1
|
Vilela VLR, Feitosa TF, Simões SVD, Mota RA, Katzer F, Bartley PM. An abortion storm in a goat farm in the Northeast Region of Brazil was caused by the atypical Toxoplasma gondii genotype #13. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 5:100157. [PMID: 38223290 PMCID: PMC10784673 DOI: 10.1016/j.crpvbd.2023.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024]
Abstract
The objective of this study was to characterise a Toxoplasma gondii-induced abortion outbreak on a goat farm in the State of Paraíba, Northeast Region of Brazil. From a herd of 10 does, seven experienced abortions and one gave birth to twins (one stillborn and the other weak and underdeveloped). Serum samples from all of the does were analysed by indirect fluorescent antibody test (IFAT). Samples of colostrum and placenta from two does, along with lung, heart, brain and umbilical cord samples from four of the foetuses, were screened by nested ITS1 PCR specific for T. gondii. The positive samples were then analysed by multiplex nested PCR-RFLP. All ten does tested positive by IFAT for anti-T. gondii IgG (titrations ranging from 1:4096 to 1:65,536). The ITS1 PCR screening revealed T. gondii DNA in the placenta (2/2), colostrum (2/2), umbilical cord (2/4), lung (1/4), heart (1/4), and brain (1/4). Four samples produced complete RFLP genotyping results, identifying a single genotype, ToxoDB #13. In conclusion, we demonstrated a high rate of abortion caused by T. gondii in a goat herd, highlighting the pathogenicity of genotype #13, one of the most prevalent genotypes of T. gondii in Brazil.
Collapse
Affiliation(s)
| | - Thais Ferreira Feitosa
- Department of Veterinary Medicine, Instituto Federal da Paraíba - IFPB, Sousa, Paraíba ZC 58800-970, Brazil
| | - Sara Vilar Dantas Simões
- Department of Veterinary Sciences, Universidade Federal da Paraíba – UFPB, Areia, Paraíba ZC 58397-000, Brazil
| | - Rinaldo Aparecido Mota
- Department of Veterinary Medicine, Universidade Federal Rural de Pernambuco – UFRPE, Recife, Pernambuco ZC 52171-900, Brazil
| | - Frank Katzer
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, Scotland, United Kingdom
| | - Paul M. Bartley
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, Scotland, United Kingdom
| |
Collapse
|
2
|
Hasan T, Nishikawa Y. Advances in vaccine development and the immune response against toxoplasmosis in sheep and goats. Front Vet Sci 2022; 9:951584. [PMID: 36090161 PMCID: PMC9453163 DOI: 10.3389/fvets.2022.951584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Toxoplasmosis is a zoonotic, parasitic infection caused by the intracellular, apicomplexan parasite Toxoplasma gondii, which infects all homeothermic animals including humans. The parasite has a major economic impact on the livestock industry. This is especially true for small ruminants (sheep, goats) as it is one of the most likely reasons for reproductive disorders in these animals. Primary infection in sheep and goats can result in a fetus that is mummified or macerated, fetal embryonic death, abortion, stillbirth, or the postnatal death of neonates, all of which threaten sheep and goat rearing globally. Humans can also become infected by ingesting bradyzoite-containing chevon or mutton, or the contaminated milk of sheep or goats, highlighting the zoonotic significance of this parasite. This article reviews the advances in vaccine development over recent decades and our current understanding of the immune response to toxoplasmosis in small ruminants (sheep, and goats).
Collapse
Affiliation(s)
- Tanjila Hasan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- *Correspondence: Yoshifumi Nishikawa
| |
Collapse
|
3
|
Thomas JR, Naidu P, Appios A, McGovern N. The Ontogeny and Function of Placental Macrophages. Front Immunol 2021; 12:771054. [PMID: 34745147 PMCID: PMC8566952 DOI: 10.3389/fimmu.2021.771054] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
The placenta is a fetal-derived organ whose function is crucial for both maternal and fetal health. The human placenta contains a population of fetal macrophages termed Hofbauer cells. These macrophages play diverse roles, aiding in placental development, function and defence. The outer layer of the human placenta is formed by syncytiotrophoblast cells, that fuse to form the syncytium. Adhered to the syncytium at sites of damage, on the maternal side of the placenta, is a population of macrophages termed placenta associated maternal macrophages (PAMM1a). Here we discuss recent developments that have led to renewed insight into our understanding of the ontogeny, phenotype and function of placental macrophages. Finally, we discuss how the application of new technologies within placental research are helping us to further understand these cells.
Collapse
Affiliation(s)
| | | | | | - Naomi McGovern
- Department of Pathology and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Arranz-Solís D, Mukhopadhyay D, Saeij JJP. Toxoplasma Effectors that Affect Pregnancy Outcome. Trends Parasitol 2021; 37:283-295. [PMID: 33234405 PMCID: PMC7954850 DOI: 10.1016/j.pt.2020.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
As an immune-privileged organ, the placenta can tolerate the introduction of antigens without inducing a strong inflammatory response that would lead to abortion. However, for the control of intracellular pathogens, a strong Th1 response characterized by the production of interferon-γ is needed. Thus, invasion of the placenta by intracellular parasites puts the maternal immune system in a quandary: The proinflammatory response needed to eliminate the pathogen can also lead to abortion. Toxoplasma is a highly successful parasite that causes lifelong chronic infections and is a major cause of abortions in humans and livestock. Here, we discuss how Toxoplasma strain type and parasite effectors influence host cell signaling pathways, and we speculate about how this might affect the outcome of gestation.
Collapse
Affiliation(s)
- David Arranz-Solís
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Jeroen J P Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
5
|
Pastor-Fernández I, Collantes-Fernández E, Jiménez-Pelayo L, Ortega-Mora LM, Horcajo P. Modeling the Ruminant Placenta-Pathogen Interactions in Apicomplexan Parasites: Current and Future Perspectives. Front Vet Sci 2021; 7:634458. [PMID: 33553293 PMCID: PMC7859336 DOI: 10.3389/fvets.2020.634458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Neospora caninum and Toxoplasma gondii are one of the main concerns of the livestock sector as they cause important economic losses in ruminants due to the reproductive failure. It is well-known that the interaction of these parasites with the placenta determines the course of infection, leading to fetal death or parasite transmission to the offspring. However, to advance the development of effective vaccines and treatments, there are still important gaps on knowledge on the placental host-parasite interactions that need to be addressed. Ruminant animal models are still an indispensable tool for providing a global view of the pathogenesis, lesions, and immune responses, but their utilization embraces important economic and ethics restrictions. Alternative in vitro systems based on caruncular and trophoblast cells, the key cellular components of placentomes, have emerged in the last years, but their use can only offer a partial view of the processes triggered after infection as they cannot mimic the complex placental architecture and neglect the activity of resident immune cells. These drawbacks could be solved using placental explants, broadly employed in human medicine, and able to preserve its cellular architecture and function. Despite the availability of such materials is constrained by their short shelf-life, the development of adequate cryopreservation protocols could expand their use for research purposes. Herein, we review and discuss existing (and potential) in vivo, in vitro, and ex vivo ruminant placental models that have proven useful to unravel the pathogenic mechanisms and the host immune responses responsible for fetal death (or protection) caused by neosporosis and toxoplasmosis.
Collapse
Affiliation(s)
| | | | | | | | - Pilar Horcajo
- Animal Health and Zoonoses (SALUVET) Group, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
6
|
Gutiérrez-Expósito D, González-Warleta M, Espinosa J, Vallejo-García R, Castro-Hermida JA, Calvo C, Ferreras MC, Pérez V, Benavides J, Mezo M. Maternal immune response in the placenta of sheep during recrudescence of natural congenital infection of Neospora caninum. Vet Parasitol 2020; 285:109204. [PMID: 32916458 DOI: 10.1016/j.vetpar.2020.109204] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 01/13/2023]
Abstract
In order to gain further insight into the pathogenesis and transmission of ovine neosporosis, the serological response of 13 naturally infected pregnant sheep was monitored. All sheep were euthanized upon the detection of a sharp increase in the level of specific antibodies against N. caninum in order to study the maternal immune response after the recrudescence of a chronic infection. Ten sheep were euthanized between 84 and 118 days of gestation, whereas the three remaining and three control not infected, pregnant sheep were euthanized at 135 days of gestation after no sharp increase in antibodies was detected. Vertical transmission was confirmed in 11 sheep by detection of N. caninum-DNA in at least one fetus, confirming recrudescence. Not all of fetuses showed pathologic microscopic lesions, however, multifocal non-purulent encephalitis was the main finding. Furthermore, nine out of the 11 vertical transmission positive sheep had lesions in placentomes (mainly multifocal necrotic foci), and the parasite was detected in eight out of 11 placentas by PCR and/or immunohistochemestry. The placentomes from sheep that suffered recrudescence showed an increased number of T lymphocytes CD3+ (CD4/CD8 < 1) and macrophages (MHC-II+), assessed by immunohistochemestry, together with an up-regulation of IFN-γ, IL-10, IL-4, TNFα, IL-2 and IL-18. IL-17 was only upregulated in the three infected sheep that did not have a sharp increase in antibody levels. In the sheep that showed fetal death at the time of euthanasia (n = 3) the placental microscopic lesions were more severe, the inflammatory infiltrate was higher, and the upregulation of cytokines was greater than in those sheep carrying viable fetuses. This study suggests that, similarly to bovine neosporosis, the time of gestation when recrudescence occurs determines the viability of the fetuses and, thus, seems to be related to the severity of lesions and immune response in the placenta. These results suggest that there might be a correlation, either as cause or as a consequence, between protection against vertical transmission of the parasite and a milder maternal serological response together with a high level of transcription of IL-17 in the placenta.
Collapse
Affiliation(s)
- Daniel Gutiérrez-Expósito
- Departamento de Sanidad Animal. Facultad de Veterinaria. Universidad de León. Campus De Vegazana s/n, 24071, León, Spain; Instituto de Ganadería de Montaña. (CSIC-Universidad de León). Grulleros, 24346, León, Spain.
| | - Marta González-Warleta
- Laboratorio de Parasitología. Centro de Investigaciones Agrarias de Mabegondo, AGACAL-Xunta de Galicia. Ctra. Betanzos a Mesón do Vento km 7, Abegondo, 15318, A Coruña, Spain
| | - Jose Espinosa
- Departamento de Sanidad Animal. Facultad de Veterinaria. Universidad de León. Campus De Vegazana s/n, 24071, León, Spain
| | - Raquel Vallejo-García
- Departamento de Sanidad Animal. Facultad de Veterinaria. Universidad de León. Campus De Vegazana s/n, 24071, León, Spain
| | - Jose Antonio Castro-Hermida
- Laboratorio de Parasitología. Centro de Investigaciones Agrarias de Mabegondo, AGACAL-Xunta de Galicia. Ctra. Betanzos a Mesón do Vento km 7, Abegondo, 15318, A Coruña, Spain
| | - Carmen Calvo
- Laboratorio de Parasitología. Centro de Investigaciones Agrarias de Mabegondo, AGACAL-Xunta de Galicia. Ctra. Betanzos a Mesón do Vento km 7, Abegondo, 15318, A Coruña, Spain
| | - María C Ferreras
- Departamento de Sanidad Animal. Facultad de Veterinaria. Universidad de León. Campus De Vegazana s/n, 24071, León, Spain
| | - Valentín Pérez
- Departamento de Sanidad Animal. Facultad de Veterinaria. Universidad de León. Campus De Vegazana s/n, 24071, León, Spain
| | - Julio Benavides
- Instituto de Ganadería de Montaña. (CSIC-Universidad de León). Grulleros, 24346, León, Spain
| | - Mercedes Mezo
- Laboratorio de Parasitología. Centro de Investigaciones Agrarias de Mabegondo, AGACAL-Xunta de Galicia. Ctra. Betanzos a Mesón do Vento km 7, Abegondo, 15318, A Coruña, Spain
| |
Collapse
|
7
|
Dubey JP, Murata FHA, Cerqueira-Cézar CK, Kwok OCH, Su C. Economic and public health importance of Toxoplasma gondii infections in sheep: 2009-2020. Vet Parasitol 2020; 286:109195. [PMID: 32979682 DOI: 10.1016/j.vetpar.2020.109195] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Toxoplasma gondii infections are common in humans and animals worldwide. The present review summarizes worldwide information on the prevalence of clinical and subclinical infections, epidemiology, diagnosis, control, and genetic diversity of T. gondii in sheep in the past decade. There is debate and uncertainty concerning repeat congenital infection as evidenced by finding T. gondii DNA in progeny of chronically infected sheep. However, there is no concrete evidence that T. gondii is the cause of repeated abortions in sheep. Recent data concerning pathogenesis of abortion in acutely infected sheep are reviewed. PCR-RFLP typing of T. gondii DNA derived from viable T. gondii isolates or tissues of infected sheep revealed low genetic diversity in sheep in Europe, Africa, Asia and North America but high diversity in South America. This review will be of interest to biologists, parasitologists, veterinarians, and public health workers.
Collapse
Affiliation(s)
- J P Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA.
| | - F H A Murata
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA
| | - C K Cerqueira-Cézar
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA
| | - O C H Kwok
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA
| | - C Su
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| |
Collapse
|
8
|
Dubey J, Murata F, Cerqueira-Cézar C, Kwok O, Su C. WITHDRAWN: Economic and public health importance of Toxoplasma gondii infections in sheep: the last decade. Vet Parasitol X 2020. [DOI: 10.1016/j.vpoa.2020.100028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|