1
|
Tripathi MK, Singh R. Photoperiodic regulation of the splenocyte immune responses in the fresh water snake, Natrixpiscator. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104403. [PMID: 35339533 DOI: 10.1016/j.dci.2022.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Photoperiod and melatonin are important regulators of immunity. We hypothesized that these two factors play an important role in the regulation of immune responses in the Natrix piscator. Animals were kept in either short or long days and splenocyte immune responses were studied. Respiratory burst activity of splenocytes was assessed through reduction of nitrobluetetrazolium salt while production of nitric oxide was assessed indirectly by nitrite assay. Density gradient centrifugation was used to isolate splenic lymphocytes which were utilized to study proliferation with and without mitogens. Super oxide production by splenocytes was reduced significantly in the cultures obtained from animals kept either in short or long days. Nitrite release was decreased when animals were subjected to long days. The photoperiodic alterations acted differentially on proliferations of the splenic lymphocytes. Spontaneous and mitogen-induced proliferation of splenic lymphocytes were enhanced in cultures obtained from snakes maintained in short days when compared with cultures from snakes obtained either from long day or natural day length conditions. In vitro melatonin significantly enhanced the splenic lymphocyte proliferation of the cultures obtained from animals kept in long days when compared with splenic lymphocyte proliferations of the cultures obtained from long day animals or the animals kept in natural day length conditions. We found evidence which suggest that photoperiod may influence seasonal energy budgets and induce adjustments which optimize energy allocation for costly physiological processes such as immune function. In seasonally breeding animals such as Natrix piscator, the pineal hormone melatonin assists in the suppression of reproduction and elevation of immunity, which are the crucial adaptation for perpetuation of species.
Collapse
Affiliation(s)
- Manish Kumar Tripathi
- Department of Zoology, Udai Pratap Autonomous College, Varanasi, 221 002, Uttar Pradesh, India.
| | - Ramesh Singh
- Department of Zoology, Udai Pratap Autonomous College, Varanasi, 221 002, Uttar Pradesh, India
| |
Collapse
|
2
|
LaVere AA, Hamlin HJ, Lowers RH, Parrott BB, Ezenwa VO. Associations between testosterone and immune activity in alligators depend on bacteria species and temperature. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Russell H. Lowers
- Herndon Solutions Group, LLC, NASA Environmental and Medical Contract Kennedy Space Center FL USA
| | - Benjamin B. Parrott
- Odum School of Ecology University of Georgia Athens GA USA
- Savannah River Ecology Laboratory University of Georgia Aiken SC USA
| | - Vanessa O. Ezenwa
- Odum School of Ecology University of Georgia Athens GA USA
- Department of Infectious Diseases College of Veterinary Medicine University of Georgia Athens GA USA
| |
Collapse
|
3
|
Vasilieva NY, Khrushchova AM, Kuptsov AV, Shekarova ON, Sokolova OV, Wang D, Rogovin KA. On the winter enhancement of adaptive humoral immunity: hypothesis testing in desert hamsters (Phodopus roborovskii: Cricetidae, Rodentia) kept under long-day and short-day photoperiod. Integr Zool 2020; 15:232-247. [PMID: 31773894 DOI: 10.1111/1749-4877.12419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We tested the winter immunity enhancement hypothesis (WIEH) on male desert hamsters (Phodopus roborovskii) kept under long-day (LD) and short-day (SD) photoperiods. We assumed that under SD in a laboratory, the adaptive humoral immune responsiveness to the antigenic challenge would be enhanced due to the lack of winter physical stressors and food shortages and/or because of the action of an endogenous winter bolstering mechanism, while under LD the immune responsiveness would be suppressed by the activity of the reproductive system. The results support the WIEH in part. We did not find a difference in antibody production in response to sheep erythrocytes between SD and LD hamsters, but SD males had the lower number of granulocytes and the higher number of lymphocytes in white blood cell counts. Reproductive activity was lower in SD males. These males demonstrated an increase in their mass-specific resting metabolic rate, their mass-specific maximal metabolic rate and their level of cortisol. The result of a generalized linear model analysis indicates the negative effect on secondary immunoresponsiveness to sheep erythrocytes of mid-ventral gland size, the organ characterizing individual reproductive quality, and designates a tradeoff between antibody production and reproductive effort. The mass-independent maximal metabolic rate also negatively affected antibody production, indicating a tradeoff between maximal aerobic performance and the adaptive immune function. The higher stress in SD males seems to be the most likely reason for the lack of the effect of daylight duration on antibody production.
Collapse
Affiliation(s)
| | | | | | - Olga N Shekarova
- Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - Olga V Sokolova
- Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - Dehua Wang
- Institute of Zoology Chinese Academy of Science, Chaoyang District, Beijing, China
| | | |
Collapse
|
4
|
Photoperiodic manipulation modulates the innate and cell mediated immune functions in the fresh water snake, Natrix piscator. Sci Rep 2020; 10:14722. [PMID: 32895425 PMCID: PMC7477230 DOI: 10.1038/s41598-020-71777-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022] Open
Abstract
Objectives of the current work were to investigate the role of photoperiod and melatonin in the alteration of immune responses in a reptilian species. Animals were kept on a regimen of short or long days. Blood was obtained and leucocytes were isolated to study various innate immune responses. Lymphocytes were separated from blood by density gradient centrifugation and were used to study proliferation. Respiratory burst activity was measured through nitrobluetetrazolium reduction assay while nitric oxide production by leucocytes was assayed by nitrite assay. Lymphocytes were isolated and used to study proliferation with and without B and T cell mitogens. Photoperiodic manipulation acted differentially on leucocyte counts. Nitrite release was increased while superoxide production was decreased in cultures obtained from the snakes kept on the short day regimen. Significant enhancement of mitogen induced lymphocyte proliferation was observed in cultures from the animals kept in either long or short days compared to cultures from the animals kept in natural ambient day length. Use of in vitro melatonin showed that lymphocytes from the animals, kept in long days, were more reactive. Photoperiod induces changes in immune status which may permit adaptive functional responses in order to maintain seasonal energetic budgets of the animals. Physiological responses (like elevated immune status) are energetically expensive, therefore, animals have evolved a strategy to reduce immune functions at times when energy is invested in reproductive activities. Natrix piscator breeds from September to December and elevated pineal hormone in winter suppresses reproduction while immunity is stimulated.
Collapse
|
5
|
Onishi KG, Prendergast BJ, Stevenson TJ. Trait-specific effects of exogenous triiodothyronine on cytokine and behavioral responses to simulated systemic infection in male Siberian hamsters. Horm Behav 2019; 110:90-97. [PMID: 30826308 DOI: 10.1016/j.yhbeh.2019.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 11/21/2022]
Abstract
Seasonal changes in day length enhance and suppress immune function in a trait-specific manner. In Siberian hamsters (Phodopus sungorus) winter-like short days (SDs) increase blood leukocyte concentrations and adaptive T cell dependent immune responses, but attenuate innate inflammatory responses to simulated infections. Thyroid hormone (TH) signaling also changes seasonally and has been implicated in modulation of the reproductive axis by day length. Immunologically, TH administration in long days (LD) enhances adaptive immune responses in male Siberian hamsters, mimicking effects of SDs. This experiment tested the hypothesis that T3 is also sufficient to mimic the effects of SD on innate immune responses. Adult male hamsters housed in LDs were pretreated with triiodothyronine (T3; 1 μg, s.c.) or saline (VEH) daily for 6 weeks; additional positive controls were housed in SD and received VEH, after which cytokine, behavioral, and physiological responses to simulated bacterial infection (lipopolysaccharide; LPS) were evaluated. SD pretreatment inhibited proinflammatory cytokine mRNA expression (i.e. interleukin 1β, nuclear factor kappa-light-chain-enhancer of activated B cells). In addition, the magnitude and persistence of anorexic and cachectic responses to LPS were also lower in SD hamsters, and LPS-induced inhibition of nest building behavior was absent in SD. T3 treatments failed to affect behavioral (food intake, nest building) or somatic (body mass) responses to LPS in LD hamsters, but one CNS cytokine response to LPS (e.g., hypothalamic TNFα) was augmented by T3. Together these data implicate thyroid hormone signaling in select aspects of innate immune responses to seasonal changes in day length.
Collapse
Affiliation(s)
- Kenneth G Onishi
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Brian J Prendergast
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
| | - Tyler J Stevenson
- Inst. Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
6
|
Banks R, Delibegovic M, Stevenson TJ. Photoperiod- and Triiodothyronine-dependent Regulation of Reproductive Neuropeptides, Proinflammatory Cytokines, and Peripheral Physiology in Siberian Hamsters (Phodopus sungorus). J Biol Rhythms 2016; 31:299-307. [DOI: 10.1177/0748730416637707] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Seasonal trade-offs in reproduction and immunity are ubiquitous in nature. The mechanisms that govern transitions across seasonal physiological states appear to involve reciprocal switches in the local synthesis of thyroid hormone. In long-day (LD) summer-like conditions, increased hypothalamic triiodothyronine (T3) stimulates gonadal development. Alternatively, short-day (SD) winter-like conditions increase peripheral leukocytes and enhance multiple aspects of immune function. These data indicate that the localized effects of T3 in the hypothalamus and leukocytes are photoperiod dependent. We tested the hypothesis that increased peripheral T3 in SD conditions would increase aspects of reproductive physiology and inhibit immune function, whereas T3 injections in LD conditions would facilitate aspects of immune function (i.e., leukocytes). In addition, we also examined whether T3 regulates hypothalamic neuropeptide expression as well as hypothalamic and splenic proinflammatory cytokine expression. Adult male Siberian hamsters were maintained in LD (15L:9D) or transferred to SD (9L:15D) for 8 weeks. A subset of LD and SD hamsters was treated daily with 5 µg T3 for 2 weeks. LD and SD controls were injected with saline. Daily T3 administration in SD hamsters (SD+T3) resulted in a rapid and substantial decrease in peripheral leukocyte concentrations and stimulated gonadal development. T3 treatment in LD (LD+T3) had no effect on testicular volumes but significantly increased leukocyte concentrations. Molecular analyses revealed that T3 stimulated interleukin 1β messenger RNA (mRNA) expression in the spleen and inhibited RFamide Related Peptide-3 mRNA expression in the hypothalamus. Moreover, there was a photoperiod-dependent decrease in splenic tumor necrosis factor–α mRNA expression. These findings reveal that T3 has tissue-specific and photoperiod-dependent regulation of seasonal rhythms in reproduction and immune function.
Collapse
Affiliation(s)
- Ruth Banks
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Tyler J. Stevenson
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
7
|
Weil ZM, Borniger JC, Cisse YM, Abi Salloum BA, Nelson RJ. Neuroendocrine control of photoperiodic changes in immune function. Front Neuroendocrinol 2015; 37:108-18. [PMID: 25456047 PMCID: PMC4402123 DOI: 10.1016/j.yfrne.2014.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 12/29/2022]
Abstract
Seasonal variation in immune function putatively maximizes survival and reproductive success. Day length (photoperiod) is the most potent signal for time of year. Animals typically organize breeding, growth, and behavior to adapt to spatial and temporal niches. Outside the tropics individuals monitor photoperiod to support adaptations favoring survival and reproductive success. Changes in day length allow anticipation of seasonal changes in temperature and food availability that are critical for reproductive success. Immune function is typically bolstered during winter, whereas reproduction and growth are favored during summer. We provide an overview of how photoperiod influences neuronal function and melatonin secretion, how melatonin acts directly and indirectly to govern seasonal changes in immune function, and the manner by which other neuroendocrine effectors such as glucocorticoids, prolactin, thyroid, and sex steroid hormones modulate seasonal variations in immune function. Potential future research avenues include commensal gut microbiota and light pollution influences on photoperiodic responses.
Collapse
Affiliation(s)
- Zachary M Weil
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Jeremy C Borniger
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yasmine M Cisse
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Bachir A Abi Salloum
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Randy J Nelson
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Stevenson TJ, Prendergast BJ. Photoperiodic time measurement and seasonal immunological plasticity. Front Neuroendocrinol 2015; 37:76-88. [PMID: 25456046 PMCID: PMC4405432 DOI: 10.1016/j.yfrne.2014.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/04/2014] [Accepted: 10/09/2014] [Indexed: 12/16/2022]
Abstract
Seasonal variations in immunity are common in nature, and changes in day length are sufficient to trigger enhancement and suppression of immune function in many vertebrates. Drawing primarily on data from Siberian hamsters, this review describes formal and physiological aspects of the neuroendocrine regulation of seasonal changes in mammalian immunity. Photoperiod regulates immunity in a trait-specific manner, and seasonal changes in gonadal hormone secretion and thyroid hormone signaling all participate in seasonal immunomodulation. Photoperiod-driven changes in the hamster reproductive and immune systems are associated with changes in iodothyronine deiodinase-mediated thyroid hormone signaling, but photoperiod exerts opposite effects on select aspects of the epigenetic regulation of reproductive neuroendocrine and lymphoid tissues. Photoperiodic changes in immunocompetence may explain a proportion of the annual variance in disease incidence and severity in nature, and provide a useful framework to help understand brain-immune interactions.
Collapse
Affiliation(s)
- Tyler J Stevenson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Brian J Prendergast
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Stevenson TJ, Onishi KG, Bradley SP, Prendergast BJ. Cell-autonomous iodothyronine deiodinase expression mediates seasonal plasticity in immune function. Brain Behav Immun 2014; 36:61-70. [PMID: 24145050 PMCID: PMC3974869 DOI: 10.1016/j.bbi.2013.10.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 01/07/2023] Open
Abstract
Annual rhythms in morbidity and mortality are well-documented, and host defense mechanisms undergo marked seasonal phenotypic change. Siberian hamsters (Phodopus sungorus) exhibit striking immunological plasticity following adaptation to short winter day lengths (SD), including increases in blood leukocytes and in the magnitude of T cell-mediated immune responses. Thyroid hormone (TH) signaling is rate-limited by tissue-level expression of iodothyronine deiodinase types II and III (dio2, dio3), and dio2/dio3 expression in the central nervous system gate TH-dependent transduction of photoperiod information into the neuroendocrine system. THs are also potent immunomodulators, but their role in seasonal immunobiology remains unexamined. Here we report that photoperiod-driven changes in triiodothyronine (T3) signaling mediate seasonal changes in multiple aspects of immune function. Transfer from long days (LD) to SD inhibited leukocyte dio3 expression, which increased cellular T4→T3 catabolism. T3 was preferentially localized in the lymphocyte cytoplasm, consistent with a non-nuclear role of T3 in lymphoid cell differentiation and maturation. Exposure to SD upregulated leukocyte DNA methyltransferase expression and markedly increased DNA methylation in the dio3 proximal promoter region. Lastly, to bypass low endogenous T3 biosynthesis in LD lymphocytes, LD hamsters were treated with T3, which enhanced T cell-dependent delayed-type hypersensitivity inflammatory responses and blood leukocyte concentrations in a dose-dependent manner, mimicking effects of SD on these immunophenotypes. T3 signaling represents a novel mechanism by which environmental day length cues impact the immune system: changes in day length alter lymphoid cell T3-signaling via epigenetic transcriptional control of dio3 expression.
Collapse
Affiliation(s)
- Tyler J Stevenson
- Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Kenneth G Onishi
- Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
| | - Sean P Bradley
- Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA; Department of Psychology, University of Chicago, Chicago, IL 60637, USA
| | - Brian J Prendergast
- Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA; Department of Psychology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Reversible DNA methylation regulates seasonal photoperiodic time measurement. Proc Natl Acad Sci U S A 2013; 110:16651-6. [PMID: 24067648 DOI: 10.1073/pnas.1310643110] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In seasonally breeding vertebrates, changes in day length induce categorically distinct behavioral and reproductive phenotypes via thyroid hormone-dependent mechanisms. Winter photoperiods inhibit reproductive neuroendocrine function but cannot sustain this inhibition beyond 6 mo, ensuring vernal reproductive recrudescence. This genomic plasticity suggests a role for epigenetics in the establishment of seasonal reproductive phenotypes. Here, we report that DNA methylation of the proximal promoter for the type III deiodinase (dio3) gene in the hamster hypothalamus is reversible and critical for photoperiodic time measurement. Short photoperiods and winter-like melatonin inhibited hypothalamic DNA methyltransferase expression and reduced dio3 promoter DNA methylation, which up-regulated dio3 expression and induced gonadal regression. Hypermethylation attenuated reproductive responses to short photoperiods. Vernal refractoriness to short photoperiods reestablished summer-like methylation of the dio3 promoter, dio3 expression, and reproductive competence, revealing a dynamic and reversible mechanism of DNA methylation in the mammalian brain that plays a central role in physiological orientation in time.
Collapse
|
11
|
Prendergast BJ, Cable EJ, Patel PN, Pyter LM, Onishi KG, Stevenson TJ, Ruby NF, Bradley SP. Impaired leukocyte trafficking and skin inflammatory responses in hamsters lacking a functional circadian system. Brain Behav Immun 2013; 32:94-104. [PMID: 23474187 PMCID: PMC3686870 DOI: 10.1016/j.bbi.2013.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/20/2013] [Accepted: 02/27/2013] [Indexed: 01/19/2023] Open
Abstract
The immune system is under strong circadian control, and circadian desynchrony is a risk factor for metabolic disorders, inflammatory responses and cancer. Signaling pathways that maintain circadian rhythms (CRs) in immune function in vivo, and the mechanisms by which circadian desynchrony impairs immune function, remain to be fully identified. These experiments tested the hypothesis that the hypothalamic circadian pacemaker in the suprachiasmatic nucleus (SCN) drives CRs in the immune system, using a non-invasive model of SCN circadian arrhythmia. Robust CRs in blood leukocyte trafficking, with a peak during the early light phase (ZT4) and nadir in the early dark phase (ZT18), were absent in arrhythmic hamsters, as were CRs in spleen clock gene (per1, bmal1) expression, indicating that a functional pacemaker in the SCN is required for the generation of CRs in leukocyte trafficking and for driving peripheral clocks in secondary lymphoid organs. Pinealectomy was without effect on CRs in leukocyte trafficking, but abolished CRs in spleen clock gene expression, indicating that nocturnal melatonin secretion is necessary for communicating circadian time information to the spleen. CRs in trafficking of antigen presenting cells (CD11c(+) dendritic cells) in the skin were abolished, and antigen-specific delayed-type hypersensitivity skin inflammatory responses were markedly impaired in arrhythmic hamsters. The SCN drives robust CRs in leukocyte trafficking and lymphoid clock gene expression; the latter of which is not expressed in the absence of melatonin. Robust entrainment of the circadian pacemaker provides a signal critical to diurnal rhythms in immunosurveilliance and optimal memory T-cell dependent immune responses.
Collapse
Affiliation(s)
- Brian J. Prendergast
- Department of Psychology, University of Chicago, Chicago, IL 60637,Committee on Neurobiology, University of Chicago, Chicago, IL 60637
| | - Erin J. Cable
- Department of Psychology, University of Chicago, Chicago, IL 60637
| | - Priyesh N. Patel
- Department of Psychology, University of Chicago, Chicago, IL 60637
| | - Leah M. Pyter
- Department of Psychology, University of Chicago, Chicago, IL 60637
| | | | | | - Norman F. Ruby
- Department of Biological Sciences, Stanford University, Palo Alto, CA 94305
| | - Sean P. Bradley
- Department of Psychology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
12
|
Uzenbaeva LB, Vinogradova IA, Kizhina AG, Prokopenko OA, Malkiel AI, Goranskii AI, Lapinski S, Ilyukha VA. Influence of melatonin on neutrophil-to-lymphocyte ratio in mammalian blood depending on age of the animal. ADVANCES IN GERONTOLOGY 2013. [DOI: 10.1134/s2079057013010141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Prendergast BJ, Pyter LM, Kampf-Lassin A, Patel PN, Stevenson TJ. Rapid induction of hypothalamic iodothyronine deiodinase expression by photoperiod and melatonin in juvenile Siberian hamsters (Phodopus sungorus). Endocrinology 2013; 154:831-41. [PMID: 23295738 PMCID: PMC3548179 DOI: 10.1210/en.2012-1990] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Production of T(3) in the mediobasal hypothalamus is critical for regulation of seasonal reproductive physiology. Type 2 iodothyronine deiodinase (DIO2) and DIO3 enzymes catalyze the prohormone T(4) into biologically-active T(3) and biologically-inactive rT(3), respectively. In several seasonally-breeding vertebrates, DIO2 and DIO3 expression is implicated in photoperiod signal transduction in adulthood. These experiments tested the hypothesis that juvenile Siberian hamsters, which are highly responsive to photoperiod at weaning (postnatal day [PND]18), exhibit rapid and sustained changes in hypothalamic dio3 mRNA expression during photoperiod-induced and photoperiod-inhibited puberty. Hypothalamic dio2 and dio3 expression was measured via quantitative PCR in hamsters born and reared in a long-day photoperiod (15L:9D) and weaned on PND18 into short-day photoperiods (9L:15D). In SD males, hypothalamic dio3 mRNA was elevated 2.5-fold within 3 days (PND21) and continued to increase (>20-fold) through PND32; changes in dio3 mRNA preceded inhibition of gonadotropin (FSH) secretion and gonadal regression in SD. Females exhibited comparable dio3 responses to SD. In LD males, dio3 remained low and invariant from PND18-PND32. In contrast, dio2 mRNA rose conspicuously on PND21, independent of photoperiod, returning to basal levels thereafter. In LD, a single afternoon melatonin (MEL) injection on PND18 or PND20 was sufficient to increase hypothalamic dio3 mRNA, and dio3 increased in proportion to the number of successive days of MEL treatment. SD photoperiods and MEL exert rapid, sustained, and additive effects on hypothalamic dio3 mRNA, which may play a central role in inhibiting maturation of the peripubertal hypothalamo-pituitary-gonadal axis.
Collapse
|
14
|
Seddon RJ, Klukowski M. Influence of Stressor Duration on Leukocyte and Hormonal Responses in Male Southeastern Five-Lined Skinks (Plestiodon inexpectatus). ACTA ACUST UNITED AC 2012; 317:499-510. [DOI: 10.1002/jez.1742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/15/2012] [Accepted: 06/08/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Ryan J. Seddon
- Department of Biology; Middle Tennessee State University; Murfreesboro; Tennessee
| | - Matthew Klukowski
- Department of Biology; Middle Tennessee State University; Murfreesboro; Tennessee
| |
Collapse
|
15
|
Fonken LK, Bedrosian TA, Michaels HD, Weil ZM, Nelson RJ. Short photoperiods attenuate central responses to an inflammogen. Brain Behav Immun 2012; 26:617-22. [PMID: 22326518 DOI: 10.1016/j.bbi.2012.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022] Open
Abstract
In most parts of the world, environmental conditions vary in a predictable seasonal manner. Thus, seasonal variation in reproductive timing and immune function has emerged in some species to cope with disparate seasonal demands. During the long days of spring and summer when food availability is high and thermoregulatory demands low, Siberian hamsters invest in reproduction, whereas during the harsh short days of winter hamsters divert energy away from reproductive activities and modify immune capabilities. Many seasonal adaptations can be recapitulated in a laboratory setting by adjusting day length (photoperiod). Early-life photoperiods are important sources of seasonal information and can establish an individual's developmental trajectory. Siberian hamsters housed under short days (SD; 8 h light/day) recover more rapidly than long-day (LD; 16 h light/day) hamsters from immune activation with lipopolysaccharide (LPS). SD hamsters attenuate fever response, reduce cytokine production, and abrogate behavioral responses following LPS injection. The mechanism by which SD Siberian hamsters attenuate febrile response remains unspecified. It is possible that periphery-to-brain communication of inflammatory signals is altered by exposure to photoperiod. Rather than testing photoperiod effects on each of the multiple routes by which immunological cues are communicated to the CNS, we administered LPS intracerebroventricularly (i.c.v.) following adolescent exposure to either 6 weeks of SD or LD. Injection of LPS i.c.v. led to a similar immune reaction in SD hamsters as previously reported with intraperitoneal injection. Short days attenuated the response to LPS with diminished fever spike and duration, as well as decreased locomotor inactivity. Furthermore, only LD hamsters demonstrated anhedonic-like behavior following LPS injection as evaluated by decreased preference for a milk solution. These results suggest that photoperiodic differences in response to infection are due in part to changes in central immune activation.
Collapse
Affiliation(s)
- Laura K Fonken
- Department of Neuroscience and Institute for Behavioral Medicine Research, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
16
|
Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL, Johnson RL, Besing RC, Menaker M, Gewirtz AT, Davidson AJ. Dysregulation of inflammatory responses by chronic circadian disruption. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:5796-805. [PMID: 20944004 PMCID: PMC2974025 DOI: 10.4049/jimmunol.1001026] [Citation(s) in RCA: 393] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circadian rhythms modulate nearly every mammalian physiological process. Chronic disruption of circadian timing in shift work or during chronic jet lag in animal models leads to a higher risk of several pathologies. Many of these conditions in both shift workers and experimental models share the common risk factor of inflammation. In this study, we show that experimentally induced circadian disruption altered innate immune responses. Endotoxemic shock induced by LPS was magnified, leading to hypothermia and death after four consecutive weekly 6-h phase advances of the light/dark schedule, with 89% mortality compared with 21% in unshifted control mice. This may be due to a heightened release of proinflammatory cytokines in response to LPS treatment in shifted animals. Isolated peritoneal macrophages harvested from shifted mice exhibited a similarly heightened response to LPS in vitro, indicating that these cells are a target for jet lag. Sleep deprivation and stress are known to alter immune function and are potential mediators of the effects we describe. However, polysomnographic recording in mice exposed to the shifting schedule revealed no sleep loss, and stress measures were not altered in shifted mice. In contrast, we observed altered or abolished rhythms in the expression of clock genes in the central clock, liver, thymus, and peritoneal macrophages in mice after chronic jet lag. We conclude that circadian disruption, but not sleep loss or stress, are associated with jet lag-related dysregulation of the innate immune system. Such immune changes might be a common mechanism for the myriad negative health effects of shift work.
Collapse
|
17
|
Ahmad R, Haldar C. Photoperiod-testicular-immune interaction in a seasonal breeder Indian palm squirrel Funambulus pennanti during the reproductively inactive and active phases. J Neuroendocrinol 2009; 21:2-9. [PMID: 19094088 DOI: 10.1111/j.1365-2826.2008.01805.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The differential effect of long (LD; 16 : 8 h light/dark), short (SD; 10 : 14 h light/dark) and natural day length (NDL; 12 : 12 h light/dark) during the reproductively inactive (RIP) and active (RAP) phases was assessed in relation to immunity and reproductive function of a tropical rodent Funambulus pennanti. They presented high immunity and low testicular activity during RIP and an opposite during RAP. SD increased spleen and thymus weight, leukocyte and lymphocyte counts, cell mediated immunity [i.e. blastogenic response in terms of percentage stimulation ratio of splenocytes and thymocytes (when challenged with concanavalin A)] and delayed type hypersensitivity to oxazolone. SD during RIP increased the above mentioned parameters and reduced testes weight compared to NDL groups. During RAP, LD reduced all the immunological parameters when compared with NDL and SD experiencing groups of RIP and RAP phases. The LD group reduced the immunological parameters compared to RAP, suggesting that LD had always an inhibitory effect on immune status being independent of reproductive phases. The intensity of the stimulatory effects of SD and inhibitory effects of LD during both reproductive phases was significantly different. We exposed another set of squirrels to the above photoperiodic schedule for prolonged period (30 weeks) during RAP. A clear testicular refractoriness followed by immunorefractoriness was observed in the group experiencing SD and LD for 30 weeks. The photorefractoriness presented by the testes was inversely related to the immunorefractoriness. The peripheral melatonin level of those squirrels reflected the photoperiodic signal perceived by squirrels for immunomodulation and gonadal function, suggesting that immune system and gonadal function might have coevolved.
Collapse
Affiliation(s)
- R Ahmad
- Pineal Research Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
18
|
Freeman DA. Multiple neuroendocrine pathways mediate seasonal immunity. Am J Physiol Regul Integr Comp Physiol 2008; 294:R382-3. [DOI: 10.1152/ajpregu.00856.2007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Prendergast BJ, Baillie SR, Dhabhar FS. Gonadal hormone-dependent and -independent regulation of immune function by photoperiod in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 2007; 294:R384-92. [PMID: 17989142 DOI: 10.1152/ajpregu.00551.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Siberian hamsters (Phodopus sungorus) exhibit changes in reproductive and immune function in response to seasonal variations in day length. Exposure to short days induces gonadal regression and inhibits testosterone secretion. In parallel, short days enhance immune function: increasing leukocyte numbers and attenuating cytokine and behavioral responses to infection. We examined whether photoperiodic changes in leukocyte phenotypes and sickness behaviors are dependent on concurrent photoperiodic changes in gonadal function. Male hamsters were gonadectomized or sham-gonadectomized and either exposed to short days (9 h light/day; SD) or kept in their natal long-day (15 h light/day; LD) photoperiod for 10-13 wk. Blood samples were obtained for leukocyte enumeration, and hamsters were challenged with bacterial LPS, which induced behavioral (anorexia, reductions in nest building) and somatic (weight loss) sickness responses. Among gonad-intact hamsters, exposure to SD increased total and CD62L+ lymphocytes and CD3+ T lymphocytes in blood and significantly attenuated LPS-induced sickness responses. Independent of photoperiod, castration alone increased total and CD62L+ lymphocyte and CD3+ T lymphocyte numbers and attenuated somatic and anorexic sickness responses. Among castrated hamsters, SD exposure increased lymphocyte numbers and suppressed sickness behaviors. In castrated hamsters, the magnitude of most immunological effects of SD were diminished relative to those evident in gonad-intact hamsters. The SD phenotype in several measures of immunity can be instated via elimination of gonadal hormones alone; however, photoperiodic effects on immune function persist even in castrated hamsters. Thus, photoperiod affects the immune system and neural-immune interactions underlying sickness behaviors via gonadal hormone-dependent and -independent mechanisms.
Collapse
|
20
|
Prendergast BJ, Kampf-Lassin A, Yee JR, Galang J, McMaster N, Kay LM. Winter day lengths enhance T lymphocyte phenotypes, inhibit cytokine responses, and attenuate behavioral symptoms of infection in laboratory rats. Brain Behav Immun 2007; 21:1096-108. [PMID: 17728099 PMCID: PMC2693110 DOI: 10.1016/j.bbi.2007.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 05/18/2007] [Accepted: 05/19/2007] [Indexed: 10/22/2022] Open
Abstract
Annual variations in day length (photoperiod) trigger changes in the immune and reproductive system of seasonally-breeding animals. The purpose of this study was to determine whether photoperiodic changes in immunity depend on concurrent photoperiodic responses in the reproductive system, or whether immunological responses to photoperiod occur independent of reproductive responses. Here we report photoperiodic changes in enumerative, functional, and behavioral aspects of the immune system, and in immunomodulatory glucocorticoid secretion, in reproductively non-photoperiodic Wistar rats. T-cell numbers (CD3+, CD8+, CD8+CD25+, CD4+CD25+) were higher in the blood of rats housed in short as opposed to long-day lengths for 10 weeks. Following a simulated bacterial infection (Escherichia coli LPS; 125 microg/kg) the severity of several acute-phase sickness behaviors (anorexia, cachexia, neophobia, and social withdrawal) were attenuated in short days. LPS-stimulated IL-1beta and IL-6 production were comparable between photoperiods, but plasma TNFalpha was higher in long-day relative to short-day rats. In addition, corticosterone concentrations were higher in short-day relative to long-day rats. The data are consistent with the hypothesis that photoperiodic regulation of the immune system can occur entirely independently of photoperiodic regulation of the reproductive system. In the absence of concurrent reproductive responses, short days increase the numbers of leukocytes capable of immunosurveillance and inhibition of inflammatory responses, increase proinflammatory cytokine production, increase immunomodulatory glucocorticoid secretion, and ultimately attenuate behavioral responses to infection. Seasonal changes in the host immune system, endocrine system, and behavior may contribute to the seasonal variability in disease outcomes, even in reproductively non-photoperiodic mammals.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology, Institute for Mind and Biology, University of Chicago, 940 E. 57th Street, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Ohkura N, Oishi K, Sekine Y, Atsumi GI, Ishida N, Matsuda J, Horie S. Comparative Study of Circadian Variation in Numbers of Peripheral Blood Cells among Mouse Strains: Unique Feature of C3H/HeN Mice. Biol Pharm Bull 2007; 30:1177-80. [PMID: 17541178 DOI: 10.1248/bpb.30.1177] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined strain differences in numbers of blood cells and their circadian rhythms in male Jcl:ICR, BALB/cA, C57BL/6J and C3H/HeN mice. The total numbers of circulating white blood cells (WBCs) were increased during subjective day and night, and the peaks in the active period were common to all strains. However, the number of WBCs in C3H/HeN mice remained lower and plasma levels of corticosterone (CS) were slightly higher throughout the day compared with the other strains. The numbers of circulating red blood cells (RBC) also differed according to strain. The numbers of RBCs, hematocrit (HCT) and hemoglobin (HGB) were considerably lower in C3H/HeN mice compared with the other strains, although mean corpuscular hemoglobin (MCH) and mean corpuscular volume (MCV) were highest among the tested strains. We found that serum erythropoietin (EPO) levels were considerably higher in C3H/HeN mice than in the other three strains. The high EPO level might be related to the unique features of RBCs in C3H/HeN mice. The present observations provide basic information about the numbers of peripheral blood cells and their circadian rhythm in mouse models and also demonstrate a unique feature of C3H/HeN mice.
Collapse
Affiliation(s)
- Naoki Ohkura
- Clinical Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tsukui, Kanagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Wen JC, Dhabhar FS, Prendergast BJ. Pineal-dependent and -independent effects of photoperiod on immune function in Siberian hamsters (Phodopus sungorus). Horm Behav 2007; 51:31-9. [PMID: 17022983 PMCID: PMC3345196 DOI: 10.1016/j.yhbeh.2006.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/03/2006] [Accepted: 08/03/2006] [Indexed: 11/16/2022]
Abstract
Siberian hamsters (Phodopus sungorus) exhibit reproductive and immunological responses to photoperiod. Short (<10-h light/day) days induce gonadal atrophy, increase leukocyte concentrations, and attenuate thermoregulatory and behavioral responses to infection. Whereas hamster reproductive responses to photoperiod are dependent on pineal melatonin secretion, the role of the pineal in short-day induced changes in immune function is not fully understood. To examine this, adult hamsters were pinealectomized (PINx) or sham-PINx, and transferred to short days (9-h light/day; SD) or kept in their natal long-day (15-h light/day; LD) photoperiod. Intact and PINx hamsters housed in LD maintained large testes over the next 12 weeks; sham-PINx hamsters exhibited gonadal regression in SD, and PINx abolished this effect. Among pineal-intact hamsters, blood samples revealed increases in leukocyte, lymphocyte, CD62L+ lymphocyte, and T cell counts in SD relative to LD; PINx did not affect leukocyte numbers in LD hamsters, but abolished the SD increase in these measures. Hamsters were then treated with bacterial lipopolysaccharide (LPS), which induced thermoregulatory (fever), behavioral (anorexia, reductions in nest building), and somatic (weight loss) sickness responses in all groups. Among pineal-intact hamsters, febrile and behavioral responses to LPS were attenuated in SD relative to LD. PINx did not affect sickness responses to LPS in LD hamsters, but abolished the ameliorating effects of SD on behavioral responses to LPS. Surprisingly, PINx failed to abolish the effect of SD on fever. In common with the reproductive system, PINx induces the LD phenotype in most aspects of the immune system. The pineal gland is required for photoperiodic regulation of circulating leukocytes and neural-immune interactions that mediate select aspects of sickness behaviors.
Collapse
Affiliation(s)
- Jarvi C. Wen
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
| | - Firdaus S. Dhabhar
- Department of Psychiatry And Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brian J. Prendergast
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
- Corresponding author. Fax: +1 773 702 898. (B.J. Prendergast)
| |
Collapse
|
23
|
Weil ZM, Pyter LM, Martin LB, Nelson RJ. Perinatal photoperiod organizes adult immune responses in Siberian hamsters (Phodopus sungorus). Am J Physiol Regul Integr Comp Physiol 2006; 290:R1714-9. [PMID: 16410397 DOI: 10.1152/ajpregu.00869.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Individuals of many nontropical rodent species display reproductive, immunological, and somatic responses to day length. In general, short day (SD) lengths inhibit reproduction and enhance immune function in the laboratory when all other conditions are held constant. Most studies to date have focused on seasonal variation in immune function in adulthood. However, perinatal photoperiods also communicate critical day length information and serve to establish a developmental trajectory appropriate for the time of year. Nontropical rodents born early in the breeding season undergo rapid reproductive development, presumably to promote mating success during their first reproductive season. Rodents born late in the breeding season suspend somatic growth and puberty until the following vernal breeding season. We tested the hypothesis that perinatal day lengths have similar enduring effects on the immune system of rodents. Siberian hamsters (Phodopus sungorus) were maintained prenatally and until weaning (21 days) in either SDs (8 h light:16 h dark) or long days (LD) (16 h light:8 h dark), then they were weaned into either the opposite photoperiod or maintained in their natal photoperiod, forming four groups (LD-LD, LD-SD, SD-LD, and SD-SD). After 8-wk in these conditions, cell-mediated immune activity was compared among groups. SD-SD hamsters of both sexes enhanced immune function relative to all other groups. The reproductive effects of perinatal photoperiod were not evident by the end of the experiment; circulating testosterone and cortisol sampled at the end of the experiment reflected the postweaning, but not the perinatal photoperiod. This experiment demonstrates long-lasting organizational effects of perinatal photoperiod on the rodent immune system and indicates that photoperiod-induced changes in the immune system are dissociable from changes in the reproductive system.
Collapse
Affiliation(s)
- Zachary M Weil
- Department of Neuroscience, and Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
24
|
Gatien ML, Hotchkiss AK, Dhabhar FS, Nelson RJ. Skeleton photoperiods alter delayed-type hypersensitivity responses and reproductive function of Siberian hamsters (Phodopus sungorus). J Neuroendocrinol 2005; 17:733-9. [PMID: 16219002 DOI: 10.1111/j.1365-2826.2005.01371.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Photoperiod (day length) can modulate immune function. Whether these photoperiodic effects on immune function are mediated directly by a circadian photoperiodic time measurement system or indirectly by nonspecific (e.g. stressful) effects of light is unknown. To discriminate between these two possibilities, Siberian hamsters (Phodopus sungorus) were housed in either long or short photoperiods (LD 16 : 8 h or LD 8 : 16 h) or in 'skeleton' long or short photoperiods (LD 1 : 14 h: LD 1 : 8 h or LD 1 : 6 h: LD 1 : 16 h). In the skeleton photoperiods, both long- and short-day animals received 2 h of light per day. After 10 weeks in their respective photoperiods, hamsters were tested for an antigen specific immune response using a delayed type hypersensitivity (DTH) model. Reproductive and endocrine responses of hamsters in each of the skeleton photoperiods were equivalent to those in standard long or short days, respectively. Hamsters in skeleton short days and LD 8 : 16 increased DTH responses compared to hamsters in both long-day groups. DTH responses were equivalent in both long-day groups. These results suggest that the influences of day length on immune function potentially are due to circadian photoperiodic time measurement systems.
Collapse
Affiliation(s)
- M L Gatien
- Department of Psychology, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
25
|
Carrillo-Vico A, Guerrero JM, Lardone PJ, Reiter RJ. A review of the multiple actions of melatonin on the immune system. Endocrine 2005; 27:189-200. [PMID: 16217132 DOI: 10.1385/endo:27:2:189] [Citation(s) in RCA: 442] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 06/13/2005] [Indexed: 12/15/2022]
Abstract
This review summarizes the numerous observations published in recent years which have shown that one of the most significant of melatonin's pleiotropic effects is the regulation of the immune system. The overview summarizes the immune effects of pinealectomy and the association between rhythmic melatonin production and adjustments in the immune system as markers of melatonin's immunomodulatory actions. The effects of both in vivo and in vitromelatonin administration on non-specific, humoral, and cellular immune responses as well as on cellular proliferation and immune mediator production are presented. One of the main features that distinguishes melatonin from the classical hormones is its synthesis by a number of non-endocrine extrapineal organs, including the immune system. Herein, we summarize the presence of immune system-synthesized melatonin, its direct immunomodulatory effects on cytokine production, and its masking effects on exogenous melatonin action. The mechanisms of action of melatonin in the immune system are also discussed, focusing attention on the presence of membrane and nuclear receptors and the characterization of several physiological roles mediated by some receptor analogs in immune cells. The review focuses on melatonin's actions in several immune pathologies including infection, inflammation, and autoimmunity together with the relation between melatonin, immunity, and cancer.
Collapse
Affiliation(s)
- Antonio Carrillo-Vico
- Department of Medical Biochemistry and Molecular Biology, The University of Seville School of Medicine and Virgen Macarena Hospital, Seville, Spain
| | | | | | | |
Collapse
|
26
|
Prendergast BJ, Bilbo SD, Nelson RJ. Short day lengths enhance skin immune responses in gonadectomised Siberian hamsters. J Neuroendocrinol 2005; 17:18-21. [PMID: 15720471 DOI: 10.1111/j.1365-2826.2005.01273.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Siberian hamsters and other photoperiodic rodents, exposure to short photoperiods simultaneously inhibits gonadal hormone secretion and enhances some measures of immune function. The present study tested whether gonadal hormones mediate the effects of short days on skin immune function (delayed-type hypersensitivity reactions) in male Siberian hamsters. The magnitude of delayed-type hypersensitivity reactions was greater in hamsters exposed to short days relative to those in long days. Comparable effects of photoperiod were obtained in castrated hamsters bearing empty or testosterone-filled implants. The data suggest that contemporary gonadal hormone secretion is neither necessary, nor sufficient to mediate the effects of short photoperiods on skin immune function.
Collapse
Affiliation(s)
- B J Prendergast
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
27
|
Prendergast BJ, Hotchkiss AK, Bilbo SD, Nelson RJ. Peripubertal Immune Challenges Attenuate Reproductive Development in Male Siberian Hamsters (Phodopus sungorus)1. Biol Reprod 2004; 70:813-20. [PMID: 14627552 DOI: 10.1095/biolreprod.103.023408] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Differential allocation of energy to reproduction versus host defense is assumed to drive the seasonal antiphase relation between peak reproductive function and immunocompetence; however, evidence supporting this assumption is only correlational. These experiments tested whether photoperiod affects immune responses to antigens in peripubertal Siberian hamsters, whether such activation of the immune system exacts energetic and reproductive costs, and whether such costs vary seasonally. Male Siberian hamsters were raised from birth in long (LD) or short days (SD), which respectively initiate or inhibit the onset of puberty. To elicit a specific immune response, hamsters were injected with a novel antigen (keyhole limpet hemocyanin [KLH]) as juveniles. Reproductive development was attenuated and body temperature was elevated in LD hamsters relative to saline-injected control animals. In contrast, KLH treatments affected neither thermoregulation nor reproductive development in photoinhibited SD hamsters. In experiment 2, juvenile male hamsters were challenged with bacterial lipopolysaccharide (LPS) in order to elicit an innate immune response. Febrile and anorexic responses to LPS were greater in reproductively stimulated LD hamsters relative to reproductively inhibited SD hamsters. LPS treatments attenuated somatic and testicular development in LD hamsters, but did not significantly affect circulating testosterone concentrations. In contrast, LPS treatments were without effect on somatic and reproductive development in SD hamsters. These experiments indicate that photoperiod affects antigen-specific antibody production, febrile responses to LPS, and sickness behaviors in juvenile Siberian hamsters, and that peripubertal activation of the immune system exacts energetic and metabolic costs that can diminish the magnitude of somatic and reproductive maturation in LD. The data also underscore the importance of seasonally dependent life history factors in assessing physiological tradeoffs.
Collapse
Affiliation(s)
- Brian J Prendergast
- Departments of Psychology and Neuroscience, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|