1
|
Zhang J, Han D, Chen Z, Wang S, Sun W, Griffith BP, Wu ZJ. Linking Computational Fluid Dynamics Modeling to Device-Induced Platelet Defects in Mechanically Assisted Circulation. ASAIO J 2024; 70:1085-1093. [PMID: 38768482 PMCID: PMC11576481 DOI: 10.1097/mat.0000000000002242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Thrombotic and bleeding events are the most common hematologic complications in patients with mechanically assisted circulation and are closely related to device-induced platelet dysfunction. In this study, we sought to link computational fluid dynamics (CFD) modeling of blood pumps with device-induced platelet defects. Fresh human blood was circulated in circulatory loops with four pumps (CentriMag, HVAD, HeartMate II, and CH-VAD) operated under a total of six clinically representative conditions. Blood samples were collected and analyzed for glycoprotein (GP) IIb/IIIa activation and receptor shedding of GPIbα and GPVI. In parallel, CFD modeling was performed to characterize the blood flow in these pumps. Numerical indices of platelet defects were derived from CFD modeling incorporating previously derived power-law models under constant shear conditions. Numerical results were correlated with experimental results by regression analysis. The results suggested that a scalar shear stress of less than 75 Pa may have limited contribution to platelet damage. The platelet defect indices predicted by the CFD power-law models after excluding shear stress <75 Pa correlated excellently with experimentally measured indices. Although numerical prediction based on the power-law model cannot directly reproduce the experimental data. The power-law model has proven its effectiveness, especially for quantitative comparisons.
Collapse
Affiliation(s)
- Jiafeng Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Dong Han
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Zengsheng Chen
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Shigang Wang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Wenji Sun
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Bartley P. Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Zhongjun J. Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD
| |
Collapse
|
2
|
Hahne M, Crone V, Thomas I, Wolfgramm C, Liedtke FKP, Wurm FH, Torner B. Interaction of a Ventricular Assist Device With Patient-Specific Cardiovascular Systems: In-Silico Study With Bidirectional Coupling. ASAIO J 2024; 70:832-840. [PMID: 38551498 PMCID: PMC11426988 DOI: 10.1097/mat.0000000000002181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Ventricular assist devices (VADs) are used to assist the heart function of patients with advanced heart failure. Computational fluid dynamics in VADs are widely applied in the development and optimization, for example, to evaluate blood damage. For these simulations, the pulsating operating conditions, in which the VAD operates, should be included accurately. Therefore, this study aims to evaluate the flow in a VAD by interacting with patient-specific cardiovascular systems of heart failure patients. A numeric method will be presented, which includes a patient-specific cardiovascular system model that is bidirectionally coupled with a three-dimensional (3D) flow simulation of the HeartMate 3. The cardiovascular system is represented by a lumped parameter model. Three heart failure patients are considered, based on clinical data from end-stage heart failure patients. Various parameters of the cardiovascular system and the VAD are analyzed, for example, flow rates, pressures, VAD heads, and efficiencies. A further important parameter is the blood damage potential of the VAD, which varies significantly among different patients. Moreover, the predicted blood damage fluctuates within a single heartbeat. The increase in blood damage is evaluated based on the operating conditions. Both, overload and especially partial load conditions during the pulsating operation result in elevated blood damage.
Collapse
Affiliation(s)
- Mario Hahne
- From the Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Vincenz Crone
- From the Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Inga Thomas
- From the Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Calvin Wolfgramm
- From the Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | | | - Frank-Hendrik Wurm
- From the Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Benjamin Torner
- From the Institute of Turbomachinery, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Crone V, Hahne M, Knüppel F, Wurm FH, Torner B. Dynamic VAD simulations: Performing accurate simulations of ventricular assist devices in interaction with the cardiovascular system. Int J Artif Organs 2024; 47:624-632. [PMID: 39238170 PMCID: PMC11656629 DOI: 10.1177/03913988241268067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/15/2024] [Indexed: 09/07/2024]
Abstract
Medical advancements, particularly in ventricular assist devices (VADs), have notably advanced heart failure (HF) treatment, improving patient outcomes. However, challenges such as adverse events (strokes, bleeding and thrombosis) persist. Computational fluid dynamics (CFD) simulations are instrumental in understanding VAD flow dynamics and the associated flow-induced adverse events resulting from non-physiological flow conditions in the VAD.This study aims to validate critical CFD simulation parameters for accurate VAD simulations interacting with the cardiovascular system, building upon the groundwork laid by Hahne et al. A bidirectional coupling technique was used to model dynamic (pulsatile) flow conditions of the VAD CFD interacting with the cardiovascular system. Mesh size, time steps and simulation method (URANS, LES) were systematically varied to evaluate their impact on the dynamic pump performance (dynamic H - Q curve) of the HeartMate 3, aiming to find the optimal simulation configuration for accurately reproduce the dynamic H - Q curve. The new Overlapping Ratio (OR) method was developed and applied to quantify dynamic H - Q curves.In particular, mesh and time step sizes were found to have the greatest influence on the calculated pump performance. Therefore, small time steps and large mesh sizes are recommended to obtain accurate dynamic H - Q curves. On the other hand, the influence of the simulation method was not significant in this study. This study contributes to advancing VAD simulations, ultimately enhancing clinical efficacy and patient outcomes.
Collapse
Affiliation(s)
- Vincenz Crone
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Mario Hahne
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Finn Knüppel
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | | | - Benjamin Torner
- Institute of Turbomachinery, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Bornoff J, Zaman SF, Najar A, Finocchiaro T, Perkins IL, Cookson AN, Fraser KH. Assessment of haemolysis models for a positive-displacement total artificial heart. Int J Artif Organs 2024; 47:570-581. [PMID: 39297328 DOI: 10.1177/03913988241267797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The assessment and reduction of haemolysis within mechanical circulatory support (MCS) remains a concern with regard to device safety and regulatory approval. Numerical methods for predicting haemolysis have typically been applied to rotary MCS devices and the extent to which these methods apply to positive-displacement MCS is unclear. The aim of this study was to evaluate the suitability of these methods for assessing haemolysis in positive-displacement blood pumps. Eulerian scalar-transport and Lagrangian particle-tracking approaches derived from the shear-based power-law relationship were used to calculate haemolysis in a computational fluid dynamics model of the Realheart total artificial heart. A range of power-law constants and their effect on simulated haemolysis were also investigated. Both Eulerian and Lagrangian methods identified the same key mechanism of haemolysis: leakage flow through the bileaflet valves. Whilst the magnitude of haemolysis varied with different power-law constants, the method of haemolysis generation remained consistent. The Eulerian method was more robust and reliable at identifying sites of haemolysis generation, as it was able to capture the persistent leakage flow throughout the entire pumping cycle. This study paves the way for different positive-displacement MCS devices to be compared across different operating conditions, enabling the optimisation of these pumps for improved patient outcomes.
Collapse
Affiliation(s)
- Joseph Bornoff
- Department of Mechanical Engineering, University of Bath, Bath, UK
- Centre for Bioengineering & Biomedical Technologies, University of Bath, UK
| | | | - Azad Najar
- Scandinavian Real Heart AB, Västerås, Sweden
| | | | | | - Andrew N Cookson
- Department of Mechanical Engineering, University of Bath, Bath, UK
- Centre for Bioengineering & Biomedical Technologies, University of Bath, UK
| | - Katharine H Fraser
- Department of Mechanical Engineering, University of Bath, Bath, UK
- Centre for Bioengineering & Biomedical Technologies, University of Bath, UK
| |
Collapse
|
5
|
Abeken J, de Zelicourt D, Kurtcuoglu V. Incorporating Unresolved Stresses in Blood Damage Modeling: Energy Dissipation More Accurate Than Reynolds Stress Formulation. IEEE Trans Biomed Eng 2024; 71:563-573. [PMID: 37643096 DOI: 10.1109/tbme.2023.3309338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Reynolds Averaged Navier Stokes (RANS) models are often used as the basis for modeling blood damage in turbulent flows. To predict blood damage by turbulence stresses that are not resolved in RANS, a stress formulation that represents the corresponding scales is required. Here, we compare two commonly employed stress formulations: a scalar stress representation that uses Reynolds stresses as a surrogate for unresolved fluid stresses, and an effective stress formulation based on energy dissipation. METHODS We conducted unsteady RANS simulations of the CentriMag blood pump with three different closure models and a Large Eddy Simulation (LES) for reference. We implemented both stress representations in all models and compared the resulting total stress distributions in Eulerian and Lagrangian frameworks. RESULTS The Reynolds-stress-based approach overestimated the contribution of unresolved stresses in RANS, with differences between closure models of up to several orders of magnitude. With the dissipation-based approach, the total stresses predicted with RANS deviated by about 50% from the LES reference, which was more accurate than only considering resolved stresses. CONCLUSION The Reynolds-stress-based formulation proved unreliable for estimating scalar stresses in our RANS simulations, while the dissipation-based approach provided an accuracy improvement over simply neglecting unresolved stresses. SIGNIFICANCE Our results suggest that dissipation-based inclusion of unresolved stresses should be the preferred choice for blood damage modeling in RANS.
Collapse
|
6
|
Huo M, Giridharan GA, Sethu P, Qu P, Qin K, Wang Y. Numerical simulation analysis of multi-scale computational fluid dynamics on hemodynamic parameters modulated by pulsatile working modes for the centrifugal and axial left ventricular assist devices. Comput Biol Med 2024; 169:107788. [PMID: 38091724 DOI: 10.1016/j.compbiomed.2023.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
Continuous flow (CF) left ventricular assist devices (LVAD) operate at a constant speed mode, which could result in increased risk of adverse events due to reduced vascular pulsatility. Consequently, pump speed modulation algorithms have been proposed to augment vascular pulsatility. However, the quantitative local hemodynamic effects on the aorta when the pump is operating with speed modulation using different types of CF-LVADs are still under investigation. The computational fluid dynamics (CFD) study was conducted to quantitatively elucidate the hemodynamic effects on a clinical patient-specific aortic model under different speed patterns of CF-LVADs. Pressure distribution, wall shear stress (WSS), time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), and velocity were calculated to compare their differences at constant and pulsatile speeds under centrifugal and axial LVAD support. Results showed that pulse pressure on the aorta was significantly larger under pulsatile speed mode than that under constant speed mode for both CF-LVADs, indicating enhanced aorta pulsatility, as well as the higher peak blood flow velocity on some representative slices of aorta. Pulsatile speed modulation enhanced peak WSS compared to constant speed; high TAWSS region appeared near the branch of left common carotid artery and distal aorta regardless of speed modes and CF-LVADs but these regions also had low OSI; RRT was almost the same for all the cases. This study may provide a basis for the scientific and reasonable selection of the pulsatile speed patterns of CF-LVADs for treating heart failure patients.
Collapse
Affiliation(s)
- Mingming Huo
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
| | | | - Palaniappan Sethu
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine and Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peng Qu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Kairong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Yu Wang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| |
Collapse
|
7
|
Wang L, Jiang X, Zhang K, Chen K, Wu P, Li X. A hemodynamic analysis of energy loss in abdominal aortic aneurysm using three-dimension idealized model. Front Physiol 2024; 15:1330848. [PMID: 38312315 PMCID: PMC10834748 DOI: 10.3389/fphys.2024.1330848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Objective: The aim of this study is to perform specific hemodynamic simulations of idealized abdominal aortic aneurysm (AAA) models with different diameters, curvatures and eccentricities and evaluate the risk of thrombosis and aneurysm rupture. Methods: Nine idealized AAA models with different diameters (3 cm or 5 cm), curvatures (0° or 30°) and eccentricities (centered on or tangent to the aorta), as well as a normal model, were constructed using commercial software (Solidworks; Dassault Systemes S.A, Suresnes, France). Hemodynamic simulations were conducted with the same time-varying volumetric flow rate extracted from the literature and 3-element Windkessel model (3 EWM) boundary conditions were applied at the aortic outlet. Several hemodynamic parameters such as time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), endothelial cell activation potential (ECAP) and energy loss (EL) were obtained to evaluate the risk of thrombosis and aneurysm rupture under different conditions. Results: Simulation results showed that the proportion of low TAWSS region and high OSI region increases with the rising of aneurysm diameter, whereas decreases in the curvature and eccentric models of the corresponding diameters, with the 5 cm normal model having the largest low TAWSS region (68.5%) and high OSI region (40%). Similar to the results of TAWSS and OSI, the high ECAP and high RRT areas were largest in the 5 cm normal model, with the highest wall-averaged value (RRT: 5.18 s, ECAP: 4.36 Pa-1). Differently, the increase of aneurysm diameter, curvature, and eccentricity all lead to the increase of mean flow EL and turbulent EL, such that the highest mean flow EL (0.82 W · 10-3) and turbulent EL (1.72 W · 10-3) were observed in the eccentric 5 cm model with the bending angle of 30°. Conclusion: Collectively, increases in aneurysm diameter, curvature, and eccentricity all raise mean flow EL and turbulent flow EL, which may aggravate the damage and disturbance of flow in aneurysm. In addition, it can be inferred by conventional parameters (TAWSS, OSI, RRT and ECAP) that the increase of aneurysm diameter may raise the risk of thrombosis, whereas the curvature and eccentricity appeared to have a protective effect against thrombosis.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xudong Jiang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kejia Zhang
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Kai Chen
- Artificial Organ Technology Laboratory, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Peng Wu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, China
| | - Xiaoqiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Knüppel F, Sun A, Wurm FH, Hussong J, Torner B. Effect of Particle Migration on the Stress Field in Microfluidic Flows of Blood Analog Fluids at High Reynolds Numbers. MICROMACHINES 2023; 14:1494. [PMID: 37630030 PMCID: PMC10456677 DOI: 10.3390/mi14081494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
In the present paper, we investigate how the reductions in shear stresses and pressure losses in microfluidic gaps are directly linked to the local characteristics of cell-free layers (CFLs) at channel Reynolds numbers relevant to ventricular assist device (VAD) applications. For this, detailed studies of local particle distributions of a particulate blood analog fluid are combined with wall shear stress and pressure loss measurements in two complementary set-ups with identical flow geometry, bulk Reynolds numbers and particle Reynolds numbers. For all investigated particle volume fractions of up to 5%, reductions in the stress and pressure loss were measured in comparison to a flow of an equivalent homogeneous fluid (without particles). We could explain this due to the formation of a CFL ranging from 10 to 20 μm. Variations in the channel Reynolds number between Re = 50 and 150 did not lead to measurable changes in CFL heights or stress reductions for all investigated particle volume fractions. These measurements were used to describe the complete chain of how CFL formation leads to a stress reduction, which reduces the apparent viscosity of the suspension and results in the Fåhræus-Lindqvist effect. This chain of causes was investigated for the first time for flows with high Reynolds numbers (Re∼100), representing a flow regime which can be found in the narrow gaps of a VAD.
Collapse
Affiliation(s)
- Finn Knüppel
- Institute of Turbomachinery, Faculty for Mechanical Engineering and Ship Design, University of Rostock, 18055 Rostock, Germany; (F.K.); (F.-H.W.)
| | - Ang Sun
- Institute for Fluid Mechanics and Aerodynamics, Technical University of Darmstadt, 64287 Darmstadt, Germany; (A.S.); (J.H.)
| | - Frank-Hendrik Wurm
- Institute of Turbomachinery, Faculty for Mechanical Engineering and Ship Design, University of Rostock, 18055 Rostock, Germany; (F.K.); (F.-H.W.)
| | - Jeanette Hussong
- Institute for Fluid Mechanics and Aerodynamics, Technical University of Darmstadt, 64287 Darmstadt, Germany; (A.S.); (J.H.)
| | - Benjamin Torner
- Institute of Turbomachinery, Faculty for Mechanical Engineering and Ship Design, University of Rostock, 18055 Rostock, Germany; (F.K.); (F.-H.W.)
| |
Collapse
|
9
|
Wu P. Recent advances in the application of computational fluid dynamics in the development of rotary blood pumps. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
10
|
Escher A, Hubmann EJ, Karner B, Messner B, Laufer G, Kertzscher U, Zimpfer D, Granegger M. Linking Hydraulic Properties to Hemolytic Performance of Rotodynamic Blood Pumps. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andreas Escher
- Department of Cardiac Surgery Medical University of Vienna Vienna 1090 Austria
| | | | - Barbara Karner
- Department of Cardiac Surgery Medical University of Vienna Vienna 1090 Austria
| | - Barbara Messner
- Cardiac Surgery Research Laboratory Medical University of Vienna Vienna 1090 Austria
| | - Günther Laufer
- Department of Cardiac Surgery Medical University of Vienna Vienna 1090 Austria
| | - Ulrich Kertzscher
- Biofluid Mechanics Laboratory Charité‐Universitätsmedizin Berlin 10117 Berlin Germany
| | - Daniel Zimpfer
- Department of Cardiac Surgery Medical University of Vienna Vienna 1090 Austria
| | - Marcus Granegger
- Department of Cardiac Surgery Medical University of Vienna Vienna 1090 Austria
- Biofluid Mechanics Laboratory Charité‐Universitätsmedizin Berlin 10117 Berlin Germany
| |
Collapse
|
11
|
Li Y, Yu J, Wang H, Xi Y, Deng X, Chen Z, Fan Y. Investigation of the influence of blade configuration on the hemodynamic performance and blood damage of the centrifugal blood pump. Artif Organs 2022; 46:1817-1832. [PMID: 35436361 DOI: 10.1111/aor.14265] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE The design and optimization of centrifugal blood pumps is crucial for improved extracorporeal membrane oxygenation system performances. Secondary flow passages are common in centrifugal blood pumps, allowing for a high volume of unstable flow. Traditional design theory offers minimal guidance on the design and optimization of centrifugal blood pumps, so it's critical to understand how design parameter variables affect hydraulic performances and hemocompatibility. METHODS Computational fluid dynamics (CFD) was employed to investigate the effects of blade number, blade wrap angle, blade thickness, and splitters on pressure head, hemolysis, and platelet activation state. Eulerian and Lagrangian features were used to analyze the flow fields and hemocompatibility metrics such as scalar shear stress, velocity distribution, and their correlation. RESULTS The equalization of frictional and flow losses allow impellers with more blades and smaller wrap angles to have higher pressure heads, whereas the trade-off between the volume of high scalar shear stress and exposure time allows impellers with fewer blades and larger blade wrap angles to have a lower HI; there are configurations that increase the possibility of platelet activation for both number of blades and wrap angles. The hydraulic performance and hemocompatibility of centrifugal blood pumps are not affected by blade thickness. Compared to the main blades, a splitters can improve the blood compatibility of a centrifugal blood pump with a small reduction in pressure head, but there is a trade-off between the length and location of the splitter that suppresses flow losses while reducing the velocity gradient. According to correlation analysis, pressure head, HI, and the volume of high shear stress were all substantially connected, and exposure time had a significant impact on HI. The platelet activation state was influenced by the average scalar shear stress and the volume of low velocity. CONCLUSION The findings reveal the impact of design variables on the performance of centrifugal blood pumps with secondary flow passages, as well as the relationship between hemocompatibility, hydraulic performance, and flow characteristics, and are useful for the design and optimization of this type of blood pump, as well as the prediction of clinical complications.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jiachen Yu
- School of Sino-french Engineer, Beihang University, Beijing, 100083, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
12
|
Strauch C, Escher A, Wulff S, Kertzscher U, Zimpfer D, Thamsen PU, Granegger M. Validation of Numerically Predicted Shear Stress-dependent Dissipative Losses Within a Rotary Blood Pump. ASAIO J 2021; 67:1148-1158. [PMID: 34582408 DOI: 10.1097/mat.0000000000001488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Computational fluid dynamics find widespread application in the development of rotary blood pumps (RBPs). Yet, corresponding simulations rely on shear stress computations that are afflicted with limited resolution while lacking validation. This study aimed at the experimental validation of integral hydraulic properties to analyze global shear stress resolution across the operational range of a novel RBP. Pressure head and impeller torque were numerically predicted based on Unsteady Reynolds-averaged Navier-Stokes (URANS) simulations and validated on a testbench with integrated sensor modalities (flow, pressure, and torque). Validation was performed by linear regression and Bland-Altman analysis across nine operating conditions. In power loss analysis (PLA), in silico hydraulic power losses were derived based on the validated hydraulic quantities and balanced with in silico shear-dependent dissipative power losses. Discrepancies among both terms provided a measure of in silico shear stress resolution. In silico and in vitro data correlated with low discordance in pressure (r = 0.992, RMSE = 1.02 mmHg), torque (r = 0.999, RMSE = 0.034 mNm), and hydraulic power losses (r = 0.990, RMSE = 0.015W). PLA revealed numerically predicted dissipative losses to be up to 34.4% smaller than validated computations of hydraulic losses. This study confirmed the suitability of URANS settings to predict integral hydraulic properties. However, numerical credibility was hampered by lacking resolution of shear-dependent dissipative losses.
Collapse
Affiliation(s)
- Carsten Strauch
- From the Department of Fluid System Dynamics, Technische Universität Berlin, Berlin, Germany
| | - Andreas Escher
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.,Biofluid Mechanics Laboratory, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Wulff
- From the Department of Fluid System Dynamics, Technische Universität Berlin, Berlin, Germany
| | - Ulrich Kertzscher
- Biofluid Mechanics Laboratory, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Zimpfer
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Paul Uwe Thamsen
- From the Department of Fluid System Dynamics, Technische Universität Berlin, Berlin, Germany
| | - Marcus Granegger
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria.,Biofluid Mechanics Laboratory, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Ludwig-Boltzmann-Cluster for Cardiovascular Research, Vienna, Austria
| |
Collapse
|
13
|
Konnigk L, Torner B, Bruschewski M, Grundmann S, Wurm FH. Equivalent Scalar Stress Formulation Taking into Account Non-Resolved Turbulent Scales. Cardiovasc Eng Technol 2021; 12:251-272. [PMID: 33675019 PMCID: PMC8169507 DOI: 10.1007/s13239-021-00526-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Cardiovascular engineering includes flows with fluid-dynamical stresses as a parameter of interest. Mechanical stresses are high-risk factors for blood damage and can be assessed by computational fluid dynamics. By now, it is not described how to calculate an adequate scalar stress out of turbulent flow regimes when the whole share of turbulence is not resolved by the simulation method and how this impacts the stress calculation. METHODS We conducted direct numerical simulations (DNS) of test cases (a turbulent channel flow and the FDA nozzle) in order to access all scales of flow movement. After validation of both DNS with literature und experimental data using magnetic resonance imaging, the mechanical stress is calculated as a baseline. Afterwards, same flows are calculated using state-of-the-art turbulence models. The stresses are computed for every result using our definition of an equivalent scalar stress, which includes the influence from respective turbulence model, by using the parameter dissipation. Afterwards, the results are compared with the baseline data. RESULTS The results show a good agreement regarding the computed stress. Even when no turbulence is resolved by the simulation method, the results agree well with DNS data. When the influence of non-resolved motion is neglected in the stress calculation, it is underpredicted in all cases. CONCLUSION With the used scalar stress formulation, it is possible to include information about the turbulence of the flow into the mechanical stress calculation even when the used simulation method does not resolve any turbulence.
Collapse
Affiliation(s)
- Lucas Konnigk
- Institute of Turbomachinery, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany.
| | - Benjamin Torner
- Institute of Turbomachinery, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Martin Bruschewski
- Institute of Fluid Mechanics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Sven Grundmann
- Institute of Fluid Mechanics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Frank-Hendrik Wurm
- Institute of Turbomachinery, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| |
Collapse
|
14
|
Torner B, Konnigk L, Abroug N, Wurm H. Turbulence and turbulent flow structures in a ventricular assist device-A numerical study using the large-eddy simulation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3431. [PMID: 33336869 DOI: 10.1002/cnm.3431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Numerical flow simulations that analyze the turbulent flow characteristics within a turbopump are important for optimizing the efficiency of such machines. In the case of ventricular assist devices (VADs), turbulent flow characteristics must be also examined in order to improve hemocompatibility. Turbulence increases the shear stresses in the VAD flow, which can lead to an increased damage to the transported blood components. Therefore, an understanding of the turbulent flow patterns and their significance for the numerical blood damage prediction is particularly important for flow optimizations in VADs in order to identify and thus minimize flow regions where blood could be damaged due to high turbulent stresses. Nevertheless, the turbulence occurring in VADs and the local turbulent structures that lead to increased turbulent stresses have not yet been analyzed in detail in these machines. Therefore, this study aims to investigate the turbulence in an axial VAD in a comprehensive and double tracked way. First, the flow in an axial VAD was computed using the large-eddy simulation method, and it was verified that the majority of the turbulence was directly resolved by the simulation. Then, the turbulent flow state of the VAD was quantified globally. For this purpose, a self-designed evaluation method, the power loss analysis, was used. Subsequently, local flow regions and flow structures were identified where significant turbulent stresses prevail. It will be shown that the identified regions are universal and will also occur in other axial blood pumps as well, for example, in the HeartMate II.
Collapse
Affiliation(s)
- Benjamin Torner
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Lucas Konnigk
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Nada Abroug
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Hendrik Wurm
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| |
Collapse
|
15
|
Wisniewski A, Medart D, Wurm FH, Torner B. Evaluation of clinically relevant operating conditions for left ventricular assist device investigations. Int J Artif Organs 2020; 44:92-100. [PMID: 32605416 DOI: 10.1177/0391398820932925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Standardized boundary conditions for flow rate and pressure difference are currently not available for the development and certification process of ventricular assist devices. Thus, interdisciplinary studies lack comparability and quantitative assessment. Universally valid boundary conditions could be used for the application of numerical and experimental investigations and the approval procedure of ventricular assist devices. In order to define such boundaries, physiological data from INCOR® patients were evaluated. A total of 599 out of possible 627 ventricular assist device patients were analyzed regarding their cardiac demands of flow rate and pressure head. An analysis of long-term data was performed, in order to provide respective, static mean values for benchmark testing. Furthermore, the short-term data of 188 patients delivered field data-based dynamic flow and pressure curves. The results of the study revealed physiologically reasonable boundary conditions, which can be applied in numerical or experimental investigations of ventricular assist devices. For steady flow analysis, single values for flow rate (4.46 L/min) and pressure head (62 mmHg) are suggested. For the support of pulsatile and unsteady flow studies, seven typical patients and one representative dynamic curve for flow rate and pressure head are proposed.The standardized results provided in this article, can be used in favor of interdisciplinary comparability of future numerical computations or in vitro ventricular assist device tests in research, development, and approval.
Collapse
Affiliation(s)
- A Wisniewski
- Berlin Heart GmbH, Berlin, Germany.,Universität Rostock, Fakultät für Maschinenbau und Schiffstechnik, Rostock, Germany
| | - D Medart
- Berlin Heart GmbH, Berlin, Germany
| | - F-H Wurm
- Universität Rostock, Fakultät für Maschinenbau und Schiffstechnik, Rostock, Germany
| | - B Torner
- Universität Rostock, Fakultät für Maschinenbau und Schiffstechnik, Rostock, Germany
| |
Collapse
|