1
|
Nguyen DM, Suzuki S, Imura H, Niimi T, Furukawa H, Ta TV, Tong SM, Nguyen TT, Pham LNG, Tran DL, Natsume N. Family based and case-control designs reveal an association of TFAP2A in nonsyndromic cleft lip only among Vietnamese population. Mol Genet Genomic Med 2021; 9:e1754. [PMID: 34310873 PMCID: PMC8457689 DOI: 10.1002/mgg3.1754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Aims Dozens of causative genes and their mechanisms of nonsyndromic cleft lip with or without cleft palate (NSCL/P) were revealed through genome‐wide association and linkage studies. Results were, however, not always replicated in different populations or methodologies. This study used case–control and family based approaches to investigate the etiology of NSCL/P and its two subtypes: nonsyndromic cleft lip only (NSCLO) and nonsyndromic cleft lip and palate (NSCLP) among the Vietnamese population. Methods Two hundred and seventeen NSCL/P case‐parent trios (one affected child and two parents), including 105 NSCLO and 112 NSCLP were involved for a family based design; and 273 ethnic and region‐matched healthy controls with no cleft history in their families were recruited for a case–control design. Three SNPs consisting of TFAP2A (rs1675414 and rs303048) and 8q24 (rs987525) were genotyped using the TaqMan SNP genotyping assay. Results TFAP2A rs1675414 was associated with NSCLO, replicated by both case‐control and family based tests. Other SNPs yielded no evidence of susceptibility to NSCL/P or two subtypes. Conclusion The current investigation suggests an intriguing role of TFAP2A in the etiology of NSCLO among the Vietnamese population. This study used case‐control and family‐based approaches to investigate the etiology of NSCL/P and its two subtypes: nonsyndromic cleft lip only (NSCLO), nonsyndromic cleft lip and palate (NSCLP) among Vietnamese population. TFAP2A rs1675414 was associated with NSCLO, replicated by both case‐control and family‐based tests.
Collapse
Affiliation(s)
- Duc Minh Nguyen
- Division of Research and Treatment for Oral Maxillofacial Congenital Anomalies, Aichi Gakuin University, Nagoya, Japan.,School of Odonto-stomatology, Hanoi Medical University, Hanoi, Vietnam
| | - Satoshi Suzuki
- Division of Research and Treatment for Oral Maxillofacial Congenital Anomalies, Aichi Gakuin University, Nagoya, Japan
| | - Hideto Imura
- Division of Research and Treatment for Oral Maxillofacial Congenital Anomalies, Aichi Gakuin University, Nagoya, Japan.,Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, Nagoya, Japan.,Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, Nagoya, Japan
| | - Teruyuki Niimi
- Division of Research and Treatment for Oral Maxillofacial Congenital Anomalies, Aichi Gakuin University, Nagoya, Japan.,Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, Nagoya, Japan.,Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, Nagoya, Japan
| | - Hiroo Furukawa
- Division of Research and Treatment for Oral Maxillofacial Congenital Anomalies, Aichi Gakuin University, Nagoya, Japan.,Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, Nagoya, Japan.,Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, Nagoya, Japan
| | - Thanh-Van Ta
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Son Minh Tong
- School of Odonto-stomatology, Hanoi Medical University, Hanoi, Vietnam
| | - Tra Thu Nguyen
- School of Odonto-stomatology, Hanoi Medical University, Hanoi, Vietnam.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Loc Nguyen Gia Pham
- Division of Research and Treatment for Oral Maxillofacial Congenital Anomalies, Aichi Gakuin University, Nagoya, Japan.,Odonto - Maxillo Facial Hospital of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Duy Le Tran
- Nguyen Dinh Chieu General Hopsital, Ben Tre, Vietnam
| | - Nagato Natsume
- Division of Research and Treatment for Oral Maxillofacial Congenital Anomalies, Aichi Gakuin University, Nagoya, Japan.,Cleft Lip and Palate Center, Aichi Gakuin Dental Hospital, Nagoya, Japan.,Division of Speech, Hearing, and Language, Aichi Gakuin Dental Hospital, Nagoya, Japan
| |
Collapse
|
2
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
3
|
Yan F, Dai Y, Iwata J, Zhao Z, Jia P. An integrative, genomic, transcriptomic and network-assisted study to identify genes associated with human cleft lip with or without cleft palate. BMC Med Genomics 2020; 13:39. [PMID: 32241273 PMCID: PMC7118807 DOI: 10.1186/s12920-020-0675-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cleft lip with or without cleft palate (CL/P) is one of the most common congenital human birth defects. A combination of genetic and epidemiology studies has contributed to a better knowledge of CL/P-associated candidate genes and environmental risk factors. However, the etiology of CL/P remains not fully understood. In this study, to identify new CL/P-associated genes, we conducted an integrative analysis using our in-house network tools, dmGWAS [dense module search for Genome-Wide Association Studies (GWAS)] and EW_dmGWAS (Edge-Weighted dmGWAS), in a combination with GWAS data, the human protein-protein interaction (PPI) network, and differential gene expression profiles. RESULTS A total of 87 genes were consistently detected in both European and Asian ancestries in dmGWAS. There were 31.0% (27/87) showed nominal significance with CL/P (gene-based p < 0.05), with three genes showing strong association signals, including KIAA1598, GPR183, and ZMYND11 (p < 1 × 10- 3). In EW_dmGWAS, we identified 253 and 245 module genes associated with CL/P for European ancestry and the Asian ancestry, respectively. Functional enrichment analysis demonstrated that these genes were involved in cell adhesion, protein localization to the plasma membrane, the regulation of the apoptotic signaling pathway, and other pathological conditions. A small proportion of genes (5.1% for European ancestry; 2.4% for Asian ancestry) had prior evidence in CL/P as annotated in CleftGeneDB database. Our analysis highlighted nine novel CL/P candidate genes (BRD1, CREBBP, CSK, DNM1L, LOR, PTPN18, SND1, TGS1, and VIM) and 17 previously reported genes in the top modules. CONCLUSIONS The genes identified through superimposing GWAS signals and differential gene expression profiles onto human PPI network, as well as their functional features, helped our understanding of the etiology of CL/P. Our multi-omics integrative analyses revealed nine novel candidate genes involved in CL/P.
Collapse
Affiliation(s)
- Fangfang Yan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 600, Houston, TX, 77030, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 600, Houston, TX, 77030, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 600, Houston, TX, 77030, USA. .,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 600, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Reynolds K, Kumari P, Sepulveda Rincon L, Gu R, Ji Y, Kumar S, Zhou CJ. Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models. Dis Model Mech 2019; 12:12/2/dmm037051. [PMID: 30760477 PMCID: PMC6398499 DOI: 10.1242/dmm.037051] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diverse signaling cues and attendant proteins work together during organogenesis, including craniofacial development. Lip and palate formation starts as early as the fourth week of gestation in humans or embryonic day 9.5 in mice. Disruptions in these early events may cause serious consequences, such as orofacial clefts, mainly cleft lip and/or cleft palate. Morphogenetic Wnt signaling, along with other signaling pathways and transcription regulation mechanisms, plays crucial roles during embryonic development, yet the signaling mechanisms and interactions in lip and palate formation and fusion remain poorly understood. Various Wnt signaling and related genes have been associated with orofacial clefts. This Review discusses the role of Wnt signaling and its crosstalk with cell adhesion molecules, transcription factors, epigenetic regulators and other morphogenetic signaling pathways, including the Bmp, Fgf, Tgfβ, Shh and retinoic acid pathways, in orofacial clefts in humans and animal models, which may provide a better understanding of these disorders and could be applied towards prevention and treatments.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Priyanka Kumari
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Lessly Sepulveda Rincon
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Ran Gu
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Santosh Kumar
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA .,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Khedgikar V, Abbruzzese G, Mathavan K, Szydlo H, Cousin H, Alfandari D. Dual control of pcdh8l/PCNS expression and function in Xenopus laevis neural crest cells by adam13/33 via the transcription factors tfap2α and arid3a. eLife 2017; 6:26898. [PMID: 28829038 PMCID: PMC5601995 DOI: 10.7554/elife.26898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/21/2017] [Indexed: 01/11/2023] Open
Abstract
Adam13/33 is a cell surface metalloprotease critical for cranial neural crest (CNC) cell migration. It can cleave multiple substrates including itself, fibronectin, ephrinB, cadherin-11, pcdh8 and pcdh8l (this work). Cleavage of cadherin-11 produces an extracellular fragment that promotes CNC migration. In addition, the adam13 cytoplasmic domain is cleaved by gamma secretase, translocates into the nucleus and regulates multiple genes. Here, we show that adam13 interacts with the arid3a/dril1/Bright transcription factor. This interaction promotes a proteolytic cleavage of arid3a and its translocation to the nucleus where it regulates another transcription factor: tfap2α. Tfap2α in turn activates multiple genes including the protocadherin pcdh8l (PCNS). The proteolytic activity of adam13 is critical for the release of arid3a from the plasma membrane while the cytoplasmic domain appears critical for the cleavage of arid3a. In addition to this transcriptional control of pcdh8l, adam13 cleaves pcdh8l generating an extracellular fragment that also regulates cell migration.
Collapse
Affiliation(s)
- Vikram Khedgikar
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Genevieve Abbruzzese
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Ketan Mathavan
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States.,Molecular and Cellular Biology graduate program, University of Massachusetts, Amherst, United States
| | - Hannah Szydlo
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Helene Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States.,Molecular and Cellular Biology graduate program, University of Massachusetts, Amherst, United States
| |
Collapse
|
6
|
Tettamanti L, Avantaggiato A, Nardone M, Silvestre-Rangil J, Tagliabue A. Cleft palate only: current concepts. ACTA ACUST UNITED AC 2017; 10:45-52. [PMID: 28757935 DOI: 10.11138/orl/2017.10.1.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cleft palate only (CPO) is one of the most common congenital malformations worldwide. The etiopathogenesis of CPO is not completely understood. Environmental factors, such as smoking, alcohol consumption, intake of drugs during pregnancy, advanced paternal age, have been demonstrated to be a risk of CPO, but conflicting results have also been published. Insufficient intake of folic acid during the pregnancy has been suggested to increase the risk for CPO. The demonstrated risk for siblings and the higher risk for monozygotic twins suggest a genetic etiopathogenesis for CPO. In some cases of CPO a prevalent mode of inheritance has been reported, but oligogenic models with reduced penetrance, and the risk related to environmental factors have also been proved. One of the first manifestations associated with CPO is difficulty with feeding. Aerophagia is a problem in these infants with CPO and requires more frequent burping and slower feeding. The inability to generate intraoral breath pressure due to nasal air emission in CPO children frequently manifests as articulation difficulties, particularly consonant weakness, and unintelligible speech. Hearing disorders are prevalent among individuals with CPO, as a result of chronic otitis media with effusion due to eustachian tube dysfunction. A multidisciplinary team is essential to manage the many aspects of CPO. In treating CPO, the reconstructive surgeon works in cooperation with otolaryngologists, dentists and orthodontists, speech pathologists, audiologists, geneticists, psychiatrists, maxillofacial surgeons, social workers, and prosthodontists. CPO can be considered a genetically complex disease, but new knowledge and new therapeutic approaches have greatly improved the quality of life of these children. Prenatal diagnosis is an important step in the treatment of this disease.
Collapse
Affiliation(s)
- L Tettamanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - A Avantaggiato
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - M Nardone
- Ministry of Public Health, Rome, Italy
| | | | - A Tagliabue
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
7
|
Tettamanti L, Avantaggiato A, Nardone M, Palmieri A, Tagliabue A. New insights in orofacial cleft: epidemiological and genetic studies on italian samples. ACTA ACUST UNITED AC 2017; 10:11-19. [PMID: 28757931 DOI: 10.11138/orl/2017.10.1.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cleft of the lip and/or palate (CL±P) is the most common congenital craniofacial anomaly affecting around 1 in 700 live births worldwide. Clefts of the human face can be classified anatomically as cleft lip only (CL), cleft palate only (CP), cleft lip and palate (CLP) or a combined group of cleft lip with or without cleft palate (CL±P), based on differences in embryologic development. CL±P has a genetic base and several linkage and association analyses have been performed in order to obtain important information about the role of candidate genes in its onset; not less important are gene-environment interactions that play an increasing role in its aetiology. In CL±P, several loci have been seen associated with the malformation, and, in some cases, a specific gene mapping in a locus has also been identified as susceptibility factor. In CP, one gene has been found, but many more are probably involved. In this short review the genetic studies carried out on CL±P, and the interaction with environmental factors (alcohol, smoking, drugs) are discussed.
Collapse
Affiliation(s)
- L Tettamanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - A Avantaggiato
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - M Nardone
- Ministry of Public Health, Rome, Italy
| | - A Palmieri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - A Tagliabue
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
8
|
Babu Gurramkonda V, Syed AH, Murthy J, V K S Lakkakula B. Association of TFAP2A gene polymorphism with susceptibility to non-syndromic cleft lip with or without palate risk in south Indian population. Meta Gene 2016; 9:181-4. [PMID: 27617216 PMCID: PMC5006125 DOI: 10.1016/j.mgene.2016.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 11/25/2022] Open
Abstract
The aetiology of non-syndromic cleft lip with or without cleft palate (NSCL/P) is complex involving multiple interacting genes and environmental factors. The primary objective of the present study was to investigate the role of TFAP2A gene single nucleotide polymorphisms (SNPs) in the pathogenesis of NSCL/P. In this study, 173 unrelated NSCL/P patients and 176 controls without clefts were genotyped with TFAP2A rs1675414 (Exon 1), rs3798691 (Intron 1), and rs303050 (Intron 4) variants by allele-specific amplification using the KASPar SNP genotyping system. The method of multifactor dimensionality reduction (MDR) was used to analyze gene-gene interactions. TFAP2A polymorphisms are not found to be associated with non-syndromic cleft lip with or without cleft palate (NSCL/P) at either the genotype or allele levels. No linkage disequilibrium (LD) was found between TFAP2A variants. MDR analysis did not show a significant effect of the TFAP2A gene polymorphisms on susceptibility to NSCL/P (p > 0.05). These results suggest that the analyzed variations in TFAP2A gene might not be associated with NSCL/P pathogenesis in south Indian population.
Collapse
Affiliation(s)
| | - Altaf Hussain Syed
- Department of Plastic Surgery, Sri Ramachandra University, Chennai, India
| | - Jyotsna Murthy
- Department of Plastic Surgery, Sri Ramachandra University, Chennai, India
| | - Bhaskar V K S Lakkakula
- Department of Biomedical Sciences, Sri Ramachandra University, Chennai, India; Sickle Cell Institute Chhattisgarh, Raipur, India
| |
Collapse
|