1
|
Vijaya Shankara J, Orr A, Mychasiuk R, Antle MC. Chronic BMY7378 treatment alters behavioral circadian rhythms. Eur J Neurosci 2017; 46:2782-2790. [PMID: 29044737 DOI: 10.1111/ejn.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/25/2017] [Accepted: 10/12/2017] [Indexed: 11/28/2022]
Abstract
The mammalian circadian clock is synchronized to the day : night cycle by light. Serotonin modulates the circadian effects of light, with agonists inhibiting response to light and antagonists enhancing responses to light. A special class of serotonergic compounds, the mixed 5-HT1A agonist/antagonists, potentiates light-induced phase advances by up to 400% when administered acutely. In this study, we examine the effects of one of these mixed 5-HT1A agonist/antagonists, BMY7378, when administered chronically. Thirty adult male hamsters were administered either vehicle or BMY7378 via surgically implanted osmotic mini pumps over a period of 28 days. In a light : dark cycle, chronic BMY7378 advanced the phase angle of entrainment, prolonged the duration of the active phase and attenuated the amplitude of the wheel-running rhythm during the early night. In constant darkness, chronic treatment with BMY7378 significantly attenuated light-induced phase advances, but had no significant effect on light-induced phase delays. Non-photic phase shifts to daytime administration of a 5-HT1A/7 agonist were also attenuated by chronic BMY7378 treatment. qRT-PCR analysis revealed that chronic BMY7378 treatment upregulated mRNA for 5-HT1A and 5-HT1B receptors in the hypothalamus and downregulated mRNA for 5-HT1A and monoamine oxidase-A in the brainstem. These results highlight adaptive changes of serotonin receptors in the brain to chronic treatment with BMY7378 and link such up- and downregulation to changes in important circadian parameters. Such long-term changes to the circadian system should be considered when patients are treated chronically with drugs that alter serotonergic function.
Collapse
Affiliation(s)
- Jhenkruthi Vijaya Shankara
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Angélique Orr
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Michael C Antle
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Hughes ATL, Piggins HD. Feedback actions of locomotor activity to the circadian clock. PROGRESS IN BRAIN RESEARCH 2012; 199:305-336. [PMID: 22877673 DOI: 10.1016/b978-0-444-59427-3.00018-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The phase of the mammalian circadian system can be entrained to a range of environmental stimuli, or zeitgebers, including food availability and light. Further, locomotor activity can act as an entraining signal and represents a mechanism for an endogenous behavior to feedback and influence subsequent circadian function. This process involves a number of nuclei distributed across the brain stem, thalamus, and hypothalamus and ultimately alters SCN electrical and molecular function to induce phase shifts in the master circadian pacemaker. Locomotor activity feedback to the circadian system is effective across both nocturnal and diurnal species, including humans, and has recently been shown to improve circadian function in a mouse model with a weakened circadian system. This raises the possibility that exercise may be useful as a noninvasive treatment in cases of human circadian dysfunction including aging, shift work, transmeridian travel, and the blind.
Collapse
Affiliation(s)
- Alun T L Hughes
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Abstract
Circadian rhythms in mammals are regulated by a system of endogenous circadian oscillators (clock cells) in the brain and in most peripheral organs and tissues. One group of clock cells in the hypothalamic SCN (suprachiasmatic nuclei) functions as a pacemaker for co-ordinating the timing of oscillators elsewhere in the brain and body. This master clock can be reset and entrained by daily LD (light–dark) cycles and thereby also serves to interface internal with external time, ensuring an appropriate alignment of behavioural and physiological rhythms with the solar day. Two features of the mammalian circadian system provide flexibility in circadian programming to exploit temporal regularities of social stimuli or food availability. One feature is the sensitivity of the SCN pacemaker to behavioural arousal stimulated during the usual sleep period, which can reset its phase and modulate its response to LD stimuli. Neural pathways from the brainstem and thalamus mediate these effects by releasing neurochemicals that inhibit retinal inputs to the SCN clock or that alter clock-gene expression in SCN clock cells. A second feature is the sensitivity of circadian oscillators outside of the SCN to stimuli associated with food intake, which enables animals to uncouple rhythms of behaviour and physiology from LD cycles and align these with predictable daily mealtimes. The location of oscillators necessary for food-entrained behavioural rhythms is not yet certain. Persistence of these rhythms in mice with clock-gene mutations that disable the SCN pacemaker suggests diversity in the molecular basis of light- and food-entrainable clocks.
Collapse
|
4
|
Yamakawa GR, Antle MC. Phenotype and function of raphe projections to the suprachiasmatic nucleus. Eur J Neurosci 2010; 31:1974-83. [PMID: 20604802 DOI: 10.1111/j.1460-9568.2010.07228.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The circadian clock, located in the suprachiasmatic nucleus (SCN), receives a major afferent from the median raphe nucleus (MRN). In the Syrian hamster, only about 50% of the cells giving rise to this afferent contain serotonin. There is mixed evidence as to whether the serotonergic portion of this projection is involved in non-photic phase shifting of circadian locomotor rhythms. In order to better characterize the non-serotonergic projections, we conducted retrograde tract tracing using the beta subunit of cholera toxin combined with multi-label immunohistochemistry. Similar to previous findings, almost half of the retrogradely labeled cells contained serotonin. Additionally, approximately 30% of the retrogradely labeled cells contained vesicular glutamate transporter 3 (VGLUT3), but not serotonin. Surprisingly, some dorsal raphe cholera toxin labeling was also noted, particularly in animals with central-SCN injections. To determine if the non-serotonergic projections were important for non-photic phase shifts elicited by MRN stimulation, the MRN was electrically stimulated in animals pretreated with SCN injection of either the serotonin neurotoxin 5,7-dihydroxytryptamine or vehicle control. Intact animals phase advanced to midday electrical stimulation of the raphe while lesioned animals did not. Together, these results show that although some of the non-serotonergic raphe projections to the SCN contain VGLUT3, it is the serotonergic raphe innervation of the SCN that is critical for non-photic phase shifting elicited by MRN stimulation.
Collapse
Affiliation(s)
- Glenn R Yamakawa
- Brain and Cognitive Sciences Research Group, Department of Psychology, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | |
Collapse
|
5
|
Webb IC, Patton DF, Landry GJ, Mistlberger RE. Circadian clock resetting by behavioral arousal: neural correlates in the midbrain raphe nuclei and locus coeruleus. Neuroscience 2010; 166:739-51. [PMID: 20079808 DOI: 10.1016/j.neuroscience.2010.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
Some procedures for stimulating arousal in the usual daily rest period (e.g., gentle handling, novel wheel-induced running) can phase shift circadian rhythms in Syrian hamsters, while other arousal procedures are ineffective (inescapable stress, caffeine, modafinil). The dorsal and median raphe nuclei (DRN, MnR) have been implicated in clock resetting by arousal and, in rats and mice, exhibit strong regionally specific responses to inescapable stress and anxiogenic drugs. To examine a possible role for the midbrain raphe nuclei in the differential effects of arousal procedures on circadian rhythms, hamsters were aroused for 3 h in the mid-rest period by confinement to a novel running wheel, gentle handling (with minimal activity) or physical restraint (with intermittent, loud compressed air stimulation) and sacrificed immediately thereafter. Regional expression of c-fos and tryptophan hydroxylase (TrpOH) were quantified immunocytochemically in the DRN, MnR and locus coeruleus (LC). Neither gentle handling nor wheel running had a large impact on c-fos expression in these areas, although the manipulations were associated with a small increase in c-Fos in TrpOH-like and TrpOH-negative cells, respectively, in the caudal interfascicular DRN region. By contrast, restraint stress significantly increased c-Fos in both TrpOH-like and TrpOH-negative cells in the rostral DRN and LC. c-Fos-positive cells in the DRN did not express tyrosine hydroxylase. These results reveal regionally specific monoaminergic correlates of arousal-induced circadian clock resetting, and suggest a hypothesis that strong activation of some DRN and LC neurons by inescapable stress may oppose clock resetting in response to arousal during the daily sleep period. More generally, these results complement evidence from other rodent species for functional topographic organization of the DRN.
Collapse
Affiliation(s)
- I C Webb
- Department of Psychology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | | | | |
Collapse
|
6
|
Benca R, Duncan MJ, Frank E, McClung C, Nelson RJ, Vicentic A. Biological rhythms, higher brain function, and behavior: Gaps, opportunities, and challenges. ACTA ACUST UNITED AC 2009; 62:57-70. [PMID: 19766673 DOI: 10.1016/j.brainresrev.2009.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/14/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
Abstract
Increasing evidence suggests that disrupted temporal organization impairs behavior, cognition, and affect; further, disruption of circadian clock genes impairs sleep-wake cycle and social rhythms which may be implicated in mental disorders. Despite this strong evidence, a gap in understanding the neural mechanisms of this interaction obscures whether biological rhythms disturbances are the underlying causes or merely symptoms of mental disorder. Here, we review current understanding, emerging concepts, gaps, and opportunities pertinent to (1) the neurobiology of the interactions between circadian oscillators and the neural circuits subserving higher brain function and behaviors of relevance to mental health, (2) the most promising approaches to determine how biological rhythms regulate brain function and behavior under normal and pathological conditions, (3) the gaps and challenges to advancing knowledge on the link between disrupted circadian rhythms/sleep and psychiatric disorders, and (4) the novel strategies for translation of basic science discoveries in circadian biology to clinical settings to define risk, prevent or delay onset of mental illnesses, design diagnostic tools, and propose new therapeutic strategies. The review is organized around five themes pertinent to (1) the impact of molecular clocks on physiology and behavior, (2) the interactions between circadian signals and cognitive functions, (3) the interface of circadian rhythms with sleep, (4) a clinical perspective on the relationship between circadian rhythm abnormalities and affective disorders, and (5) the pre-clinical models of circadian rhythm abnormalities and mood disorders.
Collapse
Affiliation(s)
- Ruth Benca
- Department of Psychology and Psychiatry, University of Wisconsin-Madison, 53792, USA
| | | | | | | | | | | |
Collapse
|
7
|
Functional neuroanatomy of sleep and circadian rhythms. ACTA ACUST UNITED AC 2009; 61:281-306. [PMID: 19695288 DOI: 10.1016/j.brainresrev.2009.08.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/02/2009] [Accepted: 08/07/2009] [Indexed: 11/23/2022]
Abstract
The daily sleep-wake cycle is perhaps the most dramatic overt manifestation of the circadian timing system, and this is especially true for the monophasic sleep-wake cycle of humans. Considerable recent progress has been made in elucidating the neurobiological mechanisms underlying sleep and arousal, and more generally, of circadian rhythmicity in behavioral and physiological systems. This paper broadly reviews these mechanisms from a functional neuroanatomical and neurochemical perspective, highlighting both historical and recent advances. In particular, I focus on the neural pathways underlying reciprocal interactions between the sleep-regulatory and circadian timing systems, and the functional implications of these interactions. While these two regulatory systems have often been considered in isolation, sleep-wake and circadian regulation are closely intertwined processes controlled by extensively integrated neurobiological mechanisms.
Collapse
|
8
|
Kaur G, Thind R, Glass JD. Brief constant light accelerates serotonergic re-entrainment to large shifts of the daily light/dark cycle. Neuroscience 2009; 159:1430-40. [PMID: 19217929 DOI: 10.1016/j.neuroscience.2009.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 02/06/2009] [Accepted: 02/07/2009] [Indexed: 11/29/2022]
Abstract
Brief ( approximately 2 day) constant light exposure (LL(b)) in hamsters dramatically enhances circadian phase-resetting induced by the 5-HT receptor agonist, (+/-)-2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahydronapthalene (8-OH-DPAT) and other nonphotic stimuli. The present study was undertaken to determine if LL(b) can also amplify phase-resetting responses to endogenous 5-HT and accelerate re-entrainment to large-magnitude advance and delay shifts of the light/dark (LD) cycle. First, central serotonergic activity was increased by i.p. injection of L-tryptophan+/-the 5-HT reuptake inhibitor fluoxetine. Hamsters under LD or exposed to LL(b) received vehicle or drugs during the early morning, and phase-shifts of the locomotor activity rhythm were measured after release to constant darkness. Neither drug phase-shifted animals not exposed to LL(b) (P>0.5 vs. vehicle); however in animals receiving LL(b,)L-tryptophan with and without fluoxetine produced large phase-advance shifts (means=2.5+/-0.4 h and 2.6+/-0.2 h, respectively; both P<0.035 vs. vehicle). Next, the effects of LL(b) combined with 8-OH-DPAT or L-tryptophan+fluoxetine on serotonergic re-entrainment to 10 h phase-advance and phase-delay shifts of the LD cycle were assessed. In groups not exposed to LL(b), vehicle controls re-entrained slowly to the advance and delay shifts (means=16+/-1 and 24+/-4 days, respectively), but those treated with 8-OH-DPAT re-entrained faster (means=11+/-2 and 9+/-2 days, respectively; both P<0.05 vs. vehicle). In groups exposed to LL(b), vehicle controls re-entrained slowly to the advance and delay shifts (means=15+/-2 and 25+/-3 days, respectively); however those receiving 8-OH-DPAT rapidly re-entrained to the delay and advance shifts, with the majority (75%) requiring only 1-2 days (means=2+/-1 and 4+/-2 days, respectively; both P<0.05 vs. vehicle). Animals exposed to LL(b) and treated with L-tryptophan+fluoxetine also exhibited accelerated re-entrainment to a 10 h advance shift (mean=5+/-2 days; P<0.05 vs. vehicle). Thus through enhancing serotonergic phase-resetting, LL(b) facilitates rapid re-entrainment to large shifts of the LD cycle which offers a potential approach for treating circadian-related desynchronies.
Collapse
Affiliation(s)
- G Kaur
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | | |
Collapse
|
9
|
Smith VM, Sterniczuk R, Phillips CI, Antle MC. Altered photic and non-photic phase shifts in 5-HT(1A) receptor knockout mice. Neuroscience 2008; 157:513-23. [PMID: 18930788 DOI: 10.1016/j.neuroscience.2008.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 11/30/2022]
Abstract
The mammalian circadian clock located in the suprachiasmatic nucleus (SCN) is thought to be modulated by 5-HT. 5-HT is though to inhibit photic phase shifts by inhibiting the release of glutamate from retinal terminals, as well as by decreasing the responsiveness of retinorecipient cells in the SCN. Furthermore, there is also evidence that 5-HT may underlie, in part, non-photic phase shifts of the circadian system. Understanding the mechanism by which 5-HT accomplishes these goals is complicated by the wide variety of 5-HT receptors found in the SCN, the heterogeneous organization of both the circadian clock and the location of 5-HT receptors, and by a lack of sufficiently selective pharmacological agents for the 5-HT receptors of interest. Genetically modified animals engineered to lack a specific 5-HT receptor present an alternative avenue of investigation to understand how 5-HT regulates the circadian system. Here we examine behavioral and molecular responses to both photic and non-photic stimuli in mice lacking the 5-HT(1A) receptor. When compared with wild-type controls, these mice exhibit larger phase advances to a short late-night light pulse and larger delays to long 12 h light pulses that span the whole subjective night. Fos and mPer1 expression in the retinorecipient SCN is significantly attenuated following late-night light pulses in the 5-HT(1A) knockout animals. Finally, non-photic phase shifts to (+/-)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) are lost in the knockout animals, while attenuation of the phase shift to the long light pulse due to rebound activity following a wheel lock is unaffected. These findings suggest that the 5-HT(1A) receptor plays an inhibitory role in behavioral phase shifts, a facilitatory role in light-induced gene expression, a necessary role in phase shifts to 8-OH-DPAT, and is not necessary for activity-induced phase advances that oppose photic phase shifts to long light pulses.
Collapse
Affiliation(s)
- V M Smith
- Department of Psychology, University of Calgary, 2500 University Drive Northwest, Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|
10
|
Carbachol injections into the intergeniculate leaflet induce nonphotic phase shifts. Brain Res 2007; 1177:59-65. [DOI: 10.1016/j.brainres.2007.07.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 07/12/2007] [Accepted: 07/31/2007] [Indexed: 12/29/2022]
|
11
|
Jenkins TC, Andrews JB, Meyer-Bernstein EL. Daily oscillation of phospholipase C beta4 in the mouse suprachiasmatic nucleus. Brain Res 2007; 1178:83-91. [PMID: 17920566 DOI: 10.1016/j.brainres.2007.07.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 07/06/2007] [Accepted: 07/08/2007] [Indexed: 11/26/2022]
Abstract
An endogenous biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) regulates the timing of an organism's physiology and behavior. A variety of receptors are found on SCN pacemaker cells which permit the clock mechanism to respond to extra- and intra-SCN chemical messengers. A subset of these receptors is coupled to G-proteins, which when bound, lead to the activation of a variety of intracellular signaling cascades. One common signaling pathway employs the phosphotidylinositol-specific phospholipase C enzyme to increase intracellular calcium levels. A specific isoform of this enzyme, phospholipase C beta4, is of particular interest to circadian biologists because in its absence, mice display a circadian phenotype. Moreover, it has been shown to be associated with receptor types that are involved in clock resetting. Despite compelling data that this enzyme could be a critical component of an intracellular signaling pathway in the SCN, no study to date has investigated the possible oscillation of phospholipase C in any mammalian tissue. In the present study, we analyzed the temporal variation in the number of phospholipase C beta4 immunoreactive cells in the SCN. Herein, we show that PLCbeta4 levels oscillate in the SCN of mice housed in a light:dark photoperiod. Protein levels reached a significant peak during the early night and a trough during the day. The oscillation was considerably damped in the SCN of mice housed in constant dark conditions indicating the cycle is photoperiod-dependent. These data are critical to understanding the temporal regulation of a variety of inputs to the mammalian central circadian clock.
Collapse
Affiliation(s)
- Travis C Jenkins
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, USA
| | | | | |
Collapse
|
12
|
Duncan MJ, Franklin KM. Expression of 5-HT7 receptor mRNA in the hamster brain: effect of aging and association with calbindin-D28K expression. Brain Res 2007; 1143:70-7. [PMID: 17300762 PMCID: PMC1913216 DOI: 10.1016/j.brainres.2007.01.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/11/2007] [Accepted: 01/17/2007] [Indexed: 11/28/2022]
Abstract
Aging affects several processes modulated by the 5-HT(7) receptor subtype, including circadian rhythms, learning and memory, and depression. Previously, we showed that aging induces a decrease in the hamster dorsal raphe (DRN) in both 5-HT(7) receptor binding and circadian phase resetting responses to 8-OH-DPAT microinjection. To elucidate the mechanisms underlying the aging decrease in 5-HT(7) receptors, we investigated aging modulation of 5-HT(7) receptor mRNA expression in the DRN, brain regions afferent to the DRN, and brain regions regulating circadian rhythms or memory. In situ hybridization for 5-HT(7) receptor mRNA was performed on coronal sections prepared from the brains of young, middle-aged, and old male Syrian hamsters. 5-HT(7) receptor mRNA expression was quantified by densitometry of X-ray film autoradiograms. The results showed that aging did not significantly affect 5-HT(7) receptor mRNA expression in the DRN or most other brain regions examined, with the exception of the cingulate cortex and paraventricular thalamic nucleus. Within the suprachiasmatic nucleus, the site of the master circadian pacemaker in mammals, 5-HT(7) receptor mRNA expression was localized in a discrete subregion resembling the calbindin subnucleus previously described. A second experiment using adjacent tissue sections showed that 5-HT(7) receptor mRNA and calbindin mRNAs were concentrated in the same region of the SCN, and as well as in the same region of several other brain structures. The localization of 5-HT(7) receptors and calbindin mRNAs within the same regions suggests that the proteins they encode may interact to modulate processes such as circadian timekeeping.
Collapse
Affiliation(s)
- Marilyn J Duncan
- Dept. of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
13
|
Knoch ME, Siegel D, Duncan MJ, Glass JD. Serotonergic mediation of constant light-potentiated nonphotic phase shifting of the circadian locomotor activity rhythm in Syrian hamsters. Am J Physiol Regul Integr Comp Physiol 2006; 291:R180-8. [PMID: 16760334 DOI: 10.1152/ajpregu.00047.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Short-term (1–3 days) constant light exposure (brief LL) potentiates nonphotic phase shifting induced by sleep deprivation and serotonin (5-HT) agonist stimulation. The present assessments reveal that exposure to brief LL markedly alters the magnitude and shape of the 5-HT1A,7 receptor agonist, 8-(+)2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahyronapthalene (8-OH-DPAT) phase-response curve, facilitating (∼12 h) phase-advance shifts during the early morning when serotonergics have no phase-shifting effect. Brief LL also reduces the threshold for 8-OH-DPAT shifting at midday, evidenced by 5- to 6-h phase-advance shifts elicited by dosages that have no effect without the LL treatment. The brief LL-potentiated phase advances to intraperitoneal 8-OH-DPAT at zeitgeber time 0 (ZT 0) were blocked by the 5-HT1A antagonists, pindolol and WAY 100635, indicating that this shifting is mediated by 5-HT1A receptors. Antagonists with action at 5-HT7 receptors, including ritanserin and metergoline, were without effect. Although autoradiographic analyses of [3H]8-OH-DPAT binding indicate that brief LL does not upregulate suprachiasmatic nucleus (SCN) 5-HT1A receptor binding, intra-SCN microinjection of 8-OH-DPAT at ZT 0 in brief LL-exposed hamsters induced shifts similar to those produced by intraperitoneal injection, suggesting that SCN 5-HT1A receptors mediate potentiated 8-OH-DPAT-induced shifts during the early morning. Lack of shifting by intra-SCN 8-OH-DPAT at ZT 6 or 18 (when intraperitoneal 8-OH-DPAT induces large shifts), further indicates that brief LL-potentiated shifts at these time points are mediated by 5-HT target(s) outside the SCN. Significantly, sleep deprivation-induced phase-advance shifts potentiated by brief LL (∼9 h) at ZT 0 were blocked by pindolol, suggesting that these behavioral shifts could be mediated by the same SCN 5-HT1A receptor phase-resetting pathway as that activated by 8-OH-DPAT treatment.
Collapse
Affiliation(s)
- Megan E Knoch
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | | | | |
Collapse
|
14
|
Morin LP, Allen CN. The circadian visual system, 2005. ACTA ACUST UNITED AC 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
15
|
Duncan MJ, Franklin KM, Davis VA, Grossman GH, Knoch ME, Glass JD. Short-term constant light potentiation of large-magnitude circadian phase shifts induced by 8-OH-DPAT: effects on serotonin receptors and gene expression in the hamster suprachiasmatic nucleus. Eur J Neurosci 2005; 22:2306-14. [PMID: 16262668 DOI: 10.1111/j.1460-9568.2005.04399.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonphotic phase-shifting of mammalian circadian rhythms is thought to be mediated in part by serotonin (5-HT) acting in the suprachiasmatic nucleus (SCN) circadian clock. Previously we showed that brief (1-3 days) exposure to constant light (LL) greatly potentiates nonphotic phase-shifting induced by the 5-HT agonist, (+/-)2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahydronapthalene (8-OH-DPAT). Here we investigated potential mechanisms for this action of LL, including 5-HT receptor upregulation and SCN clock gene and neuropeptide gene expression. Autoradiographic analysis of ritanserin inhibition of [3H]8-OH-DPAT binding indicated that LL (approximately 2 days) did not affect 5-HT7 receptor binding in the SCN or dorsal raphe. Measurement of 5-HT1A autoreceptors in the median raphe and 5-HT1B receptors in the SCN also showed no effect of LL. In experiment 2, hamsters held under a 14-h light : 10-h dark photocycle (LD) or exposed to LL for approximately 2 days received an intraperitoneal injection of 8-OH-DPAT or vehicle at zeitgeber time (ZT) 6 or 0 and were killed after 2 h of dark exposure. 8-OH-DPAT suppressed SCN Per1 and Per2 mRNAs at both ZTs, as assessed by in situ hybridization. Per1 mRNA was also suppressed by LL alone. In addition, in situ hybridization of arginine vasopressin (AVP) mRNA and vasoactive intestinal polypeptide mRNA showed that LL significantly suppressed the former but not the latter. The LL-induced suppression of SCN Per1 mRNA and AVP mRNA may be involved in LL-induced potentiation of pacemaker resetting, especially as these data provide additional evidence that LL suppresses circadian pacemaker amplitude, thus rendering the clock more susceptible to phase-shifting stimuli.
Collapse
Affiliation(s)
- Marilyn J Duncan
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Gardani M, Blance RN, Biello SM. MDMA alters the response of the mammalian circadian clock in hamsters: effects on re-entrainment and triazolam-induced phase shifts. Brain Res 2005; 1046:105-15. [PMID: 15904898 DOI: 10.1016/j.brainres.2005.03.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 03/21/2005] [Accepted: 03/29/2005] [Indexed: 12/31/2022]
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) is a neurotransmitter that is involved in a wide range of behavioural and physiological processes. Previous work has indicated that serotonin is important in the regulation of the circadian clock, which is located in the suprachiasmatic nuclei (SCN) of the hypothalamus. 3,4-methylenedioxymethamphetamine (MDMA or 'Ecstasy'), which is widely used as a recreational drug of abuse, is a serotonin neurotoxin in animals and non-human primates. Previous work has shown that MDMA exposure can alter circadian clock function both in vitro and in vivo. Evidence shows that 5-HT may have a modulatory role in the regulation of the circadian clock by non-photic stimuli, such as the benzodiazepine triazolam (TRZ). Triazolam is a short-acting benzodiazepine that results in phase advances of the wheel running activity in hamsters when administered during the mid-subjective day. In the present study, male Syrian hamsters treated with TRZ (5 mg/kg) at ZT6 significantly phase advanced their clock. Treatment with MDMA significantly diminished the TRZ induced phase shift in hamsters. Previous evidence shows the involvement of 5-HT in the re-synchronisation of the endogenous clock to a new shifted light-dark cycle. Untreated animals were successfully entrained to a new, 6 h advanced light-dark cycle within an average of 4.5 +/- 0.1 days. Following treatment with MDMA, these animals took an average of 8.3 +/- 0.1 days to re-entrain to a shifted environmental cycle. Immunohistochemical analysis revealed that animals treated with MDMA showed reduced serotonin staining, as evidenced by a decrease in innervation density in the SCN. No significant differences were found in cell counts within the raphe nuclei. These results demonstrate the importance of the serotonergic system in the modulation of photic and non-photic responses of the circadian pacemaker.
Collapse
Affiliation(s)
- M Gardani
- Department of Psychology, University of Glasgow, UK.
| | | | | |
Collapse
|
17
|
Abizaid A, Mezei G, Thanarajasingam G, Horvath TL. Estrogen enhances light-induced activation of dorsal raphe serotonergic neurons. Eur J Neurosci 2005; 21:1536-46. [PMID: 15845081 DOI: 10.1111/j.1460-9568.2005.03964.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The serotonergic system has been implicated in the modulation of physiological processes including circadian rhythms, learning, memory, mood and food intake. In females, cessation of ovarian function produces deleterious changes in all of these processes and estrogen treatment often ameliorates these conditions. Estrogen may produce these effects by acting on the midbrain raphe, an estrogen-sensitive region that receives direct projections from sensory systems. Here we examined the ability of estradiol to modulate neuronal responses of neurons within raphe nuclei to photic stimulation. Ovariectomized rats treated with estradiol or cholesterol were killed 1 h after the normal onset of light (Zeitgeber time 0) or after a 2-h phase advance (Zeitgeber time 22). In a second study, estradiol-treated ovariectomized rats under constant dark conditions were exposed to light 2 h before the subjective onset of circadian time [(CT)22] and killed 1 h later (CT23). The brains from all animals were processed for Fos and/or serotonin (5-HT) immunocytochemistry. Comparisons showed that the phase shift increased Fos immunoreactivity in all dorsal raphe nucleus (DRN) regions. Although estradiol did not alter the overall number of Fos-positive nuclei, it significantly increased the number of Fos/5-HT double-labelled cells in the medial and lateral DRN. In contrast, neither a phase shift nor estradiol altered the number of Fos-immunoreactive cells or the proportion of Fos-positive 5-HT cells in the median raphe nucleus. Results reveal that the DRN 5-HT system responds to changes in the light : dark cycle and that these responses are modulated by estrogen.
Collapse
Affiliation(s)
- Alfonso Abizaid
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Streetm, New Haven, CT 06529, USA
| | | | | | | |
Collapse
|
18
|
Yokota SI, Moriya T, Shibata S. Inhibitory action of 5-HT1A agonist MKC-242 on triazolam-induced phase advances in hamster circadian activity rhythms. J Pharmacol Sci 2005; 98:103-6. [PMID: 15879674 DOI: 10.1254/jphs.sc0050058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Mammalian circadian rhythms can be entrained by photic and non-photic stimuli. Although we know that non-photic entrainment interferes with photic entrainment signals, there is no information about whether photic entrainment interferes with non-photic entraining signals. We examined whether triazolam (TRZ), a non-photic form of entrainment, could be attenuated by pre-treatment with (S)-5-[3-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole hydrochloride (MKC-242), a photic enhancing drug. We found that TRZ-induced phase advances in hamster behavioral circadian rhythms and the increase of locomotor activity were both significantly attenuated by MKC-242. Thus, in hamsters, the photic enhancing drug MKC-242 seemed to hinder benzodiazepine-induced non-photic entrainment.
Collapse
Affiliation(s)
- Shin-ichi Yokota
- Department of Pharmacology, School of Science and Engineering, Waseda University, Tokyo 202-0021, Japan
| | | | | |
Collapse
|
19
|
Graff C, Kohler M, Pévet P, Wollnik F. Involvement of the retinohypothalamic tract in the photic-like effects of the serotonin agonist quipazine in the rat. Neuroscience 2005; 135:273-83. [PMID: 16084651 DOI: 10.1016/j.neuroscience.2005.05.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/19/2005] [Accepted: 05/29/2005] [Indexed: 10/25/2022]
Abstract
Light is the major synchronizer of the mammalian circadian pacemaker located in the suprachiasmatic nucleus. Photic information is perceived by the retina and conveyed to the suprachiasmatic nucleus either directly by the retinohypothalamic tract or indirectly by the intergeniculate leaflet and the geniculohypothalamic tract. In addition, serotonin has been shown to affect the suprachiasmatic nucleus by both direct and indirect serotonin projections from the raphe nuclei. Indeed, systemic as well as local administrations of the serotonin agonist quipazine in the region of the suprachiasmatic nucleus mimic the effects of light on the circadian system of rats, i.e. they induce phase-advances of the locomotor activity rhythm as well as c-FOS expression in the suprachiasmatic nucleus during late subjective night. The aim of this study was to localize the site(s) of action mediating those effects. Phase shifts of the locomotor activity rhythm as well as c-FOS expression in the suprachiasmatic nucleus after s.c. injection of quipazine (10 mg/kg) were assessed in Lewis rats, which had received either radio-frequency lesions of the intergeniculate leaflet or infusions of the serotonin neurotoxin 5,7-dihydroxytryptamine into the suprachiasmatic nucleus (25 microg) or bilateral enucleation. Lesions of intergeniculate leaflet and serotonin afferents to the suprachiasmatic nucleus did not reduce the photic-like effects of quipazine, whereas bilateral enucleation and the subsequent degeneration of the retinohypothalamic tract abolished both the phase-shifting and the FOS-inducing effects of quipazine. The results indicate that photic-like effects of quipazine are mediated via the retinohypothalamic tract.
Collapse
Affiliation(s)
- C Graff
- Department of Animal Physiology, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| | | | | | | |
Collapse
|
20
|
Yannielli P, Harrington ME. Let there be “more” light: enhancement of light actions on the circadian system through non-photic pathways. Prog Neurobiol 2004; 74:59-76. [PMID: 15381317 DOI: 10.1016/j.pneurobio.2004.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 06/18/2004] [Indexed: 11/19/2022]
Abstract
Circadian rhythms are internally generated circa 24 h rhythms. The phase of the circadian pacemaker in mammals can be adjusted by external stimuli such as the daily cycle of light, as well as by internal stimuli such as information related to the physiological and behavioral status of the organism, collectively called "non-photic stimuli". We review a large number of studies regarding photic-non-photic interactions on the circadian system, with special focus on two widely described neurotransmitters associated with non-photic input pathways: neuropeptide Y (NPY) and serotonin 5-HT. Both neurotransmitters are capable of phase advancing the master pacemaker oscillation when applied during the subjective day, as do several behavioral manipulations. Also, both are capable of inhibiting light-induced phase shifts during the subjective night, suggesting a dynamic interaction between photic and non-photic stimuli in the fine-tuning of the pacemaker function. Suppression of the NPYergic and/or serotonergic non-photic input pathways can in turn potentiate the phase-shifting effects of light. These findings pose new questions about the possibility of a physiological role for the dynamic interaction between photic and non-photic inputs. This might be particularly important in the case of circadian system adjustments under certain conditions, such as depression, shift work or jet lag.
Collapse
Affiliation(s)
- P Yannielli
- Neuroscience Program, Department of Psychology, Smith College, Northampton, MA 01063, USA
| | | |
Collapse
|
21
|
Horowitz SS, Blanchard JH, Morin LP. Intergeniculate leaflet and ventral lateral geniculate nucleus afferent connections: An anatomical substrate for functional input from the vestibulo-visuomotor system. J Comp Neurol 2004; 474:227-45. [PMID: 15164424 DOI: 10.1002/cne.20125] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The intergeniculate leaflet (IGL) has widespread projections to the basal forebrain and visual midbrain, including the suprachiasmatic nucleus (SCN). Here we describe IGL-afferent connections with cells in the ventral midbrain and hindbrain. Cholera toxin B subunit (CTB) injected into the IGL retrogradely labels neurons in a set of brain nuclei most of which are known to influence visuomotor function. These include the retinorecipient medial, lateral and dorsal terminal nuclei, the nucleus of Darkschewitsch, the oculomotor central gray, the cuneiform, and the lateral dorsal, pedunculopontine, and subpeduncular pontine tegmental nuclei. Intraocular CTB labeled a retinal terminal field in the medial terminal nucleus that extends dorsally into the pararubral nucleus, a location also containing cells projecting to the IGL. Distinct clusters of IGL-afferent neurons are also located in the medial vestibular nucleus. Vestibular projections to the IGL were confirmed by using anterograde tracer injection into the medial vestibular nucleus. Other IGL-afferent neurons are evident in Barrington's nucleus, the dorsal raphe, locus coeruleus, and retrorubral nucleus. Injection of a retrograde, trans-synaptic, viral tracer into the SCN demonstrated transport to cells as far caudal as the vestibular system and, when combined with IGL injection of CTB, confirmed that some in the medial vestibular nucleus polysynaptically project to the SCN and monosynaptically to the IGL, as do cells in other brain regions. The results suggest that the IGL may be part of the circuitry governing visuomotor activity and further indicate that circadian rhythmicity might be influenced by head motion or visual stimuli that affect the vestibular system.
Collapse
Affiliation(s)
- Seth S Horowitz
- Department of Psychiatry and Behavioral Sciences, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
22
|
Knoch ME, Gobes SMH, Pavlovska I, Su C, Mistlberger RE, Glass JD. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters. Eur J Neurosci 2004; 19:2779-90. [PMID: 15147311 DOI: 10.1111/j.0953-816x.2004.03371.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Behavioral (nonphotic) stimuli can shift circadian rhythms by serotonin (5-HT) and/or neuropeptide Y (NPY) inputs to the suprachiasmatic nucleus (SCN) circadian clock. Based on the idea that behavioral phase resetting is modulated by endogenous changes in postsynaptic sensitivity to such transmitters, hamsters were exposed to constant light (LL; approximately 250 lx) for 1-3 days, which suppresses locomotor activity and eliminates the daily rhythm of SCN 5-HT release measured by microdialysis. Groups subjected to brief LL or maintained under a light/dark cycle (LD) received phase-resetting treatments with the 5-HT(1A,7) agonist (+/-)-2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahydronapthalene (8-OH-DPAT) or sleep deprivation (SD). Animals were released to constant darkness at the start of the treatments. Phase advances to 8-OH-DPAT and SD during the day were 11 and 3 h for LL vs. 2 and 1 h for LD, respectively. Phase delays during the night were -12 and -5 h for LL vs. no responses for LD, respectively. Phase-transition curves for both LL treatments had slopes approximating 0, indicative of Type 0 phase resetting. For all treatments, the degree of locomotor suppression by LL was not correlated with the phase shift magnitude. Re-establishing locomotor activity by overnight food deprivation did not prevent potentiated shifting to SD. However, re-establishing peak extracellular 5-HT levels by intra-SCN 5-HT reverse microdialysis perfusion in LL did significantly reduce potentiated 8-OH-DPAT phase advances. Constant light also enhanced intra-SCN NPY-induced phase advances during the day (6 vs. 2 h for LD). These results suggest that LL promotes Type 0 phase resetting by supersensitizing 5-HT and/or NPY postsynaptic responses and possibly by attenuating the amplitude of the circadian pacemaker, thus enhancing circadian clock resetting nonspecifically.
Collapse
Affiliation(s)
- Megan E Knoch
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | | | | | | | | |
Collapse
|
23
|
Cain SW, Verwey M, Hood S, Leknickas P, Karatsoreos I, Yeomans JS, Ralph MR. Reward and Aversive Stimuli Produce Similar Nonphotic Phase Shifts. Behav Neurosci 2004; 118:131-7. [PMID: 14979789 DOI: 10.1037/0735-7044.118.1.131] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Circadian rhythms in rodents respond to arousing, nonphotic stimuli that contribute to daily patterns of entrainment. To examine whether the motivational significance of a stimulus is important for eliciting nonphotic circadian phase shirts in Syrian hamsters (Mesocricetus auratus), the authors compared responses to a highly rewarding stimulus (lateral hypothalamic brain stimulation reward [BSR]) and a highly aversive stimulus (footshock). Animals were housed on a 14:10-hr light-dark cycle until test day, when they were given a 1-hr BSR session (trained animals) or a 1-mA electric footshock at 1 of 8 circadian times, and were maintained in constant dark thereafter. Both BSR pulses and footshock produced nonphotic phase response curves. These results support the hypothesis that arousal resulting from the motivational significance of a stimulus is a major factor in nonphotic phase shifts.
Collapse
Affiliation(s)
- Sean W Cain
- Department of Psychology, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
24
|
Midbrain raphe modulation of nonphotic circadian clock resetting and 5-HT release in the mammalian suprachiasmatic nucleus. J Neurosci 2003. [PMID: 12930783 DOI: 10.1523/jneurosci.23-20-07451.2003] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serotonin (5-HT) is an important regulator of the mammalian circadian clock of the suprachiasmatic nucleus (SCN); however, critical questions remain concerning the control of serotonergic activity in the SCN and how this relates to the putative clock-resetting actions of 5-HT. Previously, we reported that electrical stimulation of the dorsal raphe nucleus (DRN) or median raphe nucleus (MRN) in hamsters evoked 5-HT release in the SCN. This DRN-stimulated 5-HT release was blocked by systemic injection of 5-HT antagonists, indicating a 5-HT receptor-mediated pathway from the DRN to the SCN. In the present study, targeted injections of the 5-HT1,2,7 antagonist metergoline or the selective 5-HT7 antagonist DR4004 into the DRN or MRN attenuated DRN-electrically stimulated SCN 5-HT release, supporting a multisynaptic DRN-->MRN-->SCN route. Intra-DRN and intra-MRN injections of the GABA(A) antagonist bicuculline significantly stimulated SCN 5-HT release, whereas intra-DRN or intra-MRN injections of the GABAA agonist muscimol suppressed this release. The 5-HT release induced by intra-DRN bicuculline was also blocked by co-injection of DR4004. In complementary behavioral trials, SCN 5-HT release associated with a phase-advancing sleep deprivation stimulus at midday was prevented by intra-DRN injection of metergoline. Also, phase-advance shifts induced by novel wheel access at midday were suppressed, but not blocked, by intra-DRN injection of DR4004 or muscimol. These results indicate that 5-HT7 and GABAergic receptors of the DRN and MRN regulate behaviorally induced 5-HT release in the SCN, and that DRN output modulates nonphotic phase-resetting responses.
Collapse
|
25
|
Abstract
The median (MnR), but not the dorsal (DR) raphe, sends a serotonergic projection to the suprachiasmatic (SCN) nucleus. Stimulation of either nucleus by electrode or serotonin agonist yields equivalent effects on circadian rhythmicity. This and other evidence suggests the existence of a functional serotonergic pathway from the DR to the MnR that may participate in circadian rhythm regulation. The present investigation was designed to identify such a connection. Tract tracer studies revealed cells in the DR that project to the MnR, as well as cells in the MnR that project to the DR. Double label immunofluorescence methods demonstrated that some of the cells projecting from either nucleus to the other contain serotonin immunoreactivity. The results support the existence of a reciprocal pathway between the DR and MnR that is at least partially serotonergic.
Collapse
Affiliation(s)
- Rebecca C Tischler
- Graduate Program in Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
26
|
Hay-Schmidt A, Vrang N, Larsen PJ, Mikkelsen JD. Projections from the raphe nuclei to the suprachiasmatic nucleus of the rat. J Chem Neuroanat 2003; 25:293-310. [PMID: 12842274 DOI: 10.1016/s0891-0618(03)00042-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The presence of serotonergic afferents in the hypothalamic suprachiasmatic nucleus (SCN) is well documented and several functional roles of serotonin (5-HT) in circadian function are well established. However, there is some controversy about the precise location of the serotonergic neurones from where this input arises. Discrete injection of the tracer Cholera toxin, subunit B, (ChB) was centred in the rat SCN, and a few retrograde labelled neurones were distributed in the dorsal and median raphe nuclei (MnR) and in the rostral part of the raphe magnus (RMg), but no neurones were found in the raphe pallidus or raphe obscurus. In addition, a group of neurones was consistently found in the medial part of the pontine supra lemniscal nucleus but not including the serotonergic B(9) region. A combination of retrograde tracing with Fluoro-Gold together with 5-HT-immunolabelling, showed few double-labelled neurones in the dorsal, MnR and B(9). However, the majority of projecting neurones were not co-storing 5-HT immunoreactivity. Phaseolus vulgaris-leucoagglutinin (PHA-L) injections in the dorsal raphe resulted in faint labelling, whereas the MnR gave rise to several labelled fibres in the SCN. Individual delicate PHA-L nerve fibres were found in all compartments of the SCN both in terms of rostrocaudal, ventromedial and dorsomedial extent, without any sign of a topographical organisation of the MnR input to the SCN. PHA-L injections into RMg gave rise to labelling of a few processes within the SCN. In conclusion, the main serotonergic input to the rat SCN originates from a few neurones in the MnR.
Collapse
Affiliation(s)
- Anders Hay-Schmidt
- Department of Medical Anatomy, The Panum Institute, 18.2, University of Copenhagen, Blegdamsvej 3, DK-2200 N, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
27
|
Antle MC, Ogilvie MD, Pickard GE, Mistlberger RE. Response of the mouse circadian system to serotonin 1A/2/7 agonists in vivo: surprisingly little. J Biol Rhythms 2003; 18:145-58. [PMID: 12693869 DOI: 10.1177/0748730403251805] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Serotonin (5-HT) is thought to play a role in regulating nonphotic phase shifts and modulating photic phase shifts of the mammalian circadian system, but results with different species (rats vs. hamsters) and techniques (in vivo vs. in vitro; systemic vs. intracerebral drug delivery) have been discordant. Here we examined the effects of the 5-HT1A/7 agonist 8-OH-DPAT and the 5-HT1/2 agonist quipazine on the circadian system in mice, with some parallel experiments conducted with hamsters for comparative purposes. In mice, neither drug, delivered systemically at a range of circadian phases and doses, induced phase shifts significantly different from vehicle injections. In hamsters, quipazine intraperitoneally (i.p.) did not induce phase shifts, whereas 8-OH-DPAT induced phase shifts after i.p. but not intra-SCN injections. In mice, quipazine modestly increased c-Fos expression in the SCN (site of the circadian pacemaker) during the subjective day, whereas 8-OH-DPAT did not affect SCN c-Fos. In hamsters, both drugs suppressed SCN c-Fos in the subjective day. In both species, both drugs strongly induced c-Fos in the paraventricular nucleus (within-subject positive control). 8-OH-DPAT did not significantly attenuate light-induced phase shifts in mice but did in hamsters (between-species positive control). These results indicate that in the intact mouse in vivo, acute activation of 5-HT1A/2/7 receptors in the circadian system is not sufficient to reset the SCN pacemaker or to oppose phase-shifting effects of light. There appear to be significant species differences in the susceptibility of the circadian system to modulation by systemically delivered serotonergics.
Collapse
Affiliation(s)
- Michael C Antle
- Department of Psychology, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
28
|
Yannielli PC, McKinley Brewer J, Harrington ME. Is novel wheel inhibition of per1 and per2 expression linked to phase shift occurrence? Neuroscience 2002; 112:677-85. [PMID: 12074909 DOI: 10.1016/s0306-4522(02)00100-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We studied whether access to a novel running wheel in vivo could reset the suprachiasmatic nuclei (SCN) in vitro. Golden hamsters were transferred to dim red light at Zeitgeber time (ZT) 4, given their first exposure to a running wheel for 3 h, and killed at either ZT7 or ZT9. Using a brain slice preparation, the SCN firing rate rhythm in vitro was advanced relative to controls only in the slices prepared at ZT9 (phase shift: 2.36+/-0.06 h, n=4) but not ZT7 (-0.26+/-0.16 h, n=4). Transitions to dim red light or brain slice preparation at ZT7 or ZT9 alone do not shift the rhythm. Hamsters with wheels had significantly lower levels of SCN per1 mRNA compared with controls at ZT7, and lower per2 mRNA when examined at ZT9. We conclude that 3 h of novel wheel access appears to require some extended time in vivo in order for the SCN to be reset, even beyond the time when per1 mRNA levels have been altered.
Collapse
Affiliation(s)
- P C Yannielli
- Department of Psychology and Neuroscience Program, Smith College, Northampton, MA 01063, USA
| | | | | |
Collapse
|
29
|
Antle MC, Ludgate S, Mistlberger RE. Activity-induced circadian clock resetting in the Syrian hamster: effects of melatonin. Neurosci Lett 2002; 317:5-8. [PMID: 11750983 DOI: 10.1016/s0304-3940(01)02410-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Circadian rhythms in the Syrian hamster can be phase advanced by arousal during the mid-rest period. Similar phase shifts are induced by 5-HT(7) receptor activation in vivo and in vitro. Shifts in vitro are dependent on mobilization of intracellular cyclic AMP (cAMP), and can be blocked by melatonin, which opposes cAMP accumulation. If phase shifts to arousal in vivo are also dependent on cAMP, then these shifts may also be attenuated by melatonin. Hamsters were confined to a novel running wheel for 1.5 or 3 h in the mid-rest period. Melatonin (1 mg/kg i.p.) as a single bolus did not induce phase shifts, and single or multiple doses did not affect shifts to arousal. These data suggest that stimulation of cAMP by 5-HT(7) receptor activation is not necessary for clock resetting by behavioral arousal.
Collapse
Affiliation(s)
- Michael C Antle
- Department of Psychology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | | | | |
Collapse
|
30
|
Yokota SI, Horikawa K, Akiyama M, Moriya T, Ebihara S, Komuro G, Ohta T, Shibata S. Inhibitory action of brotizolam on circadian and light-induced per1 and per2 expression in the hamster suprachiasmatic nucleus. Br J Pharmacol 2000; 131:1739-47. [PMID: 11139454 PMCID: PMC1572494 DOI: 10.1038/sj.bjp.0703735] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Triazolam reportedly causes phase advances in hamster wheel-running rhythm after injection during subjective daytime. However, it is unclear whether benzodiazepine affects the PER: gene expression accompanying a behavioural phase shift. Brotizolam (0.5 - 10 mg kg(-1)) induced large phase advances in hamster rhythm when injected during mid-subjective daytime (circadian time 6 or 9), but not at circadian time 0, 3 or 15. Brotizolam (5 mg kg(-1)) significantly reduced the expression of PER:1 and PER:2 in the suprachiasmatic nucleus 1 and 2 h after injection at circadian time 6, and slightly reduced them at circadian time 20. Injection of 8-OH-DPAT (5 mg kg(-1)) at subjective daytime induced similar phase advances with a reduction of PER:1 and PER:2 expression. Co-administration of brotizolam with 8-OH DPAT failed to potentiate the 8-OH DPAT-induced phase advances and reduced PER: expression. Both phase advance and rapid induction of PER:1 and PER:2 in the suprachiasmatic nucleus after light exposure (5 lux, 15 min) at circadian time 20 was strongly attenuated by co-treatment with brotizolam 5 mg kg(-1). The present results strongly suggest that reduction of PER:1 and/or PER:2 expression during subjective daytime by brotizolam may be an important step in causing a behavioural phase advance. The co-administration experiment suggests that common mechanism(s) are involved in brotizolam- or 8-OH DPAT-induced phase advances and the reduction of PER: gene expression. These results suggest that brotizolam is not only a good drug for insomnia but also a drug capable of facilitating re-entrainment like melatonin.
Collapse
Affiliation(s)
- Shin-ichi Yokota
- Department of Pharmacology and Brain Science, School of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Kazumasa Horikawa
- Department of Pharmacology and Brain Science, School of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Masashi Akiyama
- Department of Pharmacology and Brain Science, School of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Takahiro Moriya
- ARCHS, School of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Shizufumi Ebihara
- Department of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-0814, Japan
| | - Goyo Komuro
- Department of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-0814, Japan
| | - Tatsuro Ohta
- Department of Psychiatry, School of Medical Sciences, Nagoya University, Chikusa, Nagoya 464-0814, Japan
| | - Shigenobu Shibata
- Department of Pharmacology and Brain Science, School of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- ARCHS, School of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
- Author for correspondence:
| |
Collapse
|
31
|
Glass JD, DiNardo LA, Ehlen JC. Dorsal raphe nuclear stimulation of SCN serotonin release and circadian phase-resetting. Brain Res 2000; 859:224-32. [PMID: 10719068 DOI: 10.1016/s0006-8993(00)01963-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Serotonin (5-HT) is strongly implicated in the regulation of mammalian circadian rhythms. However, little is known of the functional relationship between the circadian clock located in the suprachiasmatic nucleus (SCN) and its source of serotonergic innervation, the midbrain raphe nuclei. In previous studies, we reported that electrical stimulation of the dorsal or median raphe nuclei (DRN and MRN, respectively) induced 5-HT release in the SCN. Notably, DRN- but not MRN-stimulated 5-HT release was blocked by the 5-HT(1,2,7) antagonist, metergoline, suggesting that the DRN signals to the SCN indirectly via the activation of a 5-HT-responsive multisynaptic pathway. In the present study, pretreatment with the 5-HT(2,7) antagonist, ritanserin, also significantly inhibited DRN-electrically stimulated SCN 5-HT release. However, pretreatment with the 5-HT(1A) antagonist, NAN-190, or the 5-HT(2) antagonists ketanserin and cinanserin had little suppressive effect on this DRN-stimulated 5-HT release. In complementary behavioral trials, electrical stimulation of the DRN during subjective midday caused a 1.3-h advance in the free-running circadian activity rhythm under constant darkness, which was inhibited by metergoline. Collectively, these results are evidence that: (1) DRN-stimulated 5-HT release in the SCN requires the activation of an intermediate target with receptors having 5-HT(7) pharmacological characteristics; (2) electrical stimulation of the DRN induces phase-resetting of the circadian activity rhythm; and (3) activation of 5-HT receptors is necessary for this DRN-stimulated circadian phase-resetting. In view of the dynamic changes in DRN neuronal activity incumbent with the daily sleep-activity cycle, and its functional linkages to the SCN and intergeniculate leaflet, the DRN could serve to provide behavioral/arousal state information to various sites comprising the brain circadian system.
Collapse
Affiliation(s)
- J D Glass
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
| | | | | |
Collapse
|
32
|
Antle MC, Glass JD, Mistlberger RE. 5-HT(1A) autoreceptor antagonist-induced 5-HT release in the hamster suprachiasmatic nuclei: effects on circadian clock resetting. Neurosci Lett 2000; 282:97-100. [PMID: 10713405 DOI: 10.1016/s0304-3940(00)00873-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Serotonin (5-HT) has been implicated in phase shifting of mammalian circadian rhythms by non-photic stimuli. This study tests whether pharmacological induction of endogenous 5-HT release can shift circadian phase in the Syrian hamster. Systemic injections of the 5-HT(1A) antagonist WAY100635 during the mid-subjective day significantly increased 5-HT in dialysate from the hamster suprachiasmatic nucleus (SCN) circadian pacemaker by approximately 50% for 40-60 min. However, this was not associated with phase shifts or with potentiation of phase shifts induced by a 3 h bout of running. These results indicate that enhanced 5-HT release in the SCN or possibly other regions is not sufficient to induce phase shifts in the subjective day.
Collapse
Affiliation(s)
- M C Antle
- Department of Psychology, Simon Fraser University, Burnaby, Canada
| | | | | |
Collapse
|
33
|
Abstract
The clock regulating mammalian circadian rhythmicity resides in the suprachiasmatic nucleus. The intergeniculate leaflet, a major component of the subcortical visual system, has been shown to be essential for certain aspects of circadian rhythm regulation. We now report that midbrain visual nuclei afferent to the intergeniculate leaflet are also components of the hamster circadian rhythm system. Loss of connections between the intergeniculate leaflet and visual midbrain or neurotoxic lesions of pretectum or deep superior colliculus (but not of the superficial superior colliculus) blocked phase shifts of the circadian activity rhythm in response to a benzodiazepine injection during the subjective day. Such damage did not disturb phase response to a novel wheel stimulus. The amount of wheel running or open field locomotion were equivalent in lesioned and control groups after benzodiazepine treatment. Electrical stimulation of the deep superior colliculus, without its own effect on circadian rhythm phase, greatly attenuated light-induced phase shifts. Such stimulation was associated with increased FOS protein immunoreactivity in the suprachiasmatic nucleus. The results show that the circadian rhythm system includes the visual midbrain and distinguishes between mechanisms necessary for phase response to benzodiazepine and those for phase response to locomotion in a novel wheel. The results also refute the idea that benzodiazepine-induced phase shifts are the consequence of induced locomotion. Finally, the data provide the first indication that the visual midbrain can modulate circadian rhythm response to light. A variety of environmental stimuli may gain access to the circadian clock mechanism through subcortical nuclei projecting to the intergeniculate leaflet and, via the final common path of the geniculohypothalamic tract, from the leaflet to the suprachiasmatic nucleus.
Collapse
|
34
|
Schuhler S, Pitrosky B, Saboureau M, Lakhdar-Ghazal N, Pévet P. Role of the thalamic intergeniculate leaflet and its 5-HT afferences in the chronobiological properties of 8-OH-DPAT and triazolam in syrian hamster. Brain Res 1999; 849:16-24. [PMID: 10592283 DOI: 10.1016/s0006-8993(99)01914-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The 5-HT(1A/7) receptor agonist 8-hydroxy-2-[di-n-propylamino]-tetralin (8-OH-DPAT) has chronobiological effects on the circadian system and, in the Syrian hamster, it is known that serotonergic (5-HT) projections connecting the median raphe nucleus to the suprachiasmatic nuclei (SCN) of the hypothalamus are a prerequisite for the expression of 8-OH-DPAT-induced phase advance of locomotor activity rhythm. We examined the possible involvement of the thalamic intergeniculate leaflet (IGL) in the phase-shifting properties of 8-OH-DPAT injections at CT7. Bilateral electrolytic lesions of the IGL blocked phase-shift responses to 8-OH-DPAT of the activity rhythm. Phase changes induced by injections of 8-OH-DPAT at CT7 and triazolam (Tz), a short-acting benzodiazepine, at CT6 were also studied after bilateral chemical lesion of the 5-HT fibres connecting the dorsal raphe nucleus (DR) to IGL. Destruction of 5-HT fibres within the IGL blocked the phase-shift response to Tz, but not the phase-shift response to 8-OH-DPAT. In conclusion, (a) IGL is essential for the phase-shifting effect of peripheral 8-OH-DPAT injections; (b) 5-HT fibres connecting DR to IGL are necessary for the expression of the phase-shifting effect of Tz but not of 8-OH-DPAT.
Collapse
Affiliation(s)
- S Schuhler
- Laboratoire de Neurobiologie des Fonctions Rythmiques et Saisonnières, CNRS-UMR 7518, Université Louis Pasteur, 12 rue de l'Université, F-67000, Strasbourg, France
| | | | | | | | | |
Collapse
|
35
|
Dudley TE, Dinardo LA, Glass JD. In vivo assessment of the midbrain raphe nuclear regulation of serotonin release in the hamster suprachiasmatic nucleus. J Neurophysiol 1999; 81:1469-77. [PMID: 10200183 DOI: 10.1152/jn.1999.81.4.1469] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-HT) plays important regulatory roles in mammalian circadian timekeeping; however, little is known concerning the regulation of serotonergic activity in the circadian clock located in the suprachiasmatic nuclei (SCN). By using in vivo microdialysis to measure 5-HT release we demonstrated that electrical or pharmacological stimulations of the dorsal or median raphe nuclei (DRN and MRN, respectively) can alter basal release of 5-HT in the hamster SCN. There were similar increases in SCN 5-HT release after electrical stimulation of either the MRN or DRN, indicating that both could contribute to the serotonergic activity in the SCN. Systemic pretreatment with the 5-HT antagonist metergoline abolished DRN-induced SCN 5-HT release but had little effect on MRN-induced SCN 5-HT release, suggesting different pathways for these nuclei in regulating 5-HT output in the SCN. Microinjections of the 5-HT1A autoreceptor agonist 8-OH-DPAT or antagonist WAY 100635 into the MRN caused significant inhibition and stimulation of SCN 5-HT release, respectively. Both drugs had substantially less effect in the DRN. These differential drug actions indicate that somatodendritic 5-HT1A autoreceptors on MRN neurons provide the prominent raphe autoregulation of 5-HT output in the SCN. Collectively the current results are evidence that DRN as well as MRN neurons can contribute to the regulation of 5-HT release in the hamster SCN. On the basis of the current observations and those from recent anatomic tracing studies of serotonergic projections to SCN it is hypothesized that DRN input to the SCN could be mediated by a DRN --> MRN --> SCN pathway involving a 5-HT-sensitive multisynaptic interaction between the DRN and MRN neurons.
Collapse
Affiliation(s)
- T E Dudley
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242, USA
| | | | | |
Collapse
|