1
|
Ikarashi Y, Sekiguchi K, Mizoguchi K. Serotonin Receptor Binding Characteristics of Geissoschizine Methyl Ether, an Indole Alkaloid in Uncaria Hook. Curr Med Chem 2019; 25:1036-1045. [PMID: 28322152 PMCID: PMC5898036 DOI: 10.2174/0929867324666170320114713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 01/08/2023]
Abstract
Background: Geissoschizine methyl ether (GM) is one of the indole alkaloids in Uncaria hook, and an active ingredient of yokukansan (YKS) that improves behavioral and psychological symp-toms of dementia (BPSD) in patients with several types of dementia. The pharmacological action of GM has been related to various serotonin (5-HT) receptor subtypes. Objective: The aim of this article is to review the binding characteristics of GM to the 5-HT receptor sub-types in the brains using our own data and previous findings. Methods: Competitive receptor-binding and agonist/antagonist activity assays for several 5-HT receptor subtypes were performed. Moreover, the articles describing pharmacokinetics and brain distribution of GM were searched in PubMed. Results: GM bound the following 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT4, 5-HT5A, 5-HT6, and 5-HT7. Among these receptors, GM had partial agonistic activity for 5-HT1A receptors and antagonistic activity for 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors. Also, GM was me-tabolized by various CYP isoforms, mainly CYP3A4. Parent/unchanged GM was detected in both the blood and brain of rats after oral administration of YKS. In the brains, GM was presumed to bind to 5-HT1A, 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors on neuron-like large cells mainly in the frontal cor-tex. Conclusion: These results suggest that GM is a pharmacologically important alkaloid that regulates vari-ous serotonergic activities or functions by binding to multiple 5-HT receptor subtypes. Thus, this review provides recent 5-HT receptor-related evidence that GM is partly responsible for pharmacological effects of YKS.
Collapse
Affiliation(s)
- Yasushi Ikarashi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Kyoji Sekiguchi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Kazushige Mizoguchi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| |
Collapse
|
2
|
Vijaya Shankara J, Orr A, Mychasiuk R, Antle MC. Chronic BMY7378 treatment alters behavioral circadian rhythms. Eur J Neurosci 2017; 46:2782-2790. [PMID: 29044737 DOI: 10.1111/ejn.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/25/2017] [Accepted: 10/12/2017] [Indexed: 11/28/2022]
Abstract
The mammalian circadian clock is synchronized to the day : night cycle by light. Serotonin modulates the circadian effects of light, with agonists inhibiting response to light and antagonists enhancing responses to light. A special class of serotonergic compounds, the mixed 5-HT1A agonist/antagonists, potentiates light-induced phase advances by up to 400% when administered acutely. In this study, we examine the effects of one of these mixed 5-HT1A agonist/antagonists, BMY7378, when administered chronically. Thirty adult male hamsters were administered either vehicle or BMY7378 via surgically implanted osmotic mini pumps over a period of 28 days. In a light : dark cycle, chronic BMY7378 advanced the phase angle of entrainment, prolonged the duration of the active phase and attenuated the amplitude of the wheel-running rhythm during the early night. In constant darkness, chronic treatment with BMY7378 significantly attenuated light-induced phase advances, but had no significant effect on light-induced phase delays. Non-photic phase shifts to daytime administration of a 5-HT1A/7 agonist were also attenuated by chronic BMY7378 treatment. qRT-PCR analysis revealed that chronic BMY7378 treatment upregulated mRNA for 5-HT1A and 5-HT1B receptors in the hypothalamus and downregulated mRNA for 5-HT1A and monoamine oxidase-A in the brainstem. These results highlight adaptive changes of serotonin receptors in the brain to chronic treatment with BMY7378 and link such up- and downregulation to changes in important circadian parameters. Such long-term changes to the circadian system should be considered when patients are treated chronically with drugs that alter serotonergic function.
Collapse
Affiliation(s)
- Jhenkruthi Vijaya Shankara
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Angélique Orr
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Michael C Antle
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Ueki T, Nishi A, Imamura S, Kanno H, Mizoguchi K, Sekiguchi K, Ikarashi Y, Kase Y. Effects of geissoschizine methyl ether, an indole alkaloid in Uncaria hook, a constituent of yokukansan, on human recombinant serotonin 7 receptor. Cell Mol Neurobiol 2013; 33:129-35. [PMID: 22968712 DOI: 10.1007/s10571-012-9878-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/25/2012] [Indexed: 12/27/2022]
Abstract
Effects of seven alkaloids, geissoschizine methyl ether (GM), hirsutine, hirsuteine, rhynchophylline, isorhynchophylline, corynoxeine and isocorynoxeine, in Uncaria hook, a constituent of the kampo medicine yokukansan, on serotonin(7) (5-HT(7)) receptor were investigated using Chinese hamster ovary (CHO) cell membranes and human embryonic kidney 293 (HEK293) cells stably expressing the human recombinant 5-HT(7) receptor. A competitive binding assay using CHO membranes showed that GM (IC(50) = 0.034 μM) more strongly inhibited the binding of the radioligand [(3)H] LSD to 5-HT(7) receptor than the other alkaloids, suggesting that GM is bound to 5-HT(7) receptor. Agonistic/antagonistic effects of GM (1-50 μM) on the receptor were evaluated by measuring intracellular cAMP levels in HEK239 cells. GM (IC(50) = 6.0 μM) inhibited 5-HT-induced cAMP production in a concentration-dependent manner, as well as the specific 5-HT(7) receptor antagonist SB-269970 (0.1-1 μM). However, GM did not induce intracellular cAMP production as 5-HT did. These results suggest that GM has an antagonistic effect on 5-HT(7) receptor.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Tsumura Research Laboratories, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Westrich L, Sprouse J, Sánchez C. The effects of combining serotonin reuptake inhibition and 5-HT7 receptor blockade on circadian rhythm regulation in rodents. Physiol Behav 2012; 110-111:42-50. [PMID: 23276605 DOI: 10.1016/j.physbeh.2012.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/01/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
Disruption of circadian rhythms may lead to mood disorders. The present study investigated the potential therapeutic utility of combining a 5-HT7 antagonist with a selective serotonin (5-HT) reuptake inhibitor (SSRI), the standard of care in depression, on circadian rhythm regulation. In tissue explants of the suprachiasmatic nucleus (SCN) from PER2::LUC mice genetically modified to report changes in the expression of a key clock protein, the period length of PER2 bioluminescence was shortened in the presence of AS19, a 5-HT7 partial agonist. This reduction was blocked by SB269970, a selective 5-HT7 antagonist. The SSRI, escitalopram, had no effect alone on period length, but a combination with SB269970, yielded significant increases. Dosed in vivo, escitalopram had little impact on the occurrence of activity onsets in rats given access to running wheels, whether the drug was given acutely or sub-chronically. However, preceding the escitalopram treatment with a single acute dose of SB269970 produced robust phase delays, in keeping with the in vitro explant data. Taken together, these findings suggest that the combination of an SSRI and a 5-HT7 receptor antagonist has a greater impact on circadian rhythms than that observed with either agent alone, and that such a multimodal approach may be of therapeutic value in treating patients with poor clock function.
Collapse
Affiliation(s)
- Ligia Westrich
- Lundbeck Research USA, 215 College Avenue, Paramus, NJ 07652, USA.
| | | | | |
Collapse
|
5
|
Differential influence of selective 5-HT5A vs 5-HT1A, 5-HT1B, or 5-HT2C receptor blockade upon light-induced phase shifts in circadian activity rhythms: interaction studies with citalopram. Eur Neuropsychopharmacol 2009; 19:887-97. [PMID: 19604677 DOI: 10.1016/j.euroneuro.2009.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/06/2009] [Accepted: 06/16/2009] [Indexed: 11/20/2022]
Abstract
Though serotonergic mechanisms modulate circadian rhythms, roles of individual serotonin (5-HT) receptors remain uncertain since data are lacking for antagonists. Herein, both the 5-HT(5A) receptor antagonist, A843277 (10 mg/kg), and the 5-HT(1B) antagonist, SB224289 (1 mg/kg), inhibited light-induced phase advances in hamster circadian wheel-running rhythms. Conversely, though 5-HT(1A) and 5-HT(7) receptors are likewise implicated in circadian scheduling, their blockade by WAY100635 (0.5 mg/kg) and SB269970 (1 mg/kg), respectively, was ineffective. Since actions of 5-HT reuptake inhibitors are modified by antagonists, we evaluated their influence on suppression of phase advances by citalopram (10 mg/kg). Its action was potentiated by WAY100635 and the 5-HT(2C) antagonist, SB242084 (1 mg/kg), but not by A842377, SB224289, SB269970, and antagonists at 5-HT(2A) (MDL100907) and 5-HT(6) (SB399885) receptors. In conclusion, this is the first in vivo evidence for an influence of 5-HT(5A) receptors upon circadian rhythms, but no single class of 5-HT receptor mediates their control by citalopram.
Collapse
|
6
|
Adriani W, Zoratto F, Romano E, Laviola G. Cognitive impulsivity in animal models: role of response time and reinforcing rate in delay intolerance with two-choice operant tasks. Neuropharmacology 2009; 58:694-701. [PMID: 19945469 DOI: 10.1016/j.neuropharm.2009.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 10/21/2009] [Accepted: 11/17/2009] [Indexed: 11/19/2022]
Abstract
Impulsivity, a key symptom of ADHD (attention-deficit hyperactivity disorder), is also common in obsessive-compulsive and addictive disorders. There is rising interest in animal models of inhibitory-control impairment. Adolescent rats were tested daily in the intolerance-to-delay (ID) task (session 25 min, timeout 20 s), involving choice between either immediate small amount of food (SS), or larger amount of food after a delay (LL). The mixed 5-HT(1A/7) agonist (8-OH-DPAT, 0 or 0.060 mg/kg i.p.) was administered acutely just before the last three sessions at highest delays. In addition to the classical choice parameter (percent LL preference), the spontaneous waiting (termed response time, RT) occurring between end of a timeout (TO) and next nose-poke was calculated. The pace between consecutive reinforcer deliveries is given by the mean inter-trial interval (mITI, i.e. TO + RT). Hence, the impact of any given delay may be proportional to this pace and be expressed as delay-equivalent odds, i.e. the extent by which delays are multiples of the mITI. Data revealed that RT/mITI increased sharply from around 15 s/35 s to around 30 s/50 s when imposed delay changed from 30 s to 45 s (i.e. odds from 0.91 to 1.06). This suggests that rats adopted a strategy allowing them to keep in pace with perceived reinforcing rate. The increasing delay constraint directly influenced the length of rats' spontaneous waiting (RT) before next decision. For higher delays, with odds >1, rats shifted to a clear-cut SS preference, which is devoid of any exogenous temporal constraint. A challenge with 8-OH-DPAT (0 or 0.060 mg/kg i.p.) decreased impulsive choice but also increased RT. Thus, tapping onto 5-HT(1A/7) receptors slightly enhanced RT/mITI values, possibly reflecting ability of rats to cope with slower reinforcing rates and/or with delay-cancelled reward paces. In summary, delay-induced states of aversion may arise from the innate tendency to rely on a regular rate of reinforcement. Conversely, a drug-enhanced capacity to cope with delay may involve an internal ability to adjust expectancy about such a reinforcing rate.
Collapse
Affiliation(s)
- Walter Adriani
- Section of Behavioural Neuroscience, Department of Cell Biology & Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | |
Collapse
|
7
|
Recent Advances on the 5-HT5A, 5-HT6 and 5-HT7 Receptors. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1016/s0065-7743(08)00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Gannon RL, Millan MJ. Evaluation of serotonin, noradrenaline and dopamine reuptake inhibitors on light-induced phase advances in hamster circadian activity rhythms. Psychopharmacology (Berl) 2007; 195:325-32. [PMID: 17694388 DOI: 10.1007/s00213-007-0903-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 07/18/2007] [Indexed: 10/22/2022]
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs) are widely prescribed for the treatment of anxiodepressive states that are often associated with perturbed circadian rhythms including, in certain patients, phase advances. Surprisingly, the influence of SSRIs upon circadian activity rhythms has been little studied in experimental models. OBJECTIVES Accordingly, this study examined the ability of SSRIs to modulate the phase-setting properties of light on circadian activity rhythms in hamsters. Their actions were compared to those of the mixed serotonin/noradrenaline reuptake inhibitor (SNRI), venlafaxine, the selective noradrenaline reuptake inhibitor, reboxetine, and the dopamine reuptake inhibitor, bupropion. MATERIALS AND METHODS Wheel-running activity rhythms were recorded in male Syrian hamsters. Drugs were administered systemically before a light stimulus that was used to advance the timing of the hamster running rhythms. RESULTS Four chemically diverse SSRIs, citalopram (1-10 mg/kg, intraperitoneally), fluvoxamine (1-10), paroxetine (1-10), and fluoxetine (10 and 20), all robustly and significantly inhibited the ability of light to phase advance hamster circadian wheel-running activity rhythms. Their actions were mimicked by venlafaxine (1-10) that likewise elicited a marked reduction in phase advances. Conversely, reboxetine (1-20) and bupropion (1-20) did not exert significant effects. CONCLUSIONS These data suggest that suppression of serotonin (but not noradrenaline or dopamine) reuptake by SSRIs and SNRIs modifies circadian locomotor activity rhythms in hamsters. Further, they support the notion that an inhibitory influence upon the early-morning light-induced advance in circadian activity contributes to the therapeutic effects of serotonin uptake inhibitors in certain depressed patients.
Collapse
Affiliation(s)
- Robert L Gannon
- Department of Biology, Valdosta State University, Valdosta, GA 31698, USA.
| | | |
Collapse
|
9
|
Leopoldo M, Lacivita E, Colabufo NA, Niso M, Berardi F, Perrone R. Bivalent ligand approach on 4-[2-(3-methoxyphenyl)ethyl]-1-(2-methoxyphenyl)piperazine: Synthesis and binding affinities for 5-HT7 and 5-HT1A receptors. Bioorg Med Chem 2007; 15:5316-21. [PMID: 17517509 DOI: 10.1016/j.bmc.2007.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/23/2007] [Accepted: 05/02/2007] [Indexed: 01/10/2023]
Abstract
We here report on the synthesis and binding properties at 5-HT(7) and 5-HT(1A) receptors of ligands 3-12, that were designed according to the 'bivalent ligand' approach. Two moieties of the 5-HT(7)/5-HT(1A) ligand 4-[2-(3-methoxyphenyl)ethyl]-1-(2-methoxyphenyl)piperazine (1) were linked through their 3-methoxy substituent by polymethylene chains of variable length, with the aim to increase the affinity for 5-HT(7) receptor and the selectivity over 5-HT(1A) receptors. In the best cases, the dimers showed affinities for 5-HT(7) receptors as high as the monomer with no improvement in selectivity. Some dimers displayed 5-HT(1A) receptor affinities slightly higher than monomer 1.
Collapse
Affiliation(s)
- Marcello Leopoldo
- Università degli Studi di Bari, Dipartimento Farmaco-Chimico, via Orabona, 4, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Morin LP, Allen CN. The circadian visual system, 2005. ACTA ACUST UNITED AC 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
11
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
12
|
Gannon RL, Millan MJ. Serotonin1A autoreceptor activation by S 15535 enhances circadian activity rhythms in hamsters: evaluation of potential interactions with serotonin2A and serotonin2C receptors. Neuroscience 2005; 137:287-99. [PMID: 16289351 DOI: 10.1016/j.neuroscience.2005.04.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/31/2005] [Accepted: 04/27/2005] [Indexed: 11/26/2022]
Abstract
Mammalian circadian activity rhythms are generated by pacemaker cells in the suprachiasmatic nucleus (SCN). As revealed by the actions of diverse agonists, serotonergic input from raphe nuclei generally inhibits photic signaling in the suprachiasmatic nucleus. In contrast, the serotonin (5HT)1A partial agonist, 4-(benzodioxan-5-yl)1-(indan2-yl)piperazine (S 15535), was found to enhance the phase-shifting influence of light on hamster circadian rhythms [Gannon, Neuroscience 119 (2003) 567]. Herein, we extend this observation in showing that S 15535 (5.0 mg/kg, i.p.) markedly (275%) enhanced the light-induced phase shift in circadian activity rhythms: further, this action was dose-dependently abolished by the highly-selective 5HT1A receptor antagonist, WAY 100,635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]N-2-pyridinyl-cyclohexane-carboxamide maleate) (0.1-0.5 mg/kg, i.p.). WAY 100,635, which was inactive alone, shares the antagonist actions of S 15535 at postsynaptic 5HT1A sites, yet blocks its effects at their presynaptic counterparts. Thus, 5HT1A autoreceptor activation must be involved in this effect of S 15535 which contrasts with the opposite, inhibitory influence upon phase shifts of the "full" agonist, 8-OH-DPAT, which acts by stimulation of postsynaptic 5HT1A receptors [Rea et al., J Neurosci 14 (1994) 3635]. Despite the occurrence of 5HT2A and 5HT2C receptors in the (rat) suprachiasmatic nucleus, their influence on circadian rhythms is unknown since actions of selective ligands have never been evaluated. This issue was investigated with the most selective agents currently available. However, the 5HT2A agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (0.25 and 0.5 mg/kg), and the 5HT2C agonist, alphaS-6-chloro-5-fluoro-a-methyl-1H-indole-1-ethanamine fumarate (Ro-60-0175) (1.0 and 5.0 mg/kg), failed to affect light-induced phase shifts in hamsters. Moreover, even over broad dose-ranges, the 5HT2A antagonist, (+)-(2,3-dimethoxy-phenyl)-[1-[2-(4-fluoro-phenyl)-ethyl]-piperidin-4-yl]methanol (MDL 100,907) (0.1-1.0 mg/kg), and the 5HT2C antagonist, 6-chloro-5-methyl-1-[6-(2-methylpyridin-3-yloxy)pyridin-3-yl carbamoyl]indoline (SB 242,084) (1.0-10.0 mg/kg), were likewise inactive. In view of evidence that 5HT2A and 5HT2C sites functionally interact with 5HT1A receptors, we also examined the influence of these agents upon the actions of S 15535, but no significant alteration was seen in its enhancement of rhythms. In conclusion, S 15535 elicits a striking enhancement of light-induced phase shifts in circadian rhythms by specifically recruiting 5HT1A autoreceptors, which leads to suppression of serotonergic input to the suprachiasmatic nucleus. Surprisingly, no evidence for a role of 5HT2A or 5HT2C sites was found, though comparable functional studies remain to be undertaken in rats. Indeed, the present work underlines the importance of comparative studies of circadian rhythms in various species, as well as the need for further study of potential interactions among 5HT receptor subtypes in their control.
Collapse
MESH Headings
- Animals
- Circadian Rhythm/drug effects
- Circadian Rhythm/physiology
- Cricetinae
- Dose-Response Relationship, Drug
- Male
- Mesocricetus
- Piperazines/pharmacology
- Pyridines/pharmacology
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2C/drug effects
- Receptor, Serotonin, 5-HT2C/metabolism
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Suprachiasmatic Nucleus/drug effects
- Suprachiasmatic Nucleus/metabolism
Collapse
Affiliation(s)
- R L Gannon
- Department of Biology, Idle Hour Boulevard, Dowling College, Oakdale, NY 11769, USA.
| | | |
Collapse
|
13
|
Sprouse J. Pharmacological modulation of circadian rhythms: a new drug target in psychotherapeutics. Expert Opin Ther Targets 2005; 8:25-38. [PMID: 14996616 DOI: 10.1517/14728222.8.1.25] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Daily variation in an organism's physiology and behaviour is regulated by the synchrony that is achieved between the internal timing mechanisms - the circadian rhythms of the biological clock - and the prevailing environmental cues. Proper synchrony constitutes an adaptive response; improper or lost synchrony may well yield maladaptation and, in the case of humans, a psychiatric disorder. On a basic level, the circadian system is comprised of three parts: a central oscillator, its various neuronal inputs and its outputs. For all three of these parts, the dissemination of new information is moving at an unprecedented pace, and the number of molecular targets for the opportunistic pharmacologist is growing in step. Monoamines, neuropeptides, kinases - sorting through all these, much less developing one into a drug discovery programme, may be the biggest challenge. However, the potential benefits in targeting a basic flaw in a fundamental biological system may be enormous.
Collapse
Affiliation(s)
- Jeffrey Sprouse
- Pfizer Global Research & Development, Groton, CT 06340, USA.
| |
Collapse
|
14
|
Caldelas I, Chimal-Monroy J, Martínez-Gómez M, Hudson R. Non-photic circadian entrainment in mammals: A brief review and proposal for study during development. BIOL RHYTHM RES 2005. [DOI: 10.1080/09291010400028500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Sprouse J, Reynolds L, Li X, Braselton J, Schmidt A. 8-OH-DPAT as a 5-HT7 agonist: phase shifts of the circadian biological clock through increases in cAMP production. Neuropharmacology 2004; 46:52-62. [PMID: 14654097 DOI: 10.1016/j.neuropharm.2003.08.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurons in the suprachiasmatic nucleus (SCN), the site of the endogenous biological clock in mammals, fire spontaneously, peaking in firing rate near ZT6 or at the midpoint of the light phase in a 12:12 light-dark cycle. In rat hypothalamic slices, tissue incubations with drugs can produce a shift in this daily rhythm, the magnitude of which is dependent upon dose and the time of treatment. Previous work with 8-OH-DPAT had noted its ability to produce a phase advance, an earlier occurrence of the peak in neuronal firing, when applied at ZT6. Activation of 5-HT7 receptors was thought to be responsible for the shift, despite the clear preference of 8-OH-DPAT for 5-HT1A sites in terms of receptor binding affinity. In the present work, the actions of 8-OH-DPAT in SCN slices were confirmed and expanded to include additional dose-response and antagonist treatments. By itself, 8-OH-DPAT produced a concentration-dependent phase advance that was sensitive to co-application with 5-HT7 antagonists (ritanserin, mesulergine, SB-269970), but not to 5-HT1A antagonists (WAY-100,635, UH-301). Assignment of the receptor mechanisms for the antagonists employed was accomplished in experiments measuring binding affinities and the generation of cAMP, the latter monitored in a HEK-293 cell line expressing the r5-HT7 receptor and in tissue derived from rat SCN. The results indicate that the increases observed in cAMP levels are small but appear to be sufficient to produce a pharmacological resetting of the clock pacemaker. By aiding in the identification of the 5-HT receptor subtype responsible for the observed phase shifts and cAMP changes, 8-OH-DPAT represents an important pharmacological tool for 5-HT7 receptor activation, essentially broadening its role as the prototypical 5-HT1A agonist to one combining these two receptor activities.
Collapse
Affiliation(s)
- Jeffrey Sprouse
- Pfizer Global Research & Development, Groton, CT 06340, USA.
| | | | | | | | | |
Collapse
|
16
|
Sprouse J, Reynolds L, Braselton J, Schmidt A. Serotonin-induced phase advances of SCN neuronal firing in vitro: A possible role for 5-HT5A receptors? Synapse 2004; 54:111-8. [PMID: 15352136 DOI: 10.1002/syn.20070] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spontaneous firing rates of neurons in the suprachiasmatic nuclei (SCN) follow a consistent pattern, peaking near the midpoint of the light phase in a 12:12 light/dark schedule, and repeating this brief period of increased activity in subsequent circadian cycles. These carefully timed fluctuations reflect the output signal of the SCN, long recognized as the site of the endogenous biological clock in mammals. In rat hypothalamic slices, bath incubations of 8-OH-DPAT had previously been shown to elicit phase advances when applied at ZT6 (or 6 h following the onset of light), an action that could readily be attributed to 5-HT7 receptor activation. The present studies set out with the simple goal of establishing that the same receptor mechanism was responsible for the phase-shifting actions of 5-HT itself. Surprisingly, the phase advances elicited by 5-HT (0.5 microM, 1 h) at ZT6 were reduced by one 5-HT7 antagonist, ritanserin (10 microM), but not by another, mesulergine (10 microM). Receptor binding studies demonstrated a 25-fold greater affinity of ritanserin for h5-HT5A sites compared to mesulergine (Ki = 71 nM vs. 1,800 nM), an observation suggestive of a 5-HT5A mechanism for 5-HT and consistent with earlier observations of robust labeling of 5-HT5A sites in the SCN. 5-HT generated by the addition of L-tryptophan (10 microM, 1 h) to the slices displayed the same pattern of sensitivity, that is, blockade by ritanserin but not by mesulergine. Rp-cAMPS, a cAMP antagonist, failed to block the phase shifts elicited by 5-HT at a concentration (1 microM) previously shown to be effective against 8-OH-DPAT-induced phase shifts, in keeping with the proposed negative coupling of 5-HT5A receptors to cAMP production. Taken together, these results suggest that activation of both 5-HT5A and 5-HT7 receptors can produce phase advances of the circadian clock in vitro when they occur during mid-subjective day.
Collapse
Affiliation(s)
- Jeffrey Sprouse
- Pfizer Global Research & Development, Groton, Connecticut 06340, USA
| | | | | | | |
Collapse
|
17
|
Hay-Schmidt A, Vrang N, Larsen PJ, Mikkelsen JD. Projections from the raphe nuclei to the suprachiasmatic nucleus of the rat. J Chem Neuroanat 2003; 25:293-310. [PMID: 12842274 DOI: 10.1016/s0891-0618(03)00042-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The presence of serotonergic afferents in the hypothalamic suprachiasmatic nucleus (SCN) is well documented and several functional roles of serotonin (5-HT) in circadian function are well established. However, there is some controversy about the precise location of the serotonergic neurones from where this input arises. Discrete injection of the tracer Cholera toxin, subunit B, (ChB) was centred in the rat SCN, and a few retrograde labelled neurones were distributed in the dorsal and median raphe nuclei (MnR) and in the rostral part of the raphe magnus (RMg), but no neurones were found in the raphe pallidus or raphe obscurus. In addition, a group of neurones was consistently found in the medial part of the pontine supra lemniscal nucleus but not including the serotonergic B(9) region. A combination of retrograde tracing with Fluoro-Gold together with 5-HT-immunolabelling, showed few double-labelled neurones in the dorsal, MnR and B(9). However, the majority of projecting neurones were not co-storing 5-HT immunoreactivity. Phaseolus vulgaris-leucoagglutinin (PHA-L) injections in the dorsal raphe resulted in faint labelling, whereas the MnR gave rise to several labelled fibres in the SCN. Individual delicate PHA-L nerve fibres were found in all compartments of the SCN both in terms of rostrocaudal, ventromedial and dorsomedial extent, without any sign of a topographical organisation of the MnR input to the SCN. PHA-L injections into RMg gave rise to labelling of a few processes within the SCN. In conclusion, the main serotonergic input to the rat SCN originates from a few neurones in the MnR.
Collapse
Affiliation(s)
- Anders Hay-Schmidt
- Department of Medical Anatomy, The Panum Institute, 18.2, University of Copenhagen, Blegdamsvej 3, DK-2200 N, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
18
|
Antle MC, Ogilvie MD, Pickard GE, Mistlberger RE. Response of the mouse circadian system to serotonin 1A/2/7 agonists in vivo: surprisingly little. J Biol Rhythms 2003; 18:145-58. [PMID: 12693869 DOI: 10.1177/0748730403251805] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Serotonin (5-HT) is thought to play a role in regulating nonphotic phase shifts and modulating photic phase shifts of the mammalian circadian system, but results with different species (rats vs. hamsters) and techniques (in vivo vs. in vitro; systemic vs. intracerebral drug delivery) have been discordant. Here we examined the effects of the 5-HT1A/7 agonist 8-OH-DPAT and the 5-HT1/2 agonist quipazine on the circadian system in mice, with some parallel experiments conducted with hamsters for comparative purposes. In mice, neither drug, delivered systemically at a range of circadian phases and doses, induced phase shifts significantly different from vehicle injections. In hamsters, quipazine intraperitoneally (i.p.) did not induce phase shifts, whereas 8-OH-DPAT induced phase shifts after i.p. but not intra-SCN injections. In mice, quipazine modestly increased c-Fos expression in the SCN (site of the circadian pacemaker) during the subjective day, whereas 8-OH-DPAT did not affect SCN c-Fos. In hamsters, both drugs suppressed SCN c-Fos in the subjective day. In both species, both drugs strongly induced c-Fos in the paraventricular nucleus (within-subject positive control). 8-OH-DPAT did not significantly attenuate light-induced phase shifts in mice but did in hamsters (between-species positive control). These results indicate that in the intact mouse in vivo, acute activation of 5-HT1A/2/7 receptors in the circadian system is not sufficient to reset the SCN pacemaker or to oppose phase-shifting effects of light. There appear to be significant species differences in the susceptibility of the circadian system to modulation by systemically delivered serotonergics.
Collapse
Affiliation(s)
- Michael C Antle
- Department of Psychology, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
19
|
Kiel S, Bönisch H, Brüss M, Göthert M. Impairment of signal transduction in response to stimulation of the naturally occurring Pro279Leu variant of the h5-HT7(a) receptor. PHARMACOGENETICS 2003; 13:119-26. [PMID: 12563181 DOI: 10.1097/00008571-200302000-00008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study, performed in stably transfected HEK293 cells, was to investigate whether expression of the naturally occurring Pro279Leu variant of the h5-HT7(a) receptor (located in the third intracellular loop) is associated with changes in the pharmacological properties and/or second messenger formation compared to the wild-type receptor. Radioligand binding of [3H]5-carboxamidotryptamine ([3H]5-CT) to membranes and stimulation of [3H]cAMP formation in whole cells evoked by 5-HT receptor agonists were determined. Maximum binding (B(max)) to, and affinity (K(D)) of [3H]5-CT for, the variant receptor and the wild-type receptor were equal. All agonists and antagonists investigated exhibited no differences in affinity between the variant receptor and the wild-type receptor. However, the intrinsic activity of the 5-HT receptor agonists 5-HT, 5-CT, RU24969 and 8-OH-DPAT in stimulating [3H]cAMP accumulation in the cells expressing the Pro279Leu variant was almost abolished and their potency was 2.9-4.3-fold lower. Despite its affinity for both receptor isoforms, sumatriptan did not stimulate the accumulation of cAMP. In individuals expressing the Pro279Leu variant of the h5-HT7(a) receptor, a considerable attenuation of its function may be predicted. This may have relevance for the action of new classes of drugs which affect circadian rhythm or psychiatric diseases, such as schizophrenia.
Collapse
Affiliation(s)
- Sibylle Kiel
- Institute of Pharmacology and Toxicology, University of Bonn, Reuterstrasse 2b, D-53113 Bonn, Germany
| | | | | | | |
Collapse
|
20
|
Farvolden P, Kennedy SH, Lam RW. Recent developments in the psychobiology and pharmacotherapy of depression: optimising existing treatments and novel approaches for the future. Expert Opin Investig Drugs 2003; 12:65-86. [PMID: 12517255 DOI: 10.1517/13543784.12.1.65] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Effective antidepressants include monoamine oxidase inhibitors and tricyclic antidepressants, selective serotonin re-uptake inhibitors and novel agents, including serotonin and noradrenaline re-uptake inhibitors. Although effective, current treatments most often produce partial symptomatic improvement (response) rather than symptom resolution and optimal functioning (remission). While current pharmacotherapies target monoaminergic systems, different symptoms of major depressive disorder (MDD) may have distinct neurobiological underpinnings and other neurobiological systems are likely involved in the pathogenesis of MDD. In this article a review of current pharmacotherapeutic options for MDD, current understanding of the neurobiology and pathogenesis of MDD and a review of new and promising directions in pharmacological research will be provided. It is generally accepted that no single neurotransmitter or system is responsible for the dysregulation found in MDD. While agents that affect monoaminergic systems will likely continue to be first-line treatments for MDD for the foreseeable future, a number of new and novel agents, including corticotropin-releasing factor antagonists, substance P antagonists and antiglucocorticoids show considerable promise for refining treatment options. In order to better understand the neurobiology and treatment response of MDD, it is probable that more sophisticated theory-driven typologies of MDD will have to be developed.
Collapse
Affiliation(s)
- P Farvolden
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.
| | | | | |
Collapse
|
21
|
Colbron S, Jones M, Biello SM. MDMA alters the response of the circadian clock to a photic and non-photic stimulus. Brain Res 2002; 956:45-52. [PMID: 12426045 DOI: 10.1016/s0006-8993(02)03478-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA or 'Ecstasy') is a widely used recreational drug that damages serotonin 5-HT neurons in animals and possibly humans. Published literature has shown that the serotonergic system is involved in photic and non-photic phase shifting of the circadian clock, which is located in the suprachiasmatic nuclei. Despite the dense innervation of the circadian system by 5-HT and the known selective neurotoxicity of MDMA, little is known about the effects of MDMA on the circadian oscillator. This study investigated whether repeated exposure to the serotonin neurotoxin MDMA alters the behavioural response of the Syrian hamster to phase shift to the serotonin 5-HT1A/7 receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT). This agonist was administered under an Aschoff Type I (CT8) and Aschoff Type II (ZT8) paradigm (5 mg/kg) and was given before and after treatment with MDMA (10, 15 and 20 mg/kg administered on successive days). Pre-treatment with MDMA significantly attenuated phase shifts to 8-OH-DPAT. We also tested the ability of the clock to phase shift to a photic stimulus after treatment with MDMA. A 15-min light pulse (mean lux 125 at CT14 or ZT14) was administered before and after treatment with MDMA. Phase shifts to a photic stimulus were significantly attenuated by pre-treatment with MDMA. Our study demonstrates that repeated exposure to MDMA may alter the ability of the circadian clock to phase shift to a photic and non-photic stimulus in the hamster. Disruption of circadian function has been linked with a variety of clinical conditions such as sleep disorders, mood, concentration difficulties and depression, consequently outlining the potential dangers of long-term ecstasy use.
Collapse
Affiliation(s)
- Suzanne Colbron
- Department of Psychology, University of Glasgow, 58 Hillhead Street, G12 8QB, Glasgow, UK
| | | | | |
Collapse
|
22
|
Kogan HA, Marsden CA, Fone KCF. DR4004, a putative 5-HT(7) receptor antagonist, also has functional activity at the dopamine D2 receptor. Eur J Pharmacol 2002; 449:105-11. [PMID: 12163113 DOI: 10.1016/s0014-2999(02)02003-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tetrahydrobenzindole, 2a-(4-(4-phenyl-1,2,3,6-tetrahydropyridyl)butyl)-2a,3,4,5-tetrahydrobenzo[cd]indol-2(1H)-one (DR4004) has been described as a highly selective antagonist for the 5-hydroxytryptamine(7) (5-HT(7)) receptor [J. Med. Chem. 42 (1999) 533]. Consistent with original data, DR4004 bound to rat hypothalamic membranes with an affinity of 7.3+/-0.2 (pK(i)+/-S.E.M.) for the 5-HT(7) receptor. However, competition binding studies showed that DR4004 had poor receptor selectivity with the following affinity profile; dopamine D2 receptor, alpha(1)-adrenoceptor > or =5-HT(7) receptor>histamine H(1) receptor, alpha(2)-adrenoceptor>dopamine D1 receptor>beta-adrenoceptor, muscarinic and 5-HT(2A/C) receptors. In conscious rats DR4004 (1, 5 or 10 mg/kg i.p.) produced a dose-dependent hyperglycaemia and hypothermia, but the former was reduced by the dopamine D2 receptor antagonist raclopride. Another 5-HT(7) receptor antagonist, (R)-3-(2-(2-(4-methylpiperidin-1-yl)-ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970) produced hypothermia but no hyperglycaemia. This study confirms that DR4004 has high affinity for the 5-HT(7) receptor but suggests that dopamine D2 receptor activity contributes to some of the in vivo effects.
Collapse
Affiliation(s)
- Helen A Kogan
- School of Biomedical Sciences, Queen's Medical Centre, Nottingham University, Nottingham, NG7 2UH, UK
| | | | | |
Collapse
|
23
|
Bonaventure P, Nepomuceno D, Kwok A, Chai W, Langlois X, Hen R, Stark K, Carruthers N, Lovenberg TW. Reconsideration of 5-hydroxytryptamine (5-HT)(7) receptor distribution using [(3)H]5-carboxamidotryptamine and [(3)H]8-hydroxy-2-(di-n-propylamino)tetraline: analysis in brain of 5-HT(1A) knockout and 5-HT(1A/1B) double-knockout mice. J Pharmacol Exp Ther 2002; 302:240-8. [PMID: 12065723 DOI: 10.1124/jpet.302.1.240] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The characterization and anatomical distribution of 5-hydroxytryptamine (5-HT)(7) receptor binding sites in brain tissue has been hampered by the lack of a specific radioligand. In the present autoradiographic study, we took advantage of 5-HT(1A) knockout and 5-HT(1A/1B) double-knockout mice to revisit the pharmacological characterization and anatomical localization of 5-HT(7) binding sites in mouse brain using [(3)H]5-carboxamidotryptamine (5-CT) and [(3)H]8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT). The distribution pattern of [(3)H]5-CT binding sites (2 nM) in the brain of mice lacking the 5-HT(1A/1B) receptor was scarce and confined to the septum, globus pallidus, thalamus, hypothalamus, amygdala, cortex, and substantia nigra. The low densities of [(3)H]5-CT binding sites detected in septum, thalamus, hypothalamus, amygdala, and cortex were displaced by 10 microM of the selective 5-HT(7) receptor antagonist (R)-3-(2-(2-(4-methylpiperidin-1-yl) ethyl)pyrrolidine-1-sulfonyl) phenol (SB-269970). The SB-269970-insensitive [(3)H]5-CT binding sites detected in globus pallidus and substantia nigra of 5-HT(1A/1B) knockout mice were displaced by N-[3-(2-dimethylamino)ethoxy-4-methoxy-phenyl]-2'-methyl-4'- (5-methyl-1,2,4-oxadiazol-3-yl)-(1,1'-biphenyl)-4-carboxamide hydrochloride (SB-216641) (1 microM), demonstrating the 5-HT(1D) nature of these binding sites. In contrast to the low densities of [(3)H]5-CT binding sites, high-to-moderate densities of [(3)H]8-OH-DPAT binding sites (10 nM) were found throughout the brain of 5-HT(1A) and 5-HT(1A/1B) knockout mice (olfactory system, septum, thalamus, hypothalamus, amygdala, CA3 field of the hippocampus, cortical mantle, and central gray). These [(3)H]8-OH-DPAT binding sites were displaced by 10 microM SB-269970, risperidone, and methiothepin but not by pindolol, N-tert-butyl-3-[4-(2-methoxyphenyl)piperazin-1-yl]-2-phenylpropanamide (WAY- 100135), or citalopram. We conclude that despite its high affinity for the 5-HT(7) receptor in tissue homogenates, [(3)H]5-CT is not a good tracer for measuring 5-HT(7) receptor binding sites autoradiographically. Also, the lower affinity ligand [(3)H]8-OH-DPAT is a much better tracer for autoradiographic studies at the 5-HT(7) receptor binding sites.
Collapse
Affiliation(s)
- Pascal Bonaventure
- Johnson & Johnson Pharmaceutical Research and Development L.L.C, 3210 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Takahashi S, Yoshinobu Y, Aida R, Shimomura H, Akiyama M, Moriya T, Shibata S. Extended action of MKC-242, a selective 5-HT(1A) receptor agonist, on light-induced Per gene expression in the suprachiasmatic nucleus in mice. J Neurosci Res 2002; 68:470-8. [PMID: 11992474 DOI: 10.1002/jnr.10225] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We reported previously that (S)-5-[3-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole hydrochloride (MKC-242) (3 mg kg(-1), i.p.), a selective 5-HT(1A) receptor agonist, accelerated the re-entrainment of hamster wheel-running rhythms to a new 8 hr delayed or advanced light-dark cycle, and also potentiated the phase advance of the wheel-running rhythm produced by light pulses. The molecular mechanism underlying MKC-242-induced potentiation of this phase shift, however, has not yet been elucidated. We examined the effects of MKC-242 on light-induced mPer1 and mPer2 mRNA expression in the suprachiasmatic nucleus (SCN) of mice. MKC-242 (5 mg kg(-1), i.p.) potentiated light-induced mPer1 and mPer2 expression in the SCN of mice housed in constant darkness for 2 days, when mRNA levels were observed 3 hr after light-exposure. More potentiating action of MKC-242 on mPer2 expression in the SCN was observed in mice housed in constant darkness for 9-10 days. This facilitatory action of MKC-242 on mPer1 expression was antagonized by WAY100635, a selective 5-HT(1A) receptor blocker, indicating that MKC-242 activated 5-HT(1A) receptors. Other drugs such as 8-hydroxy-dipropylaminotetralin (10 mg kg(-1), i.p.), paroxetine (10 mg kg(-1), i.p.), buspirone (10 mg kg(-1), i.p.), and diazepam (10 mg kg(-1), i.p.) did not display a potentiating action on light-induced mPer1 and mPer2 expression in the SCN. In the behavioral experiments, we found that MKC-242 (5 mg kg(-1), i.p.) potentiated light-induced phase delays of free-running rhythm in mice. The present results suggest that prolonged increase of mPer1 or mPer2 expression in the SCN by MKC-242 may be involved in the potentiation of photic entrainment by MKC-242 in mice.
Collapse
Affiliation(s)
- Satomi Takahashi
- Department of Pharmacology and Brain Science, School of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Wood MD, Thomas DR, Watson JM. Therapeutic potential of serotonin antagonists in depressive disorders. Expert Opin Investig Drugs 2002; 11:457-67. [PMID: 11922855 DOI: 10.1517/13543784.11.4.457] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although the precise neurochemical imbalances in depression are still unknown, a role for the neurotransmitter 5-hydroxytryptamine (serotonin) has been implicated since the identification of the first effective antidepressants, imipramine and iproniazid. This led to the development of the selective serotonin re-uptake inhibitors which are widely used in the treatment of depression and depressive disorders, including generalised anxiety disorder, social phobia, obsessive compulsive disorder etc. Studies involving chronic administration in rats led to the hypothesis that the different classes of antidepressant treatment produce a common neuroadaptive change, namely an enhancement of serotonin neurotransmission, albeit via different pre and postsynaptic mechanisms. From this, it was suggested that serotonin antagonists should induce similar neuroadaptive changes, either directly or through a potentiation of other antidepressant agents. Here, the profiles of novel serotonin antagonists currently in preclinical development are reviewed and their therapeutic potential is assessed.
Collapse
Affiliation(s)
- Martyn D Wood
- Psychiatry Centre for Excellence in Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW, UK.
| | | | | |
Collapse
|
26
|
Belenky MA, Pickard GE. Subcellular distribution of 5-HT(1B) and 5-HT(7) receptors in the mouse suprachiasmatic nucleus. J Comp Neurol 2001; 432:371-88. [PMID: 11246214 DOI: 10.1002/cne.1109] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The suprachiasmatic nucleus (SCN), a circadian oscillator, receives glutamatergic afferents from the retina and serotonergic (5-HT) afferents from the median raphe. 5-HT(1B) and 5-HT(7) receptor agonists inhibit the effects of light on SCN circadian activity. Electron microscopic (EM) immunocytochemical procedures were used to determine the subcellular localization of 5-HT(1B) and 5-HT(7) receptors in the SCN. 5-HT(1B) receptor immunostaining was associated with the plasma membrane of thin unmyelinated axons, preterminal axons, and terminals of optic and nonoptic origin. 5-HT(1B) receptor immunostaining in terminals was almost never observed at the synaptic active zone. To a much lesser extent, 5-HT(1B) immunoreaction product was noted in dendrites and somata of SCN neurons. 5-HT(7) receptor immunoreactivity in gamma-aminobutyric acid (GABA), vasoactive intestinal polypeptide (VIP), and vasopressin (VP) neuronal elements in the SCN was examined by using double-label procedures. 5-HT(7) receptor immunoreaction product was often observed in GABA-, VIP-, and VP-immunoreactive dendrites as postsynaptic receptors and in axonal terminals as presynaptic receptors. 5-HT(7) receptor immunoreactivity in terminals and dendrites was often associated with the plasma membrane but very seldom at the active zone. In GABA-, VIP-, and VP-immunoreactive perikarya, 5-HT(7) receptor immunoreaction product was distributed throughout the cytoplasm often in association with the endoplasmic reticulum and the Golgi complex. The distribution of 5-HT(1B) receptors in presynaptic afferent terminals and postsynaptic SCN processes, as well as the distribution of 5-HT(7) receptors in both pre- and postsynaptic GABA, VIP, and VP SCN processes, suggests that serotonin plays a significant role in the regulation of circadian rhythms by modulating SCN synaptic activity.
Collapse
Affiliation(s)
- M A Belenky
- Department of Cell and Animal Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|