1
|
Awad MA, Sun W, Han D, Griffith BP, Wu ZJ. Increased phagocytosis capacity of circulating neutrophils in patients on continuous flow ventricular assist device support. Artif Organs 2024; 48:636-645. [PMID: 38133151 PMCID: PMC11105991 DOI: 10.1111/aor.14693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Neutrophils take part in the innate immune response, phagocytosis, and pro-inflammatory cytokine release. The phagocytic capacity of circulating neutrophils in patients on continuous flow (CF) ventricular assist device (VAD) has not been well studied. METHODS Blood samples from 14 patients undergoing CF-VAD implantation were collected and analyzed preoperatively (at baseline) and on postoperative days (POD) 3, 7, 14, and 28. Flow cytometry was used to assess the surface expression levels of CD62L, CD162, and macrophage antigen-1 (MAC-1) and neutrophil phagocytic capacity. Interleukin 1 (IL1), IL6, IL8, TNF-α, neutrophil elastase, and myeloperoxidase in plasma were measured using enzyme-linked immunosorbent assays. RESULTS Among the 14 patients, seven patients had preoperative bridge device support. Relative to baseline, patients with no bridge device had elevated leukocyte count and neutrophil elastase by POD3 which normalized by POD7. Neutrophil activation level, IL6, IL8, and TNF-α increased by POD3 and sustained elevated levels for 7-14 days postoperatively. Elevated neutrophil phagocytic capacity persisted even until POD28. Similar patterns were observed in patients on a preoperative bridge device. CONCLUSIONS Neutrophil activation and phagocytic capacity increased in response to VAD support, while inflammatory cytokines remain elevated for up to 2 weeks postoperatively. These findings may indicate that VAD implantation elicits circulating neutrophils to an abnormal preemptive phagocytotic phenotype.
Collapse
Affiliation(s)
- Morcos A. Awad
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wenji Sun
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dong Han
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bartley P. Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhongjun J. Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
2
|
Arias K, Sun W, Han D, Griffith BP, Wu ZJ. Neutrophil Structural and Functional Alterations After High Mechanical Shear Stress Exposure. ASAIO J 2023; 69:841-848. [PMID: 37159479 PMCID: PMC11441310 DOI: 10.1097/mat.0000000000001985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Patients on mechanical circulatory support are prone to infections, increasing morbidity and mortality. These circulatory support devices generate high mechanical shear stress (HMSS) that can causes trauma to blood. When leukocytes become damaged, their immune response function may be impaired or weakened, leading to increased infection vulnerability. This study examined neutrophil structural and functional alterations after exposure to 75, 125, and 175 Pa HMSS for 1 second. Human blood was exposed to three levels of HMSS using a blood shearing device. Neutrophil morphological alteration was characterized by examining blood smears. Flow cytometry assays were used to analyze expression levels of CD62L and CD162 receptors, activation level (CD11b), and aggregation (platelet-neutrophil aggregates). Neutrophil phagocytosis and rolling were examined via functional assays. The results show neutrophil structure (morphology and surface receptors) and function (activation, aggregation, phagocytosis, rolling) were significantly altered after HMSS exposure. These alterations include cell membrane damage, loss of surface receptors (CD62L and CD162), initiation of activation and aggregation, upregulation of phagocytic ability and increased rolling speed. The alterations were the most severe after 175 Pa exposure. HMSS caused damage and activation of neutrophils, potentially impairing normal neutrophil function, leading to weakened immune defense and increasing a patient's vulnerability to infections.
Collapse
Affiliation(s)
- Katherin Arias
- From the Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wenji Sun
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Dong Han
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bartley P Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zhongjun J Wu
- From the Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Clatworthy MR, Watson CJE. Understanding the Immunology of Normothermic Machine Perfusion. Transpl Int 2023; 36:11670. [PMID: 37538137 PMCID: PMC10395750 DOI: 10.3389/ti.2023.11670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
|
4
|
Nasehi R, Schieren J, Grannemann C, Palkowitz AL, Babendreyer A, Schwarz N, Aveic S, Ludwig A, Leube RE, Fischer H. Bioprinting-associated pulsatile hydrostatic pressure elicits a mild proinflammatory response in epi- and endothelial cells. BIOMATERIALS ADVANCES 2023; 147:213329. [PMID: 36801795 DOI: 10.1016/j.bioadv.2023.213329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
During nozzle-based bioprinting, like inkjet and microextrusion, cells are subjected to hydrostatic pressure for up to several minutes. The modality of the bioprinting-related hydrostatic pressure is either constant or pulsatile depending on the technique. We hypothesized that the difference in the modality of hydrostatic pressure affects the biological response of the processed cells differently. To test this, we used a custom-made setup to apply either controlled constant or pulsatile hydrostatic pressure on endothelial and epithelial cells. Neither bioprinting procedure visibly altered the distribution of selected cytoskeletal filaments, cell-substrate adhesions, and cell-cell contacts in either cell type. In addition, pulsatile hydrostatic pressure led to an immediate increase of intracellular ATP in both cell types. However, the bioprinting-associated hydrostatic pressure triggered a pro-inflammatory response in only the endothelial cells, with an increase of interleukin 8 (IL-8) and a decrease of thrombomodulin (THBD) transcripts. These findings demonstrate that the settings adopted during nozzle-based bioprinting cause hydrostatic pressure that can trigger a pro-inflammatory response in different barrier-forming cell types. This response is cell-type and pressure-modality dependent. The immediate interaction of the printed cells with native tissue and the immune system in vivo might potentially trigger a cascade of events. Our findings, therefore, are of major relevance in particular for novel intra-operative, multicellular bioprinting approaches.
Collapse
Affiliation(s)
- Ramin Nasehi
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jana Schieren
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Caroline Grannemann
- Institute of Molecular Pharmacology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Alena L Palkowitz
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
5
|
Extended Cellular Deposits on Gas Exchange Capillaries are Not an Indicator of Clot Formation: Analysis of Different Membrane Oxygenators. ASAIO J 2023; 69:e134-e141. [PMID: 36780695 DOI: 10.1097/mat.0000000000001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Antithrombogenic coatings of artificial surfaces within extracorporeal membrane oxygenation (ECMO) circuits improved its bio- and hemocompatibility. However, there is still a risk of thrombus formation in particular within the membrane oxygenator (MO). Since inflammatory cells are essential components within clots, the aim was to identify the extent of cellular accumulations on gas exchange capillaries from different ECMO systems. Thirty-four MOs (PLS, n = 27, Getinge; Hilite 7000 LT, n = 7, Fresenius Medical Care, Germany) were collected from adult patients. The extent of cellular deposits on gas exchange capillaries was classified using nuclear 4',6-diamidino-2-phenylindole staining and fluorescence microscopy. All Hilite oxygenators exhibited small cellular deposits. In contrast, the cellular distribution was heterogeneous on capillaries from PLS oxygenators: small deposits (34%), clusters (44%) and membrane-spanning cell structures (pseudomembranes) (22%). Overall, the median fluorescence intensity was significantly higher in the PLS group. Nevertheless, within 3 days before MO removal, there was no alteration in critical parameters (d-dimer and fibrinogen levels, platelet counts, and pressure drop across the MO). In conclusion, despite the histological differences on the gas capillaries from different types of oxygenators, there was no further evidence of increased inflammation and coagulation parameters that indicate clot formation within oxygenators.
Collapse
|
6
|
Increased Plasma Concentrations of Extracellular Vesicles Are Associated with Pro-Inflammatory and Pro-Thrombotic Characteristics of Left and Right Ventricle Mechanical Support Devices. J Cardiovasc Dev Dis 2023; 10:jcdd10010021. [PMID: 36661916 PMCID: PMC9866833 DOI: 10.3390/jcdd10010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Mechanical circulatory support (MCS) allows for functional left and right heart ventricle replacement. MCS induces a systemic inflammatory reaction and prothrombotic state leading to an increased risk of thrombus formation. The extracellular vesicles (EVs) are nanoparticles released from active/injured cells characterized by prothrombotic properties. Simple inflammatory parameters from whole blood count analysis have established a clinical role in everyday practice to describe immune-inflammatory activation. We hypothesized that increased plasma concentrations of EVs might be associated with the proinflammatory and pro-thrombotic characteristics of left ventricle assist device (LVAD) and right ventricle assist device (RVAD) devices. We presented a pilot study showing the concentration of peripheral blood serum, right and left ventricle mechanical assist device extracellular concentration in relation to thrombotic complication in patients treated with a biventricular pulsatile assist device (BIVAD). The observation was based on 12 replacements of pulsatile pumps during 175 days of observation. The proinflammatory characteristics of LVAD were noted. The proinflammatory and procoagulant activation by RVAD was observed. The results may provide possible explanations for the worse results of right-sided mechanical supports observed in clinical practice.
Collapse
|
7
|
Kalashnikov N, Moraes C. Engineering physical microenvironments to study innate immune cell biophysics. APL Bioeng 2022; 6:031504. [PMID: 36156981 PMCID: PMC9492295 DOI: 10.1063/5.0098578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Innate immunity forms the core of the human body's defense system against infection, injury, and foreign objects. It aims to maintain homeostasis by promoting inflammation and then initiating tissue repair, but it can also lead to disease when dysregulated. Although innate immune cells respond to their physical microenvironment and carry out intrinsically mechanical actions such as migration and phagocytosis, we still do not have a complete biophysical description of innate immunity. Here, we review how engineering tools can be used to study innate immune cell biophysics. We first provide an overview of innate immunity from a biophysical perspective, review the biophysical factors that affect the innate immune system, and then explore innate immune cell biophysics in the context of migration, phagocytosis, and phenotype polarization. Throughout the review, we highlight how physical microenvironments can be designed to probe the innate immune system, discuss how biophysical insight gained from these studies can be used to generate a more comprehensive description of innate immunity, and briefly comment on how this insight could be used to develop mechanical immune biomarkers and immunomodulatory therapies.
Collapse
Affiliation(s)
- Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
8
|
Mascharak S, desJardins-Park HE, Davitt MF, Guardino NJ, Gurtner GC, Wan DC, Longaker MT. Modulating Cellular Responses to Mechanical Forces to Promote Wound Regeneration. Adv Wound Care (New Rochelle) 2022; 11:479-495. [PMID: 34465219 PMCID: PMC9245727 DOI: 10.1089/wound.2021.0040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Significance: Skin scarring poses a major biomedical burden for hundreds of millions of patients annually. However, this burden could be mitigated by therapies that promote wound regeneration, with full recovery of skin's normal adnexa, matrix ultrastructure, and mechanical strength. Recent Advances: The observation of wound regeneration in several mouse models suggests a retained capacity for postnatal mammalian skin to regenerate under the right conditions. Mechanical forces are a major contributor to skin fibrosis and a prime target for devices and therapeutics that could promote skin regeneration. Critical Issues: Wound-induced hair neogenesis, Acomys "spiny" mice, Murphy Roths Large mice, and mice treated with mechanotransduction inhibitors all show various degrees of wound regeneration. Comparison of regenerating wounds in these models against scarring wounds reveals differences in extracellular matrix interactions and in mechanosensitive activation of key signaling pathways, including Wnt, Sonic hedgehog, focal adhesion kinase, and Yes-associated protein. The advent of single-cell "omics" technologies has deepened this understanding and revealed that regeneration may recapitulate development in certain contexts, although it is unknown whether these mechanisms are relevant to healing in tight-skinned animals such as humans. Future Directions: While early findings in mice are promising, comparison across model systems is needed to resolve conflicting mechanisms and to identify conserved master regulators of skin regeneration. There also remains a dire need for studies on mechanomodulation of wounds in large, tight-skinned animals, such as red Duroc pigs, which better approximate human wound healing.
Collapse
Affiliation(s)
- Shamik Mascharak
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| | - Heather E. desJardins-Park
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| | - Michael F. Davitt
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Nicholas J. Guardino
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
9
|
Margraf A, Perretti M. Immune Cell Plasticity in Inflammation: Insights into Description and Regulation of Immune Cell Phenotypes. Cells 2022; 11:cells11111824. [PMID: 35681519 PMCID: PMC9180515 DOI: 10.3390/cells11111824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammation is a life-saving immune reaction occurring in response to invading pathogens. Nonetheless, inflammation can also occur in an uncontrolled, unrestricted manner, leading to chronic disease and organ damage. Mechanisms triggering an inflammatory response, hindering such a response, or leading to its resolution are well-studied but so far insufficiently elucidated with regard to precise therapeutic interventions. Notably, as an immune reaction evolves, requirements and environments for immune cells change, and thus cellular phenotypes adapt and shift, leading to the appearance of distinct cellular subpopulations with new functional features. In this article, we aim to highlight properties of, and overarching regulatory factors involved in, the occurrence of immune cell phenotypes with a special focus on neutrophils, macrophages and platelets. Additionally, we point out implications for both diagnostics and therapeutics in inflammation research.
Collapse
|
10
|
Sun W, Zhang J, Shah A, Arias K, Berk Z, Griffith BP, Wu ZJ. Neutrophil dysfunction due to continuous mechanical shear exposure in mechanically assisted circulation in vitro. Artif Organs 2022; 46:83-94. [PMID: 34516005 PMCID: PMC8688241 DOI: 10.1111/aor.14068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/10/2021] [Accepted: 09/04/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Leukocytes play an important role in the body's immune system. The aim of this study was to assess alterations in neutrophil phenotype and function in pump-assisted circulation in vitro. METHODS Human blood was circulated for four hours in three circulatory flow loops with a CentriMag blood pump operated at a flow of 4.5 L/min at three rotational speeds (2100, 2800, and 4000 rpm), against three pressure heads (75, 150, and 350 mm Hg), respectively. Blood samples were collected hourly for analyses of neutrophil activation state (Mac-1, CD62L, CD162), neutrophil reactive oxygen species (ROS) production, apoptosis, and neutrophil phagocytosis. RESULTS Activated neutrophils indicated by both Mac-1 expression and decreased surface expression of CD62L and CD162 receptors increased with time in three loops. The highest level of neutrophil activation was observed in the loop with the highest rotational speed. Platelet-neutrophil aggregates (PNAs) progressively increased in two loops with lower rotational speeds. PNAs peaked at one hour after circulation and decreased subsequently in the loop with the highest rotational speed. Neutrophil ROS production dramatically increased at one hour after circulation and decreased subsequently in all three loops with similar levels and trends. Apoptotic neutrophils increased with time in all three loops. Neutrophil phagocytosis capacity in three loops initially elevated at one hour after circulation and decreased subsequently. Apoptosis and altered phagocytosis were dependent on rotational speed. CONCLUSIONS Our study revealed that the pump-assisted circulation induced neutrophil activation, apoptosis, and functional impairment. The alterations were strongly associated with pump operating condition and duration.
Collapse
Affiliation(s)
- Wenji Sun
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jiafeng Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aakash Shah
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Katherin Arias
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA,Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Zachary Berk
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bartley P Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhongjun J Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA,Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
11
|
Wu TH, Wu CH, Huang CJ, Chang YC. Anticlogging Hemofiltration Device for Mass Collection of Circulating Tumor Cells by Ligand-Free Size Selection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3399-3409. [PMID: 33689353 DOI: 10.1021/acs.langmuir.0c03613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new hemofiltration system was developed to continuously capture circulating tumor cells (CTCs) from a large volume of whole blood using a column that was packed with antifouling zwitterionized silica microspheres. The silica microspheres were modified with sulfobetaine silane (SBSi) to inhibit fouling, resist clogging, and give a high surface wettability and prolonged operation time. Packed microspheres with different diameters formed size-controllable interstitial pores that effectively captured CTCs by ligand-free size selection. For optimized performance of the hemofiltration system, operational factors, including the size of microspheres, flow rate, and cross-sectional area of the column, were considered with respect to the removal rate for colorectal cancer cells and the retention rate for white blood cells and red blood cells. The captured CTCs were collected from the column by density sedimentation. A large quantity of colorectal cancer cells was spiked into sheep blood, and the sample was circulated for 5 h with a total operational volume of 2 L followed by collection and culture in vitro. The results showed that the proposed hemofiltration device selectively removed abundant CTCs from in vitro circulatory blood. The viable cells were harvested for amplification and potential applications for precision medicine.
Collapse
Affiliation(s)
- Tzu-Hsien Wu
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Cheng-Han Wu
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Chun-Jen Huang
- Chemical & Materials Engineering Department, National Central University, Jhong-Li, Taoyuan 320, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Road, Chung-Li City 32023, Taiwan
- NCU-DSM Research Center, National Central University, Jhong-Li, Taoyuan 320, Taiwan
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Road, Nankang, Taipei 115, Taiwan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
12
|
Shin HY, Fukuda S, Schmid-Schönbein GW. Fluid shear stress-mediated mechanotransduction in circulating leukocytes and its defect in microvascular dysfunction. J Biomech 2021; 120:110394. [PMID: 33784517 DOI: 10.1016/j.jbiomech.2021.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Leukocytes (neutrophils, monocytes) in the active circulation exhibit multiple phenotypic indicators for a low level of cellular activity, like lack of pseudopods and minimal amounts of activated, cell-adhesive integrins on their surfaces. In contrast, before these cells enter the circulation in the bone marrow or when they recross the endothelium into extravascular tissues of peripheral organs they are fully activated. We review here a multifaceted mechanism mediated by fluid shear stress that can serve to deactivate leukocytes in the circulation. The fluid shear stress controls pseudopod formation via the FPR receptor, the same receptor responsible for pseudopod projection by localized actin polymerization. The bioactivity of macromolecular factors in the blood plasma that interfere with receptor stimulation by fluid flow, such as proteolytic cleavage in the extracellular domain of the receptor or the membrane actions of cholesterol, leads to a defective ability to respond to fluid shear stress by actin depolymerization. The cell reaction to fluid shear involves CD18 integrins, nitric oxide, cGMP and Rho GTPases, is attenuated in the presence of inflammatory mediators and modified by glucocorticoids. The mechanism is abolished in disease models (genetic hypertension and hypercholesterolemia) leading to an increased number of activated leukocytes in the circulation with enhanced microvascular resistance and cell entrapment. In addition to their role in binding to biochemical agonists/antagonists, membrane receptors appear to play a second role: to monitor local fluid shear stress levels. The fluid shear stress control of many circulating cell types such as lymphocytes, stem cells, tumor cells remains to be elucidated.
Collapse
Affiliation(s)
- Hainsworth Y Shin
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States; Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories Center for Devices and Radiological Health, The Food & Drive Administration, Silver Spring, MD, United States
| | - Shunichi Fukuda
- Department of Neurosurgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | |
Collapse
|
13
|
Yamasaki H, Mitsuyama K, Yoshioka S, Kuwaki K, Yamauchi R, Fukunaga S, Mori A, Tsuruta O, Torimura T. Leukocyte Apheresis Using a Fiber Filter Suppresses Colonic Injury Through Calcitonin Gene-Related Peptide Induction. Inflamm Bowel Dis 2020; 26:709-719. [PMID: 31821463 DOI: 10.1093/ibd/izz303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND The aim of this study was to address whether the therapeutic effect of leukocytapheresis (LCAP) depends on calcitonin gene- related peptide (CGRP) induction. METHODS An HLA-B27 transgenic rat model was treated with an LCAP column. The effects of LCAP on clinical, endoscopic, and histologic disease activity, the colony-forming ability of colony-forming unit (CFU)-granulocyte macrophages (GMs), colonic blood flow, and tissue expression of tumor necrosis factor (TNF)-α and CGRP were examined. Changes in the effects of LCAP after pretreatment with the CGRP antagonist CGRP8-37 were also observed. A dextran sulfate sodium-induced colitis rat model included treatment with CGRP, and the effect was assessed based on clinical, endoscopic, and histologic disease activity, colonic blood flow, the colony-forming ability of CFU-GMs, and tissue expression of inflammatory cytokines and CGRP receptor families. RESULTS LCAP improved disease activity, enhanced colonic blood flow, and induced the bone marrow colony-forming ability of CFU-GMs with an increase in CGRP mRNA levels. These effects were abolished by pretreatment with CGRP8-37. The administration of CGRP suppressed colitis, promoting colonic blood flow, inducing bone marrow-derived cells, downregulating inflammatory cytokines, and upregulating receptor activity-modifying protein-1. The mRNA and protein levels of inflammatory cytokines in lipopolysaccharide-stimulated mononuclear cells were also decreased after CGRP treatment. CONCLUSIONS The therapeutic effects of LCAP depend on CGRP induction. CGRP can effectively suppress colitis through the downregulation of inflammatory events and upregulation of protective events.
Collapse
Affiliation(s)
- Hiroshi Yamasaki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Keiichi Mitsuyama
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Shinichiro Yoshioka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Kotaro Kuwaki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ryosuke Yamauchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Shuhei Fukunaga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Atsushi Mori
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Osamu Tsuruta
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
14
|
Simmonds M, Thamsen B, Kertzscher U. Blood damage in ventricular assist devices. Int J Artif Organs 2019; 42:111-112. [PMID: 30862276 DOI: 10.1177/0391398819834736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Michael Simmonds
- 1 Biorheology Research Laboratory, Menzies Health Institute Queensland, Australia
| | - Bente Thamsen
- 2 Pediatric Heart Center, University Children's Hospital Zurich, Switzerland
| | - Ulrich Kertzscher
- 3 Biofluid Mechanics Laboratory, Charité - Universitaetsmedizin Berlin, Germany
| |
Collapse
|