1
|
Kim P, Garner N, Tatkovic A, Parsons R, Chunduri P, Vukovic J, Piper M, Pfeffer M, Weiergräber M, Oster H, Rawashdeh O. Melatonin's role in the timing of sleep onset is conserved in nocturnal mice. NPJ BIOLOGICAL TIMING AND SLEEP 2024; 1:13. [PMID: 39493889 PMCID: PMC11530376 DOI: 10.1038/s44323-024-00013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
Melatonin supplementation strengthens non-restorative sleep rhythms and its temporal alignment in both humans and night-active rodents. Of note, although the sleep cycle is reversed in day-active and night-active (nocturnal) mammals, both, produce melatonin at night under the control of the circadian clock. The effects of exogenous melatonin on sleep and sleepiness are relatively clear, but its endogenous role in sleep, particularly, in timing sleep onset (SO), remains poorly understood. We show in nocturnal mice that the increases in mid-nighttime sleep episodes, and the mid-nighttime decline in activity, are coupled to nighttime melatonin signaling. Furthermore, we show that endogenous melatonin modulates SO by reducing the threshold for wake-to-sleep transitioning. Such link between melatonin and SO timing may explain phenomena such as increased sleep propensity in circadian rhythm sleep disorders and chronic insomnia in patients with severely reduced nocturnal melatonin levels. Our findings demonstrate that melatonin's role in sleep is evolutionarily conserved, effectively challenging the argument that melatonin cannot play a major role in sleep regulation in nocturnal mammals, where the main activity phase coincides with high melatonin levels.
Collapse
Affiliation(s)
- Pureum Kim
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Nicholas Garner
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Annaleis Tatkovic
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Rex Parsons
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
- Present Address: Australian Centres for Health Services Innovation and Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD Australia
| | - Prasad Chunduri
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Jana Vukovic
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD Australia
| | - Michael Piper
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD Australia
| | - Martina Pfeffer
- Institute of Anatomy 2, Faculty of Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| |
Collapse
|
2
|
Zheng J, Zhou Y, Zhang D, Ma K, Gong Y, Luo X, Liu J, Cui S. Intestinal melatonin levels and gut microbiota homeostasis are independent of the pineal gland in pigs. Front Microbiol 2024; 15:1352586. [PMID: 38596375 PMCID: PMC11003461 DOI: 10.3389/fmicb.2024.1352586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/28/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Melatonin (MEL) is a crucial neuroendocrine hormone primarily produced by the pineal gland. Pinealectomy (PINX) has been performed on an endogenous MEL deficiency model to investigate the functions of pineal MEL and its relationship with various diseases. However, the effect of PINX on the gastrointestinal tract (GIT) MEL levels and gut microbiome in pigs has not been previously reported. Methods By using a newly established pig PINX model, we detected the levels of MEL in the GIT by liquid chromatography-tandem mass spectrometry. In addition, we examined the effects of PINX on the expression of MEL synthesis enzymes, intestinal histomorphology, and the intestinal barrier. Furthermore, 16S rRNA sequencing was performed to analyze the colonic microbiome. Results PINX reduced serum MEL levels but did not affect GIT MEL levels. Conversely, MEL supplementation increased MEL levels in the GIT and intestinal contents. Neither PINX nor MEL supplementation had any effect on weight gain, organ coefficient, serum biochemical indexes, or MEL synthetase arylalkylamine N-acetyltransferase (AANAT) expression in the duodenum, ileum, and colon. Furthermore, no significant differences were observed in the intestinal morphology or intestinal mucosal barrier function due to the treatments. Additionally, 16S rRNA sequencing revealed that PINX had no significant impact on the composition of the intestinal microbiota. Nevertheless, MEL supplementation decreased the abundance of Fibrobacterota and increased the abundance of Actinobacteriota, Desulfobacterota, and Chloroflexi. Conclusion We demonstrated that synthesis of MEL in the GIT is independent of the pineal gland. PINX had no influence on intestinal MEL level and microbiota composition in pigs, while exogenous MEL alters the structure of the gut microbiota.
Collapse
Affiliation(s)
- Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yewen Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Kezhe Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuneng Gong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xuan Luo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Tang KS, Ho CY, Hsu CN, Tain YL. Melatonin and Kidney Health: From Fetal Stage to Later Life. Int J Mol Sci 2023; 24:ijms24098105. [PMID: 37175813 PMCID: PMC10179476 DOI: 10.3390/ijms24098105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Melatonin, an endogenous hormone mainly released at night by the pineal gland, has multifaceted biofunctions. Emerging evidence points to melatonin having a crucial role in kidney health and disease. As the prevalence of chronic kidney disease (CKD) is still rising, a superior strategy to advance global kidney health is needed to not just treat CKD, but prevent it early on. Adult kidney disease can have its origins in early life. This review aims to evaluate the recent literature regarding melatonin's effect on kidney development, its clinical uses in the early stage of life, animal models documenting preventive applications of melatonin on offspring's kidney-related disease, and a thorough summary of therapeutic considerations concerning melatonin supplementation.
Collapse
Affiliation(s)
- Kuo-Shu Tang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chun-Yi Ho
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Feng Shan Hospital-Under the Management of Chang Gung Medical Foundation, Kaohsiung 830, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
A surgical modification in the technique of rat pinealectomy. Anat Sci Int 2023; 98:164-175. [PMID: 36029435 DOI: 10.1007/s12565-022-00683-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Several experimental intents require pineal gland removal. The main challenge of the pinealectomy surgical procedure is the hemorrhage due to the transverse sinus torn. The study aimed to modify the rat pinealectomy surgical procedure to reduce the risk of bleeding and the mortality rate. METHODS Adult male rats experienced pinealectomy surgery. A mini-drill was used to remove a small skull area in the junction of the lambda and sagittal sutures. The pineal gland was removed using a curved-head hook. Animals experienced intensive post-surgical care. Locomotion, cerebellar motor function, working memory, and anxiety were evaluated 2 weeks after pinealectomy by the open field, rotarod, Y maze, and the elevated plus maze, respectively. RESULTS Surgical modification reduced the bleeding risk and animal mortality rate. No significant alteration was found in locomotion and working memory. However, the pinealectomy was anxiogenic and decreased entry to the open arm. The cerebellar motor performance did not change in the rotarod test. Hematoxylin-Eosin staining of removed tissue confirmed the histology of the pineal gland. CONCLUSION Advantages of this technique were removing a small skull area, modifying the hook insertion point to prevent damaging the brain veins, reducing the bleeding risk and the mortality rate. Surgery modification was associated with a decreased final number of animals used. Regardless of the melatonin shortage, pinealectomy affects different organs, which should be considered in the research study design.
Collapse
|
5
|
Abstract
The pineal gland is a interface between light-dark cycle and shows neuro-endocrine functions. Melatonin is the primary hormone of pineal gland, secreted at night. The night-time melatonin peak regulates the physiological functions at dark. Melatonin has several unique features as it synchronises internal rhythm with daily and seasonal variations, regulates circadian rhythm and sleep-wake cycle. Physiologically melatonin involves in detoxification of free radicals, immune functions, neuro-protection, oncostatic effects, cardiovascular functions, reproduction, and foetal development. The precise functions of melatonin are exhibited by specific receptors. In relation to pathophysiology, impaired melatonin secretion promotes sleep disorder, cancer progression, type-2 diabetes, and neurodegenerative diseases. Several reports have highlighted the therapeutic benefits of melatonin specially related to cancer protection, sleep disorder, psychiatric disorders, and jet lag problems. This review will touch the most of the area of melatonin-oriented health impacts and its therapeutic aspects.
Collapse
|
6
|
Dujardin S, Pijpers A, Pevernagie D. Prescription Drugs Used in Insomnia. Sleep Med Clin 2022; 17:315-328. [PMID: 36150797 DOI: 10.1016/j.jsmc.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In insomnia, the subjective aspects of the sleep complaint are paramount in the diagnostic criteria. Epidemiologic studies increasingly point to a link between insomnia and somatic morbidity and mortality, but until now, only in the subgroup of objectively poor sleepers. Although pharmacologic treatment might offer some benefits to this subgroup of insomnia patients, to date, there is no evidence that hypnotics can ameliorate their health risks. Further unraveling of the neurobiology and genetics of sleep regulation and the pathophysiology of insomnia will help the development of drugs that not only improve subjective sleep complaints but also objective health outcomes.
Collapse
Affiliation(s)
- Sylvie Dujardin
- Sleep Medicine Center Kempenhaeghe, PO Box 61, Heeze 5590 AB, the Netherlands
| | - Angelique Pijpers
- Sleep Medicine Center Kempenhaeghe, PO Box 61, Heeze 5590 AB, the Netherlands
| | - Dirk Pevernagie
- Sleep Medicine Center Kempenhaeghe, PO Box 61, Heeze 5590 AB, the Netherlands; Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium.
| |
Collapse
|
7
|
Gall AJ, Shuboni-Mulligan DD. Keep Your Mask On: The Benefits of Masking for Behavior and the Contributions of Aging and Disease on Dysfunctional Masking Pathways. Front Neurosci 2022; 16:911153. [PMID: 36017187 PMCID: PMC9395722 DOI: 10.3389/fnins.2022.911153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental cues (e.g., light-dark cycle) have an immediate and direct effect on behavior, but these cues are also capable of “masking” the expression of the circadian pacemaker, depending on the type of cue presented, the time-of-day when they are presented, and the temporal niche of the organism. Masking is capable of complementing entrainment, the process by which an organism is synchronized to environmental cues, if the cues are presented at an expected or predictable time-of-day, but masking can also disrupt entrainment if the cues are presented at an inappropriate time-of-day. Therefore, masking is independent of but complementary to the biological circadian pacemaker that resides within the brain (i.e., suprachiasmatic nucleus) when exogenous stimuli are presented at predictable times of day. Importantly, environmental cues are capable of either inducing sleep or wakefulness depending on the organism’s temporal niche; therefore, the same presentation of a stimulus can affect behavior quite differently in diurnal vs. nocturnal organisms. There is a growing literature examining the neural mechanisms underlying masking behavior based on the temporal niche of the organism. However, the importance of these mechanisms in governing the daily behaviors of mammals and the possible implications on human health have been gravely overlooked even as modern society enables the manipulation of these environmental cues. Recent publications have demonstrated that the effects of masking weakens significantly with old age resulting in deleterious effects on many behaviors, including sleep and wakefulness. This review will clearly outline the history, definition, and importance of masking, the environmental cues that induce the behavior, the neural mechanisms that drive them, and the possible implications for human health and medicine. New insights about how masking is affected by intrinsically photosensitive retinal ganglion cells, temporal niche, and age will be discussed as each relates to human health. The overarching goals of this review include highlighting the importance of masking in the expression of daily rhythms, elucidating the impact of aging, discussing the relationship between dysfunctional masking behavior and the development of sleep-related disorders, and considering the use of masking as a non-invasive treatment to help treat humans suffering from sleep-related disorders.
Collapse
Affiliation(s)
- Andrew J. Gall
- Department of Psychology and Neuroscience Program, Hope College, Holland, MI, United States
- *Correspondence: Andrew J. Gall,
| | - Dorela D. Shuboni-Mulligan
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Abstract
Melatonin is a hormonal product of the pineal gland, a fact that is often forgotten. Instead it is promoted as a dietary supplement that will overcome insomnia, as an antioxidant and as a prescription only drug in most countries outside the United States of America and Canada. The aim of this review is to step back and highlight what we know about melatonin following its discovery 60 years ago. What is the role of endogenous melatonin; what does melatonin do to sleep, body temperature, circadian rhythms, the cardiovascular system, reproductive system, endocrine system and metabolism when administered to healthy subjects? When used as a drug/dietary supplement, what safety studies have been conducted? Can we really say melatonin is safe when it has not been systematically studied and many studies show interactions with a wide range of physiological processes? Finally the results of studies investigating the efficacy of melatonin as a drug to alleviate insomnia are critically evaluated. In summary, melatonin is an endogenous pineal gland hormone with specific physiological functions in animals and humans, with its primary role in humans to maintain synchrony of sleep with the day/night cycle. When administered as a drug it affects a wide range of physiological systems and has clinically important drug interactions. With respect to efficacy for treating sleep disorders, melatonin can advance the time of sleep onset but the effect is modest and variable. In children with neurodevelopmental disabilities melatonin appears to have the greatest impact on sleep onset but little effect on sleep efficiency.
Collapse
Affiliation(s)
- David J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Pickering L, Main KM, Feldt‐Rasmussen U, Klose M, Sehested A, Mathiasen R, Jennum P. Brain tumours in children and adolescents may affect the circadian rhythm and quality of life. Acta Paediatr 2021; 110:3376-3386. [PMID: 34432900 DOI: 10.1111/apa.16080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022]
Abstract
AIM Children with brain and cervical medulla tumours may experience circadian abnormalities and poor health. We aimed to examine their circadian rhythm, fatigue and quality of life (QoL). METHODS Children with a brain or cervical medulla tumour were recruited from the Paediatric Department, Rigshospitalet, Copenhagen, Denmark, between 2016 and 2020. They were grouped by tumour location involving the circadian regulatory system, defined as diencephalon, pineal gland, brain stem and cervical medulla, or other areas. Saliva melatonin and cortisol concentrations were measured. Sleep diaries and actigraphy assessed sleep-wake patterns. The Pediatric Quality of Life Inventory, Multidimensional Fatigue Scale and Generic Core Scale measured fatigue and QoL. RESULTS We included 68 children (62% males) with a median age (25th-75th percentiles) of 12.2 (7.7-16.3) years. Children with tumours involving the circadian regulatory system typically had a lower melatonin peak (p=0.06) and experienced significantly more fatigue and poorer QoL. Low melatonin profiles were observed in 31% and 4% had a phase-shifted daytime peak, compared with 14% and 0%, respectively, in children with tumours located elsewhere. Children with low melatonin profiles had significantly lower inter-daily stability than those with normal profiles. CONCLUSION Tumours involving the circadian regulatory system adversely affected circadian function, fatigue and QoL.
Collapse
Affiliation(s)
- Line Pickering
- Danish Center for Sleep Medicine Department of Clinical Neurophysiology, Rigshospitalet University of Copenhagen Glostrup Denmark
| | - Katharina M. Main
- Department of Growth and Reproduction and EDMaRC, Rigshospitalet University of Copenhagen Copenhagen Denmark
- Department of Clinical Medicine Copenhagen University Copenhagen Denmark
| | - Ulla Feldt‐Rasmussen
- Department of Clinical Medicine Copenhagen University Copenhagen Denmark
- Department of Medical Endocrinology and Metabolism, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Marianne Klose
- Department of Medical Endocrinology and Metabolism, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Astrid Sehested
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - René Mathiasen
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - Poul Jennum
- Danish Center for Sleep Medicine Department of Clinical Neurophysiology, Rigshospitalet University of Copenhagen Glostrup Denmark
- Department of Clinical Medicine Copenhagen University Copenhagen Denmark
| |
Collapse
|
10
|
Lin MR, Chen PY, Wang HC, Lin PC, Lee HC, Chiu HY. Prevalence of sleep disturbances and their effects on quality of life in adults with untreated pituitary tumor and meningioma. J Neurooncol 2021; 154:179-186. [PMID: 34304334 DOI: 10.1007/s11060-021-03811-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/16/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE To explore the prevalence of sleep disturbances and their effects on quality of life in adults with pituitary tumor or meningioma. METHODS This prospective study included 33 and 44 patients with pituitary tumor and meningioma, respectively. All participants completed a series of valid questionnaires for assessing sleep and quality of life; all participants wore 3-day actigraph prior to related treatment. The actigraph-derived sleep parameters included total sleep time, sleep onset latency, wake after sleep onset, sleep efficiency, and dichotomy index (I < O) value. RESULTS The prevalence of insomnia, excessive daytime sleepiness, and poor sleep quality was 46.8%, 6.5%, and 81.8%, respectively. The differences in these sleep parameters between patients with pituitary tumor and those with meningioma were nonsignificant. Only 27 participants completed the actigraphic assessments. The mean I < O value was 95.99%, and nearly 60% participants exhibited circadian rhythm disruption. Sleep quality was the only sleep variable independently correlated with preoperative quality of life, even after adjustments for confounders (B = 0.80, p = 0.02). CONCLUSIONS Insomnia, poor sleep quality, and disrupted circadian rhythm are highly prevalent in adults with untreated pituitary tumor or meningioma. Sleep quality independently correlated with quality of life. We indirectly confirmed that tumor location may not be a possible cause of sleep changes.
Collapse
Affiliation(s)
- Mei-Ru Lin
- Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan
- School of Nursing, College of Nursing, Taipei Medical University, 250 Wu-Hsing St, Taipei, 110, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery and Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung branch, Keelung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huan-Chih Wang
- Division of Neurosurgery, Department of Surgery Organization, National Taiwan University Hospital, Taipei, Taiwan
- Division of Neurosurgery, Department of Surgery Organization, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Pei-Ching Lin
- School of Nursing, College of Nursing, Taipei Medical University, 250 Wu-Hsing St, Taipei, 110, Taiwan
| | - Hsin-Chien Lee
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan
- Research Center of Sleep Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Yean Chiu
- School of Nursing, College of Nursing, Taipei Medical University, 250 Wu-Hsing St, Taipei, 110, Taiwan.
- Research Center of Sleep Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Pevet P, Challet E, Felder-Schmittbuhl MP. Melatonin and the circadian system: Keys for health with a focus on sleep. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:331-343. [PMID: 34225973 DOI: 10.1016/b978-0-12-819975-6.00021-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin (MLT), secreted during the night by the pineal gland, is an efferent hormonal signal of the master circadian clock located in the suprachiasmatic nucleus (SCN). Consequently, it is a reliable phase marker of the SCN clock. If one defines as "chronobiotic," a drug able to influence the phase and/or the period of the circadian clock, MLT is a very potent one. The most convincing data obtained so far come from studies on totally blind individuals. Exogenous MLT administered daily entrains the sleep-wake cycle of these individuals to a 24-h cycle. MLT, however, is not essential to sleep. In nocturnally, active mammals, MLT is released during the night concomitantly with the daily period of wakefulness. Therefore, MLT cannot be simply considered as a sleep hormone, but rather as a signal of darkness. Its role in the circadian system is to reinforce nighttime physiology, including timing of the sleep-wake cycle and other circadian rhythms. MLT exerts its effects on the sleep cycle especially by a direct action on the master circadian clock. The sleep-wake cycle is depending not only on the circadian clock but also on an orchestrated network of different centers in the brain. Thus, the control of sleep-wake rhythm might be explained by a parallel and concomitant action of MLT on the master clock (chronobiotic effect) and on sleep-related structures within the brain. MLT acts through two high-affinity membrane receptors (MT1 and MT2) with striking differences in their distribution pattern. MLT is a powerful synchronizer of human circadian rhythms, thus justifying the use of MLT and MLT agonists in clinical medicine as pharmacological tools to manipulate the sleep-wake cycle, and to treat sleep disorders and other circadian disorders. Available MLT analogs/drugs are all nonspecific MT1/MT2 agonists. The development of new ligands which are highly selectivity for each subtype is clearly a new challenge for the field and will be at the root of new therapeutic agents for curing specific pathologies, including sleep disorders.
Collapse
Affiliation(s)
- Paul Pevet
- Institute of Cellular and Integrative Neurosciences, CNRS, University of Strasbourg, Strasbourg, France.
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences, CNRS, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
12
|
Endoscopic management of pineal cyst-associated aqueductal stenosis. Acta Neurochir (Wien) 2020; 162:2975-2982. [PMID: 32562121 DOI: 10.1007/s00701-020-04419-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
OBJECT The purpose of this study was to evaluate whether endoscopic third ventriculostomy (ETV) and endoscopic cyst fenestration are effective minimally invasive alternatives to a craniotomy with cyst resection for the treatment of symptomatic pineal cyst-associated aqueductal stenosis. METHODS Sixteen patients with symptomatic pineal cysts were operatively managed endoscopically and these cases were retrospectively reviewed. There were 12 females and 4 males. The median age at the time of surgery was 31 years (range 3 to 62 years). RESULTS All patients presented with symptoms and imaging consistent with elevated intracranial pressure. The median maximum cyst diameter was 15 mm (range 10 mm to 27 mm). In all cases, there was mass effect on the tectum that resulted in effacement of the cerebral aqueduct and ventriculomegaly was present in 38% of cases. ETV was performed in 15 patients. Cyst fenestration was performed in 2 patients, one of which also had an ETV. Resolution of symptoms was achieved in 81% of patients with a median follow-up of 13 months. CONCLUSION This study showed that ETV is effective for symptomatic pineal cyst-associated aqueductal stenosis. Patients can be symptomatic without overt ventriculomegaly and normal ventricular volume does not preclude safe endoscopic management. Endoscopic cyst fenestration is recommended if a Perinaud syndrome is present or if ETV is not feasible.
Collapse
|
13
|
Abstract
The scope of this article is to review the effects on sleep of prescription drugs that are commonly prescribed for chronic insomnia in adults. The following groups are discussed: benzodiazepines and its receptor agonists, the dual orexin receptor antagonist suvorexant, melatonin and its receptor agonists, sedating antidepressants, and antipsychotics. Together with the neurobiologic and pharmacologic properties of these drugs, clinical effects are described, including subjective and objective effects on sleep duration, continuity, and architecture. Medical prescription information is given when available. Recently published American and European guidelines for the treatment of insomnia serve as reference frame.
Collapse
Affiliation(s)
- Sylvie Dujardin
- Sleep Medicine Center Kempenhaeghe, PO Box 61, Heeze 5590 AB, The Netherlands
| | - Angelique Pijpers
- Sleep Medicine Center Kempenhaeghe, PO Box 61, Heeze 5590 AB, The Netherlands
| | - Dirk Pevernagie
- Sleep Medicine Center Kempenhaeghe, PO Box 61, Heeze 5590 AB, The Netherlands; Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
14
|
Whelan A, Halpine M, Christie SD, McVeigh SA. Systematic review of melatonin levels in individuals with complete cervical spinal cord injury. J Spinal Cord Med 2020; 43:565-578. [PMID: 30132738 PMCID: PMC7534275 DOI: 10.1080/10790268.2018.1505312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Context: Pineal melatonin production is mediated by afferent signaling pathways that navigate through the cervicothoracic spinal cord. Melatonin profiles in individuals with complete cervical spinal cord injury (SCI) have not been systematically reviewed despite this proposed pathway. Objectives: The primary objective was to understand melatonin profiles in individuals with complete cervical SCI, as compared to healthy controls and those with thoracolumbar and incomplete cervical SCI. Secondary objectives were to understand the impact of injury chronicity and melatonin supplementation on melatonin values in adults with complete cervical SCI. Methods: This review (PROSPERO ID: CRD42017073767) searched several databases and gray literature sources from January 1978 to August 2017. Studies were eligible if they evaluated melatonin levels (blood, saliva or urinary metabolite measurements) in adults with complete cervical SCI. 390 studies were screened and 12 studies met final selection criteria. Given the heterogeneity in study designs, a narrative analysis was performed. Results: There is evidence that adults with complete cervical SCI have absent diurnal melatonin rhythms as compared to healthy controls and individuals with thoracolumbar SCI below T3. There is limited evidence comparing levels in individuals with incomplete tetraplegia. There is insufficient evidence describing profiles immediately (<2 weeks) after cervical SCI. Based on a limited number of studies, melatonin supplementation does not appear to improve sleep outcomes in adults with long-standing complete cervical SCI. Conclusions: Future research should explore melatonin levels acutely after cervical SCI and the impact of supplementation on non-sleep outcomes.
Collapse
Affiliation(s)
- Alexander Whelan
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mary Halpine
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sean D. Christie
- Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sonja A. McVeigh
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
15
|
Kennaway DJ. Measuring melatonin by immunoassay. J Pineal Res 2020; 69:e12657. [PMID: 32281677 DOI: 10.1111/jpi.12657] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
The pineal gland hormone melatonin continues to be of considerable interest to biomedical researchers. Of particular interest is the pattern of secretion of melatonin in relation to sleep timing as well as its potential role in certain diseases. Measuring melatonin in biological fluids such as blood and saliva presents particular methodological challenges since the production and secretion of the hormone are known to be extremely low during the light phase in almost all situations. Active secretion only occurs around the time of lights out in a wide range of species. The challenge then is to develop practical high-throughput assays that are sufficiently sensitive and accurate enough to detect levels of melatonin less than 1 pg/mL in biological fluids. Mass spectrometry assays have been developed that achieve the required sensitivity, but are really not practical or even widely available to most researchers. Melatonin radioimmunoassays and ELISA have been developed and are commercially available. But the quality of the results that are being published is very variable, partly not only because of poor experimental designs, but also because of poor assays. In this review, I discuss issues around the design of studies involving melatonin measurement. I then provide a critical assessment of 21 immunoassay kits marketed by 11 different companies with respect to validation, specificity and sensitivity. Technical managers of the companies were contacted in an attempt to obtain information not available online or in kit inserts. A search of the literature was also conducted to uncover papers that have reported the use of these assays, and where possible, both daytime and night-time plasma or saliva melatonin concentrations were extracted and tabulated. The results of the evaluations are disturbing, with many kits lacking any validation studies or using inadequate validation methods. Few assays have been properly assessed for specificity, while others report cross-reaction profiles that can be expected to result in over estimation of the melatonin levels. Some assays are not fit for purpose because they are not sensitive enough to determine plasma or saliva DLMO of 10 and 3 pg/mL, respectively. Finally, some assays produce unrealistically high daytime melatonin levels in humans and laboratory animals in the order of hundreds of pg/mL. In summary, this review provides a comprehensive and unique assessment of the current commercial melatonin immunoassays and their use in publications. It provides researchers new to the field with the information they need to design valid melatonin studies from both the perspective of experimental/clinical trial design and the best assay methodologies. It will also hopefully help journal editors and reviewers who may not be fully aware of the pitfalls of melatonin measurement make better informed decisions on publication acceptability.
Collapse
Affiliation(s)
- David J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
16
|
Interrelation Between Disorder of Melatonin-forming Function of Epiphysis and Dyslipidemia in Patients with Chronic Kidney Disease of 5 Stage Treated by Hemodialysis. Fam Med 2020. [DOI: 10.30841/2307-5112.1-2.2020.204575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Gorman MR. Temporal organization of pineal melatonin signaling in mammals. Mol Cell Endocrinol 2020; 503:110687. [PMID: 31866317 DOI: 10.1016/j.mce.2019.110687] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/20/2022]
Abstract
In mammals, the pineal gland is the sole endocrine source of melatonin, which is secreted according to daily and seasonal patterns. This mini-review synthesizes the established endocrine actions of melatonin in the following temporal contexts. Melatonin is a strictly regulated output of the circadian timing system, but under certain conditions, may also entrain the circadian pacemaker and clocks in peripheral tissues. As the waveform of nightly melatonin secretion varies seasonally, melatonin provides a hormonal representation of the time of year. The duration of elevated melatonin secretion regulates reproductive physiology and other seasonal adaptations either by entraining a circannual rhythm or by inducing seasonal responses directly. An entrainment action of nightly melatonin on clock gene expression in the pars tuberalis of the anterior pituitary may partly underly its mechanistic role as a photoperiodic switch. Melatonin has important functions developmentally to regulate multiple physiological systems and program timing of puberty. Endogenous melatonergic systems are disrupted by modern lifestyles of humans through altered circadian entrainment, acute suppression by light and self-administration of pharmacological melatonin. Non-endocrine actions of locally synthesized melatonin fall outside of the scope of this mini-review.
Collapse
Affiliation(s)
- Michael R Gorman
- Departments of Psychology and Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093-0109, USA.
| |
Collapse
|
18
|
Kennaway DJ. A critical review of melatonin assays: Past and present. J Pineal Res 2019; 67:e12572. [PMID: 30919486 DOI: 10.1111/jpi.12572] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
There has been increased interest in the measurement of melatonin in plasma and saliva recently either as a marker of circadian phase or to understand the physiological role of melatonin. For both situations, there is a need for a specific assay for melatonin that is sensitive enough to detect low concentrations (<2 pg/mL). Since the mid-1970s, there have been many assays developed to measure melatonin in blood and saliva. Radioimmunoassays and ELISA have predominated because of their relative simplicity and high throughput. In this review, I show that the early radioimmunoassays while providing valuable information about nocturnal melatonin levels in humans, generally produced inaccurate basal (daytime) levels. Mass spectrometry assays, however, have provided us with the target values that immunoassays need to achieve, that is, daytime plasma melatonin levels <1 pg/mL. There are now many contemporary commercial assays available utilising both RIA and ELISA technologies, but not all achieve the standards set by the mass spectrometry assays. The performance of these assays is reviewed. I conclude with recommendations on issues researchers need to consider when conducting melatonin studies, including the importance of time of day of collection, validation of assays, the potential causes of poor assay specificity at low levels, the advantages/disadvantages of using saliva vs plasma and extraction assays vs direct assays, kit manufacturers responsibilities and the reporting requirements when publishing melatonin studies.
Collapse
Affiliation(s)
- David J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
19
|
Bastos MAV, Oliveira Bastos PRHD, Portella RB, Soares LFG, Conde RB, Rodrigues PMF, Lucchetti G. Pineal gland and schizophrenia: A systematic review and meta-analysis. Psychoneuroendocrinology 2019; 104:100-114. [PMID: 30831343 DOI: 10.1016/j.psyneuen.2019.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/17/2019] [Accepted: 02/24/2019] [Indexed: 12/29/2022]
Abstract
Melatonin (MLT), the main hormone of the pineal gland (PG), is assumed to support initiation and maintenance of sleep, and a stable sleep-wake cycle, exerting antioxidative and neuroprotective actions. Evidence demonstrates that sleep and circadian rhythm abnormalities are very common in schizophrenia patients. Some imaging studies suggest structural abnormalities of the PG in these patients as well. We aimed to critically appraise the literature on PG imaging and melatonin secretion in schizophrenia patients, in comparison to matched healthy controls, and to review placebo-controlled trials of add-on exogenous MLT treatment in schizophrenia patients. In this systematic review, twenty-nine studies were included. Meta-analytical evaluation of data was possible only for MLT secretion finding that midnight plasma levels were significantly reduced in individuals with schizophrenia as compared to healthy controls (Hedge`s g = 1.32, p < 0.01). Imaging studies demonstrated greater prevalence of enlarged calcifications (>1 cm) of the PG (2 out of 2 computed tomography studies) and smaller PG volume (2 out of 3 magnetic resonance studies) compared with healthy controls. Anatomic and functional abnormalities of the PG were not associated with duration of illness or with treatment factors, maybe suggesting them to be primary characteristics of the disease and genetically based. Add-on MLT treatment leads to a modest improvement of objective and subjective sleep quality, of metabolic adverse effects of antipsychotics, and of tardive dyskinesia symptoms in schizophrenia patients. It remains to be established whether MLT treatment in prodromal phases of the disease could prevent neurostructural abnormalities.
Collapse
Affiliation(s)
- Marco Aurélio Vinhosa Bastos
- Federal University of Mato Grosso do Sul, Postgraduate Program in Health and Development, Av. Senador Filinto Muller, s/n - Cidade Universitária, Campo Grande, MS, 79070-900, Brazil.
| | - Paulo Roberto Haidamus de Oliveira Bastos
- Federal University of Mato Grosso do Sul, Postgraduate Program in Health and Development, Av. Senador Filinto Muller, s/n - Cidade Universitária, Campo Grande, MS, 79070-900, Brazil
| | - Renata Boschi Portella
- Federal University of Mato Grosso do Sul, Faculty of Medicine, Av. Senador Filinto Muller, s/n - Cidade Universitária, Campo Grande, MS, 79070-900, Brazil
| | - Leonardo Fabrício Gomes Soares
- Federal University of Mato Grosso do Sul, Postgraduate Program in Health and Development, Av. Senador Filinto Muller, s/n - Cidade Universitária, Campo Grande, MS, 79070-900, Brazil
| | - Ricardo Brilhante Conde
- Proexames Imaging Clinic, Av. Mato Grosso, 1772 - Centro, Campo Grande, MS, 79020-201, Brazil
| | | | - Giancarlo Lucchetti
- Federal University of Juiz de Fora, School of Medicine, Av. Eugênio do Nascimento, s/n - Dom Bosco, Juiz de Fora, MG, 36036-330, Brazil
| |
Collapse
|
20
|
Abstract
Last year melatonin was 60 years old, or at least its discovery was 60 years ago. The molecule itself may well be almost as old as life itself. So it is time to take yet another perspective on our understanding of its functions, effects and clinical uses. This is not a formal review-there is already a multitude of systematic reviews, narrative reviews, meta-analyses and even reviews of reviews. In view of the extraordinary variety of effects attributed to melatonin in the last 25 years, it is more of an attempt to sort out some areas where a consensus opinion exists, and where placebo controlled, randomized, clinical trials have confirmed early observations on therapeutic uses. The current upsurge of concern about the multiple health problems associated with disturbed circadian rhythms has generated interest in related therapeutic interventions, of which melatonin is one. The present text will consider the physiological role of endogenous melatonin, and the mostly pharmacological effects of exogenous treatment, on the assumption that normal circulating concentrations represent endogenous pineal production. It will concentrate mainly on the most researched, and accepted area of therapeutic use and potential use of melatonin-its undoubted ability to realign circadian rhythms and sleep-since this is the author's bias. It will touch briefly upon some other systems with prominent rhythmic attributes including certain cancers, the cardiovascular system, the entero-insular axis and metabolism together with the use of melatonin to assess circadian status. Many of the ills of the developed world relate to deranged rhythms-and everything is rhythmic unless proved otherwise.
Collapse
|
21
|
Rosenkranz E, Thissen A, Siegel S, Piroth M, Clusmann H, Gebauer J, Brabant G, Kreitschmann-Andermahr I. Melatonin secretion following brain midline irradiation is diminished, but not correlated with subjective sleep disturbances. Clin Endocrinol (Oxf) 2018; 89:870-877. [PMID: 30003589 DOI: 10.1111/cen.13814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Cranial irradiation for brain tumours or leukaemias has been related to cognitive, endocrine and psychosocial late effects as well as sleep disturbances and increased daytime sleepiness. Studies suggest that cranial irradiation might impact on pineal melatonin secretion. Melatonin is an important regulator in human circadian rhythms and the sleep-wake cycle. The objective of this study was to investigate melatonin secretion, subjective sleep parameters and their interplay in a cohort of cranially irradiated head and brain tumour and leukaemia survivors at least 3 years after radiotherapy. DESIGN Cross-sectional study. PATIENTS Thirty-eight adults. MEASUREMENTS Melatonin secretion was evaluated by measuring its metabolite 6-sulphatoxymelatonin in collected overnight urine. Subjective sleep quality and daytime sleepiness were assessed using the Pittsburgh Sleep Quality Index and the Epworth Sleepiness Scale. The Beck Depression Inventory II was used to screen for depressive symptoms because of their impact on sleep. RESULTS Patients irradiated in the brain midline had significantly lower melatonin secretion (P = 0.008). Subjects exhibited a high prevalence of sleeping difficulties, daytime sleepiness and depression, with females and overweight subjects particularly affected. Melatonin values and subjective sleep parameters did not correlate with each other or with treatment and most patient variables. CONCLUSIONS Our data suggest that radiation exposure to the pineal gland negatively affects melatonin secretion. This lack of pineal melatonin does not influence subjective sleep quality. As melatonin has important antioxidant and cancer-protective effects, further research is necessary to elucidate whether these patients have an increased risk of developing secondary neoplasms and other radiation late effects.
Collapse
Affiliation(s)
- Esther Rosenkranz
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Andrea Thissen
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Sonja Siegel
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Marc Piroth
- Department of Radiation Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Judith Gebauer
- Experimental and Clinical Endocrinology, Medical Clinic I, University of Luebeck, Luebeck, Germany
| | - Georg Brabant
- Experimental and Clinical Endocrinology, Medical Clinic I, University of Luebeck, Luebeck, Germany
| | | |
Collapse
|
22
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
23
|
Abstract
The aim of the review is to analyze literature data about sleep homeostasis and the role of the one of circadian system key elements – melatonin – in the regulation of the sleep-wake cycle in women in menopause. It was shown that the prevalence and structure of sleep disorders depends on the menopausal phase. It was revealed that the melatonin content in the body, determined in various biological media (blood, saliva, urine), depends on age, sex, race, and chronotype. It was shown that morning melatonin can be used as a biological marker for determining the chronotype. Most studies indicated a decrease in melatonin level with aging. Moreover, women have lower melatonin level than men. In case of insomnia, lower melatonin level was found, although the results of the studies are ambiguous. The shift in the peak of hormone secretion in the early morning hours was described in menopausal women. Also, the dependence of melatonin circadian rhythm on the menopausal phase was revealed, which determines different approaches to insomnia therapy. We revealed the association of melatonin secretion circadian rhythms with Clock 3111T/C gene polymorphism in Caucasian patients with insomnia, which allows considering 3111T allele as risky in the formation of melatonin circadian rhythm disturbances in these patients.
Collapse
|
24
|
|
25
|
Medical hypothesis: Light at night is a factor worth considering in critical care units. ADVANCES IN INTEGRATIVE MEDICINE 2017; 4:115-120. [PMID: 34094846 DOI: 10.1016/j.aimed.2017.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure to light at night is not an innocuous consequence of modernization. There are compelling data linking long-term exposure to occupational and environmental light at night with serious health conditions, including heart disease, obesity, diabetes, and cancer. However, far less is known about the physiological and behavioral effects of acute exposure to light at night. Among healthy volunteers, acute night-time light exposure increases systolic blood pressure and inflammatory markers in the blood, and impairs glucose regulation. Whether critically ill patients in a hospital setting experience the same physiological shifts in response to evening light exposure is not known. This paper reviews the available data on light at night effects on health and wellbeing, and argues that the data are sufficiently compelling to warrant studies of how lighting in intensive care units may be influencing patient recovery.
Collapse
|
26
|
Roguski A, Gill AC. The Role of the Mammalian Prion Protein in the Control of Sleep. Pathogens 2017; 6:pathogens6040058. [PMID: 29149024 PMCID: PMC5750582 DOI: 10.3390/pathogens6040058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 01/09/2023] Open
Abstract
Sleep disruption is a prevalent clinical feature in many neurodegenerative disorders, including human prion diseases where it can be the defining dysfunction, as in the case of the "eponymous" fatal familial insomnia, or an early-stage symptom as in certain types of Creutzfeldt-Jakob disease. It is important to establish the role of the cellular prion protein (PrPC), the key molecule involved in prion pathogenesis, within the sleep-wake system in order to understand fully the mechanisms underlying its contribution to both healthy circadian rhythmicity and sleep dysfunction during disease. Although severe disruption to the circadian rhythm and melatonin release is evident during the pathogenic phases of some prion diseases, untangling whether PrPC plays a role in circadian rhythmicity, as suggested in mice deficient for PrPC expression, is challenging given the lack of basic experimental research. We provide a short review of the small amount of direct literature focused on the role of PrPC in melatonin and circadian rhythm regulation, as well as suggesting mechanisms by which PrPC might exert influence upon noradrenergic and dopaminergic signaling and melatonin synthesis. Future research in this area should focus upon isolating the points of dysfunction within the retino-pineal pathway and further investigate PrPC mediation of pinealocyte GPCR activity.
Collapse
Affiliation(s)
- Amber Roguski
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush Veterinary Centre, Edinburgh EH25 9RG, UK.
| | - Andrew C Gill
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush Veterinary Centre, Edinburgh EH25 9RG, UK.
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Green Lane, Lincoln, Lincolnshire LN6 7DL, UK.
| |
Collapse
|
27
|
Ferri L, Filardi M, Moresco M, Pizza F, Vandi S, Antelmi E, Toni F, Zucchelli M, Pierangeli G, Plazzi G. Non-24-Hour Sleep-Wake Rhythm Disorder and Melatonin Secretion Impairment in a Patient With Pineal Cyst. J Clin Sleep Med 2017; 13:1355-1357. [PMID: 28992833 DOI: 10.5664/jcsm.6816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/16/2017] [Indexed: 11/13/2022]
Abstract
ABSTRACT We report the case of a 14-year-old girl with a wide non-compressive pineal cyst, associated with the inability to control her sleep-wake schedule. Actigraphic monitoring showed a 24-hour free-running disorder (tau 26.96 hours). A 24-hour serum melatonin curve assay, with concomitant video-polysomnographic and body-core temperature monitoring, was performed. Melatonin curve showed a blunted nocturnal peak, lower total quantity of melatonin, and prolonged melatonin secretion in the morning, with normal temperature profile and sleep parameters. Treatment with melatonin up to 14 mg at bedtime was initiated with complete realignment of the sleep-wake rhythm (tau 23.93 hours). The role of the pineal cyst in the aforementioned alteration of melatonin secretion and free-running disorder remains controversial, but our case supports the utility of monitoring sleep/wake, temperature, and melatonin rhythms in the diagnostic work-up of pineal cysts associated with free-running disorder.
Collapse
Affiliation(s)
- Lorenzo Ferri
- DIBINEM - Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Filardi
- DIBINEM - Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Monica Moresco
- DIBINEM - Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fabio Pizza
- DIBINEM - Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche, AUSL di Bologna, Bologna, Italy
| | - Stefano Vandi
- DIBINEM - Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elena Antelmi
- DIBINEM - Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche, AUSL di Bologna, Bologna, Italy
| | - Francesco Toni
- IRCCS Institute of Neurological Science of Bologna, Division of Neuroradiology, Bellaria Hospital, Bologna, Italy
| | - Mino Zucchelli
- IRCCS Institute of Neurological Science Bologna, Pediatric Neurosurgery, Bellaria Hospital, Bologna, Italy
| | - Giulia Pierangeli
- DIBINEM - Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche, AUSL di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- DIBINEM - Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche, AUSL di Bologna, Bologna, Italy
| |
Collapse
|
28
|
Levitas-Djerbi T, Appelbaum L. Modeling sleep and neuropsychiatric disorders in zebrafish. Curr Opin Neurobiol 2017; 44:89-93. [PMID: 28414966 DOI: 10.1016/j.conb.2017.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/28/2017] [Indexed: 01/03/2023]
Abstract
What are the molecular and cellular mechanisms that link neurological disorders and sleep disturbances? The transparent zebrafish model could bridge this gap in knowledge due to its unique genetic and imaging toolbox, and amenability to high-throughput screening. Sleep is well-characterized in zebrafish and key regulators of the sleep/wake cycle are conserved, including melatonin and hypocretin/orexin (Hcrt), whereas novel sleep regulating proteins are continually being identified, such as Kcnh4a, Neuromedin U, and QRFP. Sleep deficiencies have been observed in various zebrafish models for genetic neuropsychiatric disorders, ranging from psychomotor retardation and autism to anxiety disorders. Understanding the link between neuropsychiatric disorders and sleep phenotypes in zebrafish may ultimately provide a platform for identifying therapeutic targets for clinical trials in humans.
Collapse
Affiliation(s)
- Talia Levitas-Djerbi
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
29
|
Májovský M, Řezáčová L, Sumová A, Pospíšilová L, Netuka D, Bradáč O, Beneš V. Melatonin and cortisol secretion profile in patients with pineal cyst before and after pineal cyst resection. J Clin Neurosci 2017; 39:155-163. [PMID: 28209308 DOI: 10.1016/j.jocn.2017.01.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/22/2017] [Indexed: 01/08/2023]
Abstract
A pineal cyst is a benign affection of the human pineal gland on the borderline between pathology and normality. Only a small percentage of patients present with symptoms and a surgical treatment is indicated in highly selected cases. A melatonin secretion in patients with a pineal cyst before and after a pineal cyst resection has not been studied yet and the effect of surgery on human metabolism is unknown. The present study examined melatonin, cortisol and blood glucose secretion profiles perioperatively in a surgical group of 4 patients. The control group was represented by 3 asymptomatic patients with a pineal cyst. For each patient, 24-h circadian secretion curves of melatonin, cortisol and glycemia were acquired. An analysis of melatonin profiles showed an expected diurnal pattern with the night peak in patients before the surgery and in the control group. In contrast, melatonin levels in patients after the surgery were at their minimum throughout the whole 24-h period. The cortisol secretion was substantially increased in patients after the surgery. Blood glucose sampling showed no statistically significant differences. Clinical results demonstrated statistically significant headache relief measured by Visual Analogue Scale in patients after the surgery. Despite the small number of examined patients, we can conclude that patients with a pineal cyst preserved the physiological secretion of the hormone melatonin while patients who underwent the pineal cyst resection experienced a loss of endogenous pineal melatonin production, which equated with pinealectomy. Surprisingly, cortisol secretion substantially increased in patients after the surgery.
Collapse
Affiliation(s)
- Martin Májovský
- Department of Neurosurgery of 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Czech Republic.
| | - Lenka Řezáčová
- Department of Neurosurgery of 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Czech Republic; Department of Experimental Hypertension, Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Sumová
- Department of Neurohumoral Regulations, Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Pospíšilová
- Department of Clinical Biochemistry, Military University Hospital Prague, Czech Republic
| | - David Netuka
- Department of Neurosurgery of 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Czech Republic
| | - Ondřej Bradáč
- Department of Neurosurgery of 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Czech Republic
| | - Vladimír Beneš
- Department of Neurosurgery of 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Czech Republic
| |
Collapse
|
30
|
Potter GDM, Skene DJ, Arendt J, Cade JE, Grant PJ, Hardie LJ. Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures. Endocr Rev 2016; 37:584-608. [PMID: 27763782 PMCID: PMC5142605 DOI: 10.1210/er.2016-1083] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Circadian (∼24-hour) timing systems pervade all kingdoms of life and temporally optimize behavior and physiology in humans. Relatively recent changes to our environments, such as the introduction of artificial lighting, can disorganize the circadian system, from the level of the molecular clocks that regulate the timing of cellular activities to the level of synchronization between our daily cycles of behavior and the solar day. Sleep/wake cycles are intertwined with the circadian system, and global trends indicate that these, too, are increasingly subject to disruption. A large proportion of the world's population is at increased risk of environmentally driven circadian rhythm and sleep disruption, and a minority of individuals are also genetically predisposed to circadian misalignment and sleep disorders. The consequences of disruption to the circadian system and sleep are profound and include myriad metabolic ramifications, some of which may be compounded by adverse effects on dietary choices. If not addressed, the deleterious effects of such disruption will continue to cause widespread health problems; therefore, implementation of the numerous behavioral and pharmaceutical interventions that can help restore circadian system alignment and enhance sleep will be important.
Collapse
Affiliation(s)
- Gregory D M Potter
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Debra J Skene
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Josephine Arendt
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Janet E Cade
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter J Grant
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Laura J Hardie
- Division of Epidemiology and Biostatistics (G.D.M.P., L.J.H.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom; Chronobiology Section (D.J.S., J.A.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Nutritional Epidemiology Group (J.E.C.), School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom; and Division of Cardiovascular & Diabetes Research (P.J.G.), LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|