1
|
Mayilyan KR, Krarup A, Soghoyan AF, Jensenius JC, Sim RB. l-ficolin-MASP arm of the complement system in schizophrenia. Immunobiology 2023; 228:152349. [PMID: 36805857 DOI: 10.1016/j.imbio.2023.152349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
The abnormal neurodevelopment secondary to in utero adversities, such as hypoxia, malnutrition and maternal infections, underlies schizophrenia (SZ) etiology. As the genes of MBL-associated serine proteases (MASP) of the complement lectin pathway, MASP1 and MASP2, are expressed in the developing cortex and are functionally important for neuronal migration, we hypothesize that the malfunction ofl-ficolin-MASP arm may also be involved in schizophrenia pathophysiology as it was shown for MBL-MASP complexes. We investigated serum l-ficolin and plasma MASP-2 levels, the activity of l-ficolin-bound MASP-2, as well as an array of the complement-related variables in chronic schizophrenic patients in the acute phase of the disease and controls without physical or mental diagnoses. The median concentration of l-ficolin in Armenian controls was 3.66 μg/ml and similar to those reported for other Caucasian populations. SZ-cases had ∼40 % increase in serum l-ficolin (median 5.08 μg/ml; P < 0.0024). In the pooled sample, l-ficolin level was higher in males than in females (P < 0.0031), but this gender dichotomy was not affecting the variable association with schizophrenia (P < 0.016). Remarkably, MASP-2 plasma concentration showed gender-dependent significant variability in the group of patients but not in controls. When adjusted for gender and gender*diagnosis interaction, a significantly high MASP-2 level in female patients versus female controls was observed (median: 362 ng/ml versus 260 ng/ml, respectively; P < 0.0020). A significant increase in l-ficolin-bound MASP-2 activity was also observed in schizophrenia (on the median, cases vs controls: 7.60 vs 6.50 RU; P < 0.021). Correlation analyses of the levels of l-ficolin and MASP-2, l-ficolin-(MASP-2) activity and the demographic data did not show any significant association with the age of individuals, family history, age at onset and duration of the illness, and smoking. Noteworthy, the levels of l-ficolin and MASP-2 in circulation were significantly associated with the type of schizophrenia (paranoid SZ-cases had much higher l-ficolin (P < 0.0035) and lower MASP-2 levels than the other types combined (P < 0.049)). Correlations were also found between: (i) the classical pathway functional activity and l-ficolin level (rs = 0.19, P < 0.010); (ii) the alternative pathway functional activity and MASP-2 level (rs = 0.26, P < 0.00035); (iii) the activity of l-ficolin-bound MASP2 and the downstream C2 component haemolytic activity (rs = -0.19, P < 0.017); and (iv) l-ficolin and the upstream C-reactive protein (CRP) serum concentrations (r = 0.28, P < 0.018). Overall, the results showed l-ficolin-related lectin pathway alterations in schizophrenia pathophysiology. It is likely that in addition to the MBL-MASP component over-activity reported previously, the alterations of the lectin pathway in schizophrenia also involve variations of l-ficolin-(MASP-2) on protein concentration and activity levels.
Collapse
Affiliation(s)
- Karine R Mayilyan
- MRC Immunochemistry Unit, Department of Biochemistry, Oxford University, Oxford, United Kingdom; Institute of Molecular Biology, Armenian National Academy of Sciences, Yerevan, Armenia; Department of Therapeutics, Faculty of General Medicine, University of Traditional Medicine, Yerevan, Armenia.
| | - Anders Krarup
- MRC Immunochemistry Unit, Department of Biochemistry, Oxford University, Oxford, United Kingdom
| | - Armen F Soghoyan
- Yerevan State Medical University, Health Ministry of Armenia, Yerevan, Armenia; Psychosocial Recovery Center, Yerevan, Armenia
| | | | - Robert B Sim
- MRC Immunochemistry Unit, Department of Biochemistry, Oxford University, Oxford, United Kingdom
| |
Collapse
|
2
|
Smole U, Kratzer B, Pickl WF. Soluble pattern recognition molecules: Guardians and regulators of homeostasis at airway mucosal surfaces. Eur J Immunol 2020; 50:624-642. [PMID: 32246830 PMCID: PMC7216992 DOI: 10.1002/eji.201847811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Maintenance of homeostasis at body barriers that are constantly challenged by microbes, toxins and potentially bioactive (macro)molecules requires complex, highly orchestrated mechanisms of protection. Recent discoveries in respiratory research have shed light on the unprecedented role of airway epithelial cells (AEC), which, besides immune cells homing to the lung, also significantly contribute to host defence by expressing membrane‐bound and soluble pattern recognition receptors (sPRR). Recent evidence suggests that distinct, evolutionary ancient, sPRR secreted by AEC might become activated by usually innocuous proteins, commonly referred to as allergens. We here provide a systematic overview on sPRR detectable in the mucus lining of AEC. Some of them become actively produced and secreted by AECs (like the pentraxins C‐reactive protein and pentraxin 3; the collectins mannose binding protein and surfactant proteins A and D; H‐ficolin; serum amyloid A; and the complement components C3 and C5). Others are elaborated by innate and adaptive immune cells such as monocytes/macrophages and T cells (like the pentraxins C‐reactive protein and pentraxin 3; L‐ficolin; serum amyloid A; and the complement components C3 and C5). Herein we discuss how sPRRs may contribute to homeostasis but sometimes also to overt disease (e.g. airway hyperreactivity and asthma) at the alveolar–air interface.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Bernhard Kratzer
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
3
|
Speranza L, De Lutiis M, Shaik Y, Felaco M, Patruno A, Tetè A, Mastrangelo F, Madhappan B, Castellani M, Conti F, Vecchiet J, Theoharides T, Conti P, Grilli A. Localization and Activity of iNOS in Normal Human Lung Tissue and Lung Cancer Tissue. Int J Biol Markers 2018; 22:226-31. [DOI: 10.1177/172460080702200311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inducible nitric oxide synthase (iNOS) is one of three enzymes generating nitric oxide (NO) from the amino acid L-arginine. iNOS-derived NO plays an important role in several physiological and pathophysiological conditions. NO is a free radical which produces many reactive intermediates that account for its bioactivity. In the human lung, the alveolar macrophage is an important producer of cytokines and this production may be modified by NO. Moreover, high concentrations of NO have been shown to increase nuclear factor KB (NF-kB) activation. Recent investigations of NO expression in tumor tissue indicated that, at least for certain tumors, NO may mediate one or more roles during the growth of human cancer. We have studied iNOS in two tissue groups: normal human lung tissue and human lung cancer tissue. We localized iNOS in these tissues by immunohistochemistry and tested the mRNA expression by RT-PCR, the protein level by Western blot, and the protein activity by radiometric analysis. The results demonstrate different expression, localization and activity of iNOS in normal versus tumor tissue. This is suggestive of a role for NO production from iNOS in human lung cancer because high concentrations of this short molecule may transform to highly reactive compounds such as peroxynitrite (ONOO-); moreover, through the upregulator NF-kB, they can induce a chronic inflammatory state representing an elevated risk for cell transformation to cancer.
Collapse
Affiliation(s)
- L. Speranza
- Department of Human Dynamics, University of Chieti, Chieti - Italy
| | - M.A. De Lutiis
- Department of Human Dynamics, University of Chieti, Chieti - Italy
| | - Y.B. Shaik
- Department of Oral Biology and Periodontology Boston University School of Dental Medicine, Boston, MA - USA
| | - M. Felaco
- Department of Human Dynamics, University of Chieti, Chieti - Italy
| | - A. Patruno
- Department of Human Dynamics, University of Chieti, Chieti - Italy
| | - A. Tetè
- Department of Oral Sciences, University of Chieti, Chieti - Italy
| | - F. Mastrangelo
- Department of Oral Sciences, University of Chieti, Chieti - Italy
| | - B. Madhappan
- Pharmacology Department, Tufts University, New England Medical Center, Boston, MA - USA
| | | | - F. Conti
- Gynecology Section, University of Chieti, Chieti
| | - J. Vecchiet
- Section of Infectious Diseases, University of Chieti, Chieti
| | - T.C. Theoharides
- Pharmacology Department, Tufts University, New England Medical Center, Boston, MA - USA
| | - P. Conti
- Immunology Division, University of Chieti, Chieti
| | - A. Grilli
- Department of Human Dynamics, University of Chieti, Chieti - Italy
- Leonardo da Vinci Telematic University, Torrevecchia Teatina (Chieti) - Italy
| |
Collapse
|
4
|
Papazahariadou M, Athanasiadis GI, Papadopoulos E, Symeonidou I, Hatzistilianou M, Castellani ML, Bhattacharya K, Shanmugham LN, Conti P, Frydas S. Involvement of NK Cells against Tumors and Parasites. Int J Biol Markers 2018; 22:144-53. [PMID: 17549670 DOI: 10.1177/172460080702200208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Host resistance against pathogens depends on a complex interplay of innate and adaptive immune mechanisms. Acting as an early line of defence, the immune system includes activation of neutrophils, tissue macrophages, monocytes, dendritic cells, eosinophils and natural killer (NK) cells. NK cells are lymphoid cells that can be activated without previous stimulation and are therefore like macrophages in the first line of defence against tumor cells and a diverse range of pathogens. NK cells mediate significant activity and produce high levels of proinflammatory cytokines in response to infection. Their cytotoxicity production is induced principally by monocyte-, macrophage- and dendritic cell-derived cytokines, but their activation is also believed to be cytokine-mediated. Recognition of infection by NK cells is accomplished by numerous activating and inhibitory receptors on the NK cells’ surface that selectively trigger the cytolytic activity in a major histocompability complex-independent manner. NK cells have trypanocidal activity of fibroblast cells and mediate direct destruction of extracellular epimastigote and trypomastigote forms of T. cruzi and T. lewisi in vitro; moreover, they kill plasmodia-infected erythrocytes directly through cell-cell interaction. This review provides a more detailed analysis of how NK cells recognize and respond to parasites and how they mediate cytotoxicity against tumor cells. Also the unique role of NK cells in innate immunity to infection and the relationship between parasites and carcinogenesis are discussed.
Collapse
Affiliation(s)
- M Papazahariadou
- Laboratory of Parasitology, Veterinary Faculty, Aristotele University, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Mannose-binding lectin serine proteases and associated proteins of the lectin pathway of complement: two genes, five proteins and many functions? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:253-62. [PMID: 21664989 DOI: 10.1016/j.bbapap.2011.05.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/27/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022]
Abstract
The lectin pathway of the complement system is activated following the binding of carbohydrate-based ligands by recognition molecules such as mannose-binding lectin (MBL) or ficolins. Engagement of the recognition molecules causes activation of associated MBL-associated serine proteases or MASPs, which in turn activate downstream complement molecules to activate the system. Two MASP genes are alternatively spliced during expression to yield 5 proteins, including three proteases (MASP-1, -2 and -3) and two truncated proteins, MAp19 and MAp44. Here we discuss what is currently known about these proteins in terms of their structure and function. MASP-2 is autoactivated following the initial binding events of the pathway and is able to subsequently activate the C4 and C2 substrates required to activate the rest of the pathway. MASP-1 is able to augment MASP-2 activation, but also appears to play other roles, although the physiological significance of these is not yet clear. The roles of the truncated Map19 and Map44 proteins and the MASP-3 protease are currently unknown. The proteases form an interesting sub-family of proteins that clearly should be the focus of future research in order to establish their biological roles. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
|
6
|
Gulla KC, Gupta K, Krarup A, Gal P, Schwaeble WJ, Sim RB, O'Connor CD, Hajela K. Activation of mannan-binding lectin-associated serine proteases leads to generation of a fibrin clot. Immunology 2010; 129:482-95. [PMID: 20002787 PMCID: PMC2842495 DOI: 10.1111/j.1365-2567.2009.03200.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/11/2009] [Accepted: 10/14/2009] [Indexed: 01/19/2023] Open
Abstract
The lectin pathway of complement is activated upon binding of mannan-binding lectin (MBL) or ficolins (FCNs) to their targets. Upon recognition of targets, the MBL-and FCN-associated serine proteases (MASPs) are activated, allowing them to generate the C3 convertase C4b2a. Recent findings indicate that the MASPs also activate components of the coagulation system. We have previously shown that MASP-1 has thrombin-like activity whereby it cleaves and activates fibrinogen and factor XIII. MASP-2 has factor Xa-like activity and activates prothrombin through cleavage to form thrombin. We now report that purified L-FCN-MASPs complexes, bound from serum to N-acetylcysteine-Sepharose, or MBL-MASPs complexes, bound to mannan-agarose, generate clots when incubated with calcified plasma or purified fibrinogen and factor XIII. Plasmin digestion of the clot and analysis using anti-D-dimer antibodies revealed that the clot was made up of fibrin and was similar to that generated by thrombin in normal human plasma. Fibrinopeptides A and B (FPA and FPB, respectively) were released after fibrinogen cleavage by L-FCN-MASPs complexes captured on N-acetylcysteine-Sepharose. Studies of inhibition of fibrinopeptide release indicated that the dominant pathway for clotting catalysed by the MASPs is via MASP-2 and prothrombin activation, as hirudin, a thrombin inhibitor that does not inhibit MASP-1 and MASP-2, substantially inhibits fibrinopeptide release. In the light of their potent chemoattractant effects on neutrophil and fibroblast recruitment, the MASP-mediated release of FPA and FPB may play a role in early immune activation. Additionally, MASP-catalysed deposition and polymerization of fibrin on the surface of micro-organisms may be protective by limiting the dissemination of infection.
Collapse
|
7
|
Carroll MV, Lack N, Sim E, Krarup A, Sim RB. Multiple routes of complement activation by Mycobacterium bovis BCG. Mol Immunol 2009; 46:3367-78. [PMID: 19698993 DOI: 10.1016/j.molimm.2009.07.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/20/2009] [Accepted: 07/23/2009] [Indexed: 01/15/2023]
Abstract
Mycobacterium tuberculosis is the leading cause of infectious disease in humans in the world. It evades the host immune system by being phagocytosed by macrophages and residing intracellularly. Complement-dependent opsonisation of extracellular mycobacteria may assist them to enter macrophages. This work examines in detail the mechanisms of complement activation by whole mycobacteria using Mycobacterium bovis BCG as a model organism. M. bovis BCG directly activates the classical, lectin and alternative pathways, resulting in fixation of C3b onto macromolecules of the mycobacterial surface. Investigation into the classical pathway has shown direct binding of human C1q to whole mycobacteria in the absence of antibodies. Most human sera contain IgG and IgM-anti-(M. bovis BCG), and pre-incubation with human immunoglobulin enhances C1q binding to the bacteria. Therefore classical pathway activation is both antibody-independent and dependent. The bacteria also activate the alternative pathway in an antibody-independent manner, but Factor H also binds, suggesting some regulation of amplification by this pathway. For the lectin pathway we have demonstrated direct binding of both MBL and L-ficolin from human serum to whole mycobacteria and subsequent MASP2 activation. H-ficolin binding was not observed. No M. bovis BCG cell surface or secreted protease appears likely to influence complement activation. Together, these data provide a more detailed analysis of the mechanisms by which M. bovis BCG interacts with the complement system.
Collapse
Affiliation(s)
- Maria V Carroll
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
8
|
Gál P, Dobó J, Závodszky P, Sim RBM. Early complement proteases: C1r, C1s and MASPs. A structural insight into activation and functions. Mol Immunol 2009; 46:2745-52. [PMID: 19477526 DOI: 10.1016/j.molimm.2009.04.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
C1r, C1s and the mannose-binding lectin-associated serine proteases (MASPs) are responsible for the initiation of the classical- and lectin pathway activation of the complement system. These enzymes do not act alone, but form supramolecular complexes with pattern recognition molecules such as C1q, MBL, and ficolins. They share the same domain organization but have different substrate specificities and fulfill different physiological functions. In the recent years the rapid progress of structural biology facilitated the understanding of the molecular mechanism of complement activation at atomic level. In this review we summarize our current knowledge about the structure and function of the early complement proteases, delineate the latest models of the multimolecular complexes and present the functional consequences inferred from the structural studies. We also discuss some open questions and debated issues that need to be resolved in the future.
Collapse
Affiliation(s)
- Péter Gál
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | |
Collapse
|
9
|
Hodge S, Matthews G, Dean MM, Ahern J, Djukic M, Hodge G, Jersmann H, Holmes M, Reynolds PN. Therapeutic role for mannose-binding lectin in cigarette smoke-induced lung inflammation? Evidence from a murine model. Am J Respir Cell Mol Biol 2009; 42:235-42. [PMID: 19411612 DOI: 10.1165/rcmb.2008-0486oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Defective efferocytosis in the airway may perpetuate inflammation in smokers with/without chronic obstructive pulmonary disease. Mannose-binding lectin (MBL) improves efferocytosis in vitro; however, the effects of in vivo administration are unknown. MBL circulates in complex with MBL-associated serine proteases (MASPs), and efferocytosis involves activation of cytoskeletal-remodeling molecules, including Rac1/2/3. We hypothesized that MBL would improve efferocytosis in vivo, and that possible mechanisms for this effect would include up-regulation of Rac1/2/3 or MASPs. We used a smoking mouse model to investigate the effects of MBL on efferocytosis. MBL (20 microg/20 g mouse) was administered via nebulizer to smoke-exposed mice. In lung tissue (disaggregated) and bronchoalveolar lavage (BAL), we investigated leukocyte counts, apoptosis, and the ability of alveolar and tissue macrophages to phagocytose apoptotic murine epithelial cells. In human studies, flow cytometry, ELISA, and RT-PCR were used to investigate the effects of MBL on efferocytosis, Rac1/2/3, and MASPs. Smoke-exposed mice showed significantly reduced efferocytosis in BAL and tissue. Efferocytosis was significantly improved by MBL (BAL: control, 26.2%; smoke-exposed, 17.66%; MBL + smoke-exposed, 27.8%; tissue: control, 35.9%; smoke-exposed, 21.6%; MBL + smoke-exposed, 34.5%). Leukocyte/macrophage counts were normalized in smoke-exposed mice treated with MBL. In human studies, MBL was reduced in chronic obstructive pulmonary disease and in smokers, and was significantly correlated with reduced efferocytosis ex vivo. MASPs were not detected in BAL, and were not produced by alveolar or tissue macrophages. MBL significantly increased macrophage expression of Rac1/2/3. We provide evidence for Rac1/2/3 involvement in the MBL-mediated improvement in efferocytosis, and a rationale for investigating MBL as a supplement to existing therapies in smoking-related lung inflammation.
Collapse
Affiliation(s)
- Sandra Hodge
- Department of Thoracic Medicine, Royal Adelaide Hospital and Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Several lines of evidence suggest that immunological factors contribute to schizophrenia. Since 1989, the role of complement, a major effector of innate immunity and an adjuvant of adaptive immunity, has been explored in schizophrenia. Increased activity of C1, C3, C4 complement components in schizophrenia has been reported by two or more groups. Two studies on different subject cohorts showed increased MBL-MASP-2 activity in patients versus controls. More then one report indicated a significant high frequency of FB*F allotype and low prevalence of the FS phenotype of complement factor B in schizophrenia. From the data reported, it is likely that the disorder is accompanied by alterations of the complement classical and lectin pathways, which undergo dynamic changes, depending on the illness course and the state of neuro-immune crosstalk. Recent findings, implicating complement in neurogenesis, synapse remodeling and pruning during brain development, suggest a reexamination of the potential role of complement in neurodevelopmental processes contributing to schizophrenia susceptibility. It is plausible that the multicomponent complement system has more than one dimensional association with schizophrenia susceptibility, pathopsychology and illness course, understanding of which will bring a new perspective for possible immunomodulation and immunocorrection of the disease.
Collapse
Affiliation(s)
- Karine R Mayilyan
- Genes, Cognition and Psychosis Program IRP, NIMH, NIH, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
11
|
Castellani ML, Bhattacharya K, Tagen M, Kempuraj D, Perrella A, De Lutiis M, Boucher W, Conti P, Theoharides TC, Cerulli G, Salini V, Neri G. Anti-chemokine therapy for inflammatory diseases. Int J Immunopathol Pharmacol 2007; 20:447-53. [PMID: 17880758 DOI: 10.1177/039463200702000303] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chemokines are inflammatory proteins acting via G-protein coupled chemokine receptors that trigger different signaling pathways. Monocyte chemoattractant protein-1 (CCL2/MCP-1) and regulated on activation, normal T expressed and secreted (CCL5/RANTES) are the two major members of the CC chemokine beta subfamily. The roles of RANTES and MCP-1 are emerging in regulating the recruitment of inflammatory cells into tissue during inflammation. The inhibition of MCP-1 and RANTES with corresponding antibodies or other inhibitors may provide benefits in different clinical scenarios including cancer, inflammation, CNS disorders, parasitic disease, autoimmune and heart diseases. RANTES and MCP-1 may represent targets for diagnostic procedures and therapeutic intervention, and may be useful as a prognostic factor in the above diseases.
Collapse
Affiliation(s)
- M L Castellani
- Department of Internal Medicine and Science of Ageing, University of Chieti, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Carinci F, Arcelli D, Lo Muzio L, Francioso F, Valentini D, Evangelisti R, Volinia S, D'Angelo A, Meroni G, Zollo M, Pastore A, Ionna F, Mastrangelo F, Conti P, Tetè S. Molecular classification of nodal metastasis in primary larynx squamous cell carcinoma. Transl Res 2007; 150:233-45. [PMID: 17900511 DOI: 10.1016/j.trsl.2007.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 11/25/2022]
Abstract
Classification and prognosis of larynx squamous cell carcinoma (LSCC) depends on clinical and histopathological examination. Currently, expression profiling harbors the potential to investigate, classify, and better manage cancer. Gene expression profiles of 22 primary LSCCs were analyzed by microarrays containing 19,200 cDNAs. GOAL functionally classified differentially expressed genes, and a novel "in silico" procedure identified physical gene clusters differentially transcribed. A signature of 158 genes differentiated tumors with nodal metastasis. A novel statistical method allowed categorization of metastatic tumors into 2 distinct subgroups of differential gene expression patterns. Among genes correlated to nodal metastatic progression, we verified in vitro that NM23-H3 reduced cell motility and TRIM8 were a growth suppressor. Six chromosomal regions were specifically downregulated in metastatic tumors. This large-scale gene expression analysis in LSCC provides information on changes in genomic activity associated with lymphonodal metastasis and identifies molecules that might prove useful as novel therapeutic targets.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/secondary
- Carrier Proteins/genetics
- Cell Line, Tumor
- Cluster Analysis
- DNA, Complementary/genetics
- Disease Progression
- Down-Regulation/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genes, Neoplasm
- Humans
- Laryngeal Neoplasms/genetics
- Laryngeal Neoplasms/metabolism
- Laryngeal Neoplasms/pathology
- Lymphatic Metastasis
- Male
- NM23 Nucleoside Diphosphate Kinases/genetics
- Neoplasm Staging
- Nerve Tissue Proteins/genetics
- Oligonucleotide Array Sequence Analysis/methods
- Prognosis
- RNA, Neoplasm/isolation & purification
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Suppressor Proteins/genetics
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Francesco Carinci
- Department of Maxillofacial Surgery, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pine SR, Mechanic LE, Ambs S, Bowman ED, Chanock SJ, Loffredo C, Shields PG, Harris CC. Lung cancer survival and functional polymorphisms in MBL2, an innate-immunity gene. J Natl Cancer Inst 2007; 99:1401-9. [PMID: 17848669 PMCID: PMC6278934 DOI: 10.1093/jnci/djm128] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The relationship among chronic inflammation, innate immunity, and cancer is well established. Mannose-binding lectin (MBL) is a key player in innate immunity. Five polymorphisms in the promoter and first exon of the MBL2 gene alter the expression and function of MBL in humans and are associated with inflammation-related disease susceptibility. These five polymorphisms create six well-characterized haplotypes that result in lower (i.e., LYB, LYC, HYD, and LXA) or higher (i.e., HYA and LYA) serum MBL concentrations. We investigated whether survival of patients with lung cancer was associated with these polymorphisms. METHODS We used a multivariable Cox proportional hazards model to study the association between MBL2 polymorphisms and their haplotypes and diplotypes in 558 white and 173 African American patients with non-small-cell lung cancer in the Baltimore, MD, area and lung cancer mortality. Smoking history and race were obtained from interviews, tumor stage was obtained from medical records, and cause of death was obtained from the National Death Index. All statistical tests were two-sided. RESULTS We found a statistically significant association between the X allele of the promoter Y/X polymorphism (which results in a lower serum MBL concentration) and improved lung cancer survival among white patients (risk ratio [RR] of death from lung cancer with X/X or X/Y genotype compared with Y/Y genotype = 0.61, 95% confidence interval [CI] = 0.46 to 0.81) but not among African American patients (RR = 1.11, 95% CI = 0.69 to 1.77). The associations among white patients were strongest in heavy smokers and were independent of stage. We also found a statistically significant interaction between the Y/X polymorphism and race for lung cancer survival (P(interaction) = .019). The MBL2 LXA haplotype and XA/B diplotype, which are also associated with low serum MBL levels, were statistically significantly associated with improved lung cancer survival among white patients. CONCLUSION The functional Y/X polymorphism of the innate-immunity gene MBL2 and MBL2 haplotypes and diplotypes appear to be associated with lung cancer survival among white patients.
Collapse
Affiliation(s)
- Sharon R Pine
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4258, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ciprandi G, Varricchio A, Capasso M, Varricchio A, de Lucia A, Ascione E, Avvisati F, di Gioacchino M, Barillari U. Hypertonic Saline Solution in Children with Adenoidal Hyperytrophy: Preliminary Evidence. EUR J INFLAMM 2007; 5:159-163. [DOI: 10.1177/1721727x0700500307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023] Open
Abstract
Adenoidal hypertrophy (AH) is a frequent problem in children. A preliminary study evidenced that intranasal hypertonic solutions may exert an anti-inflammatory activity. The aim of the study is to evaluate the effect of intranasal hypertonic or isotonic solutions in children affected with AH. For this purpose, 78 children with AH were evaluated in a randomised and controlled study. Inclusion criteria for the study required that each patient had to have a III or IV degree of AH on the initial endoscopic examination. Children were treated with intranasal hypertonic or isotonic saline solution for 8 weeks. After treatment, endoscopy was performed to evaluate AH degree. Hypertonic treatment was associated with significant (p<0.05) reduction of AH degree. There was a consistent reduction of children with III degree of AH. No adverse events were reported. This preliminary study demonstrates that an 8-week treatment with intranasal hypertonic solution is associated with significant reduction of AH. Therefore, this study evidences that hypertonic solution may exert an anti-inflammatory activity and is safe.
Collapse
Affiliation(s)
| | - A. Varricchio
- U.O.C. di O.R.L. - Ospedale San Gennaro, ASL Na1, Naples
| | - M. Capasso
- U.O. Pediatria con Nido, Ospedale Civile di Piedimonte Matese (CE)
| | - A.M. Varricchio
- U.O.C. di O.R.L. - Azienda Ospedaliera Pediatrica Santobono Pausilipon, Naples
| | - A. de Lucia
- U.O.C. di O.R.L. - Ospedale San Gennaro, ASL Na1, Naples
| | - E. Ascione
- U.O.C. di O.R.L. - Ospedale San Gennaro, ASL Na1, Naples
| | - F. Avvisati
- U.O.C. di O.R.L. - Ospedale San Gennaro, ASL Na1, Naples
| | - M. di Gioacchino
- Allergy Related Disease Unit, G. d'Annunzio Universtity Foundation, Chieti
| | - U. Barillari
- Servizio di Foniatria ed Audiologia, Second University of Naples, Italy
| |
Collapse
|