1
|
Watts SW, Garver H, Morisset-Lopez S, Suzenet F, Fink GD. β-arrestin biased signaling is not involved in the hypotensive actions of 5-HT 7 receptor stimulation: use of Serodolin. Pharmacol Res 2024; 199:107047. [PMID: 38157998 DOI: 10.1016/j.phrs.2023.107047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The 5-hydroxytryptamine 7 receptor (5-HT7) is necessary for 5-HT to cause a concentration-dependent vascular relaxation and hypotension. 5-HT7 is recognized as having biased signaling, transduced through either Gs or β -arrestin. It is unknown whether 5-HT7 signals in a biased manner to cause vasorelaxation/hypotension. We used the recently described β-arrestin selective 5-HT7 receptor agonist serodolin to test the hypothesis that 5-HT7 activation does not cause vascular relaxation or hypotension via the β -arrestin pathway. Isolated abdominal aorta (no functional 5-HT7) and vena cava (functional 5-HT7) from male Sprague Dawley rats were used in isometric contractility studies. Serodolin (1 nM - 10 μM) did not change baseline tone of isolated tissues and did not relax the endothelin-1 (ET-1)-contracted vena cava or aorta. In the aorta, serodolin acted as a 5-HT2A receptor antagonist, evidenced by a rightward shift in 5-HT-induced concentration response curve [pEC50 5-HT [M]: Veh = 5.2 +/- 0.15; Ser (100 nM) = 4.49 +/- 0.08; p < 0.05]. In the vena cava, serodolin acted as a 5-HT7 receptor antagonist, shifting the concentration response curve to 5-HT left and upward (%10 μM NE contraction; Veh = 3.2 +/- 1.7; Ser (10 nM) = 58 +/- 11; p < 0.05) and blocking relaxation of pre-contracted tissue to the 5-HT1A/7 agonist 5-carboxamidotryptamine. In anesthetized rats, 5-HT or serodolin was infused at 5, 25 and 75 μg/kg/min, iv. Though 5-HT caused concentration-dependent depressor responses, serodolin caused an insignificant small depressor responses at all three infusion rates. With the final dose of serodolin on board, 5-HT was unable to reduce blood pressure. Collectively the data indicate that serodolin functions as a 5-HT7 antagonist with additional 5-HT2A blocking properties. 5-HT7 activation does not cause vascular relaxation or hypotension via the β -arrestin pathway.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA.
| | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | - Severine Morisset-Lopez
- Centre de Biophysique Moléculaire, CNRS, Unité Propre de Recherche 4301, Université d'Orléans, Orléans Cedex 2 45071 France
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique, Université d'Orléans, CNRS UMR 7311, rue de Chartres, 45067 Orléans, France
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| |
Collapse
|
2
|
Kumari N, Adhikari A, Singh D, Bhagat S, Ojha H, Tiwari AK. Benzoxazolone-arylpiperazinyl scaffold-based PET ligand for 5-HT 7 : Synthesis and biological evaluation. Drug Dev Res 2022; 83:1024-1033. [PMID: 35266163 DOI: 10.1002/ddr.21930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Efforts are underway to improve the diagnosis and treatment for neurological disorders like depression, anxiety, epilepsy, and schizophrenia. The G-protein-coupled receptors (GPCRs) 5-HT7 receptor, the most recently identified member of 5-HT receptor family dysregulation has an association with various central nervous system (CNS) disorders and its ligands have an edge as potential therapeutics. Here, we report the synthesis, characterization, and biological evaluation of diversely substituted methoxy derivatives of 2-benzoxazolone arylpiperazine for targeting 5-HT7 receptors. Out of all derivatives, only C-2 substituted derivative, 3-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)benzoxazol-2(3H)-one/ABO demonstrate a high affinity for human 5-HT7 receptors. [11 C]ABO was obtained by O-methylation of desmethyl-precursor using [11 C]CH3 OTf in the presence of NaOH giving a high radiochemical yield of 25 ± 12% (decay-corrected, n = 7) with stability up to 1.5 h postradiolabeling. In vitro autoradiography displays binding of [11 C]ABO in accordance with 5-HT7 distribution with a decrease of approximately 80% and 40% activity in the hippocampus and cerebellum brain region when administered with 10 µM cold ligand. Prefatory positron emission tomography scan results in Sprague-Dawley (SD) rat brain revealed fast and high radioactivity build-up in 5-HT7 receptor-rich regions, namely, the hippocampus (2.75 ± 0.16 SUV) and the cerebral cortex (2.27 ± 0.02 SUV) establishing selective targeting of [11 C]ABO. In summary, these pieces of data designate [11 C]ABO as a promising 5-HT7 receptor ligand that can have possible roles in clinics after its further optimization on different animal models.
Collapse
Affiliation(s)
- Neelam Kumari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India.,Institute of Nuclear Medicine & Allied Sciences, Delhi, India.,Department of Chemistry, Organic Synthesis Research Laboratory, A.R.S.D. College, University of Delhi, Delhi, India
| | - Anupriya Adhikari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Sunita Bhagat
- Department of Chemistry, Organic Synthesis Research Laboratory, A.R.S.D. College, University of Delhi, Delhi, India
| | - Himanshu Ojha
- Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India.,Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| |
Collapse
|
3
|
Karki A, Namballa HK, Alberts I, Harding WW. Structural manipulation of aporphines via C10 nitrogenation leads to the identification of new 5-HT 7AR ligands. Bioorg Med Chem 2020; 28:115578. [PMID: 32631561 DOI: 10.1016/j.bmc.2020.115578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/16/2022]
Abstract
Aporphine alkaloids containing a C10 nitrogen motif were synthesized and evaluated for affinity at 5-HT1AR, 5-HT2AR, 5-HT6R and 5-HT7AR. Three series of racemic aporphines were investigated: 1,2,10-trisubstituted, C10 N-monosubstituted and compounds containing a C10 benzofused aminothiazole moiety. The 1,2,10-trisubstituted series of compounds as a group displayed modest selectivity for 5-HT7AR and also had moderate 5-HT7AR affinity. Compounds from the C10 N-monosubstituted series generally lacked affinity for 5-HT2AR and 5-HT6R and showed strong affinity for 5-HT1A or 5-HT7AR. Compounds in this series that contained an N6-methyl group were up to 27-fold selective for 5-HT7AR over 5-HT1AR, whereas compounds with an N6-propyl substituent showed a reversal in this selectivity. The C10 benzofused aminothiazole analogues showed a similar binding profile as the C10 N-monosubstituted series i.e. strong affinity for 5-HT1AR or 5-HT7AR, with selectivity between the two receptors being similarly influenced by N6-methyl or N6-propyl substituents. Compounds 29 and 34a exhibit high 5-HT7AR affinity, excellent selectivity versus dopamine receptors and function as antagonists in 5-HT7AR cAMP-based assays. Compounds 29 and 34a have been identified as new lead molecules for further tool and pharmaceutical optimization.
Collapse
Affiliation(s)
- Anupam Karki
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA; Program in Biochemistry, CUNY Graduate Center, 365 5(th) Avenue, New York, NY 10016, USA
| | - Hari K Namballa
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA
| | - Ian Alberts
- LaGuardia Community College, Department of Chemistry, 31-10 Thompson Avenue, LIC, NY 11104, USA
| | - Wayne W Harding
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA; Program in Biochemistry, CUNY Graduate Center, 365 5(th) Avenue, New York, NY 10016, USA; Program in Chemistry, CUNY Graduate Center, 365 5(th) Avenue, New York, NY 10016, USA.
| |
Collapse
|
4
|
Demireva EY, Xie H, Flood ED, Thompson JM, Seitz BM, Watts SW. Creation of the 5-hydroxytryptamine receptor 7 knockout rat as a tool for cardiovascular research. Physiol Genomics 2019; 51:290-301. [PMID: 31125290 PMCID: PMC6689730 DOI: 10.1152/physiolgenomics.00030.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 11/22/2022] Open
Abstract
Using CRISPR-Cas9 technology, we created a 5-HT7 receptor global knockout (KO) rat, on a Sprague-Dawley background, for use in cardiovascular physiology studies focused on blood pressure regulation. A stable line carrying indels in exons 1 and 2 of the rat Htr7 locus was established and validated. Surprisingly, 5-HT7 receptor mRNA was still present in the KO rat. However, extensive cDNA and genomic sequencing of KO tissues confirmed an 11 bp deletion in exon 1 and 4 bp deletion in exon 2. The exon 1 deletion resulted in a frameshifted mRNA sequence coding for a nonfunctional protein. While the Htr1B locus was a potential off-target for the guide RNAs designed for exon 2 of Htr7, there were no off-target sequence changes at this locus in the originating founder. When the F2 generation of KO was compared with wild-type (WT) counterparts, neither the male nor female KO rats were different in body size, fat weights, or mass of organs (kidney, heart, and brain) important to blood pressure. Females were smaller in mass than their counterpart males. Clinical measures of plasma from nonfasted rats revealed largely similar values, comparing WT and KO, of glucose, blood urea nitrogen, creatinine, phosphate, calcium, and albumin to name a few. Loss of a functional 5-HT7 receptor was validated by the complete loss of relaxation to the 5-HT1/7 receptor agonist 5-carboxamidotryptamine in the isolated abdominal vena cava. This newly created 5-HT7 receptor KO rat will be of use to investigate the importance of the 5-HT7 receptor in blood pressure regulation.
Collapse
Affiliation(s)
- Elena Y Demireva
- Transgenic and Genome Editing Facility, and Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing, Michigan
| | - Huirong Xie
- Transgenic and Genome Editing Facility, and Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing, Michigan
| | - Emma D Flood
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Janice M Thompson
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Bridget M Seitz
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
5
|
A Symphony of Signals: Intercellular and Intracellular Signaling Mechanisms Underlying Circadian Timekeeping in Mice and Flies. Int J Mol Sci 2019; 20:ijms20092363. [PMID: 31086044 PMCID: PMC6540063 DOI: 10.3390/ijms20092363] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
The central pacemakers of circadian timekeeping systems are highly robust yet adaptable, providing the temporal coordination of rhythms in behavior and physiological processes in accordance with the demands imposed by environmental cycles. These features of the central pacemaker are achieved by a multi-oscillator network in which individual cellular oscillators are tightly coupled to the environmental day-night cycle, and to one another via intercellular coupling. In this review, we will summarize the roles of various neurotransmitters and neuropeptides in the regulation of circadian entrainment and synchrony within the mammalian and Drosophila central pacemakers. We will also describe the diverse functions of protein kinases in the relay of input signals to the core oscillator or the direct regulation of the molecular clock machinery.
Collapse
|
6
|
Matsui K, Takaesu Y, Inoue T, Inada K, Nishimura K. Effect of aripiprazole on non-24-hour sleep-wake rhythm disorder comorbid with major depressive disorder: a case report. Neuropsychiatr Dis Treat 2017; 13:1367-1371. [PMID: 28579782 PMCID: PMC5449127 DOI: 10.2147/ndt.s136628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Patients with non-24-hour sleep-wake rhythm disorder (N24SWD) exhibit a sleep pattern that is asynchronous with the external light-dark cycle, typically involving a cycling, relapsing-remitting pattern of sleep disturbances, including nighttime insomnia and daytime sleepiness. Here, we report the case of a patient with N24SWD comorbid with major depressive disorder, who was successfully treated with a low dose of aripiprazole. CASE PRESENTATION A 47-year-old female presented with an 8-year complaint of difficulty falling asleep and waking up in the morning. The patient was diagnosed with major depressive disorder at the age of 35 years and was treated with various antidepressants since that time. At the age of 40 years, the patient's sleep-wake cycle began to extend without exacerbation of depressive symptoms. The patient was diagnosed with N24SWD at the age of 43 years. Ramelteon 8 mg/d and then melatonin 1 mg/d were administered, but these did not provide effective treatment. In January 2016, after treatment with aripiprazole 3 mg/d in the morning for 4 weeks, the patient's sleep-wake cycle became markedly synchronized to the environmental light-dark cycle. Her sleep-wake cycle remained synchronized when the same dose of aripiprazole was administered for at least 6 months. CONCLUSION Treatment-refractory asynchrony of the sleep-wake cycle in an N24SWD patient with depression was successfully treated with aripiprazole. Although the detailed mechanism of action is unclear, aripiprazole may be an appropriate treatment for patients with circadian rhythm sleep-wake disorders.
Collapse
Affiliation(s)
- Kentaro Matsui
- Department of Psychiatry, Tokyo Women’s Medical University
- Japan Somnology Center, Neuropsychiatric Research Institute
| | - Yoshikazu Takaesu
- Japan Somnology Center, Neuropsychiatric Research Institute
- Department of Psychiatry, Tokyo Medical University, Tokyo, Japan
| | - Takeshi Inoue
- Department of Psychiatry, Tokyo Medical University, Tokyo, Japan
| | - Ken Inada
- Department of Psychiatry, Tokyo Women’s Medical University
| | | |
Collapse
|
7
|
Tashiro T. Improvement of a patient's circadian rhythm sleep disorders by aripiprazole was associated with stabilization of his bipolar illness. J Sleep Res 2017; 26:247-250. [DOI: 10.1111/jsr.12496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/09/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Tetsuo Tashiro
- Tashiro Clinic; Akita-heal Medical Corporation; Akita City Akita Japan
| |
Collapse
|
8
|
Prosser RA, Glass JD. Assessing ethanol's actions in the suprachiasmatic circadian clock using in vivo and in vitro approaches. Alcohol 2015; 49:321-339. [PMID: 25457753 DOI: 10.1016/j.alcohol.2014.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 12/18/2022]
Abstract
Research over the past decade has demonstrated substantial interactions between the circadian system and the processes through which alcohol affects behavior and physiology. Here we summarize the results of our collaborative efforts focused on this intersection. Using a combination of in vivo and in vitro approaches, we have shown that ethanol affects many aspects of the mammalian circadian system, both acutely as well as after chronic administration. Conversely, we have shown circadian influences on ethanol consumption. Importantly, we are beginning to delve into the cellular mechanisms associated with these effects. We are also starting to form a picture of the neuroanatomical bases for many of these actions. Finally, we put our current findings into perspective by suggesting new avenues of inquiry for our future efforts.
Collapse
|
9
|
Effects of lighting condition on circadian behavior in 5-HT1A receptor knockout mice. Physiol Behav 2014; 139:136-44. [PMID: 25446224 DOI: 10.1016/j.physbeh.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/21/2022]
Abstract
Serotonin (5-HT) is an important regulator of the mammalian circadian system, and has been implicated in modulating entrained and free-running rhythms, as well as photic and non-photic phase shifting. In general, 5-HT appears to oppose the actions of light on the circadian system of nocturnal rodents. As well, 5-HT mediates, at least in part, some non-photic responses. The 5-HT1A, 1B and 7 receptors regulate these acute responses to zeitgebers. 5-HT also regulates some entrained and free-running properties of the circadian clock. The receptors that contribute to these phenomena have not been fully examined. Here, we use 5-HT1A receptor knockout (KO) mice to examine the response of the mouse circadian system to a variety of lighting conditions, including a normal light-dark cycle (LD), T-cycles, phase advanced LD cycles, constant darkness (DD), constant light (LL) and a 6 hour dark pulse starting at CT5. Relative to wildtype mice, the 5-HT1A receptor KO mice have lower levels of activity during the first 8h of the night/subjective night in LD and LL, later activity onsets on transient days during re-entrainment, shorter free-running periods in LL when housed with wheels, and smaller phase shifts to dark pulses. No differences were noted in activity levels during DD, alpha under any light condition, free-running period in DD, or phase angle of entrainment in LD. While the 5-HT1A receptor plays an important role in regulating photic and non-photic phase shifting, its contribution to entrained and free-running properties of the circadian clock is relatively minor.
Collapse
|
10
|
Hansen HD, Lacivita E, Di Pilato P, Herth MM, Lehel S, Ettrup A, Andersen VL, Dyssegaard A, De Giorgio P, Perrone R, Berardi F, Colabufo NA, Niso M, Knudsen GM, Leopoldo M. Synthesis, radiolabeling and in vivo evaluation of [11C](R)-1-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]-3-(2-pyrazinyloxy)-2-propanol, a potential PET radioligand for the 5-HT7 receptor. Eur J Med Chem 2014; 79:152-63. [DOI: 10.1016/j.ejmech.2014.03.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 01/12/2023]
|
11
|
Byrne EM, Heath AC, Madden PAF, Pergadia ML, Hickie IB, Montgomery GW, Martin NG, Wray NR. Testing the role of circadian genes in conferring risk for psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:254-60. [PMID: 24687905 PMCID: PMC4397914 DOI: 10.1002/ajmg.b.32230] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/19/2014] [Indexed: 01/26/2023]
Abstract
Disturbed sleep and disrupted circadian rhythms are a common feature of psychiatric disorders, and many groups have postulated an association between genetic variants in circadian clock genes and psychiatric disorders. Using summary data from the association analyses of the Psychiatric Genomics Consortia (PGC) for schizophrenia, bipolar disorder and major depressive disorder, we evaluated the evidence that common SNPs in genes encoding components of the molecular clock influence risk to psychiatric disorders. Initially, gene-based and SNP P-values were analyzed for 21 core circadian genes. Subsequently, an expanded list of genes linked to control of circadian rhythms was analyzed. After correcting for multiple comparisons, none of the circadian genes were significantly associated with any of the three disorders. Several genes previously implicated in the etiology of psychiatric disorders harbored no SNPs significant at the nominal level of P < 0.05, and none of the the variants identified in candidate studies of clock genes that were included in the PGC datasets were significant after correction for multiple testing. There was no evidence of an enrichment of associations in genes linked to control of circadian rhythms in human cells. Our results suggest that genes encoding components of the molecular clock are not good candidates for harboring common variants that increase risk to bipolar disorder, schizophrenia, or major depressive disorder.
Collapse
Affiliation(s)
- Enda M Byrne
- The University of Queensland, Queensland Brain Institute, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hansen HD, Herth MM, Ettrup A, Andersen VL, Lehel S, Dyssegaard A, Kristensen JL, Knudsen GM. Radiosynthesis and In Vivo Evaluation of Novel Radioligands for PET Imaging of Cerebral 5-HT7 Receptors. J Nucl Med 2014; 55:640-6. [DOI: 10.2967/jnumed.113.128983] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
13
|
Serotonin-2C receptor involved serotonin-induced Ca²⁺ mobilisations in neuronal progenitors and neurons in rat suprachiasmatic nucleus. Sci Rep 2014; 4:4106. [PMID: 24531181 PMCID: PMC3925950 DOI: 10.1038/srep04106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/30/2014] [Indexed: 02/03/2023] Open
Abstract
The hypothalamic suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals, undergoes serotonergic regulation, but the underlying mechanisms remain obscure. Here, we generated a subclone of an SCN progenitor cell line expressing Ca(2+) sensors (SCN2.2YC) and compared its 5-HT receptor signalling with that of rat SCN neurons in brain slices. SCN2.2YC cells expressed 5-HT1A/2A/2B/2C, but not 5A/7, while all six subtypes were expressed in SCN tissues. High K(+) or 5-HT increased cytosolic Ca(2+) in SCN2.2YC cells. The 5-HT responses were inhibited by ritanserin and SB-221284, but resistant to WAY-100635 and RS-127445, suggesting predominant involvement of 5-HT2C for Ca(2+) mobilisations. Consistently, Ca(2+) imaging and voltage-clamp electrophysiology using rat SCN slices demonstrated post-synaptic 5-HT2C expression. Because 5-HT2C expression was postnatally increased in the SCN and 5-HT-induced Ca(2+) mobilisations were amplified in differentiated SCN2.2YC cells and developed SCN neurons, we suggest that this signalling development occurs in accordance with central clock maturations.
Collapse
|
14
|
Paulus EV, Mintz EM. Photic and nonphotic responses of the circadian clock in serotonin-deficient Pet-1 knockout mice. Chronobiol Int 2013; 30:1251-60. [PMID: 24059871 DOI: 10.3109/07420528.2013.815198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The neurotransmitter serotonin plays an important role in the regulation of the circadian clock. To gain further insight into the mechanisms by which serotonin regulates rhythmicity, the authors investigated photic and nonphotic effects on the circadian clock in Pet-1 knockout mice. In these mice, the serotonergic system suffers a developmental loss of 70% of serotonin neurons, with the remaining neurons being deficient in serotonergic function as well. Pet-1 knockout mice show significantly decreased phase delays of the circadian clock in response to light pulses in the early night; however, this difference was not reflected in a difference in the expression of Fos protein in the suprachiasmatic nucleus. There were no genotypic differences detected in the phase-shifting response to injection of the 5-HT1A/7 (serotonin 1A and 7) agonist 8-OH-DPAT ((±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide); however, there were small but significant differences in the phase-shifting responses to cages between genotypes and sexes. Several different patterns of wheel-running activity were observed in knockout mice that differed from those in wild-type mice, suggesting that normal serotonergic function is necessary for the proper consolidation of nocturnal activity. Overall, these data are consistent with other pharmacological and genetic studies demonstrating a significant role for serotonin in circadian clock function.
Collapse
Affiliation(s)
- Erin V Paulus
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University , Kent, Ohio , USA
| | | |
Collapse
|
15
|
Horikawa K, Fuji K, Fukazawa Y, Shibata S. Two Distinct Serotonin Receptors Co-mediate Non-photic Signals to the Circadian Clock. J Pharmacol Sci 2013; 123:402-6. [DOI: 10.1254/jphs.13170sc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
16
|
Glass JD, Brager AJ, Stowie AC, Prosser RA. Cocaine modulates pathways for photic and nonphotic entrainment of the mammalian SCN circadian clock. Am J Physiol Regul Integr Comp Physiol 2012; 302:R740-50. [PMID: 22218419 DOI: 10.1152/ajpregu.00602.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cocaine abuse is highly disruptive to circadian physiological and behavioral rhythms. The present study was undertaken to determine whether such effects are manifest through actions on critical photic and nonphotic regulatory pathways in the master circadian clock of the mouse suprachiasmatic nucleus (SCN). Impairment of SCN photic signaling by systemic (intraperitoneal) cocaine injection was evidenced by strong (60%) attenuation of light-induced phase-delay shifts of circadian locomotor activity during the early night. A nonphotic action of cocaine was apparent from its induction of 1-h circadian phase-advance shifts at midday. The serotonin receptor antagonist, metergoline, blocked shifting by 80%, implicating a serotonergic mechanism. Reverse microdialysis perfusion of the SCN with cocaine at midday induced 3.7 h phase-advance shifts. Control perfusions with lidocaine and artificial cerebrospinal fluid had little shifting effect. In complementary in vitro experiments, photic-like phase-delay shifts of the SCN circadian neuronal activity rhythm induced by glutamate application to the SCN were completely blocked by cocaine. Cocaine treatment of SCN slices alone at subjective midday, but not the subjective night, induced 3-h phase-advance shifts. Lidocaine had no shifting effect. Cocaine-induced phase shifts were completely blocked by metergoline, but not by the dopamine receptor antagonist, fluphenazine. Finally, pretreatment of SCN slices for 2 h with a low concentration of serotonin agonist (to block subsequent serotonergic phase resetting) abolished cocaine-induced phase shifts at subjective midday. These results reveal multiple effects of cocaine on adult circadian clock regulation that are registered within the SCN and involve enhanced serotonergic transmission.
Collapse
Affiliation(s)
- J David Glass
- Department of Biological Sciences, Kent State Univ., Kent, OH 44242, USA.
| | | | | | | |
Collapse
|
17
|
Li X, Frye MA, Shelton RC. Review of pharmacological treatment in mood disorders and future directions for drug development. Neuropsychopharmacology 2012; 37:77-101. [PMID: 21900884 PMCID: PMC3238080 DOI: 10.1038/npp.2011.198] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 08/06/2011] [Accepted: 08/06/2011] [Indexed: 02/07/2023]
Abstract
After a series of serendipitous discoveries of pharmacological treatments for mania and depression several decades ago, relatively little progress has been made for novel hypothesis-driven drug development in mood disorders. Multifactorial etiologies of, and lack of a full understanding of, the core neurobiology of these conditions clearly have contributed to these development challenges. There are, however, relatively novel targets that have raised opportunities for progress in the field, such as glutamate and cholinergic receptor modulators, circadian regulators, and enzyme inhibitors, for alternative treatment. This review will discuss these promising new treatments in mood disorders, the underlying mechanisms of action, and critical issues of their clinical application. For these new treatments to be successful in clinical practice, it is also important to design innovative clinical trials that identify the specific actions of new drugs, and, ideally, to develop biomarkers for monitoring individualized treatment response. It is predicted that future drug development will identify new agents targeting the molecular mechanisms involved in the pathophysiology of mood disorders.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Psychiatry and Behavioral Neuroscience, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
18
|
Interactions of the serotonin and circadian systems: nature and nurture in rhythms and blues. Neuroscience 2011; 197:8-16. [PMID: 21963350 DOI: 10.1016/j.neuroscience.2011.09.036] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 09/08/2011] [Accepted: 09/16/2011] [Indexed: 01/31/2023]
Abstract
The serotonin and circadian systems are principal regulatory networks of the brain. Each consists of a unique set of neurons that make widespread neural connections and a defined gene network of transcriptional regulators and signaling genes that subserve serotonergic and circadian function at the genetic level. These master regulatory networks of the brain are extensively intertwined, with reciprocal circuit connections, expression of key genetic elements for serotonin signaling in clock neurons and expression of key clock genes in serotonergic neurons. The reciprocal connections of the serotonin and circadian systems likely have importance for neurobehavioral disorders, as suggested by their convergent contribution to a similar range of mood disorders including seasonal affective disorder (SAD), bipolar disorder, and major depression, and as suggested by their overlapping relationship with the developmental disorder, autism spectrum disorder. Here we review the neuroanatomical and genetic basis for serotonin-circadian interactions in the brain, their potential relationship with neurobehavioral disorders, and recent work examining the effects on the circadian system of genetic perturbation of the serotonergic system as well as the molecular and behavioral effects of developmental imprinting of the circadian system with perinatal seasonal light cycles.
Collapse
|
19
|
Becnel J, Johnson O, Luo J, Nässel DR, Nichols CD. The serotonin 5-HT7Dro receptor is expressed in the brain of Drosophila, and is essential for normal courtship and mating. PLoS One 2011; 6:e20800. [PMID: 21674056 PMCID: PMC3107233 DOI: 10.1371/journal.pone.0020800] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 05/12/2011] [Indexed: 12/23/2022] Open
Abstract
The 5-HT(7) receptor remains one of the less well characterized serotonin receptors. Although it has been demonstrated to be involved in the regulation of mood, sleep, and circadian rhythms, as well as relaxation of vascular smooth muscles in mammals, the precise mechanisms underlying these functions remain largely unknown. The fruit fly, Drosophila melanogaster, is an attractive model organism to study neuropharmacological, molecular, and behavioral processes that are largely conserved with mammals. Drosophila express a homolog of the mammalian 5-HT(7) receptor, as well as homologs for the mammalian 5-HT(1A), and 5-HT(2), receptors. Each fly receptor couples to the same effector pathway as their mammalian counterpart and have been demonstrated to mediate similar behavioral responses. Here, we report on the expression and function of the 5-HT(7)Dro receptor in Drosophila. In the larval central nervous system, expression is detected postsynaptically in discreet cells and neuronal circuits. In the adult brain there is strong expression in all large-field R neurons that innervate the ellipsoid body, as well as in a small group of cells that cluster with the PDF-positive LNvs neurons that mediate circadian activity. Following both pharmacological and genetic approaches, we have found that 5-HT(7)Dro activity is essential for normal courtship and mating behaviors in the fly, where it appears to mediate levels of interest in both males and females. This is the first reported evidence of direct involvement of a particular serotonin receptor subtype in courtship and mating in the fly.
Collapse
Affiliation(s)
- Jaime Becnel
- Department of Pharmacology and Experimental
Therapeutics, Louisiana State University Health Sciences Center, New Orleans,
Louisiana, United States of America
| | - Oralee Johnson
- Department of Pharmacology and Experimental
Therapeutics, Louisiana State University Health Sciences Center, New Orleans,
Louisiana, United States of America
| | - Jiangnan Luo
- Department of Zoology, Stockholm University,
Stockholm, Sweden
| | - Dick R. Nässel
- Department of Zoology, Stockholm University,
Stockholm, Sweden
| | - Charles D. Nichols
- Department of Pharmacology and Experimental
Therapeutics, Louisiana State University Health Sciences Center, New Orleans,
Louisiana, United States of America
| |
Collapse
|
20
|
Leopoldo M, Lacivita E, Berardi F, Perrone R, Hedlund PB. Serotonin 5-HT7 receptor agents: Structure-activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol Ther 2010; 129:120-48. [PMID: 20923682 DOI: 10.1016/j.pharmthera.2010.08.013] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 12/19/2022]
Abstract
Since its discovery in the 1940s in serum, the mammalian intestinal mucosa, and in the central nervous system, serotonin (5-HT) has been shown to be involved in virtually all cognitive and behavioral human functions, and alterations in its neurochemistry have been implicated in the etiology of a plethora of neuropsychiatric disorders. The cloning of 5-HT receptor subtypes has been of importance in enabling them to be classified as specific protein molecules encoded by specific genes. The 5-HT(7) receptor is the most recently classified member of the serotonin receptor family. Since its identification, it has been the subject of intense research efforts driven by its presence in functionally relevant regions of the brain. The availability of some selective antagonists and agonists, in combination with genetically modified mice lacking the 5-HT(7) receptor, has allowed for a better understanding of the pathophysiological role of this receptor. This paper reviews data on localization and pharmacological properties of the 5-HT(7) receptor, and summarizes the results of structure-activity relationship studies aimed at the discovery of selective 5-HT(7) receptor ligands. Additionally, an overview of the potential therapeutic applications of 5-HT(7) receptor agonists and antagonists in central nervous system disorders is presented.
Collapse
Affiliation(s)
- Marcello Leopoldo
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari "A. Moro", via Orabona, 4, 70125 Bari, Italy.
| | | | | | | | | |
Collapse
|
21
|
Leopoldo M, Lacivita E, Berardi F, Perrone R. 5-HT(7) receptor modulators: a medicinal chemistry survey of recent patent literature (2004 - 2009). Expert Opin Ther Pat 2010; 20:739-54. [PMID: 20476847 DOI: 10.1517/13543776.2010.484802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD The 5-HT(7) receptors are discretely localized within the CNS (thalamus, hypothalamus, limbic and cortical regions). The 5-HT(7) receptors are also present in smooth muscle cells from blood vessels and have been reported in gastrointestinal tract as well as in rat lumbar dorsal root and sympathetic ganglia. The 5-HT(7) receptors have been implicated in depression, disorders related to circadian rhythms, pain and migraine. Thus, there is a great interest in developing potent and selective 5-HT(7) receptor modulators. AREAS COVERED IN THIS REVIEW This review article highlights the research advances published in the patent literature between January 2004 and December 2009, giving emphasis to the medicinal chemist's standpoint. WHAT THE READER WILL GAIN Readers will rapidly gain an overview of the various 5-HT(7) receptor modulators reported in the patent literature in the past 6 years. Furthermore, the readers will learn which structure type can interact with 5-HT(7) receptor and also the different companies that are the main players in the field. TAKE HOME MESSAGE Although no 5-HT(7) modulator has entered clinical trials, the development and future use of different agonists and antagonists suitable for use in vivo seem very promising.
Collapse
Affiliation(s)
- Marcello Leopoldo
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari A. Moro, via Orabona 4, Bari 70125, Italy.
| | | | | | | |
Collapse
|
22
|
Filip M, Bader M. Overview on 5-HT receptors and their role in physiology and pathology of the central nervous system. Pharmacol Rep 2010; 61:761-77. [PMID: 19903999 DOI: 10.1016/s1734-1140(09)70132-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/21/2009] [Indexed: 12/19/2022]
Abstract
The present review gives an overview on the serotonin (5-hydroxytryptamine; 5-HT) system, its receptors and their relationship to central nervous system physiology and disorders. Additionally, we also introduce the recent knowledge about the 5-HT receptor ligands in preclinical research, clinical trials and as approved drugs.
Collapse
Affiliation(s)
- Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Kraków, Poland.
| | | |
Collapse
|
23
|
Differential influence of selective 5-HT5A vs 5-HT1A, 5-HT1B, or 5-HT2C receptor blockade upon light-induced phase shifts in circadian activity rhythms: interaction studies with citalopram. Eur Neuropsychopharmacol 2009; 19:887-97. [PMID: 19604677 DOI: 10.1016/j.euroneuro.2009.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/06/2009] [Accepted: 06/16/2009] [Indexed: 11/20/2022]
Abstract
Though serotonergic mechanisms modulate circadian rhythms, roles of individual serotonin (5-HT) receptors remain uncertain since data are lacking for antagonists. Herein, both the 5-HT(5A) receptor antagonist, A843277 (10 mg/kg), and the 5-HT(1B) antagonist, SB224289 (1 mg/kg), inhibited light-induced phase advances in hamster circadian wheel-running rhythms. Conversely, though 5-HT(1A) and 5-HT(7) receptors are likewise implicated in circadian scheduling, their blockade by WAY100635 (0.5 mg/kg) and SB269970 (1 mg/kg), respectively, was ineffective. Since actions of 5-HT reuptake inhibitors are modified by antagonists, we evaluated their influence on suppression of phase advances by citalopram (10 mg/kg). Its action was potentiated by WAY100635 and the 5-HT(2C) antagonist, SB242084 (1 mg/kg), but not by A842377, SB224289, SB269970, and antagonists at 5-HT(2A) (MDL100907) and 5-HT(6) (SB399885) receptors. In conclusion, this is the first in vivo evidence for an influence of 5-HT(5A) receptors upon circadian rhythms, but no single class of 5-HT receptor mediates their control by citalopram.
Collapse
|
24
|
Biello SM. Circadian clock resetting in the mouse changes with age. AGE (DORDRECHT, NETHERLANDS) 2009; 31:293-303. [PMID: 19557547 PMCID: PMC2813053 DOI: 10.1007/s11357-009-9102-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 06/08/2009] [Indexed: 05/28/2023]
Abstract
The most widely recognised consequence of normal age-related changes in biological timing is the sleep disruption that appears in old age and diminishes the quality of life. These sleep disorders are part of the normal ageing process and consist primarily of increased amounts of wakefulness and reduced amounts of deep sleep. Changes in the amplitude and timing of the sleep-wake cycle appear to represent, at least in part, a loss of effective circadian regulation of sleep. Understanding alterations in the characteristics of stimuli that help to consolidate internal rhythms will lead to recommendations to improve synchronisation in old age. Converging evidence from both human and animal studies indicate that senescence is associated with alterations in the neural structure thought to be primarily responsible for the generation of the circadian oscillation, the suprachiasmatic nuclei (SCN). Work has shown that there are changes in the anatomy, physiology and ability of the clock to reset in response to stimuli with age. Therefore it is possible that at least some of the observed age-related changes in sleep and circadian timing could be mediated at the level of the SCN. The SCN contain a circadian clock whose activity can be recorded in vitro for several days. We have tested the response of the circadian clock to a number of neurochemicals that reset the clock in a manner similar to light, including glutamate, N-methyl-D-aspartate (NMDA), gastrin-releasing peptide (GRP) and histamine (HA). In addition, we have also tested agents which phase shift in a pattern similar to behavioural 'non-photic' signals, including neuropeptide Y (NPY), serotonin (5HT) and gamma-aminobutyric acid (GABA). These were tested on the circadian clock in young and older mice (approximately 4 and 15 months old). We found deficits in the response to specific neurochemicals but not to others in our older mice. These results indicate that some changes seen in the responsiveness of the circadian clock to light with age may be mediated at the level of the SCN. Further, the responsiveness of the circadian clock with age is attenuated to some, but not all stimuli. This suggests that not all clock stimuli lose their effectiveness with age, and that it may be possible to compensate for deficits in clock performance by enhancing the strength of those stimulus pathways which are intact.
Collapse
|
25
|
The 5-HT7 receptor and disorders of the nervous system: an overview. Psychopharmacology (Berl) 2009; 206:345-54. [PMID: 19649616 PMCID: PMC2841472 DOI: 10.1007/s00213-009-1626-0] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 07/14/2009] [Indexed: 12/20/2022]
Abstract
RATIONALE The 5-HT(7) receptor is a more recently discovered G-protein-coupled receptor for serotonin. The functions and possible clinical relevance of this receptor are not yet fully understood. OBJECTIVE The present paper reviews to what extent the use of animal models of human psychiatric and neurological disorders have implicated the 5-HT(7) receptor in such disorders. The studies have used a combination of pharmacological and genetic tools targeting the receptor to evaluate effects on behavior. RESULTS Models of anxiety and schizophrenia have yielded mixed results with no clear role for the 5-HT(7) receptor described in these disorders. Some data are available for epilepsy, migraine, and pain but it is still very early to draw any definitive conclusions. There is a considerable amount of evidence supporting a role for the 5-HT(7) receptor in depression. Both blockade and inactivation of the receptor have resulted in an antidepressant-like profile in models of depression. Supporting evidence has also been obtained in sleep studies. Especially interesting are the augmented effects achieved by combining antidepressants and 5-HT(7) receptor antagonists. The antidepressant effect of amisulpride has been shown to most likely be mediated by the 5-HT(7) receptor. CONCLUSIONS The use of pharmacological and genetic tools in preclinical animal models strongly supports a role for the 5-HT(7) receptor in depression. Indirect evidence exists showing that 5-HT(7) receptor antagonism is clinically useful in the treatment of depression. Available data also indicate a possible involvement of the 5-HT(7) receptor in anxiety, epilepsy, pain, and schizophrenia.
Collapse
|
26
|
Smith VM, Hagel K, Antle MC. Serotonergic potentiation of photic phase shifts: examination of receptor contributions and early biochemical/molecular events. Neuroscience 2009; 165:16-27. [PMID: 19799970 DOI: 10.1016/j.neuroscience.2009.09.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 11/17/2022]
Abstract
The 5-HT mixed agonist/antagonist 1-(2-methoxyphenyl)4-[4-(phthalimido)butyl]-piperazine hydrobromide (NAN-190) has been shown to greatly potentiate photic phase shifts in hamsters. The mechanism of this potentiation has yet to be determined. NAN-190 is believed to act primarily through the 5-HT(1A) receptor, but also binds to several other receptors, making it uncertain as to which receptor underlies its potentiation of photic phase shifts. Also uncertain are the intracellular changes in the suprachiasmatic nucleus (SCN) which are associated with such enhanced phase shifting. Here we examine the role of the 5-HT(1A) receptor as well as the physiological underpinnings, in terms of both gene expression and biochemical activation, in the behavioral responses to photic stimuli following pretreatment with NAN-190. Administration of NAN-190 to wildtype mice significantly potentiated late subjective night photic phase shifts, while mice lacking the 5-HT(1A) receptor (knockouts) exhibited an attenuated behavioral response to light when pretreated with NAN-190. In wildtype mice, the protein product of the immediate-early gene c-fos, induced following photic stimulation, was found to be significantly decreased with NAN-190 pretreatment. Similarly, the levels of phosphorylated CREB protein, involved in a biochemical pathway leading to gene transcription, were also attenuated by NAN-190 in the wildtype mice. However, activation of the extracellular signal-regulated kinase I/II (ERK) pathway in wildtype mice, following the light pulse, was not affected by NAN-190 pretreatment, nor was the expression of the circadian clock components Period1 and Period2. These findings suggest that the 5-HT(1A) receptor plays a critical role in the potentiation effect observed with NAN-190, and that NAN-190 may potentiate photic phase shifts at least partly by down-regulating the activity of some (but not all) genes and biochemical pathways involved in coupling the light signal to the output of the circadian clock.
Collapse
Affiliation(s)
- V M Smith
- Department of Psychology, University of Calgary, AB, Canada
| | | | | |
Collapse
|
27
|
Medina RA, Sallander J, Benhamú B, Porras E, Campillo M, Pardo L, López-Rodríguez ML. Synthesis of new serotonin 5-HT7 receptor ligands. Determinants of 5-HT7/5-HT1A receptor selectivity. J Med Chem 2009; 52:2384-92. [PMID: 19326916 DOI: 10.1021/jm8014553] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis of a new set of compounds of general structure I (1-20) with structural modifications in the pharmacophoric elements of the previously reported lead UCM-5600. The new derivatives have been evaluated for binding affinity at 5-HT(7) and 5-HT(1A) receptors. The influence of the different structural features in terms of 5-HT(7)/5-HT(1A) receptor affinity and selectivity was analyzed by computational simulations of the complexes between compounds I and beta(2)-based 3-D models of these receptors. Compound 18 (HYD(1) = 1,3-dihydro-2H-indol-2-one; spacer = -(CH(2))(4)-; HYD(2) + HYD(3) = 3,4-dihydroisoquinolin-2(1H)-yl) exhibits high 5-HT(7)R affinity (K(i) = 7 nM) and selectivity over the 5-HT(1A)R (31-fold), and has been characterized as a partial agonist of the human 5-HT(7)R.
Collapse
Affiliation(s)
- Rocío A Medina
- Departamento de Quimica Organica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Kaur G, Thind R, Glass JD. Brief constant light accelerates serotonergic re-entrainment to large shifts of the daily light/dark cycle. Neuroscience 2009; 159:1430-40. [PMID: 19217929 DOI: 10.1016/j.neuroscience.2009.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 02/06/2009] [Accepted: 02/07/2009] [Indexed: 11/29/2022]
Abstract
Brief ( approximately 2 day) constant light exposure (LL(b)) in hamsters dramatically enhances circadian phase-resetting induced by the 5-HT receptor agonist, (+/-)-2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahydronapthalene (8-OH-DPAT) and other nonphotic stimuli. The present study was undertaken to determine if LL(b) can also amplify phase-resetting responses to endogenous 5-HT and accelerate re-entrainment to large-magnitude advance and delay shifts of the light/dark (LD) cycle. First, central serotonergic activity was increased by i.p. injection of L-tryptophan+/-the 5-HT reuptake inhibitor fluoxetine. Hamsters under LD or exposed to LL(b) received vehicle or drugs during the early morning, and phase-shifts of the locomotor activity rhythm were measured after release to constant darkness. Neither drug phase-shifted animals not exposed to LL(b) (P>0.5 vs. vehicle); however in animals receiving LL(b,)L-tryptophan with and without fluoxetine produced large phase-advance shifts (means=2.5+/-0.4 h and 2.6+/-0.2 h, respectively; both P<0.035 vs. vehicle). Next, the effects of LL(b) combined with 8-OH-DPAT or L-tryptophan+fluoxetine on serotonergic re-entrainment to 10 h phase-advance and phase-delay shifts of the LD cycle were assessed. In groups not exposed to LL(b), vehicle controls re-entrained slowly to the advance and delay shifts (means=16+/-1 and 24+/-4 days, respectively), but those treated with 8-OH-DPAT re-entrained faster (means=11+/-2 and 9+/-2 days, respectively; both P<0.05 vs. vehicle). In groups exposed to LL(b), vehicle controls re-entrained slowly to the advance and delay shifts (means=15+/-2 and 25+/-3 days, respectively); however those receiving 8-OH-DPAT rapidly re-entrained to the delay and advance shifts, with the majority (75%) requiring only 1-2 days (means=2+/-1 and 4+/-2 days, respectively; both P<0.05 vs. vehicle). Animals exposed to LL(b) and treated with L-tryptophan+fluoxetine also exhibited accelerated re-entrainment to a 10 h advance shift (mean=5+/-2 days; P<0.05 vs. vehicle). Thus through enhancing serotonergic phase-resetting, LL(b) facilitates rapid re-entrainment to large shifts of the LD cycle which offers a potential approach for treating circadian-related desynchronies.
Collapse
Affiliation(s)
- G Kaur
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | | |
Collapse
|
29
|
Smith VM, Sterniczuk R, Phillips CI, Antle MC. Altered photic and non-photic phase shifts in 5-HT(1A) receptor knockout mice. Neuroscience 2008; 157:513-23. [PMID: 18930788 DOI: 10.1016/j.neuroscience.2008.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 11/30/2022]
Abstract
The mammalian circadian clock located in the suprachiasmatic nucleus (SCN) is thought to be modulated by 5-HT. 5-HT is though to inhibit photic phase shifts by inhibiting the release of glutamate from retinal terminals, as well as by decreasing the responsiveness of retinorecipient cells in the SCN. Furthermore, there is also evidence that 5-HT may underlie, in part, non-photic phase shifts of the circadian system. Understanding the mechanism by which 5-HT accomplishes these goals is complicated by the wide variety of 5-HT receptors found in the SCN, the heterogeneous organization of both the circadian clock and the location of 5-HT receptors, and by a lack of sufficiently selective pharmacological agents for the 5-HT receptors of interest. Genetically modified animals engineered to lack a specific 5-HT receptor present an alternative avenue of investigation to understand how 5-HT regulates the circadian system. Here we examine behavioral and molecular responses to both photic and non-photic stimuli in mice lacking the 5-HT(1A) receptor. When compared with wild-type controls, these mice exhibit larger phase advances to a short late-night light pulse and larger delays to long 12 h light pulses that span the whole subjective night. Fos and mPer1 expression in the retinorecipient SCN is significantly attenuated following late-night light pulses in the 5-HT(1A) knockout animals. Finally, non-photic phase shifts to (+/-)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) are lost in the knockout animals, while attenuation of the phase shift to the long light pulse due to rebound activity following a wheel lock is unaffected. These findings suggest that the 5-HT(1A) receptor plays an inhibitory role in behavioral phase shifts, a facilitatory role in light-induced gene expression, a necessary role in phase shifts to 8-OH-DPAT, and is not necessary for activity-induced phase advances that oppose photic phase shifts to long light pulses.
Collapse
Affiliation(s)
- V M Smith
- Department of Psychology, University of Calgary, 2500 University Drive Northwest, Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|
30
|
Affiliation(s)
- David E Nichols
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Purdue University, West Lafayette, Indiana 47906-2091, USA.
| | | |
Collapse
|
31
|
Gardani M, Biello S. The effects of photic and nonphotic stimuli in the 5-HT7 receptor knockout mouse. Neuroscience 2008; 152:245-53. [DOI: 10.1016/j.neuroscience.2007.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 10/23/2007] [Accepted: 10/25/2007] [Indexed: 01/03/2023]
|
32
|
Acute ethanol modulates glutamatergic and serotonergic phase shifts of the mouse circadian clock in vitro. Neuroscience 2008; 152:837-48. [PMID: 18313227 DOI: 10.1016/j.neuroscience.2007.12.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 12/18/2007] [Accepted: 12/28/2007] [Indexed: 01/05/2023]
Abstract
Alcohol abuse is associated with sleep problems, which are often linked to circadian rhythm disturbances. However, there is no information on the direct effects of ethanol on the mammalian circadian clock. Acute ethanol inhibits glutamate signaling, which is the primary mechanism through which light resets the mammalian clock in the suprachiasmatic nucleus (SCN). Glutamate and light also inhibit circadian clock resetting induced by nonphotic signals, including 5-HT. Thus, we investigated the effects of acute ethanol on both glutamatergic and serotoninergic resetting of the mouse SCN clock in vitro. We show that ethanol dose-dependently inhibits glutamate-induced phase shifts and enhances serotonergic phase shifts. The inhibition of glutamate-induced phase shifts is not affected by excess glutamate, glycine or d-serine, but is prevented by excess brain-derived neurotrophic factor (BDNF). BDNF is known to augment glutamate signaling in the SCN and to be necessary for glutamate/light-induced phase shifts. Thus, ethanol may inhibit glutamate-induced clock resetting at least in part by blocking BDNF enhancement of glutamate signaling. Ethanol enhancement of serotonergic phase shifts is mimicked by treatments that suppress glutamate signaling in the SCN, including antagonists of glutamate receptors, BDNF signaling and nitric oxide synthase. The combined effect of ethanol with these treatments is not additive, suggesting they act through a common pathway. Our data indicate further that the interaction between 5-HT and glutamate in the SCN may occur downstream from nitric oxide synthase activation. Thus, acute ethanol disrupts normal circadian clock phase regulation, which could contribute to the physiological and psychological problems associated with alcohol abuse.
Collapse
|
33
|
Recent Advances on the 5-HT5A, 5-HT6 and 5-HT7 Receptors. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1016/s0065-7743(08)00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
34
|
Gannon RL, Millan MJ. Evaluation of serotonin, noradrenaline and dopamine reuptake inhibitors on light-induced phase advances in hamster circadian activity rhythms. Psychopharmacology (Berl) 2007; 195:325-32. [PMID: 17694388 DOI: 10.1007/s00213-007-0903-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 07/18/2007] [Indexed: 10/22/2022]
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs) are widely prescribed for the treatment of anxiodepressive states that are often associated with perturbed circadian rhythms including, in certain patients, phase advances. Surprisingly, the influence of SSRIs upon circadian activity rhythms has been little studied in experimental models. OBJECTIVES Accordingly, this study examined the ability of SSRIs to modulate the phase-setting properties of light on circadian activity rhythms in hamsters. Their actions were compared to those of the mixed serotonin/noradrenaline reuptake inhibitor (SNRI), venlafaxine, the selective noradrenaline reuptake inhibitor, reboxetine, and the dopamine reuptake inhibitor, bupropion. MATERIALS AND METHODS Wheel-running activity rhythms were recorded in male Syrian hamsters. Drugs were administered systemically before a light stimulus that was used to advance the timing of the hamster running rhythms. RESULTS Four chemically diverse SSRIs, citalopram (1-10 mg/kg, intraperitoneally), fluvoxamine (1-10), paroxetine (1-10), and fluoxetine (10 and 20), all robustly and significantly inhibited the ability of light to phase advance hamster circadian wheel-running activity rhythms. Their actions were mimicked by venlafaxine (1-10) that likewise elicited a marked reduction in phase advances. Conversely, reboxetine (1-20) and bupropion (1-20) did not exert significant effects. CONCLUSIONS These data suggest that suppression of serotonin (but not noradrenaline or dopamine) reuptake by SSRIs and SNRIs modifies circadian locomotor activity rhythms in hamsters. Further, they support the notion that an inhibitory influence upon the early-morning light-induced advance in circadian activity contributes to the therapeutic effects of serotonin uptake inhibitors in certain depressed patients.
Collapse
Affiliation(s)
- Robert L Gannon
- Department of Biology, Valdosta State University, Valdosta, GA 31698, USA.
| | | |
Collapse
|
35
|
Brown TM, Piggins HD. Electrophysiology of the suprachiasmatic circadian clock. Prog Neurobiol 2007; 82:229-55. [PMID: 17646042 DOI: 10.1016/j.pneurobio.2007.05.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/29/2007] [Accepted: 05/30/2007] [Indexed: 01/28/2023]
Abstract
In mammals, an internal timekeeping mechanism located in the suprachiasmatic nuclei (SCN) orchestrates a diverse array of neuroendocrine and physiological parameters to anticipate the cyclical environmental fluctuations that occur every solar day. Electrophysiological recording techniques have proved invaluable in shaping our understanding of how this endogenous clock becomes synchronized to salient environmental cues and appropriately coordinates the timing of a multitude of physiological rhythms in other areas of the brain and body. In this review we discuss the pioneering studies that have shaped our understanding of how this biological pacemaker functions, from input to output. Further, we highlight insights from new studies indicating that, more than just reflecting its oscillatory output, electrical activity within individual clock cells is a vital part of SCN clockwork itself.
Collapse
Affiliation(s)
- Timothy M Brown
- Faculty of Life Sciences, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
36
|
Siddiqui A, Niazi A, Shaharyar S, Wilson CA. The 5HT(7) receptor subtype is involved in the regulation of female sexual behaviour in the rat. Pharmacol Biochem Behav 2007; 87:386-92. [PMID: 17561239 DOI: 10.1016/j.pbb.2007.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/04/2007] [Accepted: 05/17/2007] [Indexed: 11/16/2022]
Abstract
5-Hydroxytryptamine (5-HT) regulates sexual behaviour in the female rat via a number of its receptors. The role of the 5HT(7) receptor was investigated in ovariectomised rats primed with 10 mug oestradiol benzoate (OB) followed at 48 h by 0.5 mg progesterone, which induced receptivity in approximately half of the animals. These animals were treated with three agonists all effective at 5HT(1A) and 5HT(7) receptors; 5-hydroxytryptophan, 8-hydroxy-2-(di-n-propylamino)tetralin 1-Br (8-OH DPAT) and 5-carboxy-aminotryptamine (5-CT) in the presence or absence of selective 5HT(1A) and 5HT(7) antagonists: WAY 100135 and SB 269970-A. The three agonists inhibited lordosis in the receptive group, and this was prevented by both the selective 5HT(1A) and 5HT(7) antagonists. When given alone, both WAY 100135 and SB 269970-A increased the lordosis in the non-receptive rats indicating that endogenous 5-HT acting on 5HT(1A) and 5HT(7) receptors may have a tonic inhibitory effect on receptivity. A comparison of OB priming doses on the effect of serotoninergic agents showed that the higher OB doses attenuated the inhibitory effect of 8-OH DPAT and enhanced the stimulatory effect of WAY 100135, but did not affect the actions of 5-CT or SB 269970-A. The interaction between oestradiol and 5-HT activity on sexual behaviour may therefore be selective to the 5HT(1A) pathway.
Collapse
Affiliation(s)
- Arif Siddiqui
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan.
| | | | | | | |
Collapse
|
37
|
Paillet-Loilier M, Fabis F, Lepailleur A, Bureau R, Butt-Gueulle S, Dauphin F, Lesnard A, Delarue C, Vaudry H, Rault S. Novel aminoethylbiphenyls as 5-HT7 receptor ligands. Bioorg Med Chem Lett 2007; 17:3018-22. [PMID: 17419056 DOI: 10.1016/j.bmcl.2007.03.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 03/16/2007] [Accepted: 03/19/2007] [Indexed: 01/31/2023]
Abstract
The synthesis of a series of aminoethylbiphenyls as novel 5-HT(7) receptor ligands is described. The novel derivatives exhibit high affinity for the 5-HT(7) receptor with selectivity toward 5-HT(1A) receptor.
Collapse
Affiliation(s)
- Magalie Paillet-Loilier
- Centre d'Etudes et de Recherche sur le Médicament de Normandie EA3915, Université de Caen, UFR des Sciences Pharmaceutiques, 5, rue Vaubénard 14032 Caen Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Prosser RA, Lee HM, Wehner A. Serotonergic pre-treatments block in vitro serotonergic phase shifts of the mouse suprachiasmatic nucleus circadian clock. Neuroscience 2006; 142:547-55. [PMID: 16876330 DOI: 10.1016/j.neuroscience.2006.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 02/01/2023]
Abstract
The suprachiasmatic nucleus (SCN) contains a circadian clock that maintains its time-generating and phase-modulating capacities in vitro. Previous studies report clear differences in the ability of serotonergic stimuli to phase-shift the SCN clock when applied directly to the SCN either in vivo or in vitro: while mice and rat circadian clocks are readily phase-shifted by serotonin (5-HT) or 5-HT agonists applied in vitro, hamster and mice circadian clocks respond inconsistently to 5-HT agonists injected directly into the SCN in vivo. Here we have investigated one possible explanation for these differences: that the SCN isolated in vitro experiences reduced endogenous 5-HT signaling, which increases clock sensitivity to subsequent 5-HT stimulation. For these experiments we treated mouse SCN brain slices with low concentrations of compounds that increase serotonin signaling: 5-HT, a 5-HT agonist (8-OH-DPAT), the 5-HT precursor, l-tryptophan, or the 5-HT re-uptake inhibitor, fluoxetine. Pretreatment with each of these substances completely blocked subsequent phase-shifts induced by mid-subjective day treatment with either 5-HT or 8-OH-DPAT, while they did not block phase-shifts induced by the adenylate cyclase activator, forskolin. Time-course data on l-tryptophan-induced inhibition are consistent with this treatment inducing receptor internalization, while timing of the recovery from inhibition is consistent with receptor reinsertion. Together these data support the hypothesis that SCN clock sensitivity to serotonergic phase modulation is affected by the amount of prior serotonin signaling present in the SCN, and that this signaling alters the density of surface 5-HT receptors on SCN clock neurons.
Collapse
Affiliation(s)
- R A Prosser
- Department of Biochemistry and Cellular and Molecular Biology, Walters Life Sci Building M407, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | |
Collapse
|
39
|
Knoch ME, Siegel D, Duncan MJ, Glass JD. Serotonergic mediation of constant light-potentiated nonphotic phase shifting of the circadian locomotor activity rhythm in Syrian hamsters. Am J Physiol Regul Integr Comp Physiol 2006; 291:R180-8. [PMID: 16760334 DOI: 10.1152/ajpregu.00047.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Short-term (1–3 days) constant light exposure (brief LL) potentiates nonphotic phase shifting induced by sleep deprivation and serotonin (5-HT) agonist stimulation. The present assessments reveal that exposure to brief LL markedly alters the magnitude and shape of the 5-HT1A,7 receptor agonist, 8-(+)2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahyronapthalene (8-OH-DPAT) phase-response curve, facilitating (∼12 h) phase-advance shifts during the early morning when serotonergics have no phase-shifting effect. Brief LL also reduces the threshold for 8-OH-DPAT shifting at midday, evidenced by 5- to 6-h phase-advance shifts elicited by dosages that have no effect without the LL treatment. The brief LL-potentiated phase advances to intraperitoneal 8-OH-DPAT at zeitgeber time 0 (ZT 0) were blocked by the 5-HT1A antagonists, pindolol and WAY 100635, indicating that this shifting is mediated by 5-HT1A receptors. Antagonists with action at 5-HT7 receptors, including ritanserin and metergoline, were without effect. Although autoradiographic analyses of [3H]8-OH-DPAT binding indicate that brief LL does not upregulate suprachiasmatic nucleus (SCN) 5-HT1A receptor binding, intra-SCN microinjection of 8-OH-DPAT at ZT 0 in brief LL-exposed hamsters induced shifts similar to those produced by intraperitoneal injection, suggesting that SCN 5-HT1A receptors mediate potentiated 8-OH-DPAT-induced shifts during the early morning. Lack of shifting by intra-SCN 8-OH-DPAT at ZT 6 or 18 (when intraperitoneal 8-OH-DPAT induces large shifts), further indicates that brief LL-potentiated shifts at these time points are mediated by 5-HT target(s) outside the SCN. Significantly, sleep deprivation-induced phase-advance shifts potentiated by brief LL (∼9 h) at ZT 0 were blocked by pindolol, suggesting that these behavioral shifts could be mediated by the same SCN 5-HT1A receptor phase-resetting pathway as that activated by 8-OH-DPAT treatment.
Collapse
Affiliation(s)
- Megan E Knoch
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | | | | |
Collapse
|
40
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
41
|
Duncan MJ, Davis VA. Cyclic AMP mediates circadian phase shifts induced by microinjection of serotonergic drugs in the hamster dorsal raphe nucleus. Brain Res 2005; 1058:10-6. [PMID: 16150426 DOI: 10.1016/j.brainres.2005.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 07/13/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022]
Abstract
We have previously shown that pretreatment with a 5-HT(7) receptor antagonist, SB-269970-A, attenuated phase shifts induced by microinjections of serotonergic agonists in the hamster dorsal raphe (Duncan, M.J., Grear, K.E., Hoskins, M.A.; Brain Research 1008:40-48, 2004). Although SB-269970-A is highly selective for the 5-HT(7) receptors, it has moderate affinity for the 5-HT(5A) receptors, which are present in the hamster dorsal raphe. To further test whether the 5-HT(7) receptors mediate the phase shifting effect of serotonergic agonists in the dorsal raphe, we investigated the role of cAMP because this second messenger is increased by activation of the 5-HT(7) receptors but inhibited by activation of the 5-HT(5A) or 5-HT(1A) receptors. As an additional control experiment, the effect of WAY-100,635, an antagonist to the 5-HT(1A) receptors, was tested. The results showed that local administration of Rp-cAMPS (1 microM), a cAMP antagonist, significantly reduced the phase shift induced by the 5-HT(1A/5A/7) agonist, (R)-(+)8-hydroxy-2-(di-n-propylamino)tetralin (10 microM), microinjected into the dorsal raphe 6 h before lights off. Furthermore, microinjection of 8-bromo-cAMP (50 microM) induced significantly larger phase shifts than vehicle. In the last experiment, microinjection of the dorsal raphe with WAY-100,635 (50 nM) before the 5-HT(1A/5A/7) agonist, 5-carboxyamidotryptamine (100 nM), did not significantly affect the phase shift. These results show that activation of cAMP-dependent kinase by cAMP is necessary and sufficient for induction of phase shifts by serotonergic drugs in the hamster dorsal raphe. Furthermore, these findings are consistent with the hypothesis that the 5-HT(7) but not the 5-HT(5A) or 5-HT(1A) receptors mediate serotonergic phase shifts.
Collapse
Affiliation(s)
- Marilyn J Duncan
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|