral profiles, demonstrating the potential of NIRS as a diagnostic and monitoring tool of BRD over time.
Collapse
|
44
|
Biesheuvel MM, van Schaik G, Meertens NM, Peperkamp NH, van Engelen E, van Garderen E. Emergence of fatal Mannheimia haemolytica infections in cattle in the Netherlands. Vet J 2020; 268:105576. [PMID: 33468303 DOI: 10.1016/j.tvjl.2020.105576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/25/2022]
Abstract
In the Dutch national surveillance system, outbreaks of fatal infections by Mannheimia haemolytica (M. haemolytica) in dairy cows and veal calves have become apparent in recent years. These observations prompted an in-depth analysis of available pathology data over the period 2004-2018 to investigate changes in the occurrence and/or expression of M. haemolytica-associated cattle disease. With multilevel logistic regression models, time trends were identified and corrected for farm, season, pathologist and region. Deaths associated with M. haemolytica infection increased over time with dairy cows and veal calves diagnosed with fatal M. haemolytica infections 1.5 and 1.4 times more frequently every following 3-year period between 2004 and 2018, respectively. M. haemolytica-associated disease showed two distinct disease presentations: acute pleuropneumonia in dairy cows and polyserositis in veal calves. The prevalence of both disease presentations with M. haemolytica confirmed increased in each 3-year time period between 2004 and 2018, with an odds ratio (OR) of 1.5 for acute pleuropneumonia in dairy cows and an OR of 1.7 for polyserositis in veal calves. No change was found for M. haemolytica-associated disease in dairy calves. Although M. haemolytica is considered an opportunist bovine pathogen, and the presence of primary pathogens such as BHV-1, BVDV and Mycoplasma species was not completely ruled out in our study, substantial evidence is provided to indicate infections with M. haemolytica were the most likely cause of death. M. haemolytica-associated diseases occurred more often in October-June than July-September, and were detected more often in necropsied animals from the North, South and East Netherlands than the West Netherlands.
Collapse
Affiliation(s)
- M M Biesheuvel
- Research and Development, Epidemiology Group, Royal GD, Deventer, The Netherlands
| | - G van Schaik
- Research and Development, Epidemiology Group, Royal GD, Deventer, The Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | - N M Meertens
- Laboratory for Pathology and Histology, Royal GD, Deventer, The Netherlands
| | - N H Peperkamp
- Laboratory for Pathology and Histology, Royal GD, Deventer, The Netherlands
| | - E van Engelen
- Research and Development, Bacteriology Department, Royal GD, Deventer, The Netherlands
| | - E van Garderen
- Laboratory for Pathology and Histology, Royal GD, Deventer, The Netherlands
| |
Collapse
|
45
|
Abed AH, El-Seedy FR, Hassan HM, Nabih AM, Khalifa E, Salem SE, Wareth G, Menshawy AMS. Serotyping, Genotyping and Virulence Genes Characterization of Pasteurella multocida and Mannheimia haemolytica Isolates Recovered from Pneumonic Cattle Calves in North Upper Egypt. Vet Sci 2020; 7:vetsci7040174. [PMID: 33182747 PMCID: PMC7711576 DOI: 10.3390/vetsci7040174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/26/2020] [Accepted: 11/07/2020] [Indexed: 11/16/2022] Open
Abstract
Pasteurella (P.) multocida and Mannheimia (M.) haemolytica are the most two common pathogenic bacterial agents causing pneumonia in calves. Both bacteria are associated with significant economic losses in the cattle industry due to high morbidity and mortality rates, especially in the case of severe infections. The objectives of the present study were to perform serotyping and genotyping, as well as characterization of the virulence-associated genes in 48 bacterial isolates; 33 P. multocida and 15 M. haemolytica. All strains were isolated from pneumonic cattle calves showing respiratory manifestations such as fever, nasal discharges, and rapid breathing in North Upper Egypt governorates (Beni-Suef and El-Fayoum). PCR was applied as a confirmatory test using a specific universal gene, kmt1, and rpt2 for P. multocida and M. haemolytica, respectively. The results show that 29 (87.9%) P. multocida and 15 (100%) M. haemolytica isolates were positive for the corresponding universal gene. The results of serotyping indicate that 86.2% of P. multocida isolates belonged to serotype B:2, while 13.8% were untyped. Meanwhile, 60% and 40% of M. haemolytica isolates belonged to serotype 2 and serotype 1, respectively. Investigation of virulence-associated genes showed that all the tested P. multocida isolates harbored nanB, omp87, and toxA genes. Four M. haemolytica isolates harbored both gcp and lktC genes and of these, three isolates harbored the ssa gene. Sequencing of toxA gene of P. multocida and lktC gene of M. haemolytica in the current strains indicated a great homology with strains uploaded in gene banks from different hosts and localities worldwide.
Collapse
Affiliation(s)
- Ahmed H. Abed
- Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62511, Egypt;
- Correspondence: or ; Tel.: +20-1100878858
| | - Fawzy R. El-Seedy
- Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62511, Egypt;
| | - Hany M. Hassan
- Animal Reproduction Research Institute, Giza 12511, Egypt; (H.M.H.); (A.M.N.); (S.E.S.)
| | - Ashraf M. Nabih
- Animal Reproduction Research Institute, Giza 12511, Egypt; (H.M.H.); (A.M.N.); (S.E.S.)
| | - Eman Khalifa
- Microbiology Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt;
| | - Salwa E. Salem
- Animal Reproduction Research Institute, Giza 12511, Egypt; (H.M.H.); (A.M.N.); (S.E.S.)
| | - Gamal Wareth
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany;
- Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Ahmed M. S. Menshawy
- Veterinary Medicine Department (Infectious Diseases), Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62511, Egypt; or
| |
Collapse
|
46
|
Production Significance of Bovine Respiratory Disease Lesions in Slaughtered Beef Cattle. Animals (Basel) 2020; 10:ani10101770. [PMID: 33007901 PMCID: PMC7599887 DOI: 10.3390/ani10101770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022] Open
Abstract
Bovine respiratory disease (BRD) is still a serious concern in feedlots, where it exerts a negative effect on farm productivity. There is a shortage of studies focused on the evaluation of BRD-associated lesions at the slaughterhouse in clinically healthy animals. The objective of this work was to investigate the prevalence and type of subclinical pneumonic lesions in slaughtered beef cattle, according to the age range and management system, and its impact on carcass weight. A total of 1101 beef cattle intended for human consumption were examined at slaughter. Information on age, sex, management system and carcass weight was recorded. The presence and type of pneumonia were evaluated according to gross and microscopic findings and etiological agents by PCR. Lung pneumonic lesions appeared in 17.9% of animals and were predominant among veal calves. According to the type, chronic catarrhal pneumonia prevailed in the majority of animals, and mixed and extensively reared cattle were more likely to suffer acute fibrinous pneumonia. The presence of pneumonic lesions was associated with a significant decrease in carcass weight that had more of an impact in veal male calves coming from intensive systems. Bacterial infections were the predominant infectious agent and the only cause of acute fibrinous pneumonia, while viruses were infrequent and only found in lesions with chronic catarrhal pneumonia. This study shows the importance of BRD in beef feedlots upon production values and points out the feasibility of slaughterhouse assessment of pneumonia as a method for the evaluation of BRD significance.
Collapse
|
47
|
O'Boyle N, Berry CC, Davies RL. Differentiated ovine tracheal epithelial cells support the colonisation of pathogenic and non-pathogenic strains of Mannheimia haemolytica. Sci Rep 2020; 10:14971. [PMID: 32917945 PMCID: PMC7486916 DOI: 10.1038/s41598-020-71604-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/07/2020] [Indexed: 11/15/2022] Open
Abstract
Mannheimia haemolytica is the primary bacterial species associated with respiratory disease of ruminants. A lack of cost-effective, reproducible models for the study of M. haemolytica pathogenesis has hampered efforts to better understand the molecular interactions governing disease progression. We employed a highly optimised ovine tracheal epithelial cell model to assess the colonisation of various pathogenic and non-pathogenic M. haemolytica isolates of bovine and ovine origin. Comparison of single representative pathogenic and non-pathogenic ovine isolates over ten time-points by enumeration of tissue-associated bacteria, histology, immunofluorescence microscopy and scanning electron microscopy revealed temporal differences in adhesion, proliferation, bacterial cell physiology and host cell responses. Comparison of eight isolates of bovine and ovine origin at three key time-points (2 h, 48 h and 72 h), revealed that colonisation was not strictly pathogen or serotype specific, with isolates of serotype A1, A2, A6 and A12 being capable of colonising the cell layer regardless of host species or disease status of the host. A trend towards increased proliferative capacity by pathogenic ovine isolates was observed. These results indicate that the host-specific nature of M. haemolytica infection may result at least partially from the colonisation-related processes of adhesion, invasion and proliferation at the epithelial interface.
Collapse
Affiliation(s)
- Nicky O'Boyle
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Catherine C Berry
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Robert L Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
48
|
Clawson ML, Schuller G, Dickey AM, Bono JL, Murray RW, Sweeney MT, Apley MD, DeDonder KD, Capik SF, Larson RL, Lubbers BV, White BJ, Blom J, Chitko-McKown CG, Brichta-Harhay DM, Smith TPL. Differences between predicted outer membrane proteins of genotype 1 and 2 Mannheimia haemolytica. BMC Microbiol 2020; 20:250. [PMID: 32787780 PMCID: PMC7424683 DOI: 10.1186/s12866-020-01932-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mannheimia haemolytica strains isolated from North American cattle have been classified into two genotypes (1 and 2). Although members of both genotypes have been isolated from the upper and lower respiratory tracts of cattle with or without bovine respiratory disease (BRD), genotype 2 strains are much more frequently isolated from diseased lungs than genotype 1 strains. The mechanisms behind the increased association of genotype 2 M. haemolytica with BRD are not fully understood. To address that, and to search for interventions against genotype 2 M. haemolytica, complete, closed chromosome assemblies for 35 genotype 1 and 34 genotype 2 strains were generated and compared. Searches were conducted for the pan genome, core genes shared between the genotypes, and for genes specific to either genotype. Additionally, genes encoding outer membrane proteins (OMPs) specific to genotype 2 M. haemolytica were identified, and the diversity of their protein isoforms was characterized with predominantly unassembled, short-read genomic sequences for up to 1075 additional strains. RESULTS The pan genome of the 69 sequenced M. haemolytica strains consisted of 3111 genes, of which 1880 comprised a shared core between the genotypes. A core of 112 and 179 genes or gene variants were specific to genotype 1 and 2, respectively. Seven genes encoding predicted OMPs; a peptidase S6, a ligand-gated channel, an autotransporter outer membrane beta-barrel domain-containing protein (AOMB-BD-CP), a porin, and three different trimeric autotransporter adhesins were specific to genotype 2 as their genotype 1 homologs were either pseudogenes, or not detected. The AOMB-BD-CP gene, however, appeared to be truncated across all examined genotype 2 strains and to likely encode dysfunctional protein. Homologous gene sequences from additional M. haemolytica strains confirmed the specificity of the remaining six genotype 2 OMP genes and revealed they encoded low isoform diversity at the population level. CONCLUSION Genotype 2 M. haemolytica possess genes encoding conserved OMPs not found intact in more commensally prone genotype 1 strains. Some of the genotype 2 specific genes identified in this study are likely to have important biological roles in the pathogenicity of genotype 2 M. haemolytica, which is the primary bacterial cause of BRD.
Collapse
Affiliation(s)
- Michael L Clawson
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA.
| | - Gennie Schuller
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Aaron M Dickey
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - James L Bono
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | | | | | | | - Keith D DeDonder
- Veterinary and Biomedical Research Center, Inc, Manhattan, KS, USA
| | - Sarah F Capik
- Texas A&M AgriLife Research, Texas A&M University System, Amarillo, TX, USA
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | | | | | - Jochen Blom
- Justus-Liebig-University Giessen, Giessen, Hesse, Germany
| | - Carol G Chitko-McKown
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Dayna M Brichta-Harhay
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Timothy P L Smith
- United States Department of Agriculture, Genetics, Breeding, and Animal Health Research Unit, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE, USA
| |
Collapse
|
49
|
Bovine Respiratory Disease Treatment Failure: Impact and Potential Causes. Vet Clin North Am Food Anim Pract 2020; 36:487-496. [PMID: 32451037 DOI: 10.1016/j.cvfa.2020.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bovine respiratory disease (BRD) is often attributed to complex interactions between the host, pathogen, and the environment. Likewise, many BRD treatment failures result from interactions between the host, pathogen, environment, drug, and drug administrator. Investigating and addressing the underlying causes of BRD treatment failures can improve clinical outcomes and animal welfare of future cases, improve morale of employees, reduce direct costs of dealing with BRD treatment failures, refine antimicrobial prescribing practices, and advance antimicrobial stewardship. This article discusses these interactions and provides guidance to veterinary practitioners on evaluating the success of treatment protocols.
Collapse
|
50
|
Narasinakuppe Krishnegowda D, Dhama K, Kumar Mariappan A, Munuswamy P, Iqbal Yatoo M, Tiwari R, Karthik K, Bhatt P, Reddy MR. Etiology, epidemiology, pathology, and advances in diagnosis, vaccine development, and treatment of Gallibacterium anatis infection in poultry: a review. Vet Q 2020; 40:16-34. [PMID: 31902298 PMCID: PMC7006735 DOI: 10.1080/01652176.2020.1712495] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gallibacterium anatis is a Gram-negative bacterium of the Pasteurellaceae family that resides normally in the respiratory and reproductive tracts in poultry. It is a major cause of oophoritis, salpingitis, and peritonitis, decreases egg production and mortality in hens thereby severely affecting animal welfare and overall productivity by poultry industries across Europe, Asia, America, and Africa. In addition, it has the ability to infect wider host range including domesticated and free-ranging avian hosts as well as mammalian hosts such as cattle, pigs and human. Evaluating the common virulence factors including outer membrane vesicles, fimbriae, capsule, metalloproteases, biofilm formation, hemagglutinin, and determining novel factors such as the RTX–like toxin GtxA, elongation factor-Tu, and clustered regularly interspaced short palindromic repeats (CRISPR) has pathobiological, diagnostic, prophylactic, and therapeutic significance. Treating this bacterial pathogen with traditional antimicrobial drugs is discouraged owing to the emergence of widespread multidrug resistance, whereas the efficacy of preventing this disease by classical vaccines is limited due to its antigenic diversity. It will be necessary to acquire in-depth knowledge on important virulence factors, pathogenesis and, concerns of rising antibiotic resistance, improvised treatment regimes, and novel vaccine candidates to effectively tackle this pathogen. This review substantially describes the etio-epidemiological aspects of G. anatis infection in poultry, and updates the recent development in understanding the pathogenesis, organism evolution and therapeutic and prophylactic approaches to counter G. anatis infection for safeguarding the welfare and health of poultry.
Collapse
Affiliation(s)
| | - Kuldeep Dhama
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Asok Kumar Mariappan
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Palanivelu Munuswamy
- Division of Pathology, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, GovindBallabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | |
Collapse
|