1
|
Nidhi, Kumar P, Pathania D, Thakur S, Sharma M. Environment-mediated mutagenetic interference on genetic stabilization and circadian rhythm in plants. Cell Mol Life Sci 2022; 79:358. [PMID: 35687153 PMCID: PMC11072124 DOI: 10.1007/s00018-022-04368-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Many mortal organisms on this planet have developed the potential to merge all internal as well as external environmental cues to regulate various processes running inside organisms and in turn make them adaptive to the environment through the circadian clock. This moving rotator controls processes like activation of hormonal, metabolic, or defense pathways, initiation of flowering at an accurate period, and developmental processes in plants to ensure their stability in the environment. All these processes that are under the control of this rotating wheel can be changed either by external environmental factors or by an unpredictable phenomenon called mutation that can be generated by either physical mutagens, chemical mutagens, or by internal genetic interruption during metabolic processes, which alters normal functionality of organisms like innate immune responses, entrainment of the clock, biomass reduction, chlorophyll formation, and hormonal signaling, despite its fewer positive roles in plants like changing plant type, loss of vernalization treatment to make them survivable in different latitudes, and defense responses during stress. In addition, with mutation, overexpression of gene components sometimes supresses mutation effect and promote normal circadian genes abundance in the cell, while sometimes it affects circadian functionality by generating arrhythmicity and shows that not only mutation but overexpression also effects normal functional activities of plant. Therefore, this review mainly summarizes the role of each circadian clock genes in regulating rhythmicity, and shows that how circadian outputs are controlled by mutations as well as overexpression phenomenon.
Collapse
Affiliation(s)
- Nidhi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Pradeep Kumar
- Central University of Himachal Pradesh, Dharmshala, India
| | - Diksha Pathania
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland
| | - Mamta Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India.
| |
Collapse
|
2
|
Marie TRJG, Leonardos ED, Lanoue J, Hao X, Micallef BJ, Grodzinski B. A Perspective Emphasizing Circadian Rhythm Entrainment to Ensure Sustainable Crop Production in Controlled Environment Agriculture: Dynamic Use of LED Cues. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.856162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
World-wide, sustainable crop production is increasingly dependent on the protection of crops from adverse local climate conditions by using controlled environment agriculture (CEA) facilities. Today's greenhouses and plant factories are becoming very technologically advanced. Important breakthroughs in our understanding of the deployment of affordable artificial lighting systems that can supplement and even replace solar radiation is the subject of this perspective article. The key to improving sustainable CEA is to synchronize those environmental cues that best entrain the natural circadian rhythm of the crop. Patterns of circadian rhythms reflect the balance of daily metabolic cycles and phenological stages of development that integrate and anticipate environmental changes for all complex organisms. Within the last decade, our understanding of the use of light-emitting diodes (LEDs) as spectrally tunable tools for stimulating plant responses has expanded rapidly. This perspective proposes that extending the photoperiod in CEA is an economically sustainable goal to for year-round productivity of tomato, using dynamic LED shifts that entrain the circadian rhythm. When the photoperiod is extended too far, tomato experiences injury. To avoid yield reduction, we look to nature for clues, and how circadian rhythms evolved in general to long-photoperiods during the summer in high-latitudes. It follows that circadian rhythm traits are good targets for breeders to select new tomato cultivars suitable for CEA. Circadian rhythm entrainment, using dynamic LED cues, can be tailored to any latitude-of-origin crop, and thus expands the strategies ensuring sustainable food security including healthy diets locally in any region of the world.
Collapse
|
3
|
Nakamura S, Oyama T. Adaptive Diversification in the Cellular Circadian Behavior of Arabidopsis Leaf- and Root-Derived Cells. PLANT & CELL PHYSIOLOGY 2022; 63:421-432. [PMID: 35064666 DOI: 10.1093/pcp/pcac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The plant circadian system is based on self-sustained cellular oscillations and is utilized to adapt to daily and seasonal environmental changes. The cellular circadian clocks in the above- and belowground plant organs are subjected to diverse local environments. Individual cellular clocks are affected by other cells/tissues in plants, and the intrinsic circadian properties of individual cells remain to be elucidated. In this study, we monitored bioluminescence circadian rhythms of individual protoplast-derived cells from leaves and roots of a CCA1::LUC Arabidopsis transgenic plant. We analyzed the circadian properties of the leaf- and root-derived cells and demonstrated that the cells with no physical contact with other cells harbor a genuine circadian clock with ∼24-h periodicity, entrainability and temperature compensation of the period. The stability of rhythm was dependent on the cell density. High cell density resulted in an improved circadian rhythm of leaf-derived cells while this effect was observed irrespective of the phase relation between cellular rhythms. Quantitative and statistical analyses for individual cellular bioluminescence rhythms revealed a difference in amplitude and precision of light/dark entrainment between the leaf- and root-derived cells. Circadian systems in the leaves and roots are diversified to adapt to their local environments at the cellular level.
Collapse
Affiliation(s)
- Shunji Nakamura
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
4
|
Ruocco M, Barrote I, Hofman JD, Pes K, Costa MM, Procaccini G, Silva J, Dattolo E. Daily Regulation of Key Metabolic Pathways in Two Seagrasses Under Natural Light Conditions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.757187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The circadian clock is an endogenous time-keeping mechanism that enables organisms to adapt to external environmental cycles. It produces rhythms of plant metabolism and physiology, and interacts with signaling pathways controlling daily and seasonal environmental responses through gene expression regulation. Downstream metabolic outputs, such as photosynthesis and sugar metabolism, besides being affected by the clock, can also contribute to the circadian timing itself. In marine plants, studies of circadian rhythms are still way behind in respect to terrestrial species, which strongly limits the understanding of how they coordinate their physiology and energetic metabolism with environmental signals at sea. Here, we provided a first description of daily timing of key core clock components and clock output pathways in two seagrass species, Cymodocea nodosa and Zostera marina (order Alismatales), co-occurring at the same geographic location, thus exposed to identical natural variations in photoperiod. Large differences were observed between species in the daily timing of accumulation of transcripts related to key metabolic pathways, such as photosynthesis and sucrose synthesis/transport, highlighting the importance of intrinsic biological, and likely ecological attributes of the species in determining the periodicity of functions. The two species exhibited a differential sensitivity to light-to-dark and dark-to-light transition times and could adopt different growth timing based on a differential strategy of resource allocation and mobilization throughout the day, possibly coordinated by the circadian clock. This behavior could potentially derive from divergent evolutionary adaptations of the species to their bio-geographical range of distributions.
Collapse
|
5
|
Singh RK, Bhalerao RP, Eriksson ME. Growing in time: exploring the molecular mechanisms of tree growth. TREE PHYSIOLOGY 2021; 41:657-678. [PMID: 32470114 PMCID: PMC8033248 DOI: 10.1093/treephys/tpaa065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 05/31/2023]
Abstract
Trees cover vast areas of the Earth's landmasses. They mitigate erosion, capture carbon dioxide, produce oxygen and support biodiversity, and also are a source of food, raw materials and energy for human populations. Understanding the growth cycles of trees is fundamental for many areas of research. Trees, like most other organisms, have evolved a circadian clock to synchronize their growth and development with the daily and seasonal cycles of the environment. These regular changes in light, daylength and temperature are perceived via a range of dedicated receptors and cause resetting of the circadian clock to local time. This allows anticipation of daily and seasonal fluctuations and enables trees to co-ordinate their metabolism and physiology to ensure vital processes occur at the optimal times. In this review, we explore the current state of knowledge concerning the regulation of growth and seasonal dormancy in trees, using information drawn from model systems such as Populus spp.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 82, Sweden
| | - Maria E Eriksson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| |
Collapse
|
6
|
Kim P, Kaur M, Jang HI, Kim YI. The Circadian Clock-A Molecular Tool for Survival in Cyanobacteria. Life (Basel) 2020; 10:life10120365. [PMID: 33419320 PMCID: PMC7766417 DOI: 10.3390/life10120365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are photosynthetic organisms that are known to be responsible for oxygenating Earth’s early atmosphere. Having evolved to ensure optimal survival in the periodic light/dark cycle on this planet, their genetic codes are packed with various tools, including a sophisticated biological timekeeping system. Among the cyanobacteria is Synechococcus elongatus PCC 7942, the simplest clock-harboring organism with a powerful genetic tool that enabled the identification of its intricate timekeeping mechanism. The three central oscillator proteins—KaiA, KaiB, and KaiC—drive the 24 h cyclic gene expression rhythm of cyanobacteria, and the “ticking” of the oscillator can be reconstituted inside a test tube just by mixing the three recombinant proteins with ATP and Mg2+. Along with its biochemical resilience, the post-translational rhythm of the oscillation can be reset through sensing oxidized quinone, a metabolite that becomes abundant at the onset of darkness. In addition, the output components pick up the information from the central oscillator, tuning the physiological and behavioral patterns and enabling the organism to better cope with the cyclic environmental conditions. In this review, we highlight our understanding of the cyanobacterial circadian clock and discuss how it functions as a molecular chronometer that readies the host for predictable changes in its surroundings.
Collapse
Affiliation(s)
- Pyonghwa Kim
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (P.K.); (M.K.)
| | - Manpreet Kaur
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (P.K.); (M.K.)
| | - Hye-In Jang
- School of Cosmetic Science and Beauty Biotechnology, Semyung University, Jecheon 27136, Korea
- Correspondence: (H.-I.J.); (Y.-I.K.)
| | - Yong-Ick Kim
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (P.K.); (M.K.)
- Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Correspondence: (H.-I.J.); (Y.-I.K.)
| |
Collapse
|
7
|
Weller JL, Vander Schoor JK, Perez-Wright EC, Hecht V, González AM, Capel C, Yuste-Lisbona FJ, Lozano R, Santalla M. Parallel origins of photoperiod adaptation following dual domestications of common bean. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1209-1219. [PMID: 31222352 DOI: 10.1093/jxb/ery455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/09/2019] [Indexed: 05/02/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is an important grain legume domesticated independently in Mexico and Andean South America approximately 8000 years ago. Wild forms are obligate short-day plants, and relaxation of photoperiod sensitivity was important for expansion to higher latitudes and subsequent global spread. To better understand the nature and origin of this key adaptation, we examined its genetic control in progeny of a wide cross between a wild accession and a photoperiod-insensitive cultivar. We found that photoperiod sensitivity is under oligogenic control, and confirm a major effect of the Ppd locus on chromosome 1. The red/far-red photoreceptor gene PHYTOCHROME A3 (PHYA3) was identified as a strong positional candidate for Ppd, and sequencing revealed distinct deleterious PHYA3 mutations in photoperiod-insensitive Andean and Mesoamerican accessions. These results reveal the independent origins of photoperiod insensitivity within the two major common bean gene pools and demonstrate the conserved importance of PHYA genes in photoperiod adaptation of short-day legume species.
Collapse
Affiliation(s)
- James L Weller
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | - Valérie Hecht
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Ana M González
- Grupo de Genética del Desarrollo de Plantas, Misión Biológica de Galicia-CSIC, Pontevedra, Spain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almeria, Almeria, Spain
| | - Fernando J Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almeria, Almeria, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almeria, Almeria, Spain
| | - Marta Santalla
- Grupo de Genética del Desarrollo de Plantas, Misión Biológica de Galicia-CSIC, Pontevedra, Spain
| |
Collapse
|
8
|
Gil KE, Park CM. Thermal adaptation and plasticity of the plant circadian clock. THE NEW PHYTOLOGIST 2019; 221:1215-1229. [PMID: 30289568 DOI: 10.1111/nph.15518] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/11/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 1215 I. Introduction 1215 II. Molecular organization of the plant circadian clock 1216 III. Temperature compensation 1219 IV. Temperature regulation of circadian behaviors 1220 V. Thermal adaptation of the clock: evolutionary considerations 1223 VI. Light and temperature information for the clock function - synergic or individual? 1224 VII. Concluding remarks and future prospects 1225 Acknowledgements 1225 References 1225 SUMMARY: Plant growth and development is widely affected by diverse temperature conditions. Although studies have been focused mainly on the effects of stressful temperature extremes in recent decades, nonstressful ambient temperatures also influence an array of plant growth and morphogenic aspects, a process termed thermomorphogenesis. Notably, accumulating evidence indicates that both stressful and nonstressful temperatures modulate the functional process of the circadian clock, a molecular timer of biological rhythms in higher eukaryotes and photosynthetic prokaryotes. The circadian clock can sustain robust and precise timing over a range of physiological temperatures. Genes and molecular mechanisms governing the temperature compensation process have been explored in different plant species. In addition, a ZEITLUPE/HSP90-mediated protein quality control mechanism helps plants maintain the thermal stability of the clock under heat stress. The thermal adaptation capability and plasticity of the clock are of particular interest in view of the growing concern about global climate changes. Considering these circumstances in the field, we believe that it is timely to provide a provoking discussion on the current knowledge of temperature regulation of the clock function. The review also will discuss stimulating ideas on this topic along with ecosystem management and future agricultural innovation.
Collapse
Affiliation(s)
- Kyung-Eun Gil
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
9
|
Kamrani YY, Matsuo T, Mittag M, Minagawa J. ROC75 is an Attenuator for the Circadian Clock that Controls LHCSR3 Expression. PLANT & CELL PHYSIOLOGY 2018; 59:2602-2607. [PMID: 30184184 DOI: 10.1093/pcp/pcy179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Strong light intensity leads to harmful overexcitation of the photosystems in green algae. In Chlamydomonas reinhardtii, LHCSR3 is required for the rapid protective response known as energy-dependent quenching (qE). Because the majority of photoacclimation analysis has been conducted under controlled laboratory conditions, physiological responses to natural environmental changes such as light/dark cycles have not been examined in detail. Regarding fitness in higher plants and microalgae, light-dark cycles represent a major Zeitgeber for synchronizing the circadian clock to multiple physiological responses, yet there is little consensus with respect to the clock response to high-intensity light in photosynthetic organisms. In a previous study, 105 circadian rhythm insertional mutants were isolated as rhythm of chloroplast (roc) mutants. Here, we report our characterization of the roc75 mutant, which exhibited a significantly higher qE value and LHCSR3 protein accumulation when grown under red light. We performed transcript analysis of ROC75 in the pcry (plant-cryptochrome) and phot mutants and found that only the former accumulated lower levels of ROC75 mRNA, suggesting that the blue light photoreceptor pCRY positively regulates ROC75. However, the degradation of pCRY by high-light exposure contributes to prevent over-accumulation of ROC75, which in turn facilitates the PHOT mediated main activation pathway for LHCSR3. Furthermore, LHCSR3 mRNA exhibited a circadian rhythm, though its basal expression level in the roc75 mutant was higher than that in WT. We therefore conclude that ROC75 acts as an attenuator of the circadian clock to control LHCSR3 expression with blue and red light as stimuli for attenuation.
Collapse
Affiliation(s)
- Yousef Yari Kamrani
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Takuya Matsuo
- Center for Gene Research, Nagoya University, Nagoya, Aichi, Japan
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| |
Collapse
|
10
|
Skinner DZ, Bellinger B, Hiscox W, Helms GL. Evidence of cyclical light/dark-regulated expression of freezing tolerance in young winter wheat plants. PLoS One 2018; 13:e0198042. [PMID: 29912979 PMCID: PMC6005534 DOI: 10.1371/journal.pone.0198042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/11/2018] [Indexed: 11/18/2022] Open
Abstract
The ability of winter wheat (Triticum aestivum L.) plants to develop freezing tolerance through cold acclimation is a complex rait that responds to many environmental cues including day length and temperature. A large part of the freezing tolerance is conditioned by the C-repeat binding factor (CBF) gene regulon. We investigated whether the level of freezing tolerance of 12 winter wheat lines varied throughout the day and night in plants grown under a constant low temperature and a 12-hour photoperiod. Freezing tolerance was significantly greater (P<0.0001) when exposure to subfreezing temperatures began at the midpoint of the light period, or the midpoint of the dark period, compared to the end of either period, with an average of 21.3% improvement in survival. Thus, freezing survival was related to the photoperiod, but cycled from low, to high, to low within each 12-hour light period and within each 12-hour dark period, indicating ultradian cyclic variation of freezing tolerance. Quantitative real-time PCR analysis of expression levels of CBF genes 14 and 15 indicated that expression of these two genes also varied cyclically, but essentially 180° out of phase with each other. Proton nuclear magnetic resonance analysis (1H-NMR) showed that the chemical composition of the wheat plants' cellular fluid varied diurnally, with consistent separation of the light and dark phases of growth. A compound identified as glutamine was consistently found in greater concentration in a strongly freezing-tolerant wheat line, compared to moderately and poorly freezing-tolerant lines. The glutamine also varied in ultradian fashion in the freezing-tolerant wheat line, consistent with the ultradian variation in freezing tolerance, but did not vary in the less-tolerant lines. These results suggest at least two distinct signaling pathways, one conditioning freezing tolerance in the light, and one conditioning freezing tolerance in the dark; both are at least partially under the control of the CBF regulon.
Collapse
Affiliation(s)
- Daniel Z. Skinner
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America, US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, Washington, United States of America
- * E-mail:
| | - Brian Bellinger
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America, US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, Washington, United States of America
| | - William Hiscox
- The Center for NMR Spectroscopy, Washington State University, Pullman, Washington, United States of America
| | - Gregory L. Helms
- The Center for NMR Spectroscopy, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
11
|
Hou X, Guo Q, Wei W, Guo L, Guo D, Zhang L. Screening of Genes Related to Early and Late Flowering in Tree Peony Based on Bulked Segregant RNA Sequencing and Verification by Quantitative Real-Time PCR. Molecules 2018; 23:molecules23030689. [PMID: 29562683 PMCID: PMC6017042 DOI: 10.3390/molecules23030689] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 01/13/2023] Open
Abstract
Tree peony (Paeonia suffruticosa Andrews) is a perennial woody shrub bearing large and colorful flowers. However, the flowering period is short and relatively uniform, which to an important extent hinders the cultivation and exploitation of ornamental peonies. In this study, the segregation of an F1 population derived from P. ostti ‘Feng Dan’ (an early-flowering cultivar) × P. suffruticosa ‘Xin Riyuejin’ (a late-flowering cultivar) was used to screen and analyze candidate genes associated with flowering period of the two parents. Extreme early- and late-flowering genotypes of the F1 population at full-bloom stage were sampled to establish an early-flowering mixed pool (T03), a late-flowering mixed pool (T04), a late-flowering male pool (T01), and an early-flowering female pool (T02), using the Sequencing By Synthesis (SBS) technology on the Illumina HiSeq TM2500 platform. A total of 56.51 Gb of clean reads data, comprising at least 87.62% of Quality30 (Q30), was generated, which was then combined into 173,960 transcripts (N50 = 1781) and 78,645 (N50 = 1282) unigenes, with a mean length of 1106.76 and 732.27 base pairs (bp), respectively. Altogether, 58,084 genes were annotated by comparison with public databases, based on an E-value parameter of less than 10−5 and 10−10 for BLAST and HMMER, respectively. In total, 291 unigene sequences were finally screened out by BSR-seq (bulked segregant RNA-seq) association analysis. To validate these unigenes, we finally confirmed seven unigenes that were related to early and late flowering, which were then verified by quantitative real-time PCR (qRT-PCR). This is the first reported study to screen genes associated with early and late flowering of tree peony by the BSA (bulked sample analysis) method of transcriptome sequencing, and to construct a high-quality transcriptome database. A set of candidate functional genes related to flowering time was successfully obtained, providing an important genetic resource for further studies of flowering in peony and the mechanism of regulation of flowering time in tree peony.
Collapse
Affiliation(s)
- Xiaogai Hou
- College of Agriculture, Henan University of Science & Technology, 263 Kaiyuan Avenue, Luoyang 471023, China.
| | - Qi Guo
- College of Agriculture, Henan University of Science & Technology, 263 Kaiyuan Avenue, Luoyang 471023, China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Weiqiang Wei
- College of Agriculture, Henan University of Science & Technology, 263 Kaiyuan Avenue, Luoyang 471023, China.
| | - Lili Guo
- College of Agriculture, Henan University of Science & Technology, 263 Kaiyuan Avenue, Luoyang 471023, China.
| | - Dalong Guo
- College of Forestry, Henan University of Science & Technology, 263 Kaiyuan Avenue, Luoyang 471023, China.
| | - Lin Zhang
- College of Agriculture, Henan University of Science & Technology, 263 Kaiyuan Avenue, Luoyang 471023, China.
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
12
|
Mawphlang OIL, Kharshiing EV. Photoreceptor Mediated Plant Growth Responses: Implications for Photoreceptor Engineering toward Improved Performance in Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:1181. [PMID: 28744290 PMCID: PMC5504655 DOI: 10.3389/fpls.2017.01181] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 05/18/2023]
Abstract
Rising temperatures during growing seasons coupled with altered precipitation rates presents a challenging task of improving crop productivity for overcoming such altered weather patterns and cater to a growing population. Light is a critical environmental factor that exerts a powerful influence on plant growth and development ranging from seed germination to flowering and fruiting. Higher plants utilize a suite of complex photoreceptor proteins to perceive surrounding red/far-red (phytochromes), blue/UV-A (cryptochromes, phototropins, ZTL/FKF1/LKP2), and UV-B light (UVR8). While genomic studies have also shown that light induces extensive reprogramming of gene expression patterns in plants, molecular genetic studies have shown that manipulation of one or more photoreceptors can result in modification of agronomically beneficial traits. Such information can assist researchers to engineer photoreceptors via genome editing technologies to alter expression or even sensitivity thresholds of native photoreceptors for targeting aspects of plant growth that can confer superior agronomic value to the engineered crops. Here we summarize the agronomically important plant growth processes influenced by photoreceptors in crop species, alongwith the functional interactions between different photoreceptors and phytohormones in regulating these responses. We also discuss the potential utility of synthetic biology approaches in photobiology for improving agronomically beneficial traits of crop plants by engineering designer photoreceptors.
Collapse
|
13
|
Litthauer S, Battle MW, Jones MA. Phototropins do not alter accumulation of evening-phased circadian transcripts under blue light. PLANT SIGNALING & BEHAVIOR 2016; 11:e1126029. [PMID: 26653107 PMCID: PMC4883876 DOI: 10.1080/15592324.2015.1126029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 05/18/2023]
Abstract
The circadian system induces rhythmic variation in a suite of biochemical and physiological processes that serve to optimise plant growth in diel cycles. To be of greatest utility, these rhythmic behaviors are coordinated with regular environmental changes such as the rising and setting of the sun. Photoreceptors, along with metabolites produced during photosynthesis, act to synchronise the internal timing mechanism with lighting cues. We have recently shown that phototropins help maintain robust rhythms of photosynthetic operating efficiency (ϕPSII or Fq'/Fm') under blue light, although rhythmic accumulation of morning-phased circadian transcripts in the nucleus was unaffected. Here we report that evening-phased nuclear clock transcripts were also unaffected. We also observe that rhythms of nuclear clock transcript accumulation are maintained in phototropin mutant plants under a fluctuating lighting regime that induced a loss of Fq'/Fm' rhythms.
Collapse
Affiliation(s)
- Suzanne Litthauer
- a School of Biological Sciences, University of Essex , Wivenhoe Park, United Kingdom
| | - Martin W Battle
- a School of Biological Sciences, University of Essex , Wivenhoe Park, United Kingdom
| | - Matthew A Jones
- a School of Biological Sciences, University of Essex , Wivenhoe Park, United Kingdom
| |
Collapse
|
14
|
Abstract
As major contributors to global oxygen levels and producers of fatty acids, carotenoids, sterols, and phycocolloids, algae have significant ecological and commercial roles. Early algal models have contributed much to our understanding of circadian clocks at physiological and biochemical levels. The genetic and molecular approaches that identified clock components in other taxa have not been as widely applied to algae. We review results from seven species: the chlorophytes Chlamydomonas reinhardtii, Ostreococcus tauri, and Acetabularia spp.; the dinoflagellates Lingulodinium polyedrum and Symbiodinium spp.; the euglenozoa Euglena gracilis; and the red alga Cyanidioschyzon merolae. The relative simplicity, experimental tractability, and ecological and evolutionary diversity of algal systems may now make them particularly useful in integrating quantitative data from "omic" technologies (e.g., genomics, transcriptomics, metabolomics, and proteomics) with computational and mathematical methods.
Collapse
Affiliation(s)
- Zeenat B Noordally
- SynthSys and School of Biological Sciences, University of Edinburgh , Edinburgh EH9 3BF, United Kingdom
| | | |
Collapse
|
15
|
Nose M, Watanabe A. Clock genes and diurnal transcriptome dynamics in summer and winter in the gymnosperm Japanese cedar (Cryptomeria japonica (L.f.) D.Don). BMC PLANT BIOLOGY 2014; 14:308. [PMID: 25403374 PMCID: PMC4245765 DOI: 10.1186/s12870-014-0308-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 10/27/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND The circadian clock and diurnal dynamics of the transcriptome are presumed to play important roles in the regulation of physiological, biological and developmental processes synchronized with diurnal and annual cycles of plant environments. However, little is known about the circadian clock and its regulation in gymnosperms, including conifers. Here we present the diurnal transcriptome dynamics of Japanese cedar (Cryptomeria japonica (L.f.) D.Don) in both active (summer) and dormant (winter) periods. RESULTS Microarray analysis revealed significant differences in transcripts between summer and winter, and diurnal transcriptome dynamics only in the summer. About 7.7% of unique genes (556 out of 7,254) on the microarray were periodically expressed in summer. Expression patterns of some genes, especially light-related genes, did not show significant oscillation in Japanese cedar, thus differing from those reported in angiosperms. Gene network analysis of the microarray data revealed a network associated with the putative core clock genes (CjLHYa, CjLHYb, CjTOC1, CjGI and CjZTL), which were also isolated, indicating their importance in the diurnal regulation of the transcriptome. CONCLUSION This study revealed the existence of core clock genes and diurnal rhythms of the transcriptome in summer in Japanese cedar. Dampening of diurnal rhythms in winter indicated seasonal change in the rhythms according to environmental conditions. The data also revealed genes that showed different expression patterns compared to angiosperms, suggesting a unique gene regulatory network in conifers. This study provides fundamental data to understand transcriptional regulatory mechanisms in conifers.
Collapse
Affiliation(s)
- Mine Nose
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Ibaraki, 319-1301, Japan.
| | - Atsushi Watanabe
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Ibaraki, 319-1301, Japan.
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan.
| |
Collapse
|
16
|
|
17
|
Nefissi R, Natsui Y, Miyata K, Oda A, Hase Y, Nakagawa M, Ghorbel A, Mizoguchi T. Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2731-44. [PMID: 21296763 DOI: 10.1093/jxb/erq450] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The photoperiodic response is one of the adaptation mechanisms to seasonal changes of lengths of day and night. The circadian clock plays pivotal roles in this process. In Arabidopsis, LHY, CCA1, ELF3, and other clock proteins play major roles in maintaining circadian rhythms. lhy;cca1 double mutants with severe defects in circadian rhythms showed accelerated flowering under short days (SDs), but delayed flowering under continuous light (LL). The protein level of the floral repressor SVP increased in lhy;cca1 mutants under LL, and the late-flowering phenotype of lhy;cca1 mutants was partially suppressed by svp, flc, or elf3. ELF3 interacted with both CCA1 and SVP, and elf3 suppressed the SVP accumulation in lhy;cca1 under LL. These results suggest that the unique mechanism of the inversion of the flowering response of lhy;cca1 under LL may involve both the ELF3-SVP/FLC-dependent and -independent pathways. In this work, elf3-1 seeds were mutagenized with heavy-ion beams and used to identify mutation(s) that delayed flowering under LL but not long days (LDs) or SDs even without ELF3. In this screening, seven candidate lines named suppressor of elf3 1 (self1), sel3, sel5, sel7, sel14, sel15, and sel20 were identified. Genetic analysis indicated that sel20 was a new deletion allele of a mutation in the blue light receptor, CRY2. A late-flowering phenotype and decrease of FT expression in the elf3;sel20 double mutant was obvious under LL but not under SDs or LDs. These results indicated that the late-flowering phenotype in the double mutant elf3;sel20 as well as in lhy;cca1 was affected by the presence of darkness. The results suggest that CRY2 may play more essential roles in the acceleration of flowering under LL than LDs or SDs.
Collapse
Affiliation(s)
- Rim Nefissi
- Gene Research Center, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hwang H, Cho MH, Hahn BS, Lim H, Kwon YK, Hahn TR, Bhoo SH. Proteomic identification of rhythmic proteins in rice seedlings. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:470-9. [PMID: 21300183 DOI: 10.1016/j.bbapap.2011.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 01/20/2011] [Accepted: 01/27/2011] [Indexed: 01/04/2023]
Abstract
Many aspects of plant metabolism that are involved in plant growth and development are influenced by light-regulated diurnal rhythms as well as endogenous clock-regulated circadian rhythms. To identify the rhythmic proteins in rice, periodically grown (12h light/12h dark cycle) seedlings were harvested for three days at six-hour intervals. Continuous dark-adapted plants were also harvested for two days. Among approximately 3000 reproducible protein spots on each gel, proteomic analysis ascertained 354 spots (~12%) as light-regulated rhythmic proteins, in which 53 spots showed prolonged rhythm under continuous dark conditions. Of these 354 ascertained rhythmic protein spots, 74 diurnal spots and 10 prolonged rhythmic spots under continuous dark were identified by MALDI-TOF MS analysis. The rhythmic proteins were functionally classified into photosynthesis, central metabolism, protein synthesis, nitrogen metabolism, stress resistance, signal transduction and unknown. Comparative analysis of our proteomic data with the public microarray database (the Plant DIURNAL Project) and RT-PCR analysis of rhythmic proteins showed differences in rhythmic expression phases between mRNA and protein, suggesting that the clock-regulated proteins in rice are modulated by not only transcriptional but also post-transcriptional, translational, and/or post-translational processes.
Collapse
Affiliation(s)
- Heeyoun Hwang
- Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Pokhilko A, Hodge SK, Stratford K, Knox K, Edwards KD, Thomson AW, Mizuno T, Millar AJ. Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model. Mol Syst Biol 2011; 6:416. [PMID: 20865009 PMCID: PMC2964123 DOI: 10.1038/msb.2010.69] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 07/22/2010] [Indexed: 12/02/2022] Open
Abstract
Integrating molecular time-series data resulted in a more robust model of the plant clock, which predicts that a wave of inhibitory PRR proteins controls the morning genes LHY and CCA1. PRR5 is experimentally validated as a late-acting component of this wave. The family of sequentially expressed PRR proteins allows flexible entrainment of the clock, whereas a single protein could not, suggesting that the duplication of clock genes might confer this generic, functional advantage. The observed post-translational regulation of the evening protein TOC1 by interaction with ZTL and GI remains consistent with an indirect activation of TOC1 mRNA expression by GI, which was previously postulated from modelling.
Circadian rhythms are present in most eukaryotic organisms including plants. The core genes of the circadian clock are very important for plant physiology as they drive the rhythmic expression of around 30% of Arabidopsis genes (Edwards et al, 2006; Michael et al, 2008). The clock is normally entrained by daily environmental changes in light and temperature. Oscillations also persist under constant environmental conditions in a laboratory. The clock gene circuit in Arabidopsis is based on multiple interlocked feedback loops, which are typical of circadian genetic networks in other organisms (Dunlap and Loros, 2004; Bell-Pedersen et al, 2005). Mechanistic, mathematical models are increasingly useful in analysing and understanding how the observed molecular components give rise to the rhythmic behaviour of this dynamic, non-linear system. Our previous model of Arabidopsis circadian clock (Locke et al, 2006) presented the core, three-loop structure of the clock, which comprised morning and evening oscillators and coupling between them (Figure 1). The morning loop included the dawn-expressed LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) genes, which negatively regulate their expression through activation of the inhibitor proteins, PSEUDO-RESPONSE REGULATOR 9 (PRR9) and PRR7. These were described by a single, combined model component, PRR9/7. The evening loop included the dusk-expressed gene TIMING OF CAB EXPRESSION 1 (TOC1), which negatively regulates itself through inhibition of a hypothetical activator, gene Y. The evening-expressed gene GIGANTEA (GI) contributes to Y function. The morning and evening loops were connected through inhibition of the evening genes by LHY/CCA1 and activation of LHY/CCA1 expression by a hypothetical evening gene X. Here, we extend the previous model of circadian gene expression (Locke et al, 2006) based on recently published data (Figure 1). The new model retains the good match of our previous model to the large volume of molecular time-series data, and improves the behaviour of the model clock system under a range of light conditions and in a wider range of mutants. The morning loop was extended by adding a hypothetical clock component, the night inhibitor (NI), which acts together with PRR9 and PRR7 to keep the expression of LHY and CCA1 at low levels over a broad interval spanning dusk. This regulation is important to set the phase of LHY/CCA1 expression at dawn. Data from the literature suggested that the PRR5 gene was a candidate for NI, leading us to predict that the sequentially expressed PRR9, PRR7 and PRR5 proteins together formed a wave of inhibitors of LHY and CCA1. This hypothesis was tested under discriminating light conditions, in which the light interval is replaced with the dawn and dusk pulses of light to form a ‘skeleton photoperiod'. Combining this protocol with mutation of the PRR7 and/or PRR5 genes, our new experimental results validated the model predictions and confirmed that PRR5 contributes to the function that we modelled as NI. During revision of this paper, that result received further experimental support (Nakamichi et al, 2010). Model simulations revealed the functional importance of the inhibitor wave in entraining the clock to the light/dark cycle. Separating PRR9 from the other inhibitors in the model showed how the strong light activation observed for this gene contributes to more rapid entrainment. The observed, post-translation regulation of all three inhibitor proteins by light (Farre and Kay, 2007; Ito et al, 2007; Kiba et al, 2007) was also included in the model. Light-regulated degradation provides a molecular mechanism to explain the later phase of LHY and CCA1 expression under long photoperiods compared with short photoperiods, in line with experimental observations. The connection between evening and morning loops was revised by including the inhibition of the morning gene PRR9 by the evening component TOC1, based on the data on TOC1-overexpressing plants (Makino et al, 2002; Ito et al, 2005). This inhibition causes a delay of PRR9 expression relative to LHY/CCA1, which allows LHY/CCA1 to reach a higher expression level at dawn. Our simulations showed that a partial mutant that lacks this inhibition of PRR9 by TOC1 is sufficient to cause the higher level of PRR9 and the short circadian period observed in toc1 mutant plants. The evening loop was extended by introducing the observed, post-translational regulation of the TOC1 protein by the F-box protein ZEITLUPE (ZTL) and stabilization of ZTL by its interaction with GI in the presence of light (Kim et al, 2007). GI's function in the clock model has thus been revised according to the data: GI promotes an inhibition of TOC1 protein function through positive regulation of ZTL. This results, together with negative regulation of Y by TOC1, in indirect activation of TOC1 mRNA expression by GI, which agrees with our earlier experimental data (Locke et al, 2006). Simulations showed that the post-translational regulation of TOC1 by ZTL and GI results in the observed long period of the ztl mutant and fast dampening of rhythms in the lhy/cca1/gi triple mutant. This is the first mathematical model that incorporates the observed post-translational regulation into the genetic network of the Arabidopsis clock. In addition to specific, mechanistic insights, the model shows a generic advantage from the duplication of clock genes and their expression at different phases. Such clock gene duplications are observed in eukaryotes with larger genomes, such as the mouse. Analogous, functional duplication can be achieved by differential regulation of a single clock gene in distinct cells, as in Drosophila. Circadian clocks generate 24-h rhythms that are entrained by the day/night cycle. Clock circuits include several light inputs and interlocked feedback loops, with complex dynamics. Multiple biological components can contribute to each part of the circuit in higher organisms. Mechanistic models with morning, evening and central feedback loops have provided a heuristic framework for the clock in plants, but were based on transcriptional control. Here, we model observed, post-transcriptional and post-translational regulation and constrain many parameter values based on experimental data. The model's feedback circuit is revised and now includes PSEUDO-RESPONSE REGULATOR 7 (PRR7) and ZEITLUPE. The revised model matches data in varying environments and mutants, and gains robustness to parameter variation. Our results suggest that the activation of important morning-expressed genes follows their release from a night inhibitor (NI). Experiments inspired by the new model support the predicted NI function and show that the PRR5 gene contributes to the NI. The multiple PRR genes of Arabidopsis uncouple events in the late night from light-driven responses in the day, increasing the flexibility of rhythmic regulation.
Collapse
Affiliation(s)
- Alexandra Pokhilko
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh, UK
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Palágyi A, Terecskei K, Ádám É, Kevei É, Kircher S, Mérai Z, Schäfer E, Nagy F, Kozma-Bognár L. Functional analysis of amino-terminal domains of the photoreceptor phytochrome B. PLANT PHYSIOLOGY 2010; 153:1834-45. [PMID: 20530216 PMCID: PMC2923874 DOI: 10.1104/pp.110.153031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 06/06/2010] [Indexed: 05/18/2023]
Abstract
At the core of the circadian network in Arabidopsis (Arabidopsis thaliana), clock genes/proteins form multiple transcriptional/translational negative feedback loops and generate a basic approximately 24-h oscillation, which provides daily regulation for a wide range of processes. This temporal organization enhances the fitness of plants only if it corresponds to the natural day/night cycles. Light, absorbed by photoreceptors, is the most effective signal in synchronizing the oscillator to environmental cycles. Phytochrome B (PHYB) is the major red/far-red light-absorbing phytochrome receptor in light-grown plants. Besides modulating the pace and phase of the circadian clock, PHYB controls photomorphogenesis and delays flowering. It has been demonstrated that the nuclear-localized amino-terminal domain of PHYB is capable of controlling photomorphogenesis and, partly, flowering. Here, we show (1) that PHYB derivatives containing 651 or 450 amino acid residues of the amino-terminal domains are functional in mediating red light signaling to the clock, (2) that circadian entrainment is a nuclear function of PHYB, and (3) that a 410-amino acid amino-terminal fragment does not possess any functions of PHYB due to impaired chromophore binding. However, we provide evidence that the carboxyl-terminal domain is required to mediate entrainment in white light, suggesting a role for this domain in integrating red and blue light signaling to the clock. Moreover, careful analysis of the circadian phenotype of phyB-9 indicates that PHYB provides light signaling for different regulatory loops of the circadian oscillator in a different manner, which results in an apparent decoupling of the loops in the absence of PHYB under specific light conditions.
Collapse
|
21
|
Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc Natl Acad Sci U S A 2010; 107:9458-63. [PMID: 20439704 DOI: 10.1073/pnas.0914299107] [Citation(s) in RCA: 432] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant growth is driven by photosynthetic carbon fixation during the day. Some photosynthate is accumulated, often as starch, to support nocturnal metabolism and growth at night. The rate of starch degradation in Arabidopsis leaves at night is essentially linear, and is such that almost all of the starch is used by dawn. We have investigated the timer that matches starch utilization to the duration of the night. The rate of degradation adjusted immediately and appropriately to an unexpected early onset of night. Starch was still degraded in an appropriate manner when the preceding light period was interrupted by a period of darkness. However, when Arabidopsis was grown in abnormal day lengths (28 h or 17 h) starch was exhausted approximately 24 h after the last dawn, irrespective of the actual dawn. A mutant lacking the LHY and CCA1 clock components exhausted its starch at the dawn anticipated by its fast-running circadian clock, rather than the actual dawn. Reduced growth of wild-type plants in 28-h days and lhy/cca1 mutants in 24-h days was attributable to the inappropriate rate of starch degradation and the consequent carbon starvation at the end of night. Thus, starch degradation is under circadian control to ensure that carbohydrate availability is maintained until the next anticipated dawn, and this control is necessary for maintaining plant productivity.
Collapse
|
22
|
Kolmos E, Nowak M, Werner M, Fischer K, Schwarz G, Mathews S, Schoof H, Nagy F, Bujnicki JM, Davis SJ. Integrating ELF4 into the circadian system through combined structural and functional studies. HFSP JOURNAL 2009; 3:350-66. [PMID: 20357892 DOI: 10.2976/1.3218766] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 08/07/2009] [Indexed: 01/16/2023]
Abstract
The circadian clock is a timekeeping mechanism that enables anticipation of daily environmental changes. In the plant Arabidopsis thaliana, the circadian system is a multiloop series of interlocked transcription-translation feedbacks. Several genes have been arranged in these oscillation loops, but the position of the core-clock gene ELF4 in this network was previously undetermined. ELF4 lacks sequence similarity to known domains, and functional homologs have not yet been identified. Here we show that ELF4 is functionally conserved within a subclade of related sequences, and forms an alpha-helical homodimer with a likely electrostatic interface that could be structurally modeled. We support this hypothesis by expression analysis of new elf4 hypomorphic alleles. These weak mutants were found to have expression level phenotypes of both morning and evening clock genes, implicating multiple entry points of ELF4 within the multiloop network. This could be mathematically modeled. Furthermore, morning-expression defects were particular to some elf4 alleles, suggesting predominant ELF4 action just preceding dawn. We provide a new hypothesis about ELF4 in the oscillator-it acts as a homodimer to integrate two arms of the circadian clock.
Collapse
|
23
|
Knight H, Thomson AJW, McWatters HG. Sensitive to freezing6 integrates cellular and environmental inputs to the plant circadian clock. PLANT PHYSIOLOGY 2008; 148:293-303. [PMID: 18614706 PMCID: PMC2528108 DOI: 10.1104/pp.108.123901] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 06/30/2008] [Indexed: 05/18/2023]
Abstract
The sensitive to freezing6 (sfr6) mutant of Arabidopsis (Arabidopsis thaliana) is late flowering in long days due to reduced expression of components in the photoperiodic flowering pathway in long-day photoperiods. Microarray analysis of gene expression showed that a circadian clock-associated motif, the evening element, was overrepresented in promoters of genes down-regulated in sfr6 plants. Analysis of leaf movement rhythms found sfr6 plants showed a sucrose (Suc)-dependent long period phenotype; unlike wild-type Arabidopsis, the clock in sfr6 plants did not have a shorter rhythm in the presence of Suc. Other developmental responses to Suc were unaltered in sfr6 plants, suggesting insensitivity to Suc is restricted to the clock. We investigated the effect of sfr6 and Suc upon clock gene expression over 24 h. The sfr6 mutation resulted in reduced expression of the clock components CIRCADIAN CLOCK ASSOCIATED1, GIGANTEA, and TIMING OF CAB1. These changes occurred independently of Suc supplementation. Wild-type plants showed small increases in clock gene expression in the presence of Suc; this response to Suc was reduced in sfr6 plants. This study shows that large changes in level and timing of clock gene expression may have little effect upon clock outputs. Moreover, although Suc influences the period and accuracy of the Arabidopsis clock, it results in relatively minor changes in clock gene expression.
Collapse
Affiliation(s)
- Heather Knight
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | | | | |
Collapse
|
24
|
Xu X, Hotta CT, Dodd AN, Love J, Sharrock R, Lee YW, Xie Q, Johnson CH, Webb AAR. Distinct light and clock modulation of cytosolic free Ca2+ oscillations and rhythmic CHLOROPHYLL A/B BINDING PROTEIN2 promoter activity in Arabidopsis. THE PLANT CELL 2007; 19:3474-90. [PMID: 17982000 PMCID: PMC2174886 DOI: 10.1105/tpc.106.046011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 09/30/2007] [Accepted: 10/15/2007] [Indexed: 05/17/2023]
Abstract
Plants have circadian oscillations in the concentration of cytosolic free calcium ([Ca(2+)](cyt)). To dissect the circadian Ca(2+)-signaling network, we monitored circadian [Ca(2+)](cyt) oscillations under various light/dark conditions (including different spectra) in Arabidopsis thaliana wild type and photoreceptor and circadian clock mutants. Both red and blue light regulate circadian oscillations of [Ca(2+)](cyt). Red light signaling is mediated by PHYTOCHROME B (PHYB). Blue light signaling occurs through the redundant action of CRYPTOCHROME1 (CRY1) and CRY2. Blue light also increases the basal level of [Ca(2+)](cyt), and this response requires PHYB, CRY1, and CRY2. Light input into the oscillator controlling [Ca(2+)](cyt) rhythms is gated by EARLY FLOWERING3. Signals generated in the dark also regulate the circadian behavior of [Ca(2+)](cyt). Oscillations of [Ca(2+)](cyt) and CHLOROPHYLL A/B BINDING PROTEIN2 (CAB2) promoter activity are dependent on the rhythmic expression of LATE ELONGATED HYPOCOTYL and CIRCADIAN CLOCK-ASSOCIATED1, but [Ca(2+)](cyt) and CAB2 promoter activity are uncoupled in the timing of cab1 (toc1-1) mutant but not in toc1-2. We suggest that the circadian oscillations of [Ca(2+)](cyt) and CAB2 promoter activity are regulated by distinct oscillators with similar components that are used in a different manner and that these oscillators may be located in different cell types in Arabidopsis.
Collapse
Affiliation(s)
- Xiaodong Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, Tenessee 37235, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kim JR, Bae WS, Yoon Y, Cho KH. Topological difference of core regulatory networks induces different entrainment characteristics of plant and animal circadian clocks. Biophys J 2007; 93:L01-3. [PMID: 17449676 PMCID: PMC1914418 DOI: 10.1529/biophysj.107.106658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant circadian rhythm is quickly entrained to the change of a light stimulus but the mammalian circadian rhythm shows a relatively slow entrainment. Where does such a different entrainment feature of plants and mammals originate? To answer this question, we have investigated circadian regulatory networks of various species and identified the respective core structures of plants and animals. The core circadian regulatory network of plants is composed of two coupled negative feedback loops while the core network of animals consists of coupled negative and positive feedback loops. In addition, the way of regulation (gene transcription or protein degradation) induced by a light stimulus differs depending on species. Mathematical simulations revealed that the topological difference of the core regulatory networks as well as the different way of regulation induced by a light stimulus leads to the different entrainment characteristics of plant and animal circadian clocks.
Collapse
Affiliation(s)
- Jeong-Rae Kim
- Bio-MAX Institute, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
26
|
Zeilinger MN, Farré EM, Taylor SR, Kay SA, Doyle FJ. A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9. Mol Syst Biol 2006; 2:58. [PMID: 17102803 PMCID: PMC1682023 DOI: 10.1038/msb4100101] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 08/17/2006] [Indexed: 02/05/2023] Open
Abstract
We developed a mathematical model of the Arabidopsis circadian clock, including PRR7 and PRR9, which is able to predict several single, double and triple mutant phenotypes. Sensitivity Analysis was used to identify the properties and time sensing mechanisms of model structures. PRR7 and CCA1/LHY were identified as weak points of the mathematical model indicating where more experimental data is needed for further model development. Detailed dynamical studies showed that the timing of an evening light sensing element is essential for day length responsiveness
In recent years, molecular genetic techniques have revealed a complex network of components in the Arabidopsis circadian clock. Mathematical models allow for a detailed study of the dynamics and architecture of such complex gene networks leading to a better understanding of the genetic interactions. It is important to maintain a constant iteration with experimentation, to include novel components as they are discovered and use the updated model to design new experiments. This study develops a framework to introduce new components into the mathematical model of the Arabidopsis circadian clock accelerating the iterative model development process and gaining insight into the system's properties. We used the interlocked feedback loop model published in Locke et al (2005) as the base model. In Arabidopsis, the first suggested regulatory loop involves the morning expressed transcription factors CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), and the evening expressed pseudo-response regulator TIMING OF CAB EXPRESSION (TOC1). The hypothetical component X had been introduced to realize a longer delay between gene expression of CCA1/LHY and TOC1. The introduction of Y was motivated by the need for a mechanism to reproduce the dampening short period rhythms of the cca1/lhy double mutant and to include an additional light input at the end of the day. In this study, the new components pseudo-response regulators PRR7 and PRR9 were added in negative feedback loops based on the biological hypothesis that they are activated by LHY and in turn repress LHY transcription (Farré et al, 2005; Figure 1). We present three iterations steps of model development (Figure 1A–C). A wide range of tools was used to establish and analyze new model structures. One of the challenges facing mathematical modeling of biological processes is parameter identification; they are notoriously difficult to determine experimentally. We established an optimization procedure based on an evolutionary strategy with a cost function mainly derived from wild-type characteristics. This ensured that the model was not restricted by a specific set of parameters and enabled us to use a large set of biological mutant information to assess the predictive capability of the model structure. Models were evaluated by means of an extended phenotype catalogue, allowing for an easy and fair comparison of the structures. We also carried out detailed simulation analysis of component interactions to identify weak points in the structure and suggest further modifications. Finally, we applied sensitivity analysis in a novel manner, using it to direct the model development. Sensitivity analysis provides quantitative measures of robustness; the two measures in this study were the traces of component concentrations over time (classical state sensitivities) and phase behavior (measured by the phase response curve). Three major results emerged from the model development process. First, the iteration process helped us to learn about general characteristics of the system. We observed that the timing of Y expression is critical for evening light entrainment, which enables the system to respond to changes in day length. This is important for our understanding of the mechanism of light input to the clock and will add in the identification of biological candidates for this function. In addition, our results suggest that a detailed description of the mechanisms of genetic interactions is important for the systems behavior. We observed that the introduction of an experimentally based precise light regulation mechanism on PRR9 expression had a significant effect on the systems behavior. Second, the final model structure (Figure 1C) was capable of predicting a wide range of mutant phenotypes, such as a reduction of TOC1 expression by RNAi (toc1RNAi), mutations in PRR7 and PRR9 and the novel mutant combinations prr9toc1RNAi and prr7prr9toc1RNAi. However, it was unable to predict the mutations in CCA1 and LHY. Finally, sensitivity analysis identified the weak points of the system. The developed model structure was heavily based on the TOC1/Y feedback loop. This could explain the model's failure to predict the cca1lhy double mutant phenotype. More detailed information on the regulation of CCA1 and LHY expression will be important to achieve the right balance between the different regulatory loops in the mathematical model. This is in accordance with genetic studies that have identified several genes involved in the regulation of LHY and CCA1 expression. The identification of their mechanism of action will be necessary for the next model development. In plants, as in animals, the core mechanism to retain rhythmic gene expression relies on the interaction of multiple feedback loops. In recent years, molecular genetic techniques have revealed a complex network of clock components in Arabidopsis. To gain insight into the dynamics of these interactions, new components need to be integrated into the mathematical model of the plant clock. Our approach accelerates the iterative process of model identification, to incorporate new components, and to systematically test different proposed structural hypotheses. Recent studies indicate that the pseudo-response regulators PRR7 and PRR9 play a key role in the core clock of Arabidopsis. We incorporate PRR7 and PRR9 into an existing model involving the transcription factors TIMING OF CAB (TOC1), LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED (CCA1). We propose candidate models based on experimental hypotheses and identify the computational models with the application of an optimization routine. Validation is accomplished through systematic analysis of various mutant phenotypes. We introduce and apply sensitivity analysis as a novel tool for analyzing and distinguishing the characteristics of proposed architectures, which also allows for further validation of the hypothesized structures.
Collapse
Affiliation(s)
- Melanie N Zeilinger
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA
| | - Eva M Farré
- Department of Biochemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Stephanie R Taylor
- Department of Computer Science, University of California, Santa Barbara, CA, USA
| | - Steve A Kay
- Department of Biochemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Francis J Doyle
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA
- Department of Chemical Engineering, Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, CA 93106-5080, USA. Tel.: +1 805 893 8133; Fax: +1 805 893 4731;
| |
Collapse
|
27
|
Torres-Galea P, Huang LF, Chua NH, Bolle C. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses. Mol Genet Genomics 2006; 276:13-30. [PMID: 16680434 DOI: 10.1007/s00438-006-0123-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 03/25/2006] [Indexed: 01/27/2023]
Abstract
Phytochrome photoreceptors enable plants to perceive divergent light signals leading to adaptive changes in response to differing environmental conditions. However, the mechanism of light signal transduction is not fully understood. Here we report the identification of a new signaling intermediate from Arabidopsis thaliana, Scarecrow-like (SCL)13, which serves as a positive regulator of continuous red light signals downstream of phytochrome B (phyB). SCL13 antisense lines exhibit reduced sensitivity towards red light, but only a distinct subset of phyB-mediated responses is affected, indicating that SCL13 executes its major role in hypocotyl elongation during de-etiolation. Genetic evidence suggests that SCL13 is also needed to modulate phytochrome A (phyA) signal transduction in a phyB-independent way. The SCL13 protein is localized in the cytoplasm, but can also be detected in the nucleus. Overexpression of both a nuclear and cytoplasmic localized SCL13 protein leads to a hypersensitive phenotype under red light indicating that SCL13 is biologically active in both compartments. SCL13 is a member of the plant-specific GRAS protein family, which is involved in various different developmental and signaling pathways. A previously identified phytochrome A signaling intermediate, PAT1, belongs to the same subbranch of GRAS proteins as SCL13. Although both proteins are involved in phytochrome signaling, each is specific for a different light condition and regulates a different subset of responses.
Collapse
Affiliation(s)
- Patricia Torres-Galea
- Department für Biologie I/Bereich Botanik, Ludwig-Maximilians-University, Menzinger Str. 67, 80638, Munich, Germany
| | | | | | | |
Collapse
|
28
|
Chatterjee M, Sharma P, Khurana JP. Cryptochrome 1 from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation. PLANT PHYSIOLOGY 2006; 141:61-74. [PMID: 16531484 PMCID: PMC1459308 DOI: 10.1104/pp.105.076323] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cryptochromes are blue/ultraviolet-A light sensing photoreceptors involved in regulating various growth and developmental responses in plants. Investigations on the structure and functions of cryptochromes in plants have been largely confined to Arabidopsis (Arabidopsis thaliana), tomato (Lycopersicon esculentum), and pea (Pisum sativum). We report here the characterization of the cryptochrome 1 gene from Brassica napus (BnCRY1), an oilseed crop, and its functional validation in transgenics. The predicted BnCRY1 protein sequence shows a high degree of sequence identity (94%) to Arabidopsis CRY1. A semiquantitative reverse transcription-polymerase chain reaction and the western-blot analysis revealed that blue light up-regulates its transcript and protein levels in young seedlings. The BnCRY1 promoter harbors conventional light-responsive cis-acting elements, which presumably impart light activation to the GUS (beta-glucuronidase) reporter gene expressed in Arabidopsis. Although the BnCRY1 transcript could be detected in all the tissues examined, its protein was virtually undetectable in mature leaves and the root, indicating a tissue-specific translational control or protein turnover. The antisense-BnCRY1 Brassica transgenic seedlings accumulated negligible levels of CRY1 protein and displayed an elongated hypocotyl when grown under continuous white or blue light (but not under red or far-red light); the accumulation of anthocyanins was also reduced significantly. The adult transformants were also found to be tall when grown under natural light environment in a containment facility without any artificial illumination. These data provide functional evidence for a role of blue light up-regulated cry1 in controlling photomorphogenesis in Brassica species.
Collapse
Affiliation(s)
- Mithu Chatterjee
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | | | | |
Collapse
|
29
|
Kevei E, Gyula P, Hall A, Kozma-Bognár L, Kim WY, Eriksson ME, Tóth R, Hanano S, Fehér B, Southern MM, Bastow RM, Viczián A, Hibberd V, Davis SJ, Somers DE, Nagy F, Millar AJ. Forward genetic analysis of the circadian clock separates the multiple functions of ZEITLUPE. PLANT PHYSIOLOGY 2006; 140:933-45. [PMID: 16428597 PMCID: PMC1400575 DOI: 10.1104/pp.105.074864] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 11/29/2005] [Accepted: 12/21/2005] [Indexed: 05/06/2023]
Abstract
The circadian system of Arabidopsis (Arabidopsis thaliana) includes feedback loops of gene regulation that generate 24-h oscillations. Components of these loops remain to be identified; none of the known components is completely understood, including ZEITLUPE (ZTL), a gene implicated in regulated protein degradation. ztl mutations affect both circadian and developmental responses to red light, possibly through ZTL interaction with PHYTOCHROME B (PHYB). We conducted a large-scale genetic screen that identified additional clock-affecting loci. Other mutants recovered include 11 new ztl alleles encompassing mutations in each of the ZTL protein domains. Each mutation lengthened the circadian period, even in dark-grown seedlings entrained to temperature cycles. A mutation of the LIGHT, OXYGEN, VOLTAGE (LOV)/Period-ARNT-Sim (PAS) domain was unique in retaining wild-type responses to red light both for the circadian period and for control of hypocotyl elongation. This uncoupling of ztl phenotypes indicates that interactions of ZTL protein with multiple factors must be disrupted to generate the full ztl mutant phenotype. Protein interaction assays showed that the ztl mutant phenotypes were not fully explained by impaired interactions with previously described partner proteins Arabidopsis S-phase kinase-related protein 1, TIMING OF CAB EXPRESSION 1, and PHYB. Interaction with PHYB was unaffected by mutation of any ZTL domain. Mutation of the kelch repeat domain affected protein binding at both the LOV/PAS and the F-box domains, indicating that interaction among ZTL domains leads to the strong phenotypes of kelch mutations. Forward genetics continues to provide insight regarding both known and newly discovered components of the circadian system, although current approaches have saturated mutations at some loci.
Collapse
Affiliation(s)
- Eva Kevei
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Locke JCW, Southern MM, Kozma-Bognár L, Hibberd V, Brown PE, Turner MS, Millar AJ. Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol 2005; 1:2005.0013. [PMID: 16729048 PMCID: PMC1681447 DOI: 10.1038/msb4100018] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 06/07/2005] [Indexed: 01/06/2023] Open
Abstract
We extend the current model of the plant circadian clock, in order to accommodate new and published data. Throughout our model development we use a global parameter search to ensure that any limitations we find are due to the network architecture and not to our selection of the parameter values, which have not been determined experimentally. Our final model includes two, interlocked loops of gene regulation and is reminiscent of the circuit structures previously identified by experiments on insect and fungal clocks. It is the first Arabidopsis clock model to show such good correspondence to experimental data. Our interlocked feedback loop model predicts the regulation of two unknown components. Experiments motivated by these predictions identify the GIGANTEA gene as a strong candidate for one component, with an unexpected pattern of light regulation.*
This study involves an iterative approach of mathematical modelling and experiment to develop an accurate mathematical model of the circadian clock in the higher plant Arabidopsis thaliana. Our approach is central to systems biology and should lead to a greater, quantitative understanding of the circadian clock, as well as being more widely relevant to research into genetic networks. The day–night cycle caused by the Earth's rotation affects most organisms, and has resulted in the evolution of the circadian clock. The circadian clock controls 24-h rhythms in processes from metabolism to behaviour; in higher eukaryotes, the circadian clock controls the rhythmic expression of 5–10% of genes. In plants, the clock controls leaf and petal movements, the opening and closing of stomatal pores, the discharge of floral fragrances and many metabolic activities, especially those associated with photosynthesis. The relatively small number of components involved in the central circadian network makes it an ideal candidate for mathematical modelling of complex biological regulation. Genetic studies in a variety of model organisms have shown that the circadian rhythm is generated by a central network of between 6 and 12 genes. These genes form feedback loops generating a rhythm in mRNA production. One negative feedback loop in which a gene encodes a protein that, after several hours, turns off transcription is, in principle, capable of creating a circadian rhythm. However, real circadian clocks have proven to be more complicated than this, with interlocked feedback loops. Networks of this complexity are more easily understood through mathematical modelling. The clock mechanism in the model plant, A. thaliana, was first proposed to comprise a feedback loop in which two partially redundant genes, LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), repress the expression of their activator, TIMING OF CAB EXPRESSION 1 (TOC1). We previously modelled this preliminary network and showed that it was not capable of recreating several important pieces of experimental data (Locke et al, 2005). Here, we extend the LHY/CCA1–TOC1 network in new mathematical models. To check the effects of each addition to the network, the outputs of the extended models are compared to published data and to new experiments. As is the case for most biological networks, the parameter values in our model, such as the translation rate of TOC1 protein, are unknown. We employ here an optimisation method, which works well with noisy and varied data and allows a global search of parameter space. This should ensure that the limitations we find in our networks are due to the network structure, and not to our parameter choices. Our final interlocked feedback loop model requires two hypothetical components, genes X and Y (Figure 4), but is the first Arabidopsis clock model to exhibit such a good correspondence with experimental data. The model simulates a residual short-period oscillation in the cca1;lhy mutant, as characterised by our experiments. No single-loop model is able to do this. Our model also matches experimental data under constant light (LL) conditions and correctly senses photoperiod. The model predicts an interlocked feedback loop structure similar to that seen in the circadian clock mechanisms of other organisms. The interlocked feedback loop model predicts a distinctive pattern of Y mRNA accumulation in the wild type (WT) and in the cca1;lhy double mutant, with Y mRNA levels increasing transiently at dawn. We designed an experiment to identify Y based on this prediction. GIGANTEA (GI) mRNA levels fit very well to our predicted profile for Y (Figure 6), identifying GI as a strong candidate for Y. The approach described here could act as a template for experimental biologists seeking to extend models of small genetic networks. Our results illustrate the usefulness of mathematical modelling in guiding experiments, even if the models are based on limited data. Our method provides a way of identifying suitable candidate networks and quantifying how these networks better describe a wide variety of experimental measurements. The characteristics of new putative genes are thereby obtained, facilitating the experimental search for new components. To facilitate future experimental design, we provide user-friendly software that is specifically designed for numerical simulation of circadian experiments using models for several species (Brown, 2004b). *Footnote: Synopsis highlights were added on 5 July 2005. Circadian clocks involve feedback loops that generate rhythmic expression of key genes. Molecular genetic studies in the higher plant Arabidopsis thaliana have revealed a complex clock network. The first part of the network to be identified, a transcriptional feedback loop comprising TIMING OF CAB EXPRESSION 1 (TOC1), LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), fails to account for significant experimental data. We develop an extended model that is based upon a wider range of data and accurately predicts additional experimental results. The model comprises interlocking feedback loops comparable to those identified experimentally in other circadian systems. We propose that each loop receives input signals from light, and that each loop includes a hypothetical component that had not been explicitly identified. Analysis of the model predicted the properties of these components, including an acute light induction at dawn that is rapidly repressed by LHY and CCA1. We found this unexpected regulation in RNA levels of the evening-expressed gene GIGANTEA (GI), supporting our proposed network and making GI a strong candidate for this component.
Collapse
Affiliation(s)
- James C W Locke
- Department of Biological Sciences, University of Warwick, Coventry, UK
- Department of Physics, University of Warwick, Coventry, UK
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
| | - Megan M Southern
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | - László Kozma-Bognár
- Department of Biological Sciences, University of Warwick, Coventry, UK
- Present address: Institute of Molecular Plant Sciences, University of Edinburgh, Rutherford Building, Mayfield Road, Edinburgh
EH9 3JH, UK
| | - Victoria Hibberd
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | - Paul E Brown
- Department of Biological Sciences, University of Warwick, Coventry, UK
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- Present address: Institute of Molecular Plant Sciences, University of Edinburgh, Rutherford Building, Mayfield Road, Edinburgh
EH9 3JH, UK
| | - Matthew S Turner
- Department of Physics, University of Warwick, Coventry, UK
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
| | - Andrew J Millar
- Department of Biological Sciences, University of Warwick, Coventry, UK
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- Present address: Institute of Molecular Plant Sciences, University of Edinburgh, Rutherford Building, Mayfield Road, Edinburgh
EH9 3JH, UK
- Institute of Molecular Plant Sciences, University of Edinburgh, Rutherford Building, Mayfield Road, Edinburgh EH9 3JH, UK. Tel.: +44 1316513325; Fax: +44 1316505392; E-mail:
| |
Collapse
|
31
|
Abstract
Plants utilize several families of photoreceptors to fine-tune growth and development over a large range of environmental conditions. The UV-A/blue light sensing phototropins mediate several light responses enabling optimization of photosynthetic yields. The initial event occurring upon photon capture is a conformational change of the photoreceptor that activates its protein kinase activity. The UV-A/blue light sensing cryptochromes and the red/far-red sensing phytochromes coordinately control seedling establishment, entrainment of the circadian clock, and the transition from vegetative to reproductive growth. In addition, the phytochromes control seed germination and shade-avoidance responses. The molecular mechanisms involved include light-regulated subcellular localization of the photoreceptors, a large reorganization of the transcriptional program, and light-regulated proteolytic degradation of several photoreceptors and signaling components.
Collapse
Affiliation(s)
- Meng Chen
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
32
|
Abstract
In plants, successful sexual reproduction and the ensuing development of seeds and fruits depend on flowering at the right time. This involves coordinating flowering with the appropriate season and with the developmental history of the plant. Genetic and molecular analysis in the small cruciform weed, Arabidopsis, has revealed distinct but linked pathways that are responsible for detecting the major seasonal cues of day length and cold temperature, as well as other local environmental and internal signals. The balance of signals from these pathways is integrated by a common set of genes to determine when flowering occurs. Excitingly, it has been discovered that many of these same genes regulate flowering in other plants, such as rice. This review focuses on recent advances in how three of the signalling pathways (the day-length, vernalisation and autonomous pathways) function to control flowering.
Collapse
Affiliation(s)
- Jo Putterill
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
33
|
Somers DE, Kim WY, Geng R. The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. THE PLANT CELL 2004; 16:769-82. [PMID: 14973171 PMCID: PMC385287 DOI: 10.1105/tpc.016808] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 01/08/2004] [Indexed: 05/18/2023]
Abstract
As an F-box protein, ZEITLUPE (ZTL) is involved in targeting one or more substrates for ubiquitination and degradation via the proteasome. The initial characterization of ZTL suggested a function limited largely to the regulation of the circadian clock. Here, we show a considerably broader role for ZTL in the control of circadian period and photomorphogenesis. Using a ZTL-specific antibody, we quantitated and characterized a ZTL dosage series that ranges from a null mutation to a strong ZTL overexpressor. In the dark, ztl null mutations lengthen circadian period, and overexpression causes arrhythmicity, suggesting a more comprehensive role for this protein in the clock than previously suspected. In the light, circadian period becomes increasingly shorter at higher levels of ZTL, to the point of arrhythmicity. By contrast, hypocotyl length increases and flowering time is delayed in direct proportion to the level of ZTL. We propose a novel testable mechanism by which circadian period and amplitude may act together to gate phytochrome B-mediated suppression of hypocotyl. We also demonstrate that ZTL-dependent delay of flowering is mediated through decreases in CONSTANS and FLOWERING LOCUS T message levels, thus directly linking proteasome-dependent proteolysis to flowering.
Collapse
Affiliation(s)
- David E Somers
- Department of Plant Biology/Plant Biotechnology Center, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
34
|
Abstract
The circadian system actively synchronizes the temporal sequence of biological functions with the environment. The oscillatory behavior of the system ensures that entrainment is not passive or driven and therefore allows for great plasticity and adaptive potential. With the tools at hand, we now can concentrate on the most important circadian question: How is the complex task of entrainment achieved by anatomical, cellular, and molecular components? Understanding entrainment is equal to understanding the circadian system. The results of this basic research will help us to understand temporal ecology and will allow us to improve conditions for humans in industrialized societies.
Collapse
Affiliation(s)
- Till Roenneberg
- Institute for Medical Psychology, University of Munich, Germany.
| | | | | |
Collapse
|