1
|
Kudruk S, Forsyth CM, Dion MZ, Hedlund Orbeck JK, Luo J, Klein RS, Kim AH, Heimberger AB, Mirkin CA, Stegh AH, Artzi N. Multimodal neuro-nanotechnology: Challenging the existing paradigm in glioblastoma therapy. Proc Natl Acad Sci U S A 2024; 121:e2306973121. [PMID: 38346200 PMCID: PMC10895370 DOI: 10.1073/pnas.2306973121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Integrating multimodal neuro- and nanotechnology-enabled precision immunotherapies with extant systemic immunotherapies may finally provide a significant breakthrough for combatting glioblastoma (GBM). The potency of this approach lies in its ability to train the immune system to efficiently identify and eradicate cancer cells, thereby creating anti-tumor immune memory while minimizing multi-mechanistic immune suppression. A critical aspect of these therapies is the controlled, spatiotemporal delivery of structurally defined nanotherapeutics into the GBM tumor microenvironment (TME). Architectures such as spherical nucleic acids or poly(beta-amino ester)/dendrimer-based nanoparticles have shown promising results in preclinical models due to their multivalency and abilities to activate antigen-presenting cells and prime antigen-specific T cells. These nanostructures also permit systematic variation to optimize their distribution, TME accumulation, cellular uptake, and overall immunostimulatory effects. Delving deeper into the relationships between nanotherapeutic structures and their performance will accelerate nano-drug development and pave the way for the rapid clinical translation of advanced nanomedicines. In addition, the efficacy of nanotechnology-based immunotherapies may be enhanced when integrated with emerging precision surgical techniques, such as laser interstitial thermal therapy, and when combined with systemic immunotherapies, particularly inhibitors of immune-mediated checkpoints and immunosuppressive adenosine signaling. In this perspective, we highlight the potential of emerging treatment modalities, combining advances in biomedical engineering and neurotechnology development with existing immunotherapies to overcome treatment resistance and transform the management of GBM. We conclude with a call to action for researchers to leverage these technologies and accelerate their translation into the clinic.
Collapse
Affiliation(s)
- Sergej Kudruk
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Connor M. Forsyth
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Michelle Z. Dion
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jenny K. Hedlund Orbeck
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Jingqin Luo
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Robyn S. Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO63110
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO63110
| | - Albert H. Kim
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Amy B. Heimberger
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Alexander H. Stegh
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Natalie Artzi
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Medicine, Engineering in Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA02115
| |
Collapse
|
2
|
Wang J, Wang H, Liu Q, Hu K, Shao L, Wan J. Multidimensional modulation of systemic immune by neurosurgical tumor resection in patients with brain tumors. Immun Inflamm Dis 2022; 10:e703. [PMID: 36169250 PMCID: PMC9476887 DOI: 10.1002/iid3.703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Immune perturbation induced by tumor burden has been showed as the hallmark of brain tumors. To date, the vast majority of studies have focused heavily on local immune responses in the tumor microenvironment. Little is known about how the systemic immune macroenvironment is modulated by neurosurgical tumor resection in patients with brain tumors. METHOD Medical records from patients with brain tumors admitted to the Department of Neurosurgery at the National Cancer Center, Cancer Hospital of Chinese Academy of Medical Sciences between January 2021 and March 2022 were retrospectively reviewed. Forty-nine patients who have lymphocyte subsets, serum immunoglobulins, C-reactive protein, and complements levels before neurosurgical tumor resection and at least once test after surgery were included into the final analysis. RESULTS Postoperative CD3+ lymphocytes, CD4+ lymphocytes and CD4+ /CD8+ lymphocyte ratio presented bi-phasic changes, which indicated an initial decrease and a subsequent increase after neurosurgical tumor resection. Moreover, neurosurgical tumor resection induced a decrease in natural killer lymphocytes and an increase in B lymphocytes that persisted through the entire observation period after surgery. Meanwhile, significant changes in humoral immunity characterized by a decrease in immunoglobulins (IgA, IgG, and IgM) levels and an increase in the CRP level occurred after neurosurgical tumor resection. In addition, patients with postoperative infection complication had a lower preoperative CD4+ /CD8+ lymphocyte ratio. CONCLUSIONS These findings provide evidence that either cellular immunity or humoral immunity can be remodeled by neurosurgical tumor resection, and patients with disturbed systemic immunity have increased risk of infection after surgery.
Collapse
Affiliation(s)
- Jia‐Wei Wang
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Hong‐Liang Wang
- Department of NeurosurgeryThe Second Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Qi Liu
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Ke Hu
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Liujiazi Shao
- Department of Anesthesiology, Beijing Friendship HospitalCapital Medical UniversityBeijingPeople's Republic of China
| | - Jing‐Hai Wan
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople's Republic of China
| |
Collapse
|
3
|
Smith JD, Mandel G, Niazi T, Bradley JA, Indelicato DJ, Khatib Z. Multifocal and Multiphasic Demyelinating Lesions After Radiation for Ependymoma in a Pediatric Population. J Child Neurol 2022; 37:609-616. [PMID: 35619552 DOI: 10.1177/08830738221079476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Radiation treatment is widely used to address unresectable intracranial tumors. Owing to the nature of therapy, healthy tissue and diseased regions will be affected. New insights have shown that not only does this impact brain parenchyma but it causes changes in fluid status, myelination, and the integrity of the blood-brain barrier. This alters how peripheral and central immune systems interact, perpetuating neuroinflammation. Rare case reports in the adult literature have described multifocal, multiphasic demyelinating lesions after radiation. Here we describe 2 pediatric cases of relapsing demyelination after and in conjunction with radiation therapy for ependymoma, consistent with a multiple sclerosis phenotype. Insights into the underpinnings of multiple sclerosis show peripheral inflammation, blood-brain barrier disruption, and antigenic mimicry stimulating neuroinflammation. Here we investigate the role that radiation, tumor burden, and systemic inflammation may play in creating demyelinating disorders. We strive to elucidate common pathophysiology between radiation-induced brain injury and multiple sclerosis.
Collapse
Affiliation(s)
- Jacklyn D Smith
- Department of Pediatrics, 5447Nicklaus Children's Hospital, Miami, FL, USA
| | - Gabriel Mandel
- Department of Pediatrics, 5447Nicklaus Children's Hospital, Miami, FL, USA
| | - Toba Niazi
- Division of Neurosurgery, 5447Nicklaus Children's Hospital, Miami, FL, USA
| | - Julie A Bradley
- Department of Radiation Oncology, 50551University of Florida, Jacksonville, FL, USA
| | - Daniel J Indelicato
- Department of Radiation Oncology, 50551University of Florida, Jacksonville, FL, USA
| | - Ziad Khatib
- Department of Pediatrics, 5447Nicklaus Children's Hospital, Miami, FL, USA.,Division of Hematology-Oncology, 5447Nicklaus Children's Hospital, Miami, FL, USA
| |
Collapse
|
4
|
Seguella L, Capuano R, Sarnelli G, Esposito G. Play in advance against neurodegeneration: exploring enteric glial cells in gut-brain axis during neurodegenerative diseases. Expert Rev Clin Pharmacol 2019; 12:555-564. [PMID: 31025582 DOI: 10.1080/17512433.2019.1612744] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: New investigations have shown that 'activated' enteric glial cells (EGCs), astrocyte-like cells of the enteric nervous system (ENS), represent a possible extra-CNS trigger point of the neurodegenerative processes in impaired intestinal permeability conditions. The early modulation of enteric glia-mediated neuroinflammation might optimize neuroprotective treatments outcomes currently used in neurodegenerative diseases. Areas covered: We discussed recent clinical and preclinical data existing on the Pubmed database, concerning the glial role in neurodegeneration. We focused on the gut as possible "entrance door" for endoluminal neurotoxic agents that induce neurological impairments during leaky gut conditions. Moreover, we reviewed the paradigmatic studies linking the leaky gut-induced priming of EGCs to the induction of late neurodegenerative processes in Parkinson's disease and other neurodegenerative disorders. Expert opinion: The previous appearance of neuropathological markers in the ENS emphasizes the extra-CNS origin of neurodegenerative disorders, by directing their therapies toward peripheral management of neurodegeneration. In light of the EGCs changes resulting from a switch-on of activated phenotype in leaky gut syndrome, EGCs sampling could be predictive for neuropathological conditions detection, anticipating their symptomatic manifestation in the CNS.
Collapse
Affiliation(s)
- Luisa Seguella
- a Department of Physiology and Pharmacology "V. Erspamer" , Sapienza University of Rome , Rome , Italy
| | - Riccardo Capuano
- a Department of Physiology and Pharmacology "V. Erspamer" , Sapienza University of Rome , Rome , Italy
| | - Giovanni Sarnelli
- b Department of Clinical Medicine and Surgery , University of Naples 'Federico II' , Naples , Italy
| | - Giuseppe Esposito
- a Department of Physiology and Pharmacology "V. Erspamer" , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
5
|
Castellani ML, Petrarca C, Frydas S, Conti CM, Salini V, Conti P, Shanmugham LN. Rat Basophilic Leukemia Cells (RBL-2H3) Generate Prostaglandin D2 (PGD2) after Regulated upon Activation, Normal T-cell Expressed and Secreted (RANTES) activation. Int J Biol Markers 2018; 21:211-7. [PMID: 17177158 DOI: 10.1177/172460080602100403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Increasing evidence indicates that local neurogenic inflammation, possibly in response to different stimuli, may be involved in sensory nerve sensitization, migraine generation and some other precipitating events leading to neuronal dysfunction in the brain. In addition, mast cells generate eicosanoids that are linked to asthma and other inflammatory diseases. Regulated upon activation, normal T-cell expressed and secreted (RANTES) is a small protein and a prototype member of the CC chemokine-beta subfamily with chemoattractant and inflammatory properties. In this study we used the RBL-2H3 cell line to determine whether or not these cells generate prostaglandin D2 (PGD2) after treatment with RANTES. After 4 hours of incubation, RBL-2H3 cells cultured with RANTES at 20 ng/mL released large amounts of PGD2 in a dose-response manner compared to control. Moreover, RBL-treated RANTES generated a large quantity of histamine. Our study confirms once again the proinflammatory action of RANTES, in this case acting on the stimulation of the arachidonic acid cascade product PGD2.
Collapse
Affiliation(s)
- M L Castellani
- Department of Medicine and Aging, Medical School, University of Chieti-Pescara, Chieti, Italy.
| | | | | | | | | | | | | |
Collapse
|
6
|
Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, Zahoor H, Saeed D, Natteru PA, Iyer S, Zaheer A. Brain and Peripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2017; 11:216. [PMID: 28790893 PMCID: PMC5522882 DOI: 10.3389/fncel.2017.00216] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson’s disease (PD), Alzheimer’s disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1–42 (Aβ1–42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aβ and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can also enter into the peripheral system through defective BBB, recruit immune cells into the brain, and exacerbate neuroinflammation. We suggest that mast cell-associated inflammatory mediators from systemic inflammation and brain could augment neuroinflammation and neurodegeneration in the brain. This review article addresses the role of some atypical inflammatory mediators that are associated with mast cell inflammation and their activation of glial cells to induce neurodegeneration.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Govindhasamy P Selvakumar
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Smita Zaheer
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Mohammad E Ahmed
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Haris Zahoor
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Daniyal Saeed
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Prashant A Natteru
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Shankar Iyer
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Asgar Zaheer
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| |
Collapse
|
7
|
Success and Failures of Combined Modalities in Glioblastoma Multiforme: Old Problems and New Directions. Semin Radiat Oncol 2016; 26:281-98. [DOI: 10.1016/j.semradonc.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Rampling R, Peoples S, Mulholland PJ, James A, Al-Salihi O, Twelves CJ, McBain C, Jefferies S, Jackson A, Stewart W, Lindner J, Kutscher S, Hilf N, McGuigan L, Peters J, Hill K, Schoor O, Singh-Jasuja H, Halford SE, Ritchie JWA. A Cancer Research UK First Time in Human Phase I Trial of IMA950 (Novel Multipeptide Therapeutic Vaccine) in Patients with Newly Diagnosed Glioblastoma. Clin Cancer Res 2016; 22:4776-4785. [PMID: 27225692 PMCID: PMC5026298 DOI: 10.1158/1078-0432.ccr-16-0506] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE To perform a two-cohort, phase I safety and immunogenicity study of IMA950 in addition to standard chemoradiotherapy and adjuvant temozolomide in patients with newly diagnosed glioblastoma. IMA950 is a novel glioblastoma-specific therapeutic vaccine containing 11 tumor-associated peptides (TUMAP), identified on human leukocyte antigen (HLA) surface receptors in primary human glioblastoma tissue. EXPERIMENTAL DESIGN Patients were HLA-A*02-positive and had undergone tumor resection. Vaccination comprised 11 intradermal injections with IMA950 plus granulocyte macrophage colony-stimulating factor (GM-CSF) over a 24-week period, beginning 7 to 14 days prior to initiation of chemoradiotherapy (Cohort 1) or 7 days after chemoradiotherapy (Cohort 2). Safety was assessed according to NCI CTCAE Version 4.0 and TUMAP-specific T-cell immune responses determined. Secondary observations included progression-free survival (PFS), pretreatment regulatory T cell (Treg) levels, and the effect of steroids on T-cell responses. RESULTS Forty-five patients were recruited. Related adverse events included minor injection site reactions, rash, pruritus, fatigue, neutropenia and single cases of allergic reaction, anemia and anaphylaxis. Two patients experienced grade 3 dose-limiting toxicity of fatigue and anaphylaxis. Of 40 evaluable patients, 36 were TUMAP responders and 20 were multi-TUMAP responders, with no important differences between cohorts. No effect of pretreatment Treg levels on IMA950 immunogenicity was observed, and steroids did not affect TUMAP responses. PFS rates were 74% at 6 months and 31% at 9 months. CONCLUSIONS IMA950 plus GM-CSF was well-tolerated with the primary immunogenicity endpoint of observing multi-TUMAP responses in at least 30% of patients exceeded. Further development of IMA950 is encouraged. Clin Cancer Res; 22(19); 4776-85. ©2016 AACRSee related commentary by Lowenstein and Castro, p. 4760.
Collapse
Affiliation(s)
- Roy Rampling
- University of Glasgow, Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Sharon Peoples
- Edinburgh Centre for Neuro-Oncology, Western General Hospital, Edinburgh, United Kingdom
| | - Paul J Mulholland
- Department of Oncology, University College London Hospitals, London, United Kingdom
| | - Allan James
- University of Glasgow, Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Omar Al-Salihi
- Adult Neuro-Oncology, Southampton University Hospitals NHS Trust, Southampton, United Kingdom
| | - Christopher J Twelves
- Cancer Research UK Clinical Centre, St James's University Hospital, Leeds, United Kingdom
| | - Catherine McBain
- The Christie NHS Foundation Trust, Withington, Manchester, United Kingdom
| | - Sarah Jefferies
- Cambridge Cancer Trials Centre, Oncology Clinical Trials, Addensbrooke's Hospital, Cambridge, United Kingdom
| | - Alan Jackson
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
| | - Willie Stewart
- Department of Neuropathology, The Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Juha Lindner
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | | | - Norbert Hilf
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Lesley McGuigan
- Cancer Research UK Centre for Drug Development, London, United Kingdom
| | - Jane Peters
- Cancer Research UK Centre for Drug Development, London, United Kingdom
| | - Karen Hill
- Cancer Research UK Centre for Drug Development, London, United Kingdom
| | | | | | - Sarah E Halford
- Cancer Research UK Centre for Drug Development, London, United Kingdom
| | - James W A Ritchie
- Cancer Research UK Centre for Drug Development, London, United Kingdom.
| |
Collapse
|
9
|
Tsagozis P, Karagouni E, Dotsika E. Dendritic Cells Pulsed with Peptides of GP63 Induce Differential Protection against Experimental Cutaneous Leishmaniasis. Int J Immunopathol Pharmacol 2016; 17:343-52. [PMID: 15461868 DOI: 10.1177/039463200401700314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The need for a vaccine against Leishmania spp., a major cause of worldwide morbidity and mortality, is urgent. We tested the efficacy of an experimental vaccination in murine models of cutaneous leishmaniasis, using dendritic cells (DCs) pulsed with synthetic or native parasite antigens. DCs pulsed with peptide 154–169aa of gp63 or soluble promastigote lysate (SPL) triggered antigen-specific immune responses and efficiently reduced lesion formation and parasite load of genetically susceptible BALB/c mice infected with Leishmania major. This effect was accompanied by a modulation of the cellular immune response towards a Th1 profile. Vaccination of genetically resistant CBA mice with DCs pulsed with peptide 154–169aa or SPL did not affect the course of the disease, whereas pulsing with the epitope 467–482aa of gp63 resulted in disease exacerbation, accompanied by a switch to a Th2 profile. In view of our continuously growing knowledge about the immunobiology of DCs, these findings suggest that vaccination with DCs pulsed with defined peptides could be a strategy against infectious diseases. Peptide selection is a prerequisite as they can differentially regulate the type of immune response in susceptible or resistant hosts.
Collapse
Affiliation(s)
- P Tsagozis
- Laboratory of Cellular Immunology, Institute Pasteur Hellenique, Athens, Greece
| | | | | |
Collapse
|
10
|
Frydas S, Papaioannou N, Papazahariadou M, Hatzistilianou M, Karagouni E, Trakatelli M, Brellou G, Petrarca C, Castellani ML, Conti P, Riccioni G, Patruno A, Grilli A. Inhibition of MCP-1 and MIP-2 Chemokines in Murine Trichinellosis: Effect of the Anti-Inflammatory Compound L-Mimosine. Int J Immunopathol Pharmacol 2016; 18:85-94. [PMID: 15698514 DOI: 10.1177/039463200501800110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mimosine, is a plant amino-acid which has been reported to block DNA replication in mammalian cells and to arrest cells reversibly towards the end of the G1 phase or at the beginning of the S phase. In this study, 42 mice were infected with T. spiralis, a nematode parasite, and treated with the anti-inflammatory compound L-mimosine, to determine if any alteration in the chronic inflammatory state occurred, by investigating the host's immunological response. MCP-1, a C-C chemokine and MIP-2, a C-X-C chemokine were tested and measured in the sera of infected animals, after 1, 10, 20, 30, 40, 50 and 60 days postinfection, by ELISA method. The diaphragm/muscle and the masseters of the infected mice, were tested for inflammatory response. We found that MCP-1 was partially inhibited by L-mimosine, while MIP-2 was totally inhibited. Moreover, in sections of the diaphragm and masseters, the infiltration of inflammatory cells such as macrophages, lymphocytes and eosinophils were more intense in untreated animals compared to those treated with L-mimosine. These findings show, that L-mimosine may have an inhibitory effect on MCP-1 and MIP-2 serum levels in Trichinellosis and may influence the recruitment of inflammatory cells and the intensity of the inflammatory reaction in this parasitic disease.
Collapse
Affiliation(s)
- S Frydas
- Parasitology Dept. Veterinary Faculty, Aristotelian University of Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Brunetti L, Di Nisio C, Orlando G, Ferrante C, Vacca M. The Regulation of Feeding: A Cross Talk between Peripheral and Central Signalling. Int J Immunopathol Pharmacol 2016; 18:201-12. [PMID: 15888244 DOI: 10.1177/039463200501800203] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Feeding and energy expenditures are modulated by the interplay of hormones and neurotransmitters in the central nervous system (CNS), where the hypothalamus plays a pivotal role in the transduction of peripheral afferents into satiety and feeding signals. Aminergic neurotransmitters such as dopamine (DA), norepinephrine (NE) and serotonin (5-hydroxytryptamine, 5-HT) are historically considered to play a key role, but a number of peptides are involved in finely tuning feeding regulation. This review summarizes the current understanding of the CNS mechanisms of orexigenic peptides, such as neuropeptide Y, orexins, and ghrelin, as well as anorectic peptides, such as leptin, neurotensin (NT), cocaine- and amphetamine regulated transcript (CART) peptide, thyrotropin-releasing hormone (TRH), corticotropin-releasing hormone (CRH), urocortin, amylin.
Collapse
Affiliation(s)
- L Brunetti
- Department of Drug Sciences, G. D'Annunzio University, Chieti, Italy
| | | | | | | | | |
Collapse
|
12
|
Karagouni E, Athanassopoulou F, Tsagozis P, Ralli E, Moustakareas T, Lytra K, Dotsika E. The Impact of a Successful Anti-Myxosporean Treatment on the Phagocyte Functions of Juvenile and Adult Sparus Aurata L. Int J Immunopathol Pharmacol 2016; 18:121-32. [PMID: 15698517 DOI: 10.1177/039463200501800113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to investigate the impact of a successful anti-myxosporean medication on the innate immune system of fish intensively cultured in the Mediterranean basin. For this purpose, juvenile and adult gilthead seabream ( S. aurata L.) naturally infected with Polysporoplasma sparis in the kidney were used in a small-scale field trial. The infected fish were treated orally with the combination of salinomycin and amprolium, two drugs well known for their anti-coccidial effect in other animals. Drug efficacy and safety was evaluated in terms of changes observed in histopathology, mortality and P. sparis intensity and prevalence rate. Phagocytic functions of head-kidney leucocytes were also investigated at the end as well as one month post the medication. Salinomycin with amprolium exhibited a significant reduction in intensity and prevalence rate in both juvenile and adult fish, and no histopathological evidence for toxic side effects was observed. In addition, the successful treatment was closely correlated with a complete restoration of the diminished phagocytic ability and capacity as well as NO, and lysozyme secretion in a time dependent manner. This data suggests that salilomycin with amprolium can be an alternative treatment for myxosporean infections in warm-water fish, possibly exhibiting their action through the enhancement of host innate functions.
Collapse
Affiliation(s)
- E Karagouni
- Laboratory of Cellular Immunology, Institute Pasteur Hellenique, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
13
|
Domizio S, Barbante E, Puglielli C, Clementini E, Domizio R, Sabatino GMD, Albanese A, Colosimo C, Sabatino G. Excessively High Magnetic Resonance Signal in Preterm Infants and Neuropsychobehavioural Follow-up at 2 Years. Int J Immunopathol Pharmacol 2016; 18:365-75. [PMID: 15888258 DOI: 10.1177/039463200501800218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The diffuse excessive high-signal intensity (DEHSI) findings in the T2 weighted scans of white matter (WM), besides the corresponding low signal in the T1 weighted images, are usually more evident around the periventricular regions. It is not clear whether the DEHSI should be considered as a diffuse WM injury rather than a sign of delayed maturation of the WM. Eighty nine preterm infants at the full-term equivalent age (FEA) were studied using conventional Magnetic Resonance (MR) imaging of the brain. Based on the MR findings, the infants studied were divided into three groups: the control group presenting normal WM, the DEHSI group and the group with other WM lesions. Ten newborns were not included in the statistical analysis because they presented evidence of precedent germinal matrix hemorrhage (GMH-IVH) which cannot be considered as WM lesions. Seventy nine infants were enrolled in a program of neuropsychobehavioural study follow-up until 24 months of age. Each infant was evaluated for those variables which mostly affect the occurrence of neuropsychomotor disability. In the DEHSI infant group, significantly lower mean pH and mean base excess (BE) values were found in comparison to controls, while the mean birth weight (BW) was significantly higher. No significant difference was observed between the mean 1st minute Apgar Score, mean birth gestational age (GA) and assisted ventilation mean duration of controls and DEHSI groups. Finally, no significant difference between the parameters studied was found by comparing the WM lesion infants group to the DEHSI infants one. Our observations, together with follow-up studies, even up to school age, confirm that DEHSI has a clinical significance and cannot be considered as a simple indicator of delayed WM maturation.
Collapse
Affiliation(s)
- S Domizio
- Neonatal Intensive Care Unit, University G. D'Annunzio, Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bersani G, Iannitelli A, Massoni E, Garavini A, Grilli A, Di Giannantonio M, Conti CMV, Pancheri P. Ultradian Variation of Nerve Growth Factor Plasma Levels in Healthy and Schizophrenic Subjects. Int J Immunopathol Pharmacol 2016; 17:367-72. [PMID: 15461870 DOI: 10.1177/039463200401700316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Some studies in animal models showed that several neurotrophins may be implicated in the regulation of light-dependent suprachiasmatic pacemaker and in other functions implicated in long-term memory acquisition during sleep. However, no data are known about the role played by NGF in ultradian regulation in humans. The aim of this study was to investigate whether or not there is a natural diurnal fluctuation during daytime in healthy and schizophrenic subjects with a normal light/dark cycle. In a sample of 33 subjects (10 male schizophrenics and 23 healthy subjects) an ELISA assay was used to study the ultradian NGF cycle in blood samples at 9.00, 13.00 and 20.00 hours. The study showed an ultradian rhythm of NGF in healthy subjects with a “V” trend: higher at 9:00 and 20:00 and lower at 13:00. We also show significant differences between male and female controls. No NGF ultradian rhythm among schizophrenic patients compared to healthy subjects was found. The results of this study lead to a rhythmic NGF regulation that appears altered in schizophrenics, where higher levels in the morning and lower levels in the evening were observed, compared to the controls, and support the hypothesis of a role played by NGF in schizophrenia.
Collapse
Affiliation(s)
- G Bersani
- 3rd Psychiatric Clinic, Department of Psychiatry and Psychological Medicine, University of Rome "La Sapienza", Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gambi F, De Berardis D, Sepede G, Quartesan R, Calcagni E, Salerno RM, Conti CM, Ferro FM. Cannabinoid Receptors and Their Relationships with Neuropsychiatric Disorders. Int J Immunopathol Pharmacol 2016; 18:15-9. [PMID: 15698507 DOI: 10.1177/039463200501800103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cannabinoids are the costituents of the marijuana plants. The central effects of exogenous cannabinoids are implicated in enhancing mood, altering emotional states, and interfering in the formation of short-term memory. Cannabinoid receptors are G protein-coupled receptors with seven transmembrane domains that are expressed on the cell surface with their binding domain exposed to the extracellular space. To date, two cannabinoid receptors have been cloned, CB1 and CB2. Recent evidence suggests that a third ‘CB3’ receptor may be cloned in the near future. The endocannabinoids may represent the first members of a new classes of neuromodulators, that are not stored in cell vesicles, but rather synthesised by the cell on demand. The endogenous cannabinoid system could play a central role in several neuropsychiatric disorders and is also involved in other conditions such as pain, spasticity and neuroprotection. Implication of cannabinoid system in the pathogenesis and development of schizophrenia is also discussed.
Collapse
Affiliation(s)
- F Gambi
- Psychiatry Division, University of Chieti, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The mesenteric traction syndrome (MTS) remains, seventeen years after its first designation as a distinct pathologic entity, an aspect of surgical practice that has received limited attention. Apart from its symptomatology, there is mostly speculation about its exact causes and pathophysiologic mechanisms. Even though full-blown MTS is rather rare, the advent of laparoscopic surgery has indicated that there are different stages of stress associated with open abdominal surgery. Some evidence points to the involvement of mast cell derived vasoactive mediators and suggests possible pharmacologic management.
Collapse
|
17
|
Di Giannantonio M, Frydas S, Kempuraj D, Karagouni E, Hatzistilianou M, Conti CM, Boucher W, Papadopoulou N, Donelan J, Cao J, Madhappan B, Boscolo P, Petrarca C, Castellani L, Quartesan L, Doyle R, Ferro FM. Cytokines in Stress. Int J Immunopathol Pharmacol 2016; 18:1-5. [PMID: 15698505 DOI: 10.1177/039463200501800101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
18
|
Reardon DA, Freeman G, Wu C, Chiocca EA, Wucherpfennig KW, Wen PY, Fritsch EF, Curry WT, Sampson JH, Dranoff G. Immunotherapy advances for glioblastoma. Neuro Oncol 2014; 16:1441-58. [PMID: 25190673 DOI: 10.1093/neuonc/nou212] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Survival for patients with glioblastoma, the most common high-grade primary CNS tumor, remains poor despite multiple therapeutic interventions including intensifying cytotoxic therapy, targeting dysregulated cell signaling pathways, and blocking angiogenesis. Exciting, durable clinical benefits have recently been demonstrated for a number of other challenging cancers using a variety of immunotherapeutic approaches. Much modern research confirms that the CNS is immunoactive rather than immunoprivileged. Preliminary results of clinical studies demonstrate that varied vaccine strategies have achieved encouraging evidence of clinical benefit for glioblastoma patients, although multiple variables will likely require systematic investigation before optimal outcomes are realized. Initial preclinical studies have also revealed promising results with other immunotherapies including cell-based approaches and immune checkpoint blockade. Clinical studies to evaluate a wide array of immune therapies for malignant glioma patients are being rapidly developed. Important considerations going forward include optimizing response assessment and identifiying correlative biomarkers for predict therapeutic benefit. Finally, the potential of complementary combinatorial immunotherapeutic regimens is highly exciting and warrants expedited investigation.
Collapse
Affiliation(s)
- David A Reardon
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Gordon Freeman
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Catherine Wu
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - E Antonio Chiocca
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Kai W Wucherpfennig
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Edward F Fritsch
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - William T Curry
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - John H Sampson
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| | - Glenn Dranoff
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., P.Y.W.); Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts (G.F., C.W., K.W.W.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R., C.W.); Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts (E.A.C.); Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts (P.Y.W.); Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina (J.H.S.); Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (W.T.C.); Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (C.W., E.F.F., G.D.); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.D.)
| |
Collapse
|
19
|
Zhou H, Zhang X. Intracranial malignant lesions correlate with the requirement for a long treatment course in postoperative central nervous system infection. Neuropsychiatr Dis Treat 2014; 10:2071-7. [PMID: 25395855 PMCID: PMC4226452 DOI: 10.2147/ndt.s71836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
AIM Our aim was to study the clinical features of postoperative meningitis after neurosurgery and identify the factors affecting the duration of treatment. METHODS This retrospective study assessed 283 patients with postoperative bacterial meningitis in the Neurosurgery Department of Beijing Tiantan Hospital, Beijing, People's Republic of China, between January and December 2012. Patients' clinical data were reviewed, and multivariate logistic regression analysis was used to identify the factors associated with a prolonged treatment course. RESULTS The mortality rate was 0.4% in these patients, of whom 12.4% were found with pathogens in the cerebrospinal fluid. Among the three most common pathogens detected were methicillin-resistant Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa. The mean treatment course was 13.5±2.1 days. Interestingly, the treatment duration for postoperative meningitis was significantly longer in patients with intracranial malignant tumors than in those with benign lesions. Single-factor analysis showed that male sex (P=0.042) and malignant (rather than benign) lesions (P<0.001) were significantly associated with prolonged treatment duration. Multivariate analysis further confirmed that malignant intracranial lesions represented an independent risk factor for prolonged treatment duration (odds ratio: 2.5962; 95% confidence interval: 1.1092-6.6134). CONCLUSION The nature of the intracranial lesion is an independent risk factor for the duration of treatment in postoperative meningitis after neurosurgery.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
20
|
Reardon DA, Wucherpfennig KW, Freeman G, Wu CJ, Chiocca EA, Wen PY, Curry WT, Mitchell DA, Fecci PE, Sampson JH, Dranoff G. An update on vaccine therapy and other immunotherapeutic approaches for glioblastoma. Expert Rev Vaccines 2013; 12:597-615. [PMID: 23750791 DOI: 10.1586/erv.13.41] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Outcome for glioblastoma (GBM), the most common primary CNS malignancy, remains poor. The overall survival benefit recently achieved with immunotherapeutics for melanoma and prostate cancer support evaluation of immunotherapies for other challenging cancers, including GBM. Much historical dogma depicting the CNS as immunoprivileged has been replaced by data demonstrating CNS immunocompetence and active interaction with the peripheral immune system. Several glioma antigens have been identified for potential immunotherapeutic exploitation. Active immunotherapy studies for GBM, supported by preclinical data, have focused on tumor lysate and synthetic antigen vaccination strategies. Results to date confirm consistent safety, including a lack of autoimmune reactivity; however, modest efficacy and variable immunogenicity have been observed. These findings underscore the need to optimize vaccination variables and to address challenges posed by systemic and local immunosuppression inherent to GBM tumors. Additional immunotherapy strategies are also in development for GBM. Future studies may consider combinatorial immunotherapy strategies with complimentary actions.
Collapse
Affiliation(s)
- David A Reardon
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Alexander BM, Lee EQ, Reardon DA, Wen PY. Current and future directions for Phase II trials in high-grade glioma. Expert Rev Neurother 2013; 13:369-87. [PMID: 23545053 DOI: 10.1586/ern.12.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite surgery, radiation and chemotherapy, the prognosis for high-grade glioma (HGG) is poor. Our understanding of the molecular pathways involved in gliomagenesis and progression has increased in recent years, leading to the development of novel agents that specifically target these pathways. Results from most single-agent trials have been modest at best, however. Despite the initial success of antiangiogenesis agents in HGG, the clinical benefit is short-lived and most patients eventually progress. Several novel agents, multi-targeted agents and combination therapies are now in clinical trials for HGG and several more strategies are being pursued.
Collapse
Affiliation(s)
- Brian M Alexander
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, 75 Francis Street, ASB1-L2, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
22
|
Epple LM, Griffiths SG, Dechkovskaia AM, Dusto NL, White J, Ouellette RJ, Anchordoquy TJ, Bemis LT, Graner MW. Medulloblastoma exosome proteomics yield functional roles for extracellular vesicles. PLoS One 2012; 7:e42064. [PMID: 22848702 PMCID: PMC3407172 DOI: 10.1371/journal.pone.0042064] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/02/2012] [Indexed: 12/21/2022] Open
Abstract
Medulloblastomas are the most prevalent malignant pediatric brain tumors. Survival for these patients has remained largely the same for approximately 20 years, and our therapies for these cancers cause significant health, cognitive, behavioral and developmental sequelae for those who survive the tumor and their treatments. We obviously need a better understanding of the biology of these tumors, particularly with regard to their migratory/invasive behaviors, their proliferative propensity, and their abilities to deflect immune responses. Exosomes, virus-sized membrane vesicles released extracellularly from cells after formation in, and transit thru, the endosomal pathway, may play roles in medulloblastoma pathogenesis but are as yet unstudied in this disease. Here we characterized exosomes from a medulloblastoma cell line with biochemical and proteomic analyses, and included characterization of patient serum exosomes. Further scrutiny of the proteomic data suggested functional properties of the exosomes that are relevant to medulloblastoma tumor biology, including their roles as proliferation stimulants, their activities as attractants for tumor cell migration, and their immune modulatory impacts on lymphocytes. Aspects of this held true for exosomes from other medulloblastoma cell lines as well. Additionally, pathway analyses suggested a possible role for the transcription factor hepatocyte nuclear factor 4 alpha (HNF4A); however, inhibition of the protein’s activity actually increased D283MED cell proliferation/clonogenecity, suggesting that HNF4A may act as a tumor suppressor in this cell line. Our work demonstrates that relevant functional properties of exosomes may be derived from appropriate proteomic analyses, which translate into mechanisms of tumor pathophysiology harbored in these extracellular vesicles.
Collapse
Affiliation(s)
- Laura M. Epple
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
- Cell and Molecular Biology Program, Cancer Biology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | | | - Anjelika M. Dechkovskaia
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nathaniel L. Dusto
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Jason White
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | | | - Thomas J. Anchordoquy
- School of Pharmacy, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Lynne T. Bemis
- Department of Medical Oncology, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Michael W. Graner
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abstract
Brain tumors of different origin, but notably malignant gliomas, are characterized by their immunosuppressive properties which allow them to escape the host's immune surveillance. The activating immune cell ligands that are expressed by tumor cells, together with potentially immunogenic antigens, are overridden by numerous immune inhibitory signals, with TGF-3 as the master immunosuppressive molecule (Figure 4.1).The ongoing investigation of mechanisms of tumor-derived immunosuppression allows for an increasing understanding of brain tumor immunology. Targeting different mechanisms of tumor-derived immunosuppression, such as inhibition of TGF-[, may represent a promising strategy for future immunotherapeutic approaches.
Collapse
Affiliation(s)
- Patrick Roth
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
24
|
Liu S, Wang B, Li S, Zhou Y, An L, Wang Y, Lv H, Zhang G, Fang F, Liu Z, Han R, Jiang T, Kang X. Immune cell populations decrease during craniotomy under general anesthesia. Anesth Analg 2011; 113:572-7. [PMID: 21813628 DOI: 10.1213/ane.0b013e3182278237] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Postoperative infections are common and potentially fatal complications in neurosurgical intensive care medicine. An impairment of immune function after central nervous system surgery is associated with higher risk of infection and postoperative complications. The aim of our study was to investigate how the immune cell population changes during the anesthesia process in patients undergoing craniotomy surgery. METHODS Patients undergoing craniotomy who had an inhaled general anesthetic were studied. Blood samples were collected before anesthesia and 30, 45, 60, 120, and 240 minutes after anesthesia began. Blood counts for neutrophils, monocytes, and lymphocytes were determined along with lymphocyte subpopulations (T cells, inducer and helper T cells, suppressor and cytotoxic T cells, natural killer cells, and B cells). Plasma concentrations of interleukin (IL)-2, IL-4, IL-6, and IL-10 were also measured along with tumor necrosis factor-α and interferon-γ. Data were analyzed by SPSS 13.0 software using repeated-measures analysis of variance followed by a Bonferroni correction. RESULTS Eighteen patients were enrolled in this study. In the comparison of the immune cell counts during neuroanesthesia, we found that at 30 minutes after anesthesia induction, neutrophils, monocytes, and lymphocytes decreased 18% (95% confidence interval [CI]: 11.0%-24.6%), 34% (95% CI: 16.2%-51.1%), and 39% (95% CI: 29.0%-48.9%) compared with their levels before anesthesia. At extubation the neutrophils returned to the base level. It also showed that natural killer cells decreased significantly during anesthesia. The concentration of cytokines in peripheral blood did not change significantly. CONCLUSION Our results showed that anesthesia and surgery upset the balance of the immune system during craniotomy, and a significant decrease in immune cell populations emerged after induction under general anesthesia.
Collapse
Affiliation(s)
- Shujing Liu
- Capital Medical University, Laboratory Diagnosis Center, Beijing Tiantan Hospital, No.6 Tiantan Xili, Chongwen Men District, Beijing, 100050, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Abnormalities of cellular immunity are commonly seen in patients with glioblastoma (GBM), and the subsequent relative immunosuppression likely contributes to poor tumor-specific responses in affected individuals. Endogenous immune regulation is likely to limit the efficacy of a wide array of immunotherapeutic strategies, therefore mandating consideration in the continued development of novel treatments for GBM. Various tumor-associated factors have been implicated as potential generators of the immunosuppressive effect. This article outlines relevant experimentation exploring the nature of immune defects in patients with GBM, including a critical discussion of tumor-secreted factors, cell-surface proteins, and more recently described populations of immunoregulatory leukocytes that have potential roles in the subversion of cellular immunity.
Collapse
Affiliation(s)
- Allen Waziri
- Department of Neurosurgery, University of Colorado Health Sciences Center, 12631 E. 17th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
26
|
Trakatelli C, Frydas S, Hatzistilianou M, Papadopoulos E, Simeonidou I, Founta A, Paludi D, Petrarca C, Castellani ML, Papaioannou N, Salini V, Conti P, Kempuraj D, Vecchiet J. Chemokines as markers for parasite-induced inflammation and tumors. Int J Biol Markers 2006; 20:197-203. [PMID: 16398400 DOI: 10.1177/172460080502000401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemokines are a group of small secreted proteins (8-10 kDa) produced and released by a wide variety of cell types. They were originally described as mediators of leukocyte recruitment, which is essential in acute and chronic inflammation. They also play a critical role in many pathophysiological processes such as allergic responses, infections and autoimmune diseases, tumor growth and hematopoietic development. This review introduces the three supergene families of chemokines (CXC, CC and C) with emphasis on their important role in different states in humans and in animal models with parasitic diseases. The concentration of transcription and translation of the cytokines and chemokines in the parasitic diseases may be an important marker for evaluation of the inflammatory state.
Collapse
Affiliation(s)
- C Trakatelli
- Department of Internal Medicine, Georgios Gennimatas Hospital, Thessaloniki
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Velicu S, Han Y, Ulasov I, Brown IE, El Andaloussi A, Gajewski TF, Lesniak MS. Cross-priming of T cells to intracranial tumor antigens elicits an immune response that fails in the effector phase but can be augmented with local immunotherapy. J Neuroimmunol 2006; 174:74-81. [PMID: 16504307 DOI: 10.1016/j.jneuroim.2006.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 01/21/2006] [Accepted: 01/25/2006] [Indexed: 10/25/2022]
Abstract
Central nervous system (CNS) tumors are thought to be poorly immunogenic. However, whether defective anti-tumor immunity is a consequence of a relative failure of T cell priming versus a deficient effector phase of the anti-tumor immune response is not clear. We utilized a well-defined model system of B16 melanoma expressing the model antigen SIY-GFP to evaluate tumor antigen cross-priming and tumor rejection from the CNS versus subcutaneous compartments. We observed that B16-SIY cells implanted in the CNS were capable of inducing T cell priming as measured by IFN-gamma ELISPOT in the spleen. Cross-priming occurred in the absence of detectable systemic dissemination of the tumor. Despite the induction of a T cell response, CNS tumors grew progressively and were fatal, whereas the same tumor implanted in the flank was rejected. To study the effector phase of the immune response in more detail, in vitro primed 2C/RAG2-/- TCR transgenic CD8+ cells, which recognize the SIY peptide, were adoptively transferred. In addition, the CNS microenvironment was modulated by intracranial delivery of IL-2. While mice that received primed 2C cells alone showed an increase in survival, co-administration of intracranial IL-2 led to a marked prolongation of survival, with 20% of mice surviving at least 120 days. Our results demonstrate that CD8+ T cell cross-priming does indeed occur in response to a CNS tumor, but that manipulation of the brain tumor microenvironment may be necessary to support the effector phase of the anti-tumor immune response.
Collapse
Affiliation(s)
- Simona Velicu
- Division of Neurosurgery, The University of Chicago, Pritzker School of Medicine, 5841 S. Maryland Ave-MC 3026, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Castellani ML, Kempuraj D, Frydas S, Theoharides TC, Simeonidou I, Conti P, Vecchiet J. Inhibitory effect of quercetin on tryptase and MCP-1 chemokine release, and histidine decarboxylase mRNA transcription by human mast cell-1 cell line. Neuroimmunomodulation 2006; 13:179-86. [PMID: 17191019 DOI: 10.1159/000098131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 10/27/2006] [Indexed: 12/31/2022] Open
Abstract
Mast cells are important in reactions of allergic disease and are also involved in a variety of neuroinflammatory diseases. Mast cells can be immunologically activated by IgE through their Fc receptors, as well as by neuropeptides and cytokines to secrete mediators. Here we used a human mast cell-1 (HMC-1) cell line cultured and treated with a physiological activator, anti-IgE, and a nonphysiological activator, calcium ionophore A23187, for tryptase and MCP-1 generation and transcription of histidine decarboxylase. We used quercetin, a potent antioxidant, cytoprotective and anti-inflammatory compound capable of inhibiting histamine and some cytokines released from several cell types, as an inhibitor of immunological and nonimmunological stimulus for mast cells. In this study quercetin inhibits, in a dose-response manner, tryptase and MCP-1. Moreover, using RT-PCR quercetin inhibited the transcription of histidine decarboxylase, the rate-limiting enzyme responsible for the generation of histamine from histidine, and MCP-1. Our data suggest that quercetin is an important and good candidate for reducing the release of pro-inflammatory mast cell mediators activated by physiological and nonphysiological stimulators.
Collapse
|