1
|
Wang S, Chen Y, Zhou H, Ning Z, Hu T, Ye C, Mu W. Cloning, tissue distribution, and effects of different circadian rhythms on the mRNA expression levels of circadian clock genes Per1a and Per1b in Phoxinus lagowskii. Int J Biol Macromol 2024; 256:128310. [PMID: 38007023 DOI: 10.1016/j.ijbiomac.2023.128310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
This study describes the cloning and characterization of Period 1a and Period 1b genes and the analysis of their mRNA and protein expression in Amur minnow (Phoxinus lagowskii) after exposure to different light cycles. The full-length P. lagowskii Per1a and Per1b genes encode proteins consisting of 1393 and 1409 amino acids, and share high homology with the per1 genes of other freshwater fish species. The Per1a and Per1b genes were widely expressed within the brain, eye, and peripheral tissues. The acrophase of the Per1a gene in the pituitary gland occurred during the dark phase at ZT15 (zeitgeber time 15, 12 L: 12 D) and ZT18 (8 L, 16 D), whereas the acrophase of the Per1b gene in the pituitary gland was observed during the light phase. Our study suggests that the expression of Per1a and Per1b in P. lagowskii varied depending on differences in circadian rhythm patterns. The results of our dual-luciferase reporter assays demonstrated that the P. lagowskii Per1b gene enhances the activation of NF-κB. This study is the first to examine the circadian clock gene Per1a and Per1b in the high-latitude fish P. lagowskii, offering valuable insights into the effects of different light periods on this fish species.
Collapse
Affiliation(s)
- Sihan Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yingqiao Chen
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Haishui Zhou
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Zhaoyang Ning
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Tingting Hu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Cunrun Ye
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weijie Mu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
2
|
Kovács-Öller T, Szarka G, Hoffmann G, Péntek L, Valentin G, Ross L, Völgyi B. Extrinsic and Intrinsic Factors Determine Expression Levels of Gap Junction-Forming Connexins in the Mammalian Retina. Biomolecules 2023; 13:1119. [PMID: 37509155 PMCID: PMC10377540 DOI: 10.3390/biom13071119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Gap junctions (GJs) are not static bridges; instead, GJs as well as the molecular building block connexin (Cx) proteins undergo major expression changes in the degenerating retinal tissue. Various progressive diseases, including retinitis pigmentosa, glaucoma, age-related retinal degeneration, etc., affect neurons of the retina and thus their neuronal connections endure irreversible changes as well. Although Cx expression changes might be the hallmarks of tissue deterioration, GJs are not static bridges and as such they undergo adaptive changes even in healthy tissue to respond to the ever-changing environment. It is, therefore, imperative to determine these latter adaptive changes in GJ functionality as well as in their morphology and Cx makeup to identify and distinguish them from alterations following tissue deterioration. In this review, we summarize GJ alterations that take place in healthy retinal tissue and occur on three different time scales: throughout the entire lifespan, during daily changes and as a result of quick changes of light adaptation.
Collapse
Affiliation(s)
- Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Gergely Szarka
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Gyula Hoffmann
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Loretta Péntek
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
| | - Gréta Valentin
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
| | - Liliana Ross
- Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
3
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Erofeeva N, Meshalkina D, Firsov M. Multiple Roles of cAMP in Vertebrate Retina. Cells 2023; 12:cells12081157. [PMID: 37190066 DOI: 10.3390/cells12081157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
cAMP is a key regulatory molecule that controls many important processes in the retina, including phototransduction, cell development and death, growth of neural processes, intercellular contacts, retinomotor effects, and so forth. The total content of cAMP changes in the retina in a circadian manner following the natural light cycle, but it also shows local and even divergent changes in faster time scales in response to local and transient changes in the light environment. Changes in cAMP might also manifest or cause various pathological processes in virtually all cellular components of the retina. Here we review the current state of knowledge and understanding of the regulatory mechanisms by which cAMP influences the physiological processes that occur in various retinal cells.
Collapse
Affiliation(s)
- Natalia Erofeeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | - Darya Meshalkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | - Michael Firsov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
5
|
Prognostic and Functional Analysis of NPY6R in Uveal Melanoma Using Bioinformatics. DISEASE MARKERS 2022; 2022:4143447. [PMID: 35432628 PMCID: PMC9012612 DOI: 10.1155/2022/4143447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/14/2022]
Abstract
Neuropeptides can mediate tumor cell proliferation and differentiation through autocrine, paracrine, neurosecretory, and endocrine mechanisms. This study investigated the expression and prognostic significance of neuropeptide Y receptor Y6 (NPY6R) in uveal melanoma (UVM) and preliminarily investigated the biological function of NPY6R in UVM. NPY6R was poorly expressed in most tumors and was associated with better prognosis in UVM. Among the clinicopathological features of UVM, NPY6R expression was lower in male patients. The area under the curve (AUC) value of NPY6R for the diagnosis of UVM was 0.676 (95% CI: 0.556–0.795). A nomogram including four clinical predictors was constructed. NPY6R expression was significantly associated with features of the UVM immune microenvironment. ESTIMATE and CIBERSORT algorithms were used to calculate the fraction of immune cells and the percentage of infiltration in each patient, respectively. NPY6R expression-related gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analyses were performed. GO and KEGG enrichment analyses revealed that NPY6R-related genes are mainly enriched in pathways and functions related to visual light perception. Gene set enrichment analysis suggested that NPY6R is associated with tumor progression in UVM. NPY6R is involved in the tumor progression of UVM and has a good predictive value as a prognostic marker of UVM.
Collapse
|
6
|
Stafford-Bell N, McVeigh J, Lingham G, Straker L, Eastwood PR, Yazar S, Mackey DA, Lee SSY. Associations of 12-year sleep behaviour trajectories from childhood to adolescence with myopia and ocular biometry during young adulthood. Ophthalmic Physiol Opt 2021; 42:19-27. [PMID: 34676908 DOI: 10.1111/opo.12905] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Cross-sectional studies have variably reported that poor sleep quality may be associated with myopia in children. Longitudinal data, collected over the ages when myopia develops and progresses, could provide new insights into the sleep-myopia paradigm. This study tested the hypothesis that 12-year trajectories of sleep behaviour from childhood to adolescence is associated with myopia during young adulthood. METHODS At the 5-, 8-, 10-, 14- and 17-year follow-ups of the longitudinal Raine Study, which has been following a cohort since their birth in 1989-1992, participants' parents/guardians completed the Child Behaviour Checklist questionnaire (CBCL), which collected information on their child's sleep behaviour and quality. The CBCL includes six questions measuring sleep behaviour, which parents rated as 0 = not true, 1 = somewhat/sometimes true, or 2 = very/often true. Scores were summed at each follow-up to form a composite "sleep behaviour score". Latent Class Growth Analysis (LCGA) was used to classify participants according to their 12-year trajectory of sleep behaviour. At the 20-year follow-up, an eye examination was performed which included cycloplegic autorefraction and axial length measurement. RESULTS The LCGA identified three clusters of participants based on their trajectory of sleep behaviour: those with minimal' (43.6% of the total Raine Study sample), 'declining' (48.9%), or 'persistent' (7.5%) sleep problems. A total of 1194 participants had ophthalmic data and longitudinal sleep data available for analysis (47.2% female, 85.6% Caucasian). No significant differences were observed in regards to age, sex, ethnicity or ocular parameters between trajectory groups. Unadjusted and fully adjusted analyses demonstrated that sleep problem behaviour was not significantly associated with changes in refractive error, axial length or corneal radius. CONCLUSIONS Our findings do not support the hypothesis that there is an association between sleep behaviour and myopia. Future longitudinal studies should explore sleep trajectory data pre- and post-myopia diagnosis to confirm our results.
Collapse
Affiliation(s)
- Nicholas Stafford-Bell
- Centre for Ophthalmology and Visual Sciences (incorporating the Lions Eye Institute), University of Western Australia, Perth, Western Australia, Australia.,Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Joanne McVeigh
- Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia.,Movement Physiology Laboratory, School of Physiology, University of Witwatersrand, Johannesburg, South Africa
| | - Gareth Lingham
- Centre for Ophthalmology and Visual Sciences (incorporating the Lions Eye Institute), University of Western Australia, Perth, Western Australia, Australia
| | - Leon Straker
- Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| | - Peter R Eastwood
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Seyhan Yazar
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Sciences (incorporating the Lions Eye Institute), University of Western Australia, Perth, Western Australia, Australia.,School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Samantha Sze-Yee Lee
- Centre for Ophthalmology and Visual Sciences (incorporating the Lions Eye Institute), University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Influence of Circadian Rhythm in the Eye: Significance of Melatonin in Glaucoma. Biomolecules 2021; 11:biom11030340. [PMID: 33668357 PMCID: PMC7996162 DOI: 10.3390/biom11030340] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Circadian rhythm and the molecules involved in it, such as melanopsin and melatonin, play an important role in the eye to regulate the homeostasis and even to treat some ocular conditions. As a result, many ocular pathologies like dry eye, corneal wound healing, cataracts, myopia, retinal diseases, and glaucoma are affected by this cycle. This review will summarize the current scientific literature about the influence of circadian patterns on the eye, focusing on its relationship with increased intraocular pressure (IOP) fluctuations and glaucoma. Regarding treatments, two ways should be studied: the first one, to analyze if some treatments could improve their effect on the ocular disease when their posology is established in function of circadian patterns, and the second one, to evaluate new drugs to treat eye pathologies related to the circadian rhythm, as it has been stated with melatonin or its analogs, that not only could be used as the main treatment but as coadjutant, improving the circadian pattern or its antioxidant and antiangiogenic properties.
Collapse
|
8
|
Flanagan SC, Cobice D, Richardson P, Sittlington JJ, Saunders KJ. Elevated Melatonin Levels Found in Young Myopic Adults Are Not Attributable to a Shift in Circadian Phase. Invest Ophthalmol Vis Sci 2021; 61:45. [PMID: 32729910 PMCID: PMC7425780 DOI: 10.1167/iovs.61.8.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose To evaluate the relationship between refractive error, circadian phase, and melatonin with consideration of prior light exposure, physical activity, and sleep. Methods Healthy young myopic (spherical equivalent refraction [SER] ≤−0.50DS) and emmetropic adults underwent noncycloplegic autorefraction and axial length (AL) measures. Objective measurements of light exposure, physical activity, and sleep were captured across 7 days by wrist-worn Actiwatch-2 devices. Questionnaires assessed sleep quality and chronotype. Hourly evening saliva sampling during a dim-light melatonin onset (DLMO) protocol evaluated circadian phase, and both morning serum and saliva samples were collected. Liquid chromatography/mass spectrometry quantified melatonin. Results Subjects (n = 51) were aged 21.4 (interquartile range, 20.1−24.0) years. Melatonin was significantly higher in the myopic group at every evening time point and with both morning serum and saliva sampling (P ≤ 0.001 for all). DLMO-derived circadian phase did not differ between groups (P = 0.98). Multiple linear regression analysis demonstrated significant associations between serum melatonin and SER (B = –.34, β = –.42, P = 0.001), moderate activity (B = .009, β = .32, P = 0.01), and mesopic illumination (B = –.007, β = –.29, P = 0.02), F(3, 46) = 7.23, P < 0.001, R2 = 0.32, R2adjusted = .28. Myopes spent significantly more time exposed to “indoor” photopic illumination (3 to ≤1000 lux; P = 0.05), but “indoor” photopic illumination was not associated with SER, AL, or melatonin, and neither sleep, physical activity, nor any other light exposure metric differed significantly between groups (P > 0.05 for all). Conclusions While circadian phase is aligned in adult myopes and emmetropes, myopia is associated with both elevated serum and salivary melatonin levels. Prospective studies are required to ascertain whether elevated melatonin levels occur before, during, or after myopia development.
Collapse
|
9
|
Vollebregt MA, Kenemans JL, Buitelaar JK, Deboer T, Cain SW, Palmer D, Elliott GR, Gordon E, Fallahpour K, Arns M. Annual variation in attentional response after methylphenidate treatment. Eur Child Adolesc Psychiatry 2020; 29:1231-1236. [PMID: 31748987 DOI: 10.1007/s00787-019-01434-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/28/2019] [Indexed: 11/28/2022]
Abstract
Prevalence rates of attention-deficit/hyperactivity disorder (ADHD) differ with geographical areas varying in sunlight intensity. Sun- or daylight reaching the retina establishes entrainment of the circadian clock to daylight. Changes herein, hence, alterations in clock alignment, could be reflected indirectly in inattention via sleep duration. We here studied (1) annual variation in inattention at treatment initiation; (2) annual variation in response to ADHD treatment [methylphenidate (MPH)] by day of treatment initiation; and (3) dose dependence. We predicted least baseline inattention during a period of high sunlight intensity implying more room for improvement (i.e., a better treatment response) when sunlight intensity is low. These hypotheses were not confirmed. High-dose treated patients, however, had significantly better attention after treatment than low-dosed treated patients, only when treated in the period from winter to summer solstice. Change in solar irradiance (SI) during low-dosed treatment period was negatively related to attentional improvement. The above described findings were primarily found in inattention ratings and replicated in omission errors on a continuous performance task. Daylight and inattention have been proposed to be related via mediation of the circadian system. One mechanism of MPH may be to enhance sensitivity to the diurnal entrainment to sunlight and the question can be raised whether appropriate lighting could potentiate the effects of stimulants.
Collapse
Affiliation(s)
- Madelon A Vollebregt
- Research Institute Brainclinics, Brainclinics Foundation, Bijleveldsingel 32, 6524 AD, Nijmegen, The Netherlands.
| | - J Leon Kenemans
- Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Tom Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sean W Cain
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Clayton, VIC, Australia
| | - Donna Palmer
- Brain Resource Ltd, Sydney, NSW, Australia.,Brain Resource Ltd, San Francisco, CA, USA.,Brain Dynamics Center, Sydney Medical School and Westmead Millenium Institute, University of Sydney, Sydney, NSW, Australia
| | - Glen R Elliott
- Children's Health Council, Palo Alto, CA, USA.,Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Evian Gordon
- Brain Resource Ltd, Sydney, NSW, Australia.,Brain Resource Ltd, San Francisco, CA, USA
| | - Kamran Fallahpour
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Brain Resource Center, New York, NY, USA
| | - Martijn Arns
- Research Institute Brainclinics, Brainclinics Foundation, Bijleveldsingel 32, 6524 AD, Nijmegen, The Netherlands.,Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands.,neuroCare Group, Munich, Germany
| |
Collapse
|
10
|
Ashton A, Jagannath A. Disrupted Sleep and Circadian Rhythms in Schizophrenia and Their Interaction With Dopamine Signaling. Front Neurosci 2020; 14:636. [PMID: 32655359 PMCID: PMC7324687 DOI: 10.3389/fnins.2020.00636] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Sleep and circadian rhythm disruption (SCRD) is a common feature of schizophrenia, and is associated with symptom severity and patient quality of life. It is commonly manifested as disturbances to the sleep/wake cycle, with sleep abnormalities occurring in up to 80% of patients, making it one of the most common symptoms of this disorder. Severe circadian misalignment has also been reported, including non-24 h periods and phase advances and delays. In parallel, there are alterations to physiological circadian parameters such as body temperature and rhythmic hormone production. At the molecular level, alterations in the rhythmic expression of core clock genes indicate a dysfunctional circadian clock. Furthermore, genetic association studies have demonstrated that mutations in several clock genes are associated with a higher risk of schizophrenia. Collectively, the evidence strongly suggests that sleep and circadian disruption is not only a symptom of schizophrenia but also plays an important causal role in this disorder. The alterations in dopamine signaling that occur in schizophrenia are likely to be central to this role. Dopamine is well-documented to be involved in the regulation of the sleep/wake cycle, in which it acts to promote wakefulness, such that elevated dopamine levels can disturb sleep. There is also evidence for the influence of dopamine on the circadian clock, such as through entrainment of the master clock in the suprachiasmatic nuclei (SCN), and dopamine signaling itself is under circadian control. Therefore dopamine is closely linked with sleep and the circadian system; it appears that they have a complex, bidirectional relationship in the pathogenesis of schizophrenia, such that disturbances to one exacerbate abnormalities in the other. This review will provide an overview of the evidence for a role of SCRD in schizophrenia, and examine the interplay of this with altered dopamine signaling. We will assess the evidence to suggest common underlying mechanisms in the regulation of sleep/circadian rhythms and the pathophysiology of schizophrenia. Improvements in sleep are associated with improvements in symptoms, along with quality of life measures such as cognitive ability and employability. Therefore the circadian system holds valuable potential as a new therapeutic target for this disorder.
Collapse
Affiliation(s)
- Anna Ashton
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Ko GYP. Circadian regulation in the retina: From molecules to network. Eur J Neurosci 2020; 51:194-216. [PMID: 30270466 PMCID: PMC6441387 DOI: 10.1111/ejn.14185] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
The mammalian retina is the most unique tissue among those that display robust circadian/diurnal oscillations. The retina is not only a light sensing tissue that relays light information to the brain, it has its own circadian "system" independent from any influence from other circadian oscillators. While all retinal cells and retinal pigment epithelium (RPE) possess circadian oscillators, these oscillators integrate by means of neural synapses, electrical coupling (gap junctions), and released neurochemicals (such as dopamine, melatonin, adenosine, and ATP), so the whole retina functions as an integrated circadian system. Dysregulation of retinal clocks not only causes retinal or ocular diseases, it also impacts the circadian rhythm of the whole body, as the light information transmitted from the retina entrains the brain clock that governs the body circadian rhythms. In this review, how circadian oscillations in various retinal cells are integrated, and how retinal diseases affect daily rhythms.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
12
|
Li L. Circadian Vision in Zebrafish: From Molecule to Cell and from Neural Network to Behavior. J Biol Rhythms 2019; 34:451-462. [DOI: 10.1177/0748730419863917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Most visual system functions, such as opsin gene expression, retinal neural transmission, light perception, and visual sensitivity, display robust day-night rhythms. The rhythms persist in constant lighting conditions, suggesting the involvement of endogenous circadian clocks. While the circadian pacemakers that control the rhythms of animal behaviors are mostly found in the forebrain and midbrain, self-sustained circadian oscillators are also present in the neural retina, where they play important roles in the regulation of circadian vision. This review highlights some of the correlative studies of the circadian control of visual system functions in zebrafish. Because zebrafish maintain a high evolutionary proximity to mammals, the findings from zebrafish research may provide insights for a better understanding of the mechanisms of circadian vision in other vertebrate species including humans.
Collapse
Affiliation(s)
- Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
13
|
Felder-Schmittbuhl MP, Buhr ED, Dkhissi-Benyahya O, Hicks D, Peirson SN, Ribelayga CP, Sandu C, Spessert R, Tosini G. Ocular Clocks: Adapting Mechanisms for Eye Functions and Health. Invest Ophthalmol Vis Sci 2019; 59:4856-4870. [PMID: 30347082 PMCID: PMC6181243 DOI: 10.1167/iovs.18-24957] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vision is a highly rhythmic function adapted to the extensive changes in light intensity occurring over the 24-hour day. This adaptation relies on rhythms in cellular and molecular processes, which are orchestrated by a network of circadian clocks located within the retina and in the eye, synchronized to the day/night cycle and which, together, fine-tune detection and processing of light information over the 24-hour period and ensure retinal homeostasis. Systematic or high throughput studies revealed a series of genes rhythmically expressed in the retina, pointing at specific functions or pathways under circadian control. Conversely, knockout studies demonstrated that the circadian clock regulates retinal processing of light information. In addition, recent data revealed that it also plays a role in development as well as in aging of the retina. Regarding synchronization by the light/dark cycle, the retina displays the unique property of bringing together light sensitivity, clock machinery, and a wide range of rhythmic outputs. Melatonin and dopamine play a particular role in this system, being both outputs and inputs for clocks. The retinal cellular complexity suggests that mechanisms of regulation by light are diverse and intricate. In the context of the whole eye, the retina looks like a major determinant of phase resetting for other tissues such as the retinal pigmented epithelium or cornea. Understanding the pathways linking the cell-specific molecular machineries to their cognate outputs will be one of the major challenges for the future.
Collapse
Affiliation(s)
- Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, Washington, United States
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - David Hicks
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
14
|
Chang JYA, Shi L, Ko ML, Ko GYP. Circadian Regulation of Mitochondrial Dynamics in Retinal Photoreceptors. J Biol Rhythms 2019; 33:151-165. [PMID: 29671706 DOI: 10.1177/0748730418762152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Energy expenditure and metabolism in the vertebrate retina are under circadian control, as we previously reported that the overall retinal ATP content and various signaling molecules related to metabolism display daily or circadian rhythms. Changes in the fission and fusion process of mitochondria, the major organelles producing ATP, in retinal photoreceptors are largely dependent on light exposure, but whether mitochondrial dynamics in photoreceptors and retinal neurons are under circadian control is not clear. Herein, we investigated the possible roles of circadian oscillators in regulating mitochondrial dynamics, mitophagy, and redox states in the chicken retina and mammalian photoreceptors. After entrainment to 12:12-h light-dark (LD) cycles for several days followed by free-running in constant darkness (DD), chicken embryonic retinas and cone-derived 661W cells were collected in either LD or DD at 6 different zeitgeber time (ZT) or circadian time (CT) points. The protein expression of mitochondrial dynamin-related protein 1 (DRP1), mitofusin 2 (MFN2), and PTEN-induced putative kinase 1 (PINK1) displayed daily rhythms, but only DRP1 was under circadian control in the chicken retinas and cultured 661W cells. In addition, cultured chicken retinal cells responded to acute oxidative stress differently from 661W cells. Using pMitoTimer as a mitochondrial redox indicator, we found that the mitochondrial redox states were more affected by light exposure than regulated by circadian oscillators. Thus, this study demonstrates that the influence of cyclic lights might outweigh the circadian regulation of complex mitochondrial dynamics in light-sensing retinal cells.
Collapse
Affiliation(s)
- Janet Ya-An Chang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas.,Interdisciplinary Toxicology Program, Texas A&M University, College Station, Texas
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Michael L Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas.,Interdisciplinary Toxicology Program, Texas A&M University, College Station, Texas.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
15
|
The role of the circadian system in the etiology and pathophysiology of ADHD: time to redefine ADHD? ACTA ACUST UNITED AC 2019; 11:5-19. [DOI: 10.1007/s12402-018-0271-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022]
|
16
|
CORRELATION BETWEEN PREOPERATIVE EN FACE OPTICAL COHERENCE TOMOGRAPHY OF PHOTORECEPTOR LAYER AND VISUAL PROGNOSIS AFTER MACULAR HOLE SURGERY. Retina 2018; 38:1220-1230. [PMID: 28613215 DOI: 10.1097/iae.0000000000001679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the correlation between preoperative en face spectral domain optical coherence tomography findings of the photoreceptor layer with restoration of foveal microstructure and visual acuity in repaired macular holes. METHODS Medical records of 106 patients with surgically closed macular holes were retrospectively reviewed. Preoperative OCT slabs of the external limiting membrane (ELM) and ellipsoid zone (EZ) were generated using embedded tools. All patients were classified into two groups according to the presence of preoperative retinal pigment epithelium protrusion seen as hyperreflective spots in EZ slab. Visual acuity, homogenous reflectivity, and glial proliferation in the ELM and EZ slabs were followed for 12 months. RESULTS Baseline hyperreflective spots in the EZ slab was observed in 51 (48.1%) eyes. Postoperative homogenous reflectivity and glial proliferation were related to the presence of baseline hyperreflective spots. Vision improvement was significantly greater in the absence of hyperreflective spots group from 9 months after the operation. In logistic regression analysis, the area of hyperreflective spots was significantly associated with foveal homogenous reflectivity at 12 months (P = 0.004). CONCLUSION Preoperative hyperreflective spots in en face EZ slab might be indicative of functional and anatomical restoration after macular hole surgery.
Collapse
|
17
|
Shi L, Chang JYA, Yu F, Ko ML, Ko GYP. The Contribution of L-Type Ca v1.3 Channels to Retinal Light Responses. Front Mol Neurosci 2017; 10:394. [PMID: 29259539 PMCID: PMC5723326 DOI: 10.3389/fnmol.2017.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/10/2017] [Indexed: 01/28/2023] Open
Abstract
L-type voltage-gated calcium channels (LTCCs) regulate tonic neurotransmitter release from sensory neurons including retinal photoreceptors. There are three types of LTCCs (Cav1.2, Cav1.3, and Cav1.4) expressed in the retina. While Cav1.2 is expressed in all retinal cells including the Müller glia and neurons, Cav1.3 and Cav1.4 are expressed in the retinal neurons with Cav1.4 exclusively expressed in the photoreceptor synaptic terminals. Mutations in the gene encoding Cav1.4 cause incomplete X-linked congenital stationary night blindness in humans. Even though Cav1.3 is present in the photoreceptor inner segments and the synaptic terminals in various vertebrate species, its role in vision is unclear, since genetic alterations in Cav1.3 are not associated with severe vision impairment in humans or in Cav1.3-null (Cav1.3-/-) mice. However, a failure to regulate Cav1.3 was found in a mouse model of Usher syndrome, the most common cause of combined deafness and blindness in humans, indicating that Cav1.3 may contribute to retinal function. In this report, we combined physiological and morphological data to demonstrate the role of Cav1.3 in retinal physiology and function that has been undervalued thus far. Through ex vivo and in vivo electroretinogram (ERG) recordings and immunohistochemical staining, we found that Cav1.3 plays a role in retinal light responses and synaptic plasticity. Pharmacological inhibition of Cav1.3 decreased ex vivo ERG a- and b-wave amplitudes. In Cav1.3-/- mice, their dark-adapted ERG a-, b-wave, and oscillatory potential amplitudes were significantly dampened, and implicit times were delayed compared to the wild type (WT). Furthermore, the density of ribbon synapses was reduced in the outer plexiform layer of Cav1.3-/- mice retinas. Hence, Cav1.3 plays a more prominent role in retinal physiology and function than previously reported.
Collapse
Affiliation(s)
- Liheng Shi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Janet Ya-An Chang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Fei Yu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Michael L Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States.,Texas A&M Institute of Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
18
|
Kim JW, Yang HJ, Brooks MJ, Zelinger L, Karakülah G, Gotoh N, Boleda A, Gieser L, Giuste F, Whitaker DT, Walton A, Villasmil R, Barb JJ, Munson PJ, Kaya KD, Chaitankar V, Cogliati T, Swaroop A. NRL-Regulated Transcriptome Dynamics of Developing Rod Photoreceptors. Cell Rep 2017; 17:2460-2473. [PMID: 27880916 DOI: 10.1016/j.celrep.2016.10.074] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/29/2016] [Accepted: 10/20/2016] [Indexed: 01/01/2023] Open
Abstract
Gene regulatory networks (GRNs) guiding differentiation of cell types and cell assemblies in the nervous system are poorly understood because of inherent complexities and interdependence of signaling pathways. Here, we report transcriptome dynamics of differentiating rod photoreceptors in the mammalian retina. Given that the transcription factor NRL determines rod cell fate, we performed expression profiling of developing NRL-positive (rods) and NRL-negative (S-cone-like) mouse photoreceptors. We identified a large-scale, sharp transition in the transcriptome landscape between postnatal days 6 and 10 concordant with rod morphogenesis. Rod-specific temporal DNA methylation corroborated gene expression patterns. De novo assembly and alternative splicing analyses revealed previously unannotated rod-enriched transcripts and the role of NRL in transcript maturation. Furthermore, we defined the relationship of NRL with other transcriptional regulators and downstream cognate effectors. Our studies provide the framework for comprehensive system-level analysis of the GRN underlying the development of a single sensory neuron, the rod photoreceptor.
Collapse
Affiliation(s)
- Jung-Woong Kim
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA; Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun-Jin Yang
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew John Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Lina Zelinger
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Gökhan Karakülah
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Norimoto Gotoh
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA; Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Alexis Boleda
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Linn Gieser
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Felipe Giuste
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Dustin Thad Whitaker
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Ashley Walton
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafael Villasmil
- Flow Cytometry Core, NEI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer Joanna Barb
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Jonathan Munson
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Koray Dogan Kaya
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Vijender Chaitankar
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiziana Cogliati
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Møller M, Rath MF, Ludvigsen M, Honoré B, Vorum H. Diurnal expression of proteins in the retina of the blind cone-rod homeobox (Crx -/- ) mouse and the 129/Sv mouse: a proteomic study. Acta Ophthalmol 2017; 95:717-726. [PMID: 28371363 DOI: 10.1111/aos.13429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
Abstract
PURPOSE The vertebrate retina contains a circadian clock participating in adaptations to day and night vision. This peripheral clock is independent of the master clock in the suprachiasmatic nucleus (SCN). The retinal clock is located in several cell types, including the photoreceptors. To investigate the role of the circadian clock of the photoreceptor cells in regulation of retinal protein rhythms, we analysed diurnal protein expression in the photoreceptor-deficient cone-rod homeobox knockout mouse (Crx-/- ) and the 129/Sv mouse. METHODS 2D gels were made from retinal homogenates of 129/Sv and Crx-/- mice killed at midday and midnight. Stained gels were analysed by use of PDQuest 2D gel analysis software. After trypsin digestion of differential expressed spots, the proteins were identified by LC-MS/MS using a nano-liquid chromatograph connected to a Q-TOF Premier mass spectrometer. These data were used to search the SWISS-PROT database. RESULTS Both the retinae of the control and the Crx-/- mice exhibited diurnal proteins rhythms. As expected, proteins involved in phototransduction were not detected in the Crx-/- mouse; in this phenotype, however, proteins from spots showing diurnal rhythms were specifically identified as enzymes involved in glucose metabolism, Krebs cycle, and mitochondrial enzymes. Data are available via ProteomeXchange with identifier PXD005556. CONCLUSION We show diurnal protein rhythms in the retina of a mouse lacking the rods and cones. The diurnal protein rhythms in this genotype, lacking the circadian clock of the photoreceptors, might be caused by a circadian clock in other retinal cell types or a direct light input to the retina.
Collapse
Affiliation(s)
- Morten Møller
- Department of Neuroscience and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Martin Fredensborg Rath
- Department of Neuroscience and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Maja Ludvigsen
- Department of Clinical Medicine; Aarhus University; Aarhus Denmark
- Department of Hematology; Aarhus University Hospital; Aarhus Denmark
| | - Bent Honoré
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| | - Henrik Vorum
- Department of Ophthalmology; Aalborg University Hospital; Aalborg Denmark
- Department of Clinical Medicine; Aalborg University; Aalborg Denmark
| |
Collapse
|
20
|
Shi L, Ko ML, Ko GYP. Retinoschisin Facilitates the Function of L-Type Voltage-Gated Calcium Channels. Front Cell Neurosci 2017; 11:232. [PMID: 28848397 PMCID: PMC5550728 DOI: 10.3389/fncel.2017.00232] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Modulation of ion channels by extracellular proteins plays critical roles in shaping synaptic plasticity. Retinoschisin (RS1) is an extracellular adhesive protein secreted from photoreceptors and bipolar cells, and it plays an important role during retinal development, as well as in maintaining the stability of retinal layers. RS1 is known to form homologous octamers and interact with molecules on the plasma membrane including phosphatidylserine, sodium-potassium exchanger complex, and L-type voltage-gated calcium channels (LTCCs). However, how this physical interaction between RS1 and ion channels might affect the channel gating properties is unclear. In retinal photoreceptors, two major LTCCs are Cav1.3 (α1D) and Cav1.4 (α1F) with distinct biophysical properties, functions and distributions. Cav1.3 is distributed from the inner segment (IS) to the synaptic terminal and is responsible for calcium influx to the photoreceptors and overall calcium homeostasis. Cav1.4 is only expressed at the synaptic terminal and is responsible for neurotransmitter release. Mutations of the gene encoding Cav1.4 cause X-linked incomplete congenital stationary night blindness type 2 (CSNB2), while null mutations of Cav1.3 cause a mild decrease of retinal light responses in mice. Even though RS1 is known to maintain retinal architecture, in this study, we present that RS1 interacts with both Cav1.3 and Cav1.4 and regulates their activations. RS1 was able to co-immunoprecipitate with Cav1.3 and Cav1.4 from porcine retinas, and it increased the LTCC currents and facilitated voltage-dependent activation in HEK cells co-transfected with RS1 and Cav1.3 or Cav1.4, thus providing evidence of a functional interaction between RS1 and LTCCs. The interaction between RS1 and Cav1.3 did not change the calcium-dependent inactivation of Cav1.3. In mice lacking RS1, the expression of Cav1.3 and Cav1.4 in the retina decreased, while in mice with Cav1.4 deletion, the retinal level of RS1 decreased. These results provide important evidence that RS1 is not only an adhesive protein promoting cell-cell adhesion, it is essential for anchoring other membrane proteins including ion channels and enhancing their function in the retina.
Collapse
Affiliation(s)
- Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege Station, TX, United States
| | - Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege Station, TX, United States
| | - Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege Station, TX, United States.,Texas A&M Institute for Neuroscience, Texas A&M UniversityCollege Station, TX, United States
| |
Collapse
|
21
|
Bouaziz M, Bejaoui S, Rabeh I, Besbes R, El Cafsi M, Falcon J. Impact of temperature on sea bass, Dicentrarchus labrax , retina: Fatty acid composition, expression of rhodopsin and enzymes of lipid and melatonin metabolism. Exp Eye Res 2017; 159:87-97. [DOI: 10.1016/j.exer.2017.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/10/2017] [Accepted: 03/22/2017] [Indexed: 12/16/2022]
|
22
|
Tang X, Roessingh S, Hayley SE, Chu ML, Tanaka NK, Wolfgang W, Song S, Stanewsky R, Hamada FN. The role of PDF neurons in setting the preferred temperature before dawn in Drosophila. eLife 2017; 6. [PMID: 28463109 PMCID: PMC5449184 DOI: 10.7554/elife.23206] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/23/2017] [Indexed: 12/02/2022] Open
Abstract
Animals have sophisticated homeostatic controls. While mammalian body temperature fluctuates throughout the day, small ectotherms, such as Drosophila achieve a body temperature rhythm (BTR) through their preference of environmental temperature. Here, we demonstrate that pigment dispersing factor (PDF) neurons play an important role in setting preferred temperature before dawn. We show that small lateral ventral neurons (sLNvs), a subset of PDF neurons, activate the dorsal neurons 2 (DN2s), the main circadian clock cells that regulate temperature preference rhythm (TPR). The number of temporal contacts between sLNvs and DN2s peak before dawn. Our data suggest that the thermosensory anterior cells (ACs) likely contact sLNvs via serotonin signaling. Together, the ACs-sLNs-DN2s neural circuit regulates the proper setting of temperature preference before dawn. Given that sLNvs are important for sleep and that BTR and sleep have a close temporal relationship, our data highlight a possible neuronal interaction between body temperature and sleep regulation. DOI:http://dx.doi.org/10.7554/eLife.23206.001
Collapse
Affiliation(s)
- Xin Tang
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Sanne Roessingh
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.,School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Sean E Hayley
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Michelle L Chu
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Nobuaki K Tanaka
- Creative Research Institution, Hokkaido University, Sapporo, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Werner Wolfgang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Seongho Song
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, United States
| | - Ralf Stanewsky
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Fumika N Hamada
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,PRESTO, Japan Science and Technology Agency, Saitama, Japan.,Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| |
Collapse
|
23
|
Hansen RM, Moskowitz A, Akula JD, Fulton AB. The neural retina in retinopathy of prematurity. Prog Retin Eye Res 2017; 56:32-57. [PMID: 27671171 PMCID: PMC5237602 DOI: 10.1016/j.preteyeres.2016.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 12/26/2022]
Abstract
Retinopathy of prematurity (ROP) is a neurovascular disease that affects prematurely born infants and is known to have significant long term effects on vision. We conducted the studies described herein not only to learn more about vision but also about the pathogenesis of ROP. The coincidence of ROP onset and rapid developmental elongation of the rod photoreceptor outer segments motivated us to consider the role of the rods in this disease. We used noninvasive electroretinographic (ERG), psychophysical, and retinal imaging procedures to study the function and structure of the neurosensory retina. Rod photoreceptor and post-receptor responses are significantly altered years after the preterm days during which ROP is an active disease. The alterations include persistent rod dysfunction, and evidence of compensatory remodeling of the post-receptor retina is found in ERG responses to full-field stimuli and in psychophysical thresholds that probe small retinal regions. In the central retina, both Mild and Severe ROP delay maturation of parafoveal scotopic thresholds and are associated with attenuation of cone mediated multifocal ERG responses, significant thickening of post-receptor retinal laminae, and dysmorphic cone photoreceptors. These results have implications for vision and control of eye growth and refractive development and suggest future research directions. These results also lead to a proposal for noninvasive management using light that may add to the currently invasive therapeutic armamentarium against ROP.
Collapse
Affiliation(s)
- Ronald M Hansen
- Department of Ophthalmology, Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA 02115-5737, USA.
| | - Anne Moskowitz
- Department of Ophthalmology, Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA 02115-5737, USA.
| | - James D Akula
- Department of Ophthalmology, Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA 02115-5737, USA.
| | - Anne B Fulton
- Department of Ophthalmology, Children's Hospital and Harvard Medical School, 300 Longwood Ave., Boston, MA 02115-5737, USA.
| |
Collapse
|
24
|
Huang CCY, Shi L, Lin CH, Kim AJ, Ko ML, Ko GYP. A new role for AMP-activated protein kinase in the circadian regulation of L-type voltage-gated calcium channels in late-stage embryonic retinal photoreceptors. J Neurochem 2015; 135:727-41. [PMID: 26337027 DOI: 10.1111/jnc.13349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 08/25/2015] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy sensor, which is activated when the intracellular ATP production decreases. The activities of AMPK display circadian rhythms in various organs and tissues, indicating that AMPK is involved in the circadian regulation of cellular metabolism. In vertebrate retina, the circadian clocks regulate many aspects of retinal function and physiology, including light/dark adaption, but whether and how AMPK was involved in the retinal circadian rhythm was not known. We hypothesized that the activation of AMPK (measured as phosphorylated AMPK) in the retina was under circadian control, and AMPK might interact with other intracellular signaling molecules to regulate photoreceptor physiology. We combined ATP assays, western blots, immunostaining, patch-clamp recordings, and pharmacological treatments to decipher the role of AMPK in the circadian regulation of photoreceptor physiology. We found that the overall retinal ATP content displayed a diurnal rhythm that peaked at early night, which was nearly anti-phase to the diurnal and circadian rhythms of AMPK phosphorylation. AMPK was also involved in the circadian phase-dependent regulation of photoreceptor L-type voltage-gated calcium channels (L-VGCCs), the ion channel essential for sustained neurotransmitter release. The activation of AMPK dampened the L-VGCC currents at night with a corresponding decrease in protein expression of the L-VGCCα1 pore-forming subunit, while inhibition of AMPK increased the L-VGCC current during the day. AMPK appeared to be upstream of extracellular-signal-regulated kinase and mammalian/mechanistic target of rapamycin complex 1 (mTORC1) but downstream of adenylyl cyclase in regulating the circadian rhythm of L-VGCCs. Hence, as a cellular energy sensor, AMPK integrates into the cell signaling network to regulate the circadian rhythm of photoreceptor physiology. We found that in chicken embryonic retina, the activation of AMP-activated protein kinase (AMPK) is under circadian control and anti-phase to the retinal ATP rhythm. While ATP content is higher at night, phosphorylated AMPK (pAMPK) is higher during the day. AMPK appears to be upstream of extracellular signal-regulated kinase (ERK), protein kinase B (AKT), and mammalian target of rapamycin complex 1 (mTORC1) but downstream of adenylyl cyclase in regulating the circadian rhythm of L-VGCCs. Therefore, as a cellular energy sensor, AMPK integrates into the cell signaling network to regulate the circadian rhythm of photoreceptor physiology.
Collapse
Affiliation(s)
- Cathy C Y Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Chia-Hung Lin
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Andy Jeesu Kim
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.,Texas A&M Institute of Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
25
|
Zheng C, Deng QQ, Liu LL, Wang MY, Zhang G, Sheng WL, Weng SJ, Yang XL, Zhong YM. Orexin-A differentially modulates AMPA-preferring responses of ganglion cells and amacrine cells in rat retina. Neuropharmacology 2015; 93:80-93. [PMID: 25656479 DOI: 10.1016/j.neuropharm.2015.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/22/2014] [Accepted: 01/20/2015] [Indexed: 01/18/2023]
Abstract
By activating their receptors (OX1R and OX2R) orexin-A/B regulate wake/sleeping states, feeding behaviors, but the function of these peptides in the retina remains unknown. Using patch-clamp recordings and calcium imaging in rat isolated retinal cells, we demonstrated that orexin-A suppressed α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)-preferring receptor-mediated currents (AMPA-preferring currents) in ganglion cells (GCs) through OX1R, but potentiated those in amacrine cells (ACs) through OX2R. Consistently, in rat retinal slices orexin-A suppressed light-evoked AMPA-preferring receptor-mediated excitatory postsynaptic currents in GCs, but potentiated those in ACs. Intracellular dialysis of GDP-β-S or preincubation with the Gi/o inhibitor pertussis toxin (PTX) abolished both the effects. Either cAMP/the protein kinase A (PKA) inhibitor Rp-cAMP or cGMP/the PKG blocker KT5823 failed to alter the orexin-A effects. Whilst both of them involved activation of protein kinase C (PKC), the effects on GCs and ACs were respectively eliminated by the phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor and phosphatidylcholine (PC)-PLC inhibitor. Moreover, in GCs orexin-A increased [Ca(2+)]i and the orexin-A effect was blocked by intracellular Ca(2+)-free solution and by inositol 1,4,5-trisphosphate (IP3) receptor antagonists. In contrast, orexin-A did not change [Ca(2+)]i in ACs and the orexin-A effect remained in intracellular or extracellular Ca(2+)-free solution. We conclude that a distinct Gi/o/PI-PLC/IP3/Ca(2+)-dependent PKC signaling pathway, following the activation of OX1R, is likely responsible for the orexin-A effect on GCs, whereas a Gi/o/PC-PLC/Ca(2+)-independent PKC signaling pathway, following the activation of OX2R, mediates the orexin-A effect on ACs. These two actions of orexin-A, while working in concert, provide a characteristic way for modulating information processing in the inner retina.
Collapse
Affiliation(s)
- Chao Zheng
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China; Cell Electrophysiology Laboratory, Wannan Medical College, 22 West Wenchang Road, Wuhu, Anhui 241002, China
| | - Qin-Qin Deng
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Lei-Lei Liu
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Meng-Ya Wang
- Cell Electrophysiology Laboratory, Wannan Medical College, 22 West Wenchang Road, Wuhu, Anhui 241002, China
| | - Gong Zhang
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Wen-Long Sheng
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Shi-Jun Weng
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiong-Li Yang
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| | - Yong-Mei Zhong
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
26
|
Haug MF, Gesemann M, Lazović V, Neuhauss SCF. Eumetazoan cryptochrome phylogeny and evolution. Genome Biol Evol 2015; 7:601-19. [PMID: 25601102 PMCID: PMC4350181 DOI: 10.1093/gbe/evv010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cryptochromes (Crys) are light sensing receptors that are present in all eukaryotes. They mainly absorb light in the UV/blue spectrum. The extant Crys consist of two subfamilies, which are descendants of photolyases but are now involved in the regulation of circadian rhythms. So far, knowledge about the evolution, phylogeny, and expression of cry genes is still scarce. The inclusion of cry sequences from a wide range of bilaterian species allowed us to analyze their phylogeny in detail, identifying six major Cry subgroups. Selective gene inactivations and stabilizations in multiple chordate as well as arthropod lineages suggest several sub- and/or neofunctionalization events. An expression study performed in zebrafish, the model organism harboring the largest amount of crys, showed indeed only partially overlapping expression of paralogous mRNA, supporting gene sub- and/or neofunctionalization. Moreover, the daily cry expression in the adult zebrafish retina indicated varying oscillation patterns in different cell types. Our extensive phylogenetic analysis provides for the first time an overview of cry evolutionary history. Although several, especially parasitic or blind species, have lost all cry genes, crustaceans have retained up to three crys, teleosts possess up to seven, and tetrapods up to four crys. The broad and cyclic expression pattern of all cry transcripts in zebrafish retinal layers implies an involvement in retinal circadian processes and supports the hypothesis of several autonomous circadian clocks present in the vertebrate retina.
Collapse
Affiliation(s)
- Marion F Haug
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Matthias Gesemann
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Viktor Lazović
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Stephan C F Neuhauss
- Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, University of Zurich, Switzerland
| |
Collapse
|
27
|
Mendoza J, Challet E. Circadian insights into dopamine mechanisms. Neuroscience 2014; 282:230-42. [PMID: 25281877 DOI: 10.1016/j.neuroscience.2014.07.081] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 01/11/2023]
Abstract
Almost every physiological or behavioral process in mammals follows rhythmic patterns, which depend mainly on a master circadian clock located in the hypothalamic suprachiasmatic nucleus (SCN). The dopaminergic (DAergic) system in the brain is principally implicated in motor functions, motivation and drug intake. Interestingly, DA-related parameters and behaviors linked to the motivational and arousal states, show daily rhythms that could be regulated by the SCN or by extra-SCN circadian oscillator(s) modulating DAergic systems. Here we examine what is currently understood about the anatomical and functional central multi-oscillatory circadian system, highlighting how the main SCN clock communicates timing information with other brain clocks to regulate the DAergic system and conversely, how DAergic cues may have feedback effects on the SCN. These studies give new insights into the role of the brain circadian system in DA-related neurologic pathologies, such as Parkinson's disease, attention deficit/hyperactive disorder and drug addiction.
Collapse
Affiliation(s)
- J Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg cedex, France.
| | - E Challet
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg cedex, France
| |
Collapse
|
28
|
Modifier genes as therapeutics: the nuclear hormone receptor Rev Erb alpha (Nr1d1) rescues Nr2e3 associated retinal disease. PLoS One 2014; 9:e87942. [PMID: 24498227 PMCID: PMC3909326 DOI: 10.1371/journal.pone.0087942] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022] Open
Abstract
Nuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in these processes to maintain homeostasis through modulation of transcriptional gene networks. In this study we evaluate the effectiveness of a nuclear hormone receptor gene to modulate retinal degeneration and restore the integrity of the retina. Currently, there are no effective treatment options for retinal degenerative diseases leading to progressive and irreversible blindness. In this study we demonstrate that the nuclear hormone receptor gene Nr1d1 (Rev-Erbα) rescues Nr2e3-associated retinal degeneration in the rd7 mouse, which lacks a functional Nr2e3 gene. Mutations in human NR2E3 are associated with several retinal degenerations including enhanced S cone syndrome and retinitis pigmentosa. The rd7 mouse, lacking Nr2e3, exhibits an increase in S cones and slow, progressive retinal degeneration. A traditional genetic mapping approach previously identified candidate modifier loci. Here, we demonstrate that in vivo delivery of the candidate modifier gene, Nr1d1 rescues Nr2e3 associated retinal degeneration. We observed clinical, histological, functional, and molecular restoration of the rd7 retina. Furthermore, we demonstrate that the mechanism of rescue at the molecular and functional level is through the re-regulation of key genes within the Nr2e3-directed transcriptional network. Together, these findings reveal the potency of nuclear receptors as modulators of disease and specifically of NR1D1 as a novel therapeutic for retinal degenerations.
Collapse
|
29
|
Abstract
Ion channels and transporters are expressed in every living cell, where they participate in controlling a plethora of biological processes and physiological functions, such as excitation of cells in response to stimulation, electrical activities of cells, excitation-contraction coupling, cellular osmolarity, and even cell growth and death. Alterations of ion channels/transporters can have profound impacts on the cellular physiology associated with these proteins. Expression of ion channels/transporters is tightly regulated and expression deregulation can trigger abnormal processes, leading to pathogenesis, the channelopathies. While transcription factors play a critical role in controlling the transcriptome of ion channels/transporters at the transcriptional level by acting on the 5'-flanking region of the genes, microribonucleic acids (miRNAs), a newly discovered class of regulators in the gene network, are also crucial for expression regulation at the posttranscriptional level through binding to the 3'untranslated region of the genes. These small noncoding RNAs fine tune expression of genes involved in a wide variety of cellular processes. Recent studies revealed the role of miRNAs in regulating expression of ion channels/transporters and the associated physiological functions. miRNAs can target ion channel genes to alter cardiac excitability (conduction, repolarization, and automaticity) and affect arrhythmogenic potential of heart. They can modulate circadian rhythm, pain threshold, neuroadaptation to alcohol, brain edema, etc., through targeting ion channel genes in the neuronal systems. miRNAs can also control cell growth and tumorigenesis by acting on the relevant ion channel genes. Future studies are expected to rapidly increase to unravel a new repertoire of ion channels/transporters for miRNA regulation.
Collapse
Affiliation(s)
- Zhiguo Wang
- Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
30
|
Dkhissi-Benyahya O, Coutanson C, Knoblauch K, Lahouaoui H, Leviel V, Rey C, Bennis M, Cooper HM. The absence of melanopsin alters retinal clock function and dopamine regulation by light. Cell Mol Life Sci 2013; 70:3435-47. [PMID: 23604021 PMCID: PMC11113582 DOI: 10.1007/s00018-013-1338-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/29/2013] [Accepted: 04/08/2013] [Indexed: 01/25/2023]
Abstract
The retinal circadian clock is crucial for optimal regulation of retinal physiology and function, yet its cellular location in mammals is still controversial. We used laser microdissection to investigate the circadian profiles and phase relations of clock gene expression and Period gene induction by light in the isolated outer (rods/cones) and inner (inner nuclear and ganglion cell layers) regions in wild-type and melanopsin-knockout (Opn 4 (-/-) ) mouse retinas. In the wild-type mouse, all clock genes are rhythmically expressed in the photoreceptor layer but not in the inner retina. For clock genes that are rhythmic in both retinal compartments, the circadian profiles are out of phase. These results are consistent with the view that photoreceptors are a potential site of circadian rhythm generation. In mice lacking melanopsin, we found an unexpected loss of clock gene rhythms and of the photic induction of Per1-Per2 mRNAs only in the outer retina. Since melanopsin ganglion cells are known to provide a feed-back signalling pathway for photic information to dopaminergic cells, we further examined dopamine (DA) synthesis in Opn 4 (-/-) mice. The lack of melanopsin prevented the light-dependent increase of tyrosine hydroxylase (TH) mRNA and of DA and, in constant darkness, led to comparatively high levels of both components. These results suggest that melanopsin is required for molecular clock function and DA regulation in the retina, and that Period gene induction by light is mediated by a melanopsin-dependent, DA-driven signal acting on retinal photoreceptors.
Collapse
Affiliation(s)
- Ouria Dkhissi-Benyahya
- Department of Chronobiology, INSERM U846, Stem Cell and Brain Research Institute, 18 Avenue du Doyen Lépine, 69500, Bron, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ko ML, Shi L, Huang CCY, Grushin K, Park SY, Ko GYP. Circadian phase-dependent effect of nitric oxide on L-type voltage-gated calcium channels in avian cone photoreceptors. J Neurochem 2013; 127:314-28. [PMID: 23895452 DOI: 10.1111/jnc.12384] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) plays an important role in phase-shifting of circadian neuronal activities in the suprachiasmatic nucleus and circadian behavior activity rhythms. In the retina, NO production is increased in a light-dependent manner. While endogenous circadian oscillators in retinal photoreceptors regulate their physiological states, it is not clear whether NO also participates in the circadian regulation of photoreceptors. In this study, we demonstrate that NO is involved in the circadian phase-dependent regulation of L-type voltage-gated calcium channels (L-VGCCs). In chick cone photoreceptors, the L-VGCCα1 subunit expression and the maximal L-VGCC currents are higher at night, and both Ras-mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (Erk) and Ras-phosphatidylinositol 3 kinase (PI3K)-protein kinase B (Akt) are part of the circadian output pathways regulating L-VGCCs. The NO-cGMP-protein kinase G (PKG) pathway decreases L-VGCCα1 subunit expression and L-VGCC currents at night, but not during the day, and exogenous NO donor or cGMP decreases the phosphorylation of Erk and Akt at night. The protein expression of neural NO synthase (nNOS) is also under circadian control, with both nNOS and NO production being higher during the day. Taken together, NO/cGMP/PKG signaling is involved as part of the circadian output pathway to regulate L-VGCCs in cone photoreceptors. In cone photoreceptors, the protein expression of neural nitric oxide synthase (nNOS) and NO production are under circadian control. NO-cGMP-protein kinase G (PKG) signaling serves in the circadian output pathway to regulate the circadian rhythms of L-type voltage-gated calcium channels (L-VGCCs) in part through regulating the phosphorylation states of extracellular-signal-regulated kinase (Erk) and protein kinase B (Akt).
Collapse
Affiliation(s)
- Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | | | | | | | | |
Collapse
|
32
|
Huang CCY, Ko ML, Ko GYP. A new functional role for mechanistic/mammalian target of rapamycin complex 1 (mTORC1) in the circadian regulation of L-type voltage-gated calcium channels in avian cone photoreceptors. PLoS One 2013; 8:e73315. [PMID: 23977383 PMCID: PMC3747127 DOI: 10.1371/journal.pone.0073315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/19/2013] [Indexed: 01/10/2023] Open
Abstract
In the retina, the L-type voltage-gated calcium channels (L-VGCCs) are responsible for neurotransmitter release from photoreceptors and are under circadian regulation. Both the current densities and protein expression of L-VGCCs are significantly higher at night than during the day. However, the underlying mechanisms of circadian regulation of L-VGCCs in the retina are not completely understood. In this study, we demonstrated that the mechanistic/mammalian target of rapamycin complex (mTORC) signaling pathway participated in the circadian phase-dependent modulation of L-VGCCs. The activities of the mTOR cascade, from mTORC1 to its downstream targets, displayed circadian oscillations throughout the course of a day. Disruption of mTORC1 signaling dampened the L-VGCC current densities, as well as the protein expression of L-VGCCs at night. The decrease of L-VGCCs at night by mTORC1 inhibition was in part due to a reduction of L-VGCCα1 subunit translocation from the cytosol to the plasma membrane. Finally, we showed that mTORC1 was downstream of the phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT) signaling pathway. Taken together, mTORC1 signaling played a role in the circadian regulation of L-VGCCs, in part through regulation of ion channel trafficking and translocation, which brings to light a new functional role for mTORC1: the modulation of ion channel activities.
Collapse
Affiliation(s)
- Cathy Chia-Yu Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Michael Lee Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Gladys Yi-Ping Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
33
|
Das P, Pradhan D, Maiti B. Circadian rhythms of gonadal and extra-gonadal hormonal and glycemic profiles during the breeding phase of the ovarian cycle of Indian estuarine grey mullets,Mugil cephalusL. BIOL RHYTHM RES 2013. [DOI: 10.1080/09291016.2011.632609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
34
|
Campello L, Esteve-Rudd J, Cuenca N, Martín-Nieto J. The ubiquitin-proteasome system in retinal health and disease. Mol Neurobiol 2013; 47:790-810. [PMID: 23339020 DOI: 10.1007/s12035-012-8391-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the main intracellular pathway for modulated protein turnover, playing an important role in the maintenance of cellular homeostasis. It also exerts a protein quality control through degradation of oxidized, mutant, denatured, or misfolded proteins and is involved in many biological processes where protein level regulation is necessary. This system allows the cell to modulate its protein expression pattern in response to changing physiological conditions and provides a critical protective role in health and disease. Impairments of UPS function in the central nervous system (CNS) underlie an increasing number of genetic and idiopathic diseases, many of which affect the retina. Current knowledge on the UPS composition and function in this tissue, however, is scarce and dispersed. This review focuses on UPS elements reported in the retina, including ubiquitinating and deubiquitinating enzymes (DUBs), and alternative proteasome assemblies. Known and inferred roles of protein ubiquitination, and of the related, SUMO conjugation (SUMOylation) process, in normal retinal development and adult homeostasis are addressed, including modulation of the visual cycle and response to retinal stress and injury. Additionally, the relationship between UPS dysfunction and human neurodegenerative disorders affecting the retina, including Alzheimer's, Parkinson's, and Huntington's diseases, are dealt with, together with numerous instances of retina-specific illnesses with UPS involvement, such as retinitis pigmentosa, macular degenerations, glaucoma, diabetic retinopathy (DR), and aging-related impairments. This information, though still basic and limited, constitutes a suitable framework to be expanded in incoming years and should prove orientative toward future therapy design targeting sight-affecting diseases with a UPS underlying basis.
Collapse
Affiliation(s)
- Laura Campello
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain
| | | | | | | |
Collapse
|
35
|
Huang H, Wang Z, Weng SJ, Sun XH, Yang XL. Neuromodulatory role of melatonin in retinal information processing. Prog Retin Eye Res 2013; 32:64-87. [PMID: 22986412 DOI: 10.1016/j.preteyeres.2012.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Hai Huang
- Institute of Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
36
|
Liu X, Zhang Z, Ribelayga CP. Heterogeneous expression of the core circadian clock proteins among neuronal cell types in mouse retina. PLoS One 2012. [PMID: 23189207 PMCID: PMC3506613 DOI: 10.1371/journal.pone.0050602] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Circadian rhythms in metabolism, physiology, and behavior originate from cell-autonomous circadian clocks located in many organs and structures throughout the body and that share a common molecular mechanism based on the clock genes and their protein products. In the mammalian neural retina, despite evidence supporting the presence of several circadian clocks regulating many facets of retinal physiology and function, the exact cellular location and genetic signature of the retinal clock cells remain largely unknown. Here we examined the expression of the core circadian clock proteins CLOCK, BMAL1, NPAS2, PERIOD 1(PER1), PERIOD 2 (PER2), and CRYPTOCHROME2 (CRY2) in identified neurons of the mouse retina during daily and circadian cycles. We found concurrent clock protein expression in most retinal neurons, including cone photoreceptors, dopaminergic amacrine cells, and melanopsin-expressing intrinsically photosensitive ganglion cells. Remarkably, diurnal and circadian rhythms of expression of all clock proteins were observed in the cones whereas only CRY2 expression was found to be rhythmic in the dopaminergic amacrine cells. Only a low level of expression of the clock proteins was detected in the rods at any time of the daily or circadian cycle. Our observations provide evidence that cones and not rods are cell-autonomous circadian clocks and reveal an important disparity in the expression of the core clock components among neuronal cell types. We propose that the overall temporal architecture of the mammalian retina does not result from the synchronous activity of pervasive identical clocks but rather reflects the cellular and regional heterogeneity in clock function within retinal tissue.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Ophthalmology and Visual Science, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas, United States of America
| | - Zhijing Zhang
- Department of Ophthalmology and Visual Science, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas, United States of America
| | - Christophe P. Ribelayga
- Department of Ophthalmology and Visual Science, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas, United States of America
- The University of Texas Health Science Center at Houston, Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Tosini G, Baba K, Hwang CK, Iuvone PM. Melatonin: an underappreciated player in retinal physiology and pathophysiology. Exp Eye Res 2012; 103:82-9. [PMID: 22960156 DOI: 10.1016/j.exer.2012.08.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 12/14/2022]
Abstract
In the vertebrate retina, melatonin is synthesized by the photoreceptors with high levels of melatonin at night and lower levels during the day. Melatonin exerts its influence by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylyl cyclase. Melatonin receptors belonging to the subtypes MT(1) and MT(2) have been identified in the mammalian retina. MT(1) and MT(2) receptors are found in all layers of the neural retina and in the retinal pigmented epithelium. Melatonin in the eye is believed to be involved in the modulation of many important retinal functions; it can modulate the electroretinogram (ERG), and administration of exogenous melatonin increases light-induced photoreceptor degeneration. Melatonin may also have protective effects on retinal pigment epithelial cells, photoreceptors and ganglion cells. A series of studies have implicated melatonin in the pathogenesis of age-related macular degeneration, and melatonin administration may represent a useful approach to prevent and treat glaucoma. Melatonin is used by millions of people around the world to retard aging, improve sleep performance, mitigate jet lag symptoms, and treat depression. Administration of exogenous melatonin at night may also be beneficial for ocular health, but additional investigation is needed to establish its potential.
Collapse
Affiliation(s)
- Gianluca Tosini
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | | | | | | |
Collapse
|
38
|
Huang CCY, Ko ML, Vernikovskaya DI, Ko GYP. Calcineurin serves in the circadian output pathway to regulate the daily rhythm of L-type voltage-gated calcium channels in the retina. J Cell Biochem 2012; 113:911-22. [PMID: 22371971 DOI: 10.1002/jcb.23419] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The L-type voltage-gated calcium channels (L-VGCCs) in avian retinal cone photoreceptors are under circadian control, in which the protein expression of the α1 subunits and the current density are greater at night than during the day. Both Ras-mitogen-activated protein kinase (MAPK) and Ras-phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT) signaling pathways are part of the circadian output that regulate the L-VGCC rhythm, while cAMP-dependent signaling is further upstream of Ras to regulate the circadian outputs in photoreceptors. However, there are missing links between cAMP-dependent signaling and Ras in the circadian output regulation of L-VGCCs. In this study, we report that calcineurin, a Ca2+/calmodulin-dependent serine (ser)/threonine (thr) phosphatase, participates in the circadian output pathway to regulate L-VGCCs through modulating both Ras-MAPK and Ras-PI3K-AKT signaling. The activity of calcineurin, but not its protein expression, was under circadian regulation. Application of a calcineurin inhibitor, FK-506 or cyclosporine A, reduced the L-VGCC current density at night with a corresponding decrease in L-VGCCα1D protein expression, but the circadian rhythm of L-VGCCα1D mRNA levels were not affected. Inhibition of calcineurin further reduced the phosphorylation of ERK and AKT (at thr 308) and inhibited the activation of Ras, but inhibitors of MAPK or PI3K signaling did not affect the circadian rhythm of calcineurin activity. However, inhibition of adenylate cyclase significantly dampened the circadian rhythm of calcineurin activity. These results suggest that calcineurin is upstream of MAPK and PI3K-AKT but downstream of cAMP in the circadian regulation of L-VGCCs.
Collapse
Affiliation(s)
- Cathy Chia-Yu Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | | | | | | |
Collapse
|
39
|
Ruan GX, Gamble KL, Risner ML, Young LA, McMahon DG. Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators. PLoS One 2012; 7:e38985. [PMID: 22701739 PMCID: PMC3372489 DOI: 10.1371/journal.pone.0038985] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 05/17/2012] [Indexed: 11/24/2022] Open
Abstract
The retina is both a sensory organ and a self-sustained circadian clock. Gene targeting studies have revealed that mammalian circadian clocks generate molecular circadian rhythms through coupled transcription/translation feedback loops which involve 6 core clock genes, namely Period (Per) 1 and 2, Cryptochrome (Cry) 1 and 2, Clock, and Bmal1 and that the roles of individual clock genes in rhythms generation are tissue-specific. However, the mechanisms of molecular circadian rhythms in the mammalian retina are incompletely understood and the extent to which retinal neural clocks share mechanisms with the suprachiasmatic nucleus (SCN), the central neural clock, is unclear. In the present study, we examined the rhythmic amplitude and period of real-time bioluminescence rhythms in explants of retina from Per1-, Per2-, Per3-, Cry1-, Cry2-, and Clock-deficient mice that carried transgenic PERIOD2::LUCIFERASE (PER2::LUC) or Period1::luciferase (Per1::luc) circadian reporters. Per1-, Cry1- and Clock-deficient retinal and SCN explants showed weakened or disrupted rhythms, with stronger effects in retina compared to SCN. Per2, Per3, and Cry2 were individually dispensable for sustained rhythms in both tissues. Retinal and SCN explants from double knockouts of Cry1 and Cry2 were arrhythmic. Gene effects on period were divergent with reduction in the number of Per1 alleles shortening circadian period in retina, but lengthening it in SCN, and knockout of Per3 substantially shortening retinal clock period, but leaving SCN unaffected. Thus, the retinal neural clock has a unique pattern of clock gene dependence at the tissue level that it is similar in pattern, but more severe in degree, than the SCN neural clock, with divergent clock gene regulation of rhythmic period.
Collapse
Affiliation(s)
- Guo-Xiang Ruan
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Karen L. Gamble
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Michael L. Risner
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Laurel A. Young
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Douglas G. McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
40
|
Pradhan D, Saha I, Chatterjee A, Mondal A, Sarkar S, Maiti B. Alterations of circadian rhythms of thyroid-stimulating hormone, thyroid, adrenal and insulin hormones, and blood glucose profiles following lithium treatment in alternate Light–Dark, constant Light and constant Dark regimens in rats. BIOL RHYTHM RES 2012. [DOI: 10.1080/09291016.2011.579758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Servili A, Herrera-Pérez P, Kah O, Muñoz-Cueto JA. The retina is a target for GnRH-3 system in the European sea bass, Dicentrarchus labrax. Gen Comp Endocrinol 2012; 175:398-406. [PMID: 22138555 DOI: 10.1016/j.ygcen.2011.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/21/2011] [Accepted: 11/11/2011] [Indexed: 12/11/2022]
Abstract
The European sea bass expresses three GnRH (Gonadotrophin Releasing Hormone) forms that exert pleiotropic actions via several classes of receptors. The GnRH-1 form is responsible for the endogenous regulation of gonadotrophin release by the pituitary gland but the role of GnRH-2 and GnRH-3 remains unclear in fish. In a previous study performed in sea bass, we have provided evidence of direct links between the GnRH-2 cells and the pineal organ and demonstrated a functional role for GnRH-2 in the modulation of the secretory activity of this photoreceptive organ. In this study, we have investigated the possible relationship between the GnRH-3 system and the retina in the same species. Thus, using a biotinylated dextran-amine tract-tracing method, we reveal the presence of retinopetal cells in the terminal nerve of sea bass, a region that also contains GnRH-3-immunopositive cells. Moreover, GnRH-3-immunoreactive fibers were observed at the boundary between the inner nuclear and the inner plexiform layers, and also within the ganglion cell layer. These results strongly suggest that the GnRH-3 neurons located in the terminal nerve area represent the source of GnRH-3 innervation in the retina of this species. In order to clarify whether the retina is a target for GnRH, the expression pattern of GnRH receptors (dlGnRHR) was also analyzed by RT-PCR and in situ hybridization. RT-PCR revealed the retinal expression of dlGnRHR-II-2b, -1a, -1b and -1c, while in situ hybridization only showed positive signals for the receptors dlGnRHR-II-2b and -1a. Finally, double-immunohistochemistry showed that GnRH-3 projections reaching the sea bass retina end in close proximity to tyrosine hydroxylase (dopaminergic) cells, which also expressed the dlGnRHR-II-2b receptor subtype. Taken together, these results suggest an important role for GnRH-3 in the modulation of dopaminergic cell activities and retinal functions in sea bass.
Collapse
Affiliation(s)
- Arianna Servili
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEIMAR), E-11510 Puerto Real, Spain
| | | | | | | |
Collapse
|
42
|
Nakamura TJ, Ebihara S, Shinohara K. Reduced light response of neuronal firing activity in the suprachiasmatic nucleus and optic nerve of cryptochrome-deficient mice. PLoS One 2011; 6:e28726. [PMID: 22216107 PMCID: PMC3244417 DOI: 10.1371/journal.pone.0028726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/14/2011] [Indexed: 11/19/2022] Open
Abstract
To examine roles of the Cryptochromes (Cry1 and Cry2) in mammalian circadian photoreception, we recorded single-unit neuronal firing activity in the suprachiasmatic nucleus (SCN), a primary circadian oscillator, and optic nerve fibers in vivo after retinal illumination in anesthetized Cry1 and Cry2 double-knockout (Cry-deficient) mice. In wild-type mice, most SCN neurons increased their firing frequency in response to retinal illumination at night, whereas only 17% of SCN neurons responded during the daytime. However, 40% of SCN neurons responded to light during the daytime, and 31% of SCN neurons responded at night in Cry-deficient mice. The magnitude of the photic response in SCN neurons at night was significantly lower (1.3-fold of spontaneous firing) in Cry-deficient mice than in wild-type mice (4.0-fold of spontaneous firing). In the optic nerve near the SCN, no difference in the proportion of light-responsive fibers was observed between daytime and nighttime in both genotypes. However, the response magnitude in the light-activated fibers (ON fibers) was high during the nighttime and low during the daytime in wild-type mice, whereas this day-night difference was not observed in Cry-deficient mice. In addition, we observed day-night differences in the spontaneous firing rates in the SCN in both genotypes and in the fibers of wild-type, but not Cry-deficient mice. We conclude that the low photo response in the SCN of Cry-deficient mice is caused by a circadian gating defect in the retina, suggesting that Cryptochromes are required for appropriate temporal photoreception in mammals.
Collapse
Affiliation(s)
- Takahiro J Nakamura
- Division of Neurobiology and Behavior, Department of Translational Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | | | | |
Collapse
|
43
|
Sandu C, Hicks D, Felder-Schmittbuhl MP. Rat photoreceptor circadian oscillator strongly relies on lighting conditions. Eur J Neurosci 2011; 34:507-16. [PMID: 21771113 DOI: 10.1111/j.1460-9568.2011.07772.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mammalian retina harbours a self-sustained circadian clock able to synchronize to the light : dark (LD) cycle and to drive cyclic outputs such as night-time melatonin synthesis. Clock genes are expressed in distinct parts of the tissue, and it is presently assumed that the retina contains several circadian oscillators. However, molecular organization of cell type-specific clockworks has been poorly investigated. Here, we questioned the presence of a circadian clock in rat photoreceptors by studying 24-h kinetics of clock and clock output gene expression in whole photoreceptor layers isolated by vibratome sectioning. To address the importance of light stimulation towards photoreceptor clock properties, animals were exposed to 12 : 12 h LD cycle or 36 h constant darkness. Clock, Bmal1, Per1, Per2, Cry1, Cry2, RevErbα and Rorβ clock genes were all found to be expressed in photoreceptors and to display rhythmic transcription in LD cycle. Clock genes in whole retinas, used as a reference, also showed rhythmic expression with marked similarity to the profiles in pure photoreceptors. In contrast, clock gene oscillations were no longer detectable in photoreceptor layers after 36 h darkness, with the exception of Cry2 and Rorβ. Importantly, transcripts from two well-characterized clock output genes, Aanat (arylalkylamine N-acetyltransferase) and c-fos, retained sustained rhythmicity. We conclude that rat photoreceptors contain the core machinery of a circadian oscillator likely to be operative and to drive rhythmic outputs under exposure to a 24-h LD cycle. Constant darkness dramatically alters the photoreceptor clockwork and circadian functions might then rely on inputs from extra-photoreceptor oscillators.
Collapse
Affiliation(s)
- Cristina Sandu
- Département de Neurobiologie des Rythmes, CNRS UPR 3212 - Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | | | | |
Collapse
|
44
|
Yammouni R, Bozzano A, Douglas RH. A latitudinal cline in the efficacy of endogenous signals: evidence derived from retinal cone contraction in fish. ACTA ACUST UNITED AC 2011; 214:501-8. [PMID: 21228209 DOI: 10.1242/jeb.048538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Like many physiological systems synchronised to the light:dark cycle, retinomotor movements in 'lower' vertebrates are controlled by both the ambient illumination and input from endogenous circadian oscillators. In the present study, we examine the relative influence of these two signals in various species of teleost fish with different latitudes of origin. We find equatorial species show very strong endogenous control. The cones of the glowlight tetra, for example, continue to go through undiminished cycles of contraction and relaxation that mirror the previous light:dark cycle for at least two weeks in continual darkness. To quantify the relative effectiveness of the ambient light compared with endogenous signals in causing cone contraction, the degree to which seven teleost species responded to light during the dark phase of their light:dark cycle was examined. In this situation the retina receives conflicting instructions; while the light is acting directly to cause light adaptation, any endogenous signal tends to keep the retinal elements dark adapted. The further from the equator a species originated, the more its cones contracted in response to such illumination, suggesting animals from higher latitudes make little use of endogenous oscillators and rely more on ambient illumination to control behaviours. Equatorial species, however, rely on internal pacemakers to a much greater degree and are relatively insensitive to exogenous light signals. Because these data are consistent with published observations in systems as diverse as melatonin synthesis in Arctic reindeer and the behaviour of regional populations of Drosophila, latitudinal clines in the efficacy of circadian oscillators may be a common feature among animals.
Collapse
Affiliation(s)
- Robert Yammouni
- Henry Wellcome Laboratory for Vision Sciences, Department of Optometry and Visual Science, City University London, Northampton Square, London, EC1V 0HB, UK
| | | | | |
Collapse
|
45
|
Martín-Robles AJ, Isorna E, Whitmore D, Muñoz-Cueto JA, Pendón C. The clock gene Period3 in the nocturnal flatfish Solea senegalensis: Molecular cloning, tissue expression and daily rhythms in central areas. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:7-15. [PMID: 21281733 DOI: 10.1016/j.cbpa.2011.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Clock genes are responsible for generating and sustaining most rhythmic daily functions in vertebrates. Their expression is endogenously driven, although they are entrained by external cues such as light, temperature and nutrient availability. In the present study, a full-length coding region of Solea senegalensis clock gene Period3 (Per3) has been isolated from sole brain as a first step in understanding the molecular basis underlying circadian rhythms in this nocturnal species. The complete cDNA is 4141 base pairs (bp) in length, including an ORF of 3804bp, a 5'UTR of 247bp and a 3'UTR of 90bp. It encodes a putative PERIOD3 protein (PER3) of 1267 amino acids which shares the main functional domains conserved between transcription factors regulating the circadian clock pathway. Sole PER3 displays high identity with PER3 proteins from teleost species (61-77%) and lower identity (39-46%) with other vertebrate PER3 sequences. This gene is expressed in all examined tissues, being mRNA expression particularly evident in retina, cerebellum, diencephalon, optic tectum, liver and ovary. Per3 exhibits a significant daily oscillation in retina and optic tectum but not in diencephalon and cerebellum. Our results suggest an important role of Per3 in the circadian clockwork machinery of visually-related areas of sole.
Collapse
Affiliation(s)
- Agueda J Martín-Robles
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, E-11510, Puerto Real, Spain
| | | | | | | | | |
Collapse
|
46
|
de Lima LHRG, dos Santos KP, de Lauro Castrucci AM. Clock Genes, Melanopsins, Melatonin, and Dopamine Key Enzymes and Their Modulation by Light and Glutamate in Chicken Embryonic Retinal Cells. Chronobiol Int 2011; 28:89-100. [DOI: 10.3109/07420528.2010.540685] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Hayasaka N, LaRue SI, Green CB. Differential contribution of rod and cone circadian clocks in driving retinal melatonin rhythms in Xenopus. PLoS One 2010; 5:e15599. [PMID: 21187976 PMCID: PMC3004937 DOI: 10.1371/journal.pone.0015599] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 11/15/2010] [Indexed: 11/18/2022] Open
Abstract
Background Although an endogenous circadian clock located in the retinal photoreceptor layer governs various physiological events including melatonin rhythms in Xenopus laevis, it remains unknown which of the photoreceptors, rod and/or cone, is responsible for the circadian regulation of melatonin release. Methodology/Principal Findings We selectively disrupted circadian clock function in either the rod or cone photoreceptor cells by generating transgenic Xenopus tadpoles expressing a dominant-negative CLOCK (XCLΔQ) under the control of a rod or cone-specific promoter. Eyecup culture and continuous melatonin measurement revealed that circadian rhythms of melatonin release were abolished in a majority of the rod-specific XCLΔQ transgenic tadpoles, although the percentage of arrhythmia was lower than that of transgenic tadpole eyes expressing XCLΔQ in both rods and cones. In contrast, whereas a higher percentage of arrhythmia was observed in the eyes of the cone-specific XCLΔQ transgenic tadpoles compare to wild-type counterparts, the rate was significantly lower than in rod-specific transgenics. The levels of the transgene expression were comparable between these two different types of transgenics. In addition, the average overall melatonin levels were not changed in the arrhythmic eyes, suggesting that CLOCK does not affect absolute levels of melatonin, only its temporal expression pattern. Conclusions/Significance These results suggest that although the Xenopus retina is made up of approximately equal numbers of rods and cones, the circadian clocks in the rod cells play a dominant role in driving circadian melatonin rhythmicity in the Xenopus retina, although some contribution of the clock in cone cells cannot be excluded.
Collapse
Affiliation(s)
- Naoto Hayasaka
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America.
| | | | | |
Collapse
|
48
|
Matejů K, Sumová A, Bendová Z. Expression and light sensitivity of clock genes Per1 and Per2 and immediate-early gene c-fos within the retina of early postnatal Wistar rats. J Comp Neurol 2010; 518:3630-44. [PMID: 20589906 DOI: 10.1002/cne.22421] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mammalian retina contains a circadian clock that is composed of components similar to those of the master circadian clock within the suprachiasmatic nuclei of the hypothalamus. The aim of the present study was to elucidate whether, when, and where the transcripts of the clock genes Per1 and Per2 and the immediate early gene c-fos are spontaneously expressed and/or induced by light in the newborn rat retina. At postnatal day 1 (P1), P3, P5, and P10, Wistar rat pups were released into constant darkness, and a 30-minute light pulse was administered during the subjective day or during the first or second part of subjective night. Gene expression was determined 30 minutes, 1 hour, 2 hours, and 4 hours after the light pulse by in situ hybridization followed by emulsion autoradiography. Endogenous expression of Per1 was detected in the neuroblastic retina, and Per2 expression was detected in the inner part of the neuroblastic retina from birth. Light pulses induced c-fos expression in ganglion cells from P1. Until P5, the cells were localized in the dorsal part of the retina, but, at P10, they were already distributed across the entire retinal circumference. Light pulses also induced the expression of c-fos and Per1 in the retinal pigment epithelium until P3, but not afterward. Expression of the Per2 gene was not photoresponsive until P10. These data demonstrate that the rat retina is light-sensitive immediately after birth. During early postnatal development, the spatial distribution of spontaneous and light-induced gene expression within the retinal layers changes gradually.
Collapse
Affiliation(s)
- Kristýna Matejů
- Department of Neurohumoral Regulations, Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i., Prague 14220, Czech Republic
| | | | | |
Collapse
|
49
|
Ribelayga C, Mangel SC. Identification of a circadian clock-controlled neural pathway in the rabbit retina. PLoS One 2010; 5:e11020. [PMID: 20548772 PMCID: PMC2883549 DOI: 10.1371/journal.pone.0011020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 04/09/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although the circadian clock in the mammalian retina regulates many physiological processes in the retina, it is not known whether and how the clock controls the neuronal pathways involved in visual processing. METHODOLOGY/PRINCIPAL FINDINGS By recording the light responses of rabbit axonless (A-type) horizontal cells under dark-adapted conditions in both the day and night, we found that rod input to these cells was substantially increased at night under control conditions and following selective blockade of dopamine D(2), but not D(1), receptors during the day, so that the horizontal cells responded to very dim light at night but not in the day. Using neurobiotin tracer labeling, we also found that the extent of tracer coupling between rabbit rods and cones was more extensive during the night, compared to the day, and more extensive in the day following D(2) receptor blockade. Because A-type horizontal cells make synaptic contact exclusively with cones, these observations indicate that the circadian clock in the mammalian retina substantially increases rod input to A-type horizontal cells at night by enhancing rod-cone coupling. Moreover, the clock-induced increase in D(2) receptor activation during the day decreases rod-cone coupling so that rod input to A-type horizontal cells is minimal. CONCLUSIONS/SIGNIFICANCE Considered together, these results identify the rod-cone gap junction as a key site in mammals through which the retinal clock, using dopamine activation of D(2) receptors, controls signal flow in the day and night from rods into the cone system.
Collapse
Affiliation(s)
- Christophe Ribelayga
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Stuart C. Mangel
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
50
|
Roles of dopamine in circadian rhythmicity and extreme light sensitivity of circadian entrainment. Curr Biol 2010; 20:209-14. [PMID: 20096587 DOI: 10.1016/j.cub.2009.11.037] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/05/2009] [Accepted: 11/13/2009] [Indexed: 11/15/2022]
Abstract
Light has profound behavioral effects on almost all animals, and nocturnal animals show sensitivity to extremely low light levels [1-4]. Crepuscular, i.e., dawn/dusk-active animals such as Drosophila melanogaster are thought to show far less sensitivity to light [5-8]. Here we report that Drosophila respond to extremely low levels of monochromatic blue light. Light levels three to four orders of magnitude lower than previously believed impact circadian entrainment and the light-induced stimulation of locomotion known as positive behavioral masking. We use GAL4;UAS-mediated rescue of tyrosine hydroxylase (DTH) mutant (ple) flies to study the roles of dopamine in these processes. We present evidence for two roles of dopamine in circadian behaviors. First, rescue with either a wild-type DTH or a DTH mutant lacking neural expression leads to weak circadian rhythmicity, indicating a role for strictly regulated DTH and dopamine in robust circadian rhythmicity. Second, the DTH rescue strain deficient in neural dopamine selectively shows a defect in circadian entrainment to low light, whereas another response to light, positive masking, has normal light sensitivity. These findings imply separable pathways from light input to the behavioral outputs of masking versus circadian entrainment, with only the latter dependent on dopamine.
Collapse
|