1
|
Bertola L, Pellizzoni B, Giudice C, Grieco V, Ferrari R, Chiti LE, Stefanello D, Manfredi M, De Zani D, Recordati C. Tumor-associated macrophages and tumor-infiltrating lymphocytes in canine cutaneous and subcutaneous mast cell tumors. Vet Pathol 2024; 61:882-895. [PMID: 38647163 DOI: 10.1177/03009858241244851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Cutaneous and subcutaneous mast cell tumors (MCTs) are common canine neoplasms characterized by variable biological behavior. Tumor-associated macrophages (TAMs) and tumor-infiltrating lymphocytes (TILs) can be effective prognostic markers in numerous human neoplasms and are increasingly investigated in dogs. The aim of this study was to characterize immune cells in canine MCTs and their relationship with histological location (cutaneous, subcutaneous) and histologic nodal metastatic status (HN0-3). Thirty-eight MCTs (26 cutaneous, 12 subcutaneous) from 33 dogs with known sentinel lymph node (SLN) metastatic status were immunolabeled for Iba1 (macrophages), CD20 (B cells), CD3 (T cells), and Foxp3 (regulatory T cells). Semiquantitative scoring of interstitial and perivascular CD3+, CD20+, and Foxp3+ cells and morphological evaluation of Iba1+ cells were performed. For each marker, the percent immunopositive area was evaluated by image analysis. All MCTs were diffusely infiltrated by Iba1+ cells and variably infiltrated by CD20+, CD3+, and rare Foxp3+ cells. Stellate/spindle Iba1+ cells were associated with HN2 and HN3 SLNs. Perivascular Foxp3+ cells, CD3+ cells, and percent CD3+ areas were increased in subcutaneous MCTs. Interstitial CD3+ cells were increased in cutaneous MCTs with HN0 SLNs. No differences in CD20+ cells were identified between cutaneous and subcutaneous MCTs and among SLN classes. MCTs were markedly infiltrated by TAMs and variably infiltrated by TILs. Stellate/spindle morphology of TAMs associated with HN2 and HN3 SLNs is suggestive of a pro-tumoral (M2) phenotype. Cutaneous and subcutaneous MCTs have different tumor-immune microenvironments, and T-cell infiltration might contribute to prevention of nodal metastatic spread of cutaneous MCTs.
Collapse
Affiliation(s)
- Luca Bertola
- University of Milan, Lodi, Italy
- Fondazione UNIMI, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Song E, Lawrence J, Greene E, Christie A, Goldschmidt S. Risk stratification scheme based on the TNM staging system for dogs with oral malignant melanoma centered on clinicopathologic presentation. Front Vet Sci 2024; 11:1472748. [PMID: 39386252 PMCID: PMC11463030 DOI: 10.3389/fvets.2024.1472748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Oral malignant melanoma (OMM) is the most common malignant oral neoplasm in dogs. Tumor recurrence, progression, and regional and distant metastasis remain major obstacles despite advanced therapy. Tumor size has been a consistent, key independent prognostic factor; however, other clinical and histopathologic features impact prognosis and likely influence optimal treatment strategies. Adoption of a risk stratification scheme for canine OMM that stratifies groups of dogs on defined clinicopathologic features may improve reproducible and comparable studies by improving homogeneity within groups of dogs. Moreover, it would aid in the generation of multidisciplinary prospective studies that seek to define optimal treatment paradigms based on defined clinicopathologic features. Methods To build a platform upon which to develop a risk stratification scheme, we performed a systematic review of clinicopathologic features of OMM, with particular attention to levels of evidence of published research and the quantitative prognostic effect of clinicopathologic features. Results Tumor size and presence of bone lysis were repeatable features with the highest level of evidence for prognostic effects on survival. Overall, with strict inclusion criteria for paper review, the levels of evidence in support of other, previously proposed risk factors were low. Factors contributing to the challenge of defining clear prognostic features including inconsistencies in staging and reporting of prognostic variables, incomplete clinical outcome data, inhomogeneous treatment, and absence of randomized controlled studies. Discussion To overcome this in the future, we propose a risk stratification scheme that expands the TNM system to incorporate specific designations that highlight possible prognostic variables. The ability to capture key data simply from an expanded TNM description will aid in future efforts to form strong conclusions regarding prognostic variables and their influence (or lack thereof) on therapeutic decision-making and outcomes.
Collapse
Affiliation(s)
- Eric Song
- Apex Veterinary Specialists, Denver, CO, United States
| | - Jessica Lawrence
- Department of Surgical and Radiologic Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Erica Greene
- RedBank Veterinary Hospital, Tinton Falls, NJ, United States
| | - Anneka Christie
- RedBank Veterinary Hospital, Tinton Falls, NJ, United States
| | - Stephanie Goldschmidt
- Department of Surgical and Radiologic Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Cronise KE, Coy J, Dow S, Hauck ML, Regan DP. Immunohistochemical and transcriptomic characterization of T and myeloid cell infiltrates in canine malignant melanoma. Vet Comp Oncol 2024; 22:377-387. [PMID: 38752589 PMCID: PMC11323233 DOI: 10.1111/vco.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 08/16/2024]
Abstract
Immune checkpoint inhibitor therapy can provide significant clinical benefit in patients with certain cancer types including melanoma; however, objective responses are only observed for a subset of patients. Mucosal melanoma is a rare melanoma subtype associated with a poor prognosis and, compared with cutaneous melanoma, is significantly less responsive to immune checkpoint inhibitors. Spontaneous canine tumours have emerged as valuable models to inform human cancer studies. In contrast to human melanoma, most canine melanomas are mucosal-an incidence that may be leveraged to better understand the subtype in humans. However, a more comprehensive understanding of the immune landscape of the canine disease is required. Here, we quantify tumour infiltrative T and myeloid cells in canine mucosal (n = 13) and cutaneous (n = 5) melanomas using immunohistochemical analysis of CD3 and MAC387 expression, respectively. Gene expression analysis using the Canine IO NanoString panel was also performed to identify genes and pathways associated with immune cell infiltration. T and myeloid cell densities were variable with geometric means of 158.7 cells/mm2 and 166.7 cells/mm2, respectively. Elevated T cell infiltration was associated with increased expression of cytolytic genes as well as genes encoding the coinhibitory checkpoint molecules PD-1, CTLA-4, TIM-3 and TIGIT; whereas increased myeloid cell infiltration was associated with elevated expression of protumourigenic cytokines. These data provide a basic characterization of the tumour microenvironment of canine malignant melanoma and suggest that, like human melanoma, inherent variability in anti-tumour T cell responses exists and that a subset of canine melanomas may respond better to immunomodulation.
Collapse
Affiliation(s)
- Kathryn E Cronise
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jonathan Coy
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Steven Dow
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Marlene L Hauck
- Global Innovation, Oncology, Boehringer Ingelheim Animal Health, Athens, Georgia, USA
| | - Daniel P Regan
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Lo Giudice A, Porcellato I, Pellegrini M, Rottenberg S, He C, Dentini A, Moretti G, Cagiola M, Mechelli L, Chiaradia E, Brachelente C. Establishment of Primary Cell Cultures from Canine Oral Melanomas via Fine-Needle Aspiration: A Novel Tool for Tumorigenesis and Cancer Progression Studies. Animals (Basel) 2024; 14:1948. [PMID: 38998060 PMCID: PMC11240394 DOI: 10.3390/ani14131948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Oral melanomas are the most common oral malignancies in dogs and are characterized by an aggressive nature, invasiveness, and poor prognosis. With biological and genetic similarities to human oral melanomas, they serve as a valuable spontaneous comparative model. Primary cell cultures are widely used in human medicine and, more recently, in veterinary medicine to study tumorigenesis, cancer progression, and innovative therapeutic approaches. This study aims to establish two- and three-dimensional primary cell lines from oral canine melanomas using fine-needle aspiration as a minimally invasive sampling method. For this study, samples were collected from six dogs, represented by four primary oral melanomas and five lymph nodal metastases. The cells were digested to obtain single-cell suspensions, seeded in flasks, or processed with Matrigel® to form organoids. The cell cultures were characterized through flow cytometry using antibodies against Melan-A, PNL2, and Sox-10. This technique offers a minimally invasive means to obtain cell samples, particularly beneficial for patients that are ineligible for surgical procedures, and enables the establishment of in vitro models crucial for comparative studies in mucosal melanoma oncology. To the best of our knowledge, this is the first work establishing neoplastic primary cell cultures via fine-needle aspiration in dogs.
Collapse
Affiliation(s)
- Adriana Lo Giudice
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| | - Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| | - Martina Pellegrini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy; (M.P.); (M.C.)
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland; (S.R.); (C.H.)
| | - Chang He
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland; (S.R.); (C.H.)
| | - Alfredo Dentini
- Clinica Veterinaria Tyrus, Strada delle Campore 30L, 05100 Terni, Italy;
| | - Giulia Moretti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| | - Monica Cagiola
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy; (M.P.); (M.C.)
| | - Luca Mechelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| | - Chiara Brachelente
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (A.L.G.); (G.M.); (L.M.); (E.C.); (C.B.)
| |
Collapse
|
5
|
Cournoyer A, Amerman H, Assenmacher CA, Durham A, Perry JA, Gedney A, Keuler N, Atherton MJ, Lenz JA. Quantification of CD3, FoxP3, and granzyme B immunostaining in canine renal cell carcinoma. Vet Immunol Immunopathol 2024; 271:110741. [PMID: 38520894 PMCID: PMC11056291 DOI: 10.1016/j.vetimm.2024.110741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
Tumor-infiltrating lymphocyte (TIL) density plays an important role in anti-tumor immunity and is associated with patient outcome in various human and canine malignancies. As a first assessment of the immune landscape of the tumor microenvironment in canine renal cell carcinoma (RCC), we retrospectively analyzed clinical data and quantified CD3, FoxP3, and granzyme B immunostaining in formalin-fixed paraffin-embedded tumor samples from 16 dogs diagnosed with renal cell carcinoma treated with ureteronephrectomy. Cell density was low for all markers evaluated. Increased numbers of intratumoral FoxP3 labelled (+) cells, as well as decreased granzyme B+: FoxP3+ TIL ratio, were associated with poor patient outcomes. Our initial study of canine RCC reveals that these tumors are immunologically cold and Tregs may play an important role in immune evasion.
Collapse
Affiliation(s)
- Ashleigh Cournoyer
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA
| | - Hayley Amerman
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA
| | - Amy Durham
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA
| | - James A Perry
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA
| | - Allison Gedney
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA
| | - Nicholas Keuler
- Department of Statistics, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
| | - Matthew J Atherton
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA; Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA
| | - Jennifer A Lenz
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, 3900 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
AbdulJabbar K, Castillo SP, Hughes K, Davidson H, Boddy AM, Abegglen LM, Minoli L, Iussich S, Murchison EP, Graham TA, Spiro S, Maley CC, Aresu L, Palmieri C, Yuan Y. Bridging clinic and wildlife care with AI-powered pan-species computational pathology. Nat Commun 2023; 14:2408. [PMID: 37100774 PMCID: PMC10133243 DOI: 10.1038/s41467-023-37879-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Cancers occur across species. Understanding what is consistent and varies across species can provide new insights into cancer initiation and evolution, with significant implications for animal welfare and wildlife conservation. We build a pan-species cancer digital pathology atlas (panspecies.ai) and conduct a pan-species study of computational comparative pathology using a supervised convolutional neural network algorithm trained on human samples. The artificial intelligence algorithm achieves high accuracy in measuring immune response through single-cell classification for two transmissible cancers (canine transmissible venereal tumour, 0.94; Tasmanian devil facial tumour disease, 0.88). In 18 other vertebrate species (mammalia = 11, reptilia = 4, aves = 2, and amphibia = 1), accuracy (range 0.57-0.94) is influenced by cell morphological similarity preserved across different taxonomic groups, tumour sites, and variations in the immune compartment. Furthermore, a spatial immune score based on artificial intelligence and spatial statistics is associated with prognosis in canine melanoma and prostate tumours. A metric, named morphospace overlap, is developed to guide veterinary pathologists towards rational deployment of this technology on new samples. This study provides the foundation and guidelines for transferring artificial intelligence technologies to veterinary pathology based on understanding of morphological conservation, which could vastly accelerate developments in veterinary medicine and comparative oncology.
Collapse
Affiliation(s)
- Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Simon P Castillo
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Hannah Davidson
- Zoological Society of London, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | - Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Lisa M Abegglen
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- PEEL Therapeutics, Inc., Salt Lake City, UT, USA
| | - Lucia Minoli
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Elizabeth P Murchison
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | | | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, 4343, Gatton, QLD, Australia
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Stevenson VB, Klahn S, LeRoith T, Huckle WR. Canine melanoma: A review of diagnostics and comparative mechanisms of disease and immunotolerance in the era of the immunotherapies. Front Vet Sci 2023; 9:1046636. [PMID: 36686160 PMCID: PMC9853198 DOI: 10.3389/fvets.2022.1046636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Melanomas in humans and dogs are highly malignant and resistant to therapy. Since the first development of immunotherapies, interest in how the immune system interacts within the tumor microenvironment and plays a role in tumor development, progression, or remission has increased. Of major importance are tumor-infiltrating lymphocytes (TILs) where distribution and cell frequencies correlate with survival and therapeutic outcomes. Additionally, efforts have been made to identify subsets of TILs populations that can contribute to a tumor-promoting or tumor-inhibiting environment, such as the case with T regulatory cells versus CD8 T cells. Furthermore, cancerous cells have the capacity to express certain inhibitory checkpoint molecules, including CTLA-4, PD-L1, PD-L2, that can suppress the immune system, a property associated with poor prognosis, a high rate of recurrence, and metastasis. Comparative oncology brings insights to comprehend the mechanisms of tumorigenesis and immunotolerance in humans and dogs, contributing to the development of new therapeutic agents that can modulate the immune response against the tumor. Therapies that target signaling pathways such as mTOR and MEK/ERK that are upregulated in cancer, or immunotherapies with different approaches such as CAR-T cells engineered for specific tumor-associated antigens, DNA vaccines using human tyrosinase or CGSP-4 antigen, anti-PD-1 or -PD-L1 monoclonal antibodies that intercept their binding inhibiting the suppression of the T cells, and lymphokine-activated killer cells are already in development for treating canine tumors. This review provides concise and recent information about diagnosis, comparative mechanisms of tumor development and progression, and the current status of immunotherapies directed toward canine melanoma.
Collapse
Affiliation(s)
- Valentina B. Stevenson
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Shawna Klahn
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - William R. Huckle
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
8
|
Smedley RC, Bongiovanni L, Bacmeister C, Clifford CA, Christensen N, Dreyfus JM, Gary JM, Pavuk A, Rowland PH, Swanson C, Tripp C, Woods JP, Bergman PJ. Diagnosis and histopathologic prognostication of canine melanocytic neoplasms: A consensus of the Oncology-Pathology Working Group. Vet Comp Oncol 2022; 20:739-751. [PMID: 35522017 PMCID: PMC9796073 DOI: 10.1111/vco.12827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/30/2022]
Abstract
One of the primary objectives of the Oncology Pathology Working Group (OPWG) is for oncologists and pathologists to collaboratively generate consensus documents to standardize aspects of and provide guidelines for veterinary oncologic pathology. Consensus is established through review of relevant peer-reviewed literature relative to a subgroup's particular focus. In this article, the authors provide a critical review of the current literature for the diagnosis of, and histopathologic prognostication for, canine cutaneous and oral/lip melanocytic neoplasms, suggest guidelines for reporting, provide recommendations for clinical interpretation, and discuss future directions. This document represents the opinions of the working group and the authors and does not constitute a formal endorsement by the American College of Veterinary Pathologists, American College of Veterinary Internal Medicine or the Veterinary Cancer Society.
Collapse
Affiliation(s)
- Rebecca C. Smedley
- Veterinary Diagnostic LaboratoryMichigan State UniversityLansingMichiganUSA
| | - Laura Bongiovanni
- Faculty of Veterinary MedicineUniversity of TeramoTeramoItaly,Faculty of Veterinary Medicine, Department of Biomolecular SciencesUtrecht UniversityUtrechtThe Netherlands
| | | | - Craig A. Clifford
- Oncology ServiceHope Veterinary Specialists/BluePearlMalvernPennsylvaniaUSA
| | - Neil Christensen
- Oncology ServiceVeterinary Specialty Hospital Hong KongWan ChaiHong Kong,Veterinary Medical Teaching HospitalUniversity of WisconsinMadisonWisconsinUSA
| | - Jennifer M. Dreyfus
- Anatomic PathologyDreyfus Veterinary Pathology ConsultingMadisonWisconsinUSA,School of Veterinary MedicineUniversity of WisconsinMadisonWisconsinUSA
| | - Joy M. Gary
- NeuropathologyStageBioFrederickMarylandUSA,Comparative Biomedical Training Program, Molecular Pathology UnitNCI, NIHBethesdaMarylandUSA
| | - Alana Pavuk
- Anatomic PathologyAntech DiagnosticsDurhamNorth CarolinaUSA
| | | | - Christine Swanson
- Oncology ServiceBluePearl Specialty and Emergency Pet HospitalGrand RapidsMichiganUSA
| | - Chelsea Tripp
- Oncology ServiceBridge Animal Referral CenterEdmondsWashingtonUSA
| | - J. Paul Woods
- Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | | |
Collapse
|
9
|
Pereira Gonçalves J, Fwu Shing T, Augusto Fonseca Alves G, Eduardo Fonseca-Alves C. Immunology of Canine Melanoma. Vet Med Sci 2022. [DOI: 10.5772/intechopen.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Malignant melanoma is one of the most important tumors in dogs and is highly metastatic and aggressive disease. In recent years, molecular knowledge regarding canine melanoma has increased, and some chromosomal imbalances and tyrosine kinase pathways have been identified to be dysregulated. Mxoreover, canine melanoma is an immunogenic tumor that provides opportunities to administer immunotherapy to the patient. Podoplanin and chondroitin sulfate proteoglycan-4 (CSPG4) are markers against which monoclonal antibodies have been developed and tested in dogs in vivo with promising results. Owing to the importance of canine melanoma in the veterinary oncology field, this chapter reviews the most important aspects related to immunological involvement in the prognosis and treatment of canine melanoma.
Collapse
|
10
|
Pinard CJ, Lagree A, Lu FI, Klein J, Oblak ML, Salgado R, Cardenas JCP, Brunetti B, Muscatello LV, Sarli G, Foschini MP, Hardas A, Castillo SP, AbdulJabbar K, Yuan Y, Moore DA, Tran WT. Comparative Evaluation of Tumor-Infiltrating Lymphocytes in Companion Animals: Immuno-Oncology as a Relevant Translational Model for Cancer Therapy. Cancers (Basel) 2022; 14:5008. [PMID: 36291791 PMCID: PMC9599753 DOI: 10.3390/cancers14205008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the important role of preclinical experiments to characterize tumor biology and molecular pathways, there are ongoing challenges to model the tumor microenvironment, specifically the dynamic interactions between tumor cells and immune infiltrates. Comprehensive models of host-tumor immune interactions will enhance the development of emerging treatment strategies, such as immunotherapies. Although in vitro and murine models are important for the early modelling of cancer and treatment-response mechanisms, comparative research studies involving veterinary oncology may bridge the translational pathway to human studies. The natural progression of several malignancies in animals exhibits similar pathogenesis to human cancers, and previous studies have shown a relevant and evaluable immune system. Veterinary oncologists working alongside oncologists and cancer researchers have the potential to advance discovery. Understanding the host-tumor-immune interactions can accelerate drug and biomarker discovery in a clinically relevant setting. This review presents discoveries in comparative immuno-oncology and implications to cancer therapy.
Collapse
Affiliation(s)
- Christopher J. Pinard
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Andrew Lagree
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Fang-I Lu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan Klein
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Michelle L. Oblak
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Roberto Salgado
- Division of Research, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Department of Pathology, GZA-ZNA Hospitals, 2610 Antwerp, Belgium
| | | | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Luisa Vera Muscatello
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Maria Pia Foschini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Alexandros Hardas
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | - Simon P. Castillo
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - David A. Moore
- Department of Pathology, UCL Cancer Institute, London WC1E 6DD, UK
- University College Hospitals NHS Trust, London NW1 2PG, UK
| | - William T. Tran
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
11
|
Porcellato I, Sforna M, Lo Giudice A, Bossi I, Musi A, Tognoloni A, Chiaradia E, Mechelli L, Brachelente C. Tumor-Associated Macrophages in Canine Oral and Cutaneous Melanomas and Melanocytomas: Phenotypic and Prognostic Assessment. Front Vet Sci 2022; 9:878949. [PMID: 35937296 PMCID: PMC9355725 DOI: 10.3389/fvets.2022.878949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
The tumor microenvironment is a complex system, where neoplastic cells interact with immune and stromal cells. Tumor-associated macrophages (TAMs) are considered among the most numerically and biologically noteworthy cellular components in tumors and the attention on this cellular population has been growing during the last decade, both for its prognostic role and as a potential future therapeutic target. Melanoma, particularly the oral form, despite being one of the most immunogenic tumors, bears a poor prognosis in dogs and humans, due to its highly aggressive biological behavior and limited therapeutic options. The aims of this study are to characterize and quantify TAMs (using CD163, CD204, Iba1, and MAC387) in canine melanocytic tumors and to evaluate the association of these markers with diagnosis, histologic prognostic features, presence of metastases, and outcome, and to provide preliminary data for possible future therapies targeting TAMs. Seventy-two melanocytic tumors (27 oral melanomas, 25 cutaneous melanomas, 14 cutaneous melanocytomas, and 6 oral melanocytomas) were retrospectively selected and submitted to immunohistochemistry and double immunofluorescence. Double immunolabeling revealed that most CD163+ and CD204+cells co-expressed Iba1, which labeled also dendritic cells. Iba1 was instead rarely co-expressed with MAC387. Nevertheless, the expression of macrophagic markers showed a mild to moderate association among the four markers, except for CD204 and MAC387. The number of CD163+, CD204+, and MAC387+ cells was significantly higher in oral melanomas compared to oral melanocytomas (p < 0.001; p < 0.05 and p < 0.01, respectively), whereas Iba1 was differentially expressed in cutaneous melanomas and melanocytomas (p < 0.05). Moreover, CD163, IBA1 and MAC387 expression was associated with nuclear atypia and mitotic count. The number of CD163+cells was associated with the presence of metastases and tumor-related death in oral melanocytic tumors (p < 0.05 and p = 0.001, respectively).
Collapse
Affiliation(s)
- Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- *Correspondence: Ilaria Porcellato
| | - Monica Sforna
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Adriana Lo Giudice
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Ilaria Bossi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Alice Musi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Alessia Tognoloni
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | | | - Luca Mechelli
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Chiara Brachelente
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
12
|
Kojima K, Chambers JK, Mizuno T, Uchida K. Nodal T-zone lymphoma and T-zone hyperplasia in dogs. Vet Pathol 2022; 59:733-739. [DOI: 10.1177/03009858221102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
T-zone lymphoma (TZL) is an indolent, nodal lymphoma that has been clinically characterized in detail in dogs, and T-zone hyperplasia (TZH) is a hyperplastic change in lymph nodes associated with antigen processing. In some cases, histopathological features of TZL and TZH are similar, and are difficult to differentiate by morphology alone. Since there have been few publications characterizing their immunohistochemical profiles, histological, immunohistochemical, and clonality examinations were performed using formalin-fixed paraffin-embedded samples of canine lymph nodes with TZL (14 cases) and canine lymph nodes with TZH associated with nonlymphocytic tumors (10 cases). Immunohistochemically, small- to medium-sized lymphocytes of TZL were immunopositive for CD3, CD5, and HLA-DR, and negative for CD45, FOXP3, and granzyme B (GRB) in all cases. Among these 14 cases, 11 were immunopositive for CD8 and 1 was CD20 positive. Paracortical lymphocytes in TZH were diffusely immunopositive for CD3, CD5, and CD45, with scattered immunopositivity for CD8, HLA-DR, FOXP3, and GRB, and negative for CD20 in all cases. A clonal TCR gene rearrangement was detected in 13/14 TZL and none of the TZH cases. The present study revealed that TZL is a clonal proliferation of monomorphic CD8+CD45-GRB- T cells, while TZH consists of an immunophenotypically heterogenous population of CD45+ T cells that are variably positive for CD8 and FOXP3. These results suggest that canine TZL is a clonal proliferation of naïve or premature cytotoxic T cells. Regarding TZH, variable immunopositivity for cytotoxic and regulatory T-cell antigens may reflect immune responses to a variety of regional neoplastic lesions.
Collapse
|
13
|
Tarone L, Giacobino D, Camerino M, Ferrone S, Buracco P, Cavallo F, Riccardo F. Canine Melanoma Immunology and Immunotherapy: Relevance of Translational Research. Front Vet Sci 2022; 9:803093. [PMID: 35224082 PMCID: PMC8873926 DOI: 10.3389/fvets.2022.803093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
In veterinary oncology, canine melanoma is still a fatal disease for which innovative and long-lasting curative treatments are urgently required. Considering the similarities between canine and human melanoma and the clinical revolution that immunotherapy has instigated in the treatment of human melanoma patients, special attention must be paid to advancements in tumor immunology research in the veterinary field. Herein, we aim to discuss the most relevant knowledge on the immune landscape of canine melanoma and the most promising immunotherapeutic approaches under investigation. Particular attention will be dedicated to anti-cancer vaccination, and, especially, to the encouraging clinical results that we have obtained with DNA vaccines directed against chondroitin sulfate proteoglycan 4 (CSPG4), which is an appealing tumor-associated antigen with a key oncogenic role in both canine and human melanoma. In parallel with advances in therapeutic options, progress in the identification of easily accessible biomarkers to improve the diagnosis and the prognosis of melanoma should be sought, with circulating small extracellular vesicles emerging as strategically relevant players. Translational advances in melanoma management, whether achieved in the human or veterinary fields, may drive improvements with mutual clinical benefits for both human and canine patients; this is where the strength of comparative oncology lies.
Collapse
Affiliation(s)
- Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Sparger EE, Chang H, Chin N, Rebhun RB, Withers SS, Kieu H, Canter RJ, Monjazeb AM, Kent MS. T Cell Immune Profiles of Blood and Tumor in Dogs Diagnosed With Malignant Melanoma. Front Vet Sci 2021; 8:772932. [PMID: 34926643 PMCID: PMC8674490 DOI: 10.3389/fvets.2021.772932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Investigation of canine T cell immunophenotypes in canine melanomas as prognostic biomarkers for disease progression or predictive biomarkers for targeted immunotherapeutics remains in preliminary stages. We aimed to examine T cell phenotypes and function in peripheral blood mononuclear cells (PBMC) and baseline tumor samples by flow cytometry, and to compare patient (n = 11–20) T cell phenotypes with healthy controls dogs (n = 10–20). CD3, CD4, CD8, CD25, FoxP3, Ki67, granzyme B, and interferon-γ (IFN-γ) were used to classify T cell subsets in resting and mitogen stimulated PBMCs. In a separate patient cohort (n = 11), T cells were classified using CD3, CD4, CD8, FoxP3, and granzyme B in paired PBMC and single cell suspensions of tumor samples. Analysis of flow cytometric data of individual T cell phenotypes in PBMC revealed specific T cell phenotypes including FoxP3+ and CD25+FoxP3- populations that distinguished patients from healthy controls. Frequencies of IFN-γ+ cells after ConA stimulation identified two different patient phenotypic responses, including a normal/exaggerated IFN-γ response and a lower response suggesting dysfunction. Principle component analysis of selected T cell immunophenotypes also distinguished patients and controls for T cell phenotype and revealed a clustering of patients based on metastasis detected at diagnosis. Findings supported the overall hypothesis that canine melanoma patients display a T cell immunophenotype profile that is unique from healthy pet dogs and will guide future studies designed with larger patient cohorts necessary to further characterize prognostic T cell immunophenotypes.
Collapse
Affiliation(s)
- Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Hong Chang
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Ning Chin
- California National Primate Research Center, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Robert B Rebhun
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sita S Withers
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Hung Kieu
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Robert J Canter
- Surgical Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Arta M Monjazeb
- Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Michael S Kent
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
15
|
Von Rueden SK, Fan TM. Cancer-Immunity Cycle and Therapeutic Interventions- Opportunities for Including Pet Dogs With Cancer. Front Oncol 2021; 11:773420. [PMID: 34869014 PMCID: PMC8639699 DOI: 10.3389/fonc.2021.773420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
The tumor-immune interplay represents a dynamic series of events executed by cellular and soluble participants that either promote or inhibit successful tumor formation and growth. Throughout a tumor’s development and progression, the host organism’s immune system reacts by generating anti-cancer defenses through various incremental and combinatorial mechanisms, and this reactive orchestration is termed the cancer-immunity cycle. Success or failure of the cancer-immunity cycle dictates the fate of both host and tumor as winner or loser. Insights into how the tumor and host immune system continuously adapt to each other throughout the lifecycle of the tumor is necessary to rationally develop new effective immunotherapies. Additionally, the evolving nature of the cancer-immunity cycle necessitates therapeutic agility, requiring real-time serial assessment of immunobiologic markers that permits tailoring of therapies to the everchanging tumor immune microenvironment. In order to accelerate advances in the field of immuno-oncology, this review summarizes the steps comprising the cancer-immunity cycle, and underscores key breakpoints in the cycle that either favor cancer regression or progression, as well as shaping of the tumor microenvironment and associated immune phenotypes. Furthermore, specific large animal models of spontaneous cancers that are deemed immunogenic will be reviewed and proposed as unique resources for validating investigational immunotherapeutic protocols that are informed by the cancer-immunity cycle. Collectively, this review will provide a progressive look into the dynamic interplay between tumor and host immune responses and raise awareness for how large animal models can be included for developing combinatorial and sequenced immunotherapies to maximizing favorable treatment outcomes.
Collapse
Affiliation(s)
- Samantha K Von Rueden
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
16
|
A Comparative View on Molecular Alterations and Potential Therapeutic Strategies for Canine Oral Melanoma. Vet Sci 2021; 8:vetsci8110286. [PMID: 34822659 PMCID: PMC8619620 DOI: 10.3390/vetsci8110286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Canine oral melanoma (COM) is a highly aggressive tumour associated with poor prognosis due to metastasis and resistance to conventional anti-cancer therapies. As with human mucosal melanoma, the mutational landscape is predominated by copy number aberrations and chromosomal structural variants, but differences in study cohorts and/or tumour heterogeneity can lead to discordant results regarding the nature of specific genes affected. This review discusses somatic molecular alterations in COM that result from single nucleotide variations, copy number changes, chromosomal rearrangements, and/or dysregulation of small non-coding RNAs. A cross-species comparison highlights notable recurrent aberrations, and functionally grouping dysregulated proteins reveals unifying biological pathways that may be critical for oncogenesis and metastasis. Finally, potential therapeutic strategies are considered to target these pathways in canine patients, and the benefits of collaboration between science, medical, and veterinary communities are emphasised.
Collapse
|
17
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
18
|
Porcellato I, Silvestri S, Sforna M, Banelli A, Lo Giudice A, Mechelli L, Brachelente C. Tumor-infiltrating lymphocytes (TILs) in feline melanocytic tumors: A preliminary investigation. Vet Immunol Immunopathol 2021; 242:110337. [PMID: 34715601 DOI: 10.1016/j.vetimm.2021.110337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022]
Abstract
The presence and the role of tumor-infiltrating lymphocytes (TILs) in different types of tumors, but particularly in melanoma, has become more and more investigated during the last decade, both in human and veterinary medicine. Melanocytic tumors are quite rare in cats, with diffuse iris melanoma being the most commonly diagnosed in this species. The aim of this study was to characterize the lymphocytic infiltration in feline melanocytic tumors and to analyze their association with the histological features of malignancy recognized in these tumors, as well as with the expression of the most commonly used immunohistochemical markers. Thirty-eight feline melanocytic tumors were retrospectively selected; histological and immunohistochemical characterization of the tumors (histologic criteria of malignancy; S100, Melan A, and PNL2 expression) and of TILs (presence/absence, density, distribution, and grade; CD3, CD20 expression) were performed and associations between them tested. Results showed that TILs grade increased with cellular pleomorphism (P < 0.05) and, within the group of cutaneous melanocytic tumors, also with the mitotic count (P < 0.05). On the other hand, TILs grade was inversely associated with the percentage of neoplastic cells positive for Melan A (P < 0.05) and PNL2 (P < 0.05). Both CD3+ and CD20+ lymphocytes increased significantly with TILs grade and in association with mitotic count, when stratified in low/high quantity. This preliminary study suggests that TILs in feline melanoma may be associated with histologic features of malignancy and loss of melanocytic-specific markers, such as Melan A and PNL2. Further studies, with a larger cohort and follow-up information, are recommended.
Collapse
Affiliation(s)
- Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126, Perugia, Italy
| | - Serenella Silvestri
- Department of Medicine and Surgery, Section of Clinical Haematology and Immunology Laboratory of Protein Biochemistry and Translational, Medicine University of Perugia Centre for Haemato-Oncologic Research (CREO), Piazzale Giorgio Menghini 9, 06132, Perugia, Italy
| | - Monica Sforna
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126, Perugia, Italy.
| | - Agnese Banelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126, Perugia, Italy
| | - Adriana Lo Giudice
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126, Perugia, Italy
| | - Luca Mechelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126, Perugia, Italy
| | - Chiara Brachelente
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, 06126, Perugia, Italy
| |
Collapse
|