1
|
Lee CLM, Brabander CJ, Nomura Y, Kanda Y, Yoshida S. Embryonic exposure to acetamiprid insecticide induces CD68-positive microglia and Purkinje cell arrangement abnormalities in the cerebellum of neonatal rats. Toxicol Appl Pharmacol 2024; 495:117215. [PMID: 39719252 DOI: 10.1016/j.taap.2024.117215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Concerns have been raised regarding acetamiprid (ACE), a neonicotinoid insecticide, due to its potential neurodevelopmental toxicity. ACE, which is structurally similar to nicotine, acts as an agonist of nicotinic acetylcholine receptors (nAChRs) and resists degradation by acetylcholinesterase. Furthermore, ACE has been reported to disrupt neuronal transmission and induce developmental neurotoxicity and ataxia in animal models. However, the prenatal ACE exposure and its pathological changes, including impacts on motor control, remains unclear. In this study, we investigated the effects of ACE exposure, focusing on the development of cerebellar neurons and glia, which are linked to motor impairment. ACE at doses of 20, 40-, and 60 mg/kg body weight was administered to Pregnant Wistar rats via feed on gestational day (G) 15. The developing cerebellum of the pups was examined on postnatal days (P) 7, 14, and 18, corresponding to the critical periods of cerebellar maturation in rodents. Our data revealed that ACE exposure at 40 and 60 mg/kg induced abnormal neuronal alignment on P14, and neuronal cell loss on P18. Additionally, ACE altered microglial behavior, with an increase in the number of CD68-positive microglia, suggesting that the exposure results in an increase in phagocytic microglia in response to neuronal abnormalities, ultimately leading to neuronal cell loss. Pups exposed to 60 mg/kg ACE exhibited hindlimb clasping during the hindlimb suspension test, indicating motor impairment. These findings suggest that ACE exposure causes neuronal cell loss of developing Purkinje cells and promotes a phase shift to the activate mode of microglia. This study further highlights the crucial role of neuron-glia interactions in ACE-induced motor impairment, thus contributing to our understanding of the potential risks associated with prenatal ACE exposure.
Collapse
Affiliation(s)
- Christine Li Mei Lee
- Department of Applied Chemistry and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Claire J Brabander
- Department of Psychology, Queens College, CUNY, NY 11367, USA; Graduate Center, CUNY, New York, NY 10023, USA
| | - Yoko Nomura
- Department of Psychology, Queens College, CUNY, NY 11367, USA; Graduate Center, CUNY, New York, NY 10023, USA
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Sachiko Yoshida
- Department of Applied Chemistry and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan; Center for Diversity and Inclusion, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
2
|
Abbott PW, Hardie JB, Walsh KP, Nessler AJ, Farley SJ, Freeman JH, Wemmie JA, Wendt L, Kim YC, Sowers LP, Parker KL. Knockdown of the Non-canonical Wnt Gene Prickle2 Leads to Cerebellar Purkinje Cell Abnormalities While Cerebellar-Mediated Behaviors Remain Intact. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1741-1753. [PMID: 38165577 PMCID: PMC11217148 DOI: 10.1007/s12311-023-01648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 01/04/2024]
Abstract
Autism spectrum disorders (ASD) involve brain wide abnormalities that contribute to a constellation of symptoms including behavioral inflexibility, cognitive dysfunction, learning impairments, altered social interactions, and perceptive time difficulties. Although a single genetic variation does not cause ASD, genetic variations such as one involving a non-canonical Wnt signaling gene, Prickle2, has been found in individuals with ASD. Previous work looking into phenotypes of Prickle2 knock-out (Prickle2-/-) and heterozygous mice (Prickle2-/+) suggest patterns of behavior similar to individuals with ASD including altered social interaction and behavioral inflexibility. Growing evidence implicates the cerebellum in ASD. As Prickle2 is expressed in the cerebellum, this animal model presents a unique opportunity to investigate the cerebellar contribution to autism-like phenotypes. Here, we explore cerebellar structural and physiological abnormalities in animals with Prickle2 knockdown using immunohistochemistry, whole-cell patch clamp electrophysiology, and several cerebellar-associated motor and timing tasks, including interval timing and eyeblink conditioning. Histologically, Prickle2-/- mice have significantly more empty spaces or gaps between Purkinje cells in the posterior lobules and a decreased propensity for Purkinje cells to fire action potentials. These structural cerebellar abnormalities did not impair cerebellar-associated behaviors as eyeblink conditioning and interval timing remained intact. Therefore, although Prickle-/- mice show classic phenotypes of ASD, they do not recapitulate the involvement of the adult cerebellum and may not represent the pathophysiological heterogeneity of the disorder.
Collapse
Affiliation(s)
- Parker W Abbott
- Department of Psychiatry, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52245, USA
| | - Jason B Hardie
- Department of Psychiatry, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52245, USA
| | - Kyle P Walsh
- Department of Psychiatry, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52245, USA
| | - Aaron J Nessler
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52245, USA
| | | | - John H Freeman
- Department of Psychiatry, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52245, USA
| | - John A Wemmie
- Department of Psychiatry, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52245, USA
| | - Linder Wendt
- Department of Biostatistics, The University of Iowa, Iowa City, IA, 52245, USA
| | - Young-Cho Kim
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52245, USA
- Department of Neurology, The University of Iowa, Iowa City, IA, 52245, USA
| | - Levi P Sowers
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52245, USA
- Department of Pediatrics, The University of Iowa, Iowa City, IA, 52245, USA
| | - Krystal L Parker
- Department of Psychiatry, Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52245, USA.
| |
Collapse
|
3
|
Baizer JS. Neuroanatomy of autism: what is the role of the cerebellum? Cereb Cortex 2024; 34:94-103. [PMID: 38696597 PMCID: PMC11484497 DOI: 10.1093/cercor/bhae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 05/04/2024] Open
Abstract
Autism (or autism spectrum disorder) was initially defined as a psychiatric disorder, with the likely cause maternal behavior (the very destructive "refrigerator mother" theory). It took several decades for research into brain mechanisms to become established. Both neuropathological and imaging studies found differences in the cerebellum in autism spectrum disorder, the most widely documented being a decreased density of Purkinje cells in the cerebellar cortex. The popular interpretation of these results is that cerebellar neuropathology is a critical cause of autism spectrum disorder. We challenge that view by arguing that if fewer Purkinje cells are critical for autism spectrum disorder, then any condition that causes the loss of Purkinje cells should also cause autism spectrum disorder. We will review data on damage to the cerebellum from cerebellar lesions, tumors, and several syndromes (Joubert syndrome, Fragile X, and tuberous sclerosis). Collectively, these studies raise the question of whether the cerebellum really has a role in autism spectrum disorder. Autism spectrum disorder is now recognized as a genetically caused developmental disorder. A better understanding of the genes that underlie the differences in brain development that result in autism spectrum disorder is likely to show that these genes affect the development of the cerebellum in parallel with the development of the structures that do underlie autism spectrum disorder.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, 123 Sherman Hall, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, United States
| |
Collapse
|
4
|
Gaiser C, van der Vliet R, de Boer AAA, Donchin O, Berthet P, Devenyi GA, Mallar Chakravarty M, Diedrichsen J, Marquand AF, Frens MA, Muetzel RL. Population-wide cerebellar growth models of children and adolescents. Nat Commun 2024; 15:2351. [PMID: 38499518 PMCID: PMC10948906 DOI: 10.1038/s41467-024-46398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
In the past, the cerebellum has been best known for its crucial role in motor function. However, increasingly more findings highlight the importance of cerebellar contributions in cognitive functions and neurodevelopment. Using a total of 7240 neuroimaging scans from 4862 individuals, we describe and provide detailed, openly available models of cerebellar development in childhood and adolescence (age range: 6-17 years), an important time period for brain development and onset of neuropsychiatric disorders. Next to a traditionally used anatomical parcellation of the cerebellum, we generated growth models based on a recently proposed functional parcellation. In both, we find an anterior-posterior growth gradient mirroring the age-related improvements of underlying behavior and function, which is analogous to cerebral maturation patterns and offers evidence for directly related cerebello-cortical developmental trajectories. Finally, we illustrate how the current approach can be used to detect cerebellar abnormalities in clinical samples.
Collapse
Affiliation(s)
- Carolin Gaiser
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Rick van der Vliet
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Augustijn A A de Boer
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Opher Donchin
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Pierre Berthet
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Gabriel A Devenyi
- Cerebral Imaging Centre, Douglas Research Centre, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Jörn Diedrichsen
- Western Institute of Neuroscience, Western University, London, Ontario, Canada
- Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
- Department of Computer Science, Western University, London, Ontario, Canada
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Maarten A Frens
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Fukami-Gartner A, Baburamani AA, Dimitrova R, Patkee PA, Ojinaga-Alfageme O, Bonthrone AF, Cromb D, Uus AU, Counsell SJ, Hajnal JV, O’Muircheartaigh J, Rutherford MA. Comprehensive volumetric phenotyping of the neonatal brain in Down syndrome. Cereb Cortex 2023; 33:8921-8941. [PMID: 37254801 PMCID: PMC10350827 DOI: 10.1093/cercor/bhad171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023] Open
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability with a wide range of neurodevelopmental outcomes. To date, there have been very few in vivo neuroimaging studies of the neonatal brain in DS. In this study we used a cross-sectional sample of 493 preterm- to term-born control neonates from the developing Human Connectome Project to perform normative modeling of regional brain tissue volumes from 32 to 46 weeks postmenstrual age, accounting for sex and age variables. Deviation from the normative mean was quantified in 25 neonates with DS with postnatally confirmed karyotypes from the Early Brain Imaging in DS study. Here, we provide the first comprehensive volumetric phenotyping of the neonatal brain in DS, which is characterized by significantly reduced whole brain, cerebral white matter, and cerebellar volumes; reduced relative frontal and occipital lobar volumes, in contrast with enlarged relative temporal and parietal lobar volumes; enlarged relative deep gray matter volume (particularly the lentiform nuclei); and enlargement of the lateral ventricles, amongst other features. In future, the ability to assess phenotypic severity at the neonatal stage may help guide early interventions and, ultimately, help improve neurodevelopmental outcomes in children with DS.
Collapse
Affiliation(s)
- Abi Fukami-Gartner
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, United Kingdom
| | - Ana A Baburamani
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
| | - Prachi A Patkee
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Olatz Ojinaga-Alfageme
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Alena U Uus
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, United Kingdom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, United Kingdom
| |
Collapse
|
6
|
Kumar M, Hiremath C, Khokhar SK, Bansal E, Sagar KJV, Padmanabha H, Girimaji AS, Narayan S, Kishore MT, Yamini BK, Jac Fredo AR, Saini J, Bharath RD. Altered cerebellar lobular volumes correlate with clinical deficits in siblings and children with ASD: evidence from toddlers. J Transl Med 2023; 21:246. [PMID: 37029372 PMCID: PMC10080978 DOI: 10.1186/s12967-023-04090-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by impaired social and communication skills, narrow interests, and repetitive behavior. It is known that the cerebellum plays a vital role in controlling movement and gait posture. However, recently, researchers have reported that the cerebellum may also be responsible for other functions, such as social cognition, reward, anxiety, language, and executive functions. METHODS In this study, we ascertained volumetric differences from cerebellar lobular analysis from children with ASD, ASD siblings, and typically developing healthy controls. In this cross-sectional study, a total of 30 children were recruited, including children with ASD (N = 15; mean age = 27.67 ± 5.1 months), ASD siblings (N = 6; mean age = 17.5 ± 3.79 months), and typically developing children (N = 9; mean age = 17.67 ± 3.21 months). All the MRI data was acquired under natural sleep without using any sedative medication. We performed a correlation analysis with volumetric data and developmental and behavioral measures obtained from these children. Two-way ANOVA and Pearson correlation was performed for statistical data analysis. RESULTS We observed intriguing findings from this study, including significantly increased gray matter lobular volumes in multiple cerebellar regions including; vermis, left and right lobule I-V, right CrusII, and right VIIb and VIIIb, respectively, in children with ASD, compared to typically developing healthy controls and ASD siblings. Multiple cerebellar lobular volumes were also significantly correlated with social quotient, cognition, language, and motor scores with children with ASD, ASD siblings, and healthy controls, respectively. CONCLUSIONS This research finding helps us understand the neurobiology of ASD and ASD-siblings, and critically advances current knowledge about the cerebellar role in ASD. However, results need to be replicated for a larger cohort from longitudinal research study in future.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India.
| | - Chandrakanta Hiremath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Sunil Kumar Khokhar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Eshita Bansal
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Kommu John Vijay Sagar
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - Akhila S Girimaji
- Department of Speech Pathology and Audiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - Shweta Narayan
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - M Thomas Kishore
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - B K Yamini
- Department of Speech Pathology and Audiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, India
| | - A R Jac Fredo
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India
| |
Collapse
|
7
|
McKinney WS, Kelly SE, Unruh KE, Shafer RL, Sweeney JA, Styner M, Mosconi MW. Cerebellar Volumes and Sensorimotor Behavior in Autism Spectrum Disorder. Front Integr Neurosci 2022; 16:821109. [PMID: 35592866 PMCID: PMC9113114 DOI: 10.3389/fnint.2022.821109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Sensorimotor issues are common in autism spectrum disorder (ASD), though their neural bases are not well understood. The cerebellum is vital to sensorimotor control and reduced cerebellar volumes in ASD have been documented. Our study examined the extent to which cerebellar volumes are associated with multiple sensorimotor behaviors in ASD. Materials and Methods Fifty-eight participants with ASD and 34 typically developing (TD) controls (8-30 years) completed a structural MRI scan and precision grip testing, oculomotor testing, or both. Force variability during precision gripping as well as absolute error and trial-to-trial error variability of visually guided saccades were examined. Volumes of cerebellar lobules, vermis, and white matter were quantified. The relationships between each cerebellar region of interest (ROI) and force variability, saccade error, and saccade error variability were examined. Results Relative to TD controls, individuals with ASD showed increased force variability. Individuals with ASD showed a reduced volume of cerebellar vermis VI-VII relative to TD controls. Relative to TD females, females with ASD showed a reduced volume of bilateral cerebellar Crus II/lobule VIIB. Increased volume of Crus I was associated with increased force variability. Increased volume of vermal lobules VI-VII was associated with reduced saccade error for TD controls but not individuals with ASD. Increased right lobule VIII and cerebellar white matter volumes as well as reduced right lobule VI and right lobule X volumes were associated with greater ASD symptom severity. Reduced volumes of right Crus II/lobule VIIB were associated with greater ASD symptom severity in only males, while reduced volumes of right Crus I were associated with more severe restricted and repetitive behaviors only in females. Conclusion Our finding that increased force variability in ASD is associated with greater cerebellar Crus I volumes indicates that disruption of sensory feedback processing supported by Crus I may contribute to skeletomotor differences in ASD. Results showing that volumes of vermal lobules VI-VII are associated with saccade precision in TD but not ASD implicates atypical organization of the brain systems supporting oculomotor control in ASD. Associations between volumes of cerebellar subregions and ASD symptom severity suggest cerebellar pathological processes may contribute to multiple developmental challenges in ASD.
Collapse
Affiliation(s)
- Walker S. McKinney
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| | - Shannon E. Kelly
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Department of Psychology, University of Kansas, Lawrence, KS, United States
| | - Kathryn E. Unruh
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
| | - Robin L. Shafer
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
| | - John A. Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Martin Styner
- Department of Psychiatry and Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
- Department of Psychology, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
8
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
9
|
Baizer JS. Functional and Neuropathological Evidence for a Role of the Brainstem in Autism. Front Integr Neurosci 2021; 15:748977. [PMID: 34744648 PMCID: PMC8565487 DOI: 10.3389/fnint.2021.748977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
The brainstem includes many nuclei and fiber tracts that mediate a wide range of functions. Data from two parallel approaches to the study of autistic spectrum disorder (ASD) implicate many brainstem structures. The first approach is to identify the functions affected in ASD and then trace the neural systems mediating those functions. While not included as core symptoms, three areas of function are frequently impaired in ASD: (1) Motor control both of the limbs and body and the control of eye movements; (2) Sensory information processing in vestibular and auditory systems; (3) Control of affect. There are critical brainstem nuclei mediating each of those functions. There are many nuclei critical for eye movement control including the superior colliculus. Vestibular information is first processed in the four nuclei of the vestibular nuclear complex. Auditory information is relayed to the dorsal and ventral cochlear nuclei and subsequently processed in multiple other brainstem nuclei. Critical structures in affect regulation are the brainstem sources of serotonin and norepinephrine, the raphe nuclei and the locus ceruleus. The second approach is the analysis of abnormalities from direct study of ASD brains. The structure most commonly identified as abnormal in neuropathological studies is the cerebellum. It is classically a major component of the motor system, critical for coordination. It has also been implicated in cognitive and language functions, among the core symptoms of ASD. This structure works very closely with the cerebral cortex; the cortex and the cerebellum show parallel enlargement over evolution. The cerebellum receives input from cortex via relays in the pontine nuclei. In addition, climbing fiber input to cerebellum comes from the inferior olive of the medulla. Mossy fiber input comes from the arcuate nucleus of the medulla as well as the pontine nuclei. The cerebellum projects to several brainstem nuclei including the vestibular nuclear complex and the red nucleus. There are thus multiple brainstem nuclei distributed at all levels of the brainstem, medulla, pons, and midbrain, that participate in functions affected in ASD. There is direct evidence that the cerebellum may be abnormal in ASD. The evidence strongly indicates that analysis of these structures could add to our understanding of the neural basis of ASD.
Collapse
Affiliation(s)
- Joan S. Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
10
|
Bennett HJ, Jones T, Valenzuela KA, Haegele JA. Coordination variability during running in adolescents with autism spectrum disorder. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 26:1201-1215. [PMID: 34519564 DOI: 10.1177/13623613211044395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
LAY ABSTRACT Walking and running are popular forms of physical activity that involve the whole body (pelvis/legs and arms/torso) and are coordinated by the neuromuscular system, generally without much conscious effort. However, autistic persons tend not to engage in sufficient amounts of these activities to enjoy their health benefits. Recent reports indicate that autistic individuals tend to experience altered coordination patterns and increased variability during walking tasks when compared to non-autistic controls. Greater stride-to-stride coordination variability, when the task has not changed (i.e. walking at same speed and on same surface), is likely indicative of motor control issues and is more metabolically wasteful. To date, although, research examining running is unavailable in any form for this population. This study aimed to determine if coordination variability during running differs between autistic adolescents and age, sex, and body mass index matched non-autistic controls. This study found that increased variability exists throughout the many different areas of the body (foot-leg, left/right thighs, and opposite arm-opposite thigh) for autistic adolescents compared to controls. Along with previous research, these findings indicate autistic persons exhibit motor control issues across both forms of locomotion (walking and running) and at multiple speeds. These findings highlight issues with motor control that can be addressed by therapeutic/rehabilitative programming. Reducing coordination variability, inherently lessening metabolic inefficiency, may be an important step toward encouraging autistic youth to engage in sufficient physical activity (i.e. running) to enjoy physiological and psychological benefits.
Collapse
|
11
|
Crucitti J, Hyde C, Enticott PG, Stokes MA. Are Vermal Lobules VI-VII Smaller in Autism Spectrum Disorder? THE CEREBELLUM 2021; 19:617-628. [PMID: 32445170 DOI: 10.1007/s12311-020-01143-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cerebellar volume, in particular vermal lobule areas VI-VII, have been extensively researched in individuals with autism spectrum disorder (ASD), although findings are often unclear. The aim of the present study is to consolidate all existing cerebellar and age data of individuals with ASD, and compare this data to typically developing (TD) controls. Raw data, or the means and standard deviations of cerebellar volume and age, were obtained from 17 studies (NCerebellum: 421 ASD and 370 TD participants; NVI-VII: 506 ASD and 290 TD participants). Total cerebellar volume, or VI-VII area, was plotted against age and lines of fit of ASD and TD data were compared. Mean differences in cerebellar volume and VI-VII area between participants with ASD and TD participants were then compared via ANCOVA analyses. Findings revealed multiple differences in VI-VII area between participants with ASD and TD participants below 18 years of age. Additionally, cerebellar volume was greater in males with ASD than TD males between 2 and 4 years. In the present study, cerebellar volume and VI-VII area show different rates of change across age for those with autism compared with those without. These morphological differences provide a neurobiological justification to investigate related behavioural correlates.
Collapse
Affiliation(s)
- Joel Crucitti
- School of Psychology, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Christian Hyde
- School of Psychology, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Peter G Enticott
- School of Psychology, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Mark A Stokes
- School of Psychology, Faculty of Health, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
12
|
Stoodley CJ, Tsai PT. Adaptive Prediction for Social Contexts: The Cerebellar Contribution to Typical and Atypical Social Behaviors. Annu Rev Neurosci 2021; 44:475-493. [PMID: 34236892 DOI: 10.1146/annurev-neuro-100120-092143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Social interactions involve processes ranging from face recognition to understanding others' intentions. To guide appropriate behavior in a given context, social interactions rely on accurately predicting the outcomes of one's actions and the thoughts of others. Because social interactions are inherently dynamic, these predictions must be continuously adapted. The neural correlates of social processing have largely focused on emotion, mentalizing, and reward networks, without integration of systems involved in prediction. The cerebellum forms predictive models to calibrate movements and adapt them to changing situations, and cerebellar predictive modeling is thought to extend to nonmotor behaviors. Primary cerebellar dysfunction can produce social deficits, and atypical cerebellar structure and function are reported in autism, which is characterized by social communication challenges and atypical predictive processing. We examine the evidence that cerebellar-mediated predictions and adaptation play important roles in social processes and argue that disruptions in these processes contribute to autism.
Collapse
Affiliation(s)
- Catherine J Stoodley
- Departments of Neuroscience and Psychology, American University, Washington, DC 20016, USA
| | - Peter T Tsai
- Departments of Neurology, Neuroscience, Psychiatry, and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
13
|
Hooshmandi M, Truong VT, Fields E, Thomas RE, Wong C, Sharma V, Gantois I, Soriano Roque P, Chalkiadaki K, Wu N, Chakraborty A, Tahmasebi S, Prager-Khoutorsky M, Sonenberg N, Suvrathan A, Watt AJ, Gkogkas CG, Khoutorsky A. 4E-BP2-dependent translation in cerebellar Purkinje cells controls spatial memory but not autism-like behaviors. Cell Rep 2021; 35:109036. [PMID: 33910008 DOI: 10.1016/j.celrep.2021.109036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/15/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Recent studies have demonstrated that selective activation of mammalian target of rapamycin complex 1 (mTORC1) in the cerebellum by deletion of the mTORC1 upstream repressors TSC1 or phosphatase and tensin homolog (PTEN) in Purkinje cells (PCs) causes autism-like features and cognitive deficits. However, the molecular mechanisms by which overactivated mTORC1 in the cerebellum engenders these behaviors remain unknown. The eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2) is a central translational repressor downstream of mTORC1. Here, we show that mice with selective ablation of 4E-BP2 in PCs display a reduced number of PCs, increased regularity of PC action potential firing, and deficits in motor learning. Surprisingly, although spatial memory is impaired in these mice, they exhibit normal social interaction and show no deficits in repetitive behavior. Our data suggest that, downstream of mTORC1/4E-BP2, there are distinct cerebellar mechanisms independently controlling social behavior and memory formation.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Vinh Tai Truong
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Eviatar Fields
- Department of Biology, McGill University, Montreal, QC H3A 1A3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Riya Elizabeth Thomas
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, H3G1A4, Canada; Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal QC, H3G1A4, Canada
| | - Calvin Wong
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Vijendra Sharma
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ilse Gantois
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Patricia Soriano Roque
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Kleanthi Chalkiadaki
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Neil Wu
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Anindyo Chakraborty
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Aparna Suvrathan
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, H3G1A4, Canada; Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal QC, H3G1A4, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, QC H3A 1A3, Canada
| | - Christos G Gkogkas
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece.
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
14
|
Sarovic D, Hadjikhani N, Schneiderman J, Lundström S, Gillberg C. Autism classified by magnetic resonance imaging: A pilot study of a potential diagnostic tool. Int J Methods Psychiatr Res 2020; 29:1-18. [PMID: 32945591 PMCID: PMC7723195 DOI: 10.1002/mpr.1846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Individual anatomical biomarkers have limited power for the classification of autism. The present study introduces a multivariate classification approach using structural magnetic resonance imaging data from individuals with and without autism. METHODS The classifier utilizes z-normalization, parameter weighting, and interindividual comparison on brain segmentation data, for estimation of an individual summed total index (TI). The TI indicates whether the gross morphological pattern of each individual's brain is in the direction of cases or controls. RESULTS Morphometric analysis found significant differences within subcortical gray matter structures and limbic areas. There was no significant difference in total brain volume. A case-control pilot-study of TIs in normally intelligent individuals with autism (24) and without (21) yielded a maximal accuracy of 78.9% following cross-validation. It showed a high accuracy compared with machine learning methods when tested on the same dataset. The TI correlated well with the autism quotient (R = 0.51) across groups. CONCLUSION These results are on par with studies on autism using machine learning. The main contributions are its transparency and simplicity. The possibility of including additional neuroimaging data further increases the potential of the classifier as a diagnostic aid for neuropsychiatric disorders, as well as a research tool for neuroscientific investigations.
Collapse
Affiliation(s)
- Darko Sarovic
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,MedTech West, Gothenburg, Sweden
| | - Nouchine Hadjikhani
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard University, Charlestown, Massachusetts, USA
| | - Justin Schneiderman
- MedTech West, Gothenburg, Sweden.,Department of Clinical Neurophysiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Lundström
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Institute of Health & Wellbeing, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
15
|
Gong L, Liu Y, Yi L, Fang J, Yang Y, Wei K. Abnormal Gait Patterns in Autism Spectrum Disorder and Their Correlations with Social Impairments. Autism Res 2020; 13:1215-1226. [DOI: 10.1002/aur.2302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Linlin Gong
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive SciencesPeking University Beijing China
- Key Laboratory of Machine Perception (Ministry of Education)Peking University Beijing China
| | - Yajie Liu
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive SciencesPeking University Beijing China
- Key Laboratory of Machine Perception (Ministry of Education)Peking University Beijing China
| | - Li Yi
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive SciencesPeking University Beijing China
- Key Laboratory of Machine Perception (Ministry of Education)Peking University Beijing China
| | - Jing Fang
- Qingdao Autism Research Institute Qingdao Shangdong China
| | - Yisheng Yang
- Qingdao Autism Research Institute Qingdao Shangdong China
| | - Kunlin Wei
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive SciencesPeking University Beijing China
- Key Laboratory of Machine Perception (Ministry of Education)Peking University Beijing China
| |
Collapse
|
16
|
Mana S, Paillère Martinot ML, Martinot JL. Brain imaging findings in children and adolescents with mental disorders: A cross-sectional review. Eur Psychiatry 2020; 25:345-54. [PMID: 20620025 DOI: 10.1016/j.eurpsy.2010.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/08/2010] [Accepted: 04/22/2010] [Indexed: 01/18/2023] Open
Abstract
AbstractBackgroundWhile brain imaging studies of juvenile patients has expanded in recent years to investigate the cerebral neurophysiologic correlates of psychiatric disorders, this research field remains scarce. The aim of the present review was to cluster the main mental disorders according to the differential brain location of the imaging findings recently reported in children and adolescents reports. A second objective was to describe the worldwide distribution and the main directions of the recent magnetic resonance imaging (MRI) and positron tomography (PET) studies in these patients.MethodsA survey of 423 MRI and PET articles published between 2005 and 2008 was performed. A principal component analysis (PCA), then an activation likelihood estimate (ALE) meta-analysis, were applied on brain regional information retrieved from articles in order to cluster the various disorders with respect to the cerebral structures where alterations were reported. Furthermore, descriptive analysis characterized the literature production.ResultsTwo hundred and seventy-four articles involving children and adolescent patients were analyzed. Both the PCA and ALE methods clustered, three groups of diagnosed psychiatric disorders, according to the brain structural and functional locations: one group of affective disorders characterized by abnormalities of the frontal-limbic regions; a group of mental disorders with “cognition deficits” mainly related to cortex abnormalities; and one psychomotor condition associated with abnormalities in the basal ganglia. The descriptive analysis indicates a focus on attention deficit hyperactivity disorders and autism spectrum disorders, a general steady rise in the number of annual reports, and lead of US research.ConclusionThis cross-sectional review of child and adolescent mental disorders based on neuroimaging findings suggests overlaps of brain locations that allow to cluster the diagnosed disorders into three sets with respectively marked affective, cognitive, and psychomotor phenomenology. Furthermore, the brain imaging research effort was unequally distributed across disorders, and did not reflect their prevalence.
Collapse
Affiliation(s)
- S Mana
- Service hospitalier central de médecine nucléaire et neurospin, INSERM-CEA, Research Unit 1000 Neuroimaging & psychiatry, University Paris Sud and University Paris Descartes, 4, place Gl.-Leclerc, 91401 Orsay, France.
| | | | | |
Collapse
|
17
|
Lee NR, Nayak A, Irfanoglu MO, Sadeghi N, Stoodley CJ, Adeyemi E, Clasen LS, Pierpaoli C. Hypoplasia of cerebellar afferent networks in Down syndrome revealed by DTI-driven tensor based morphometry. Sci Rep 2020; 10:5447. [PMID: 32214129 PMCID: PMC7096514 DOI: 10.1038/s41598-020-61799-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Quantitative magnetic resonance imaging (MRI) investigations of brain anatomy in children and young adults with Down syndrome (DS) are limited, with no diffusion tensor imaging (DTI) studies covering that age range. We used DTI-driven tensor based morphometry (DTBM), a novel technique that extracts morphometric information from diffusion data, to investigate brain anatomy in 15 participants with DS and 15 age- and sex-matched typically developing (TD) controls, ages 6-24 years (mean age ~17 years). DTBM revealed marked hypoplasia of cerebellar afferent systems in DS, including fronto-pontine (middle cerebellar peduncle) and olivo-cerebellar (inferior cerebellar peduncle) connections. Prominent gray matter hypoplasia was observed in medial frontal regions, the inferior olives, and the cerebellum. Very few abnormalities were detected by classical diffusion MRI metrics, such as fractional anisotropy and mean diffusivity. Our results highlight the potential importance of cerebro-cerebellar networks in the clinical manifestations of DS and suggest a role for DTBM in the investigation of other brain disorders involving white matter hypoplasia or atrophy.
Collapse
Affiliation(s)
- Nancy Raitano Lee
- Drexel University, Department of Psychology, Philadelphia, PA, 19104, USA.
| | - Amritha Nayak
- National Institute of Biomedical Imaging and Bioengineering, NIH, Quantitative Medical Imaging Section, Bethesda, MD, 20892, USA
| | - M Okan Irfanoglu
- National Institute of Biomedical Imaging and Bioengineering, NIH, Quantitative Medical Imaging Section, Bethesda, MD, 20892, USA
| | - Neda Sadeghi
- National Institute of Biomedical Imaging and Bioengineering, NIH, Quantitative Medical Imaging Section, Bethesda, MD, 20892, USA
| | | | | | - Liv S Clasen
- National Institute of Mental Health, NIH, Developmental Neurogenomics Unit, Human Genetics Branch, Bethesda, MD, 20892, USA
| | - Carlo Pierpaoli
- National Institute of Biomedical Imaging and Bioengineering, NIH, Quantitative Medical Imaging Section, Bethesda, MD, 20892, USA
| |
Collapse
|
18
|
Abstract
Current understanding of the neuroanatomical abnormalities in autism includes gross anatomical changes in several brain areas and microstructural alterations in neuronal cells as well. There are many controversies in the interpretation of the imaging data, evaluation of volume and size of particular brain areas, and their functional translation into a broad autism phenotype. Critical questions of neuronal pathology in autism include the concept of the reversible plasticity of morphological changes, volume alterations of brain areas, and both short- and long-term consequences of adverse events present during the brain development. At the cellular level, remodeling of the actin cytoskeleton is considered as one of the critical factors associated with the autism spectrum disorders. Alterations in the composition of the neuronal cytoskeleton, in particular abnormalities in the polymerization of actin filaments and their associated proteins underlie the functional consequences in behavior resulting in symptoms and clinical correlates of autism spectrum disorder. In the present review, a special attention is devoted to the role of oxytocin in experimental models of neurodevelopmental disorders manifesting alterations in neuronal morphology.
Collapse
|
19
|
Sherkatghanad Z, Akhondzadeh M, Salari S, Zomorodi-Moghadam M, Abdar M, Acharya UR, Khosrowabadi R, Salari V. Automated Detection of Autism Spectrum Disorder Using a Convolutional Neural Network. Front Neurosci 2020; 13:1325. [PMID: 32009868 PMCID: PMC6971220 DOI: 10.3389/fnins.2019.01325] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022] Open
Abstract
Background: Convolutional neural networks (CNN) have enabled significant progress in speech recognition, image classification, automotive software engineering, and neuroscience. This impressive progress is largely due to a combination of algorithmic breakthroughs, computation resource improvements, and access to a large amount of data. Method: In this paper, we focus on the automated detection of autism spectrum disorder (ASD) using CNN with a brain imaging dataset. We detected ASD patients using most common resting-state functional magnetic resonance imaging (fMRI) data from a multi-site dataset named the Autism Brain Imaging Exchange (ABIDE). The proposed approach was able to classify ASD and control subjects based on the patterns of functional connectivity. Results: Our experimental outcomes indicate that the proposed model is able to detect ASD correctly with an accuracy of 70.22% using the ABIDE I dataset and the CC400 functional parcellation atlas of the brain. Also, the CNN model developed used fewer parameters than the state-of-art techniques and is hence computationally less intensive. Our developed model is ready to be tested with more data and can be used to prescreen ASD patients.
Collapse
Affiliation(s)
| | | | - Soorena Salari
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Moloud Abdar
- Departement of Computer Science, University of Quebec in Montreal, Montreal, QC, Canada
| | - U. Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore
- Department of Biomedical Engineering, School of Science and Technology, Singapore School of Social Sciences, Singapore, Singapore
- International Research Organization for Advanced Science and Technology (IROAST) Kumamoto University, Kumamoto, Japan
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Vahid Salari
- Department of Physics, Isfahan University of Technology, Isfahan, Iran
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Bilbao, Spain
| |
Collapse
|
20
|
Fernández M, Sierra-Arregui T, Peñagarikano O. The Cerebellum and Autism: More than Motor Control. Behav Neurosci 2019. [DOI: 10.5772/intechopen.85897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Shiohama T, Levman J, Baumer N, Takahashi E. Structural Magnetic Resonance Imaging-Based Brain Morphology Study in Infants and Toddlers With Down Syndrome: The Effect of Comorbidities. Pediatr Neurol 2019; 100:67-73. [PMID: 31036426 PMCID: PMC6755072 DOI: 10.1016/j.pediatrneurol.2019.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Down syndrome (DS) is the most prevalent chromosomal disorder characterized by intellectual disability, multiple organ anomalies, generalized muscular hypotonia, and characteristic physical features. The presence of DS-associated medical comorbidities has contributed to brain morphologic changes. The aim of this study was to evaluate brain morphologic characteristics during infant and toddler ages in patients with DS using structural brain magnetic resonance imaging. METHODS Structural brain T1-weighted magnetic resonance images from participants with DS with complete chromosome 21 trisomy (n = 20; 1.6 ± 0.6 [mean ± standard deviation] years old) were analyzed using FreeSurfer. The measurements were compared with those of 60 gender- and age-matched neurotypical controls by Cohen's d statistic and unpaired t test with false discovery rate correction for multiple comparisons and analyzed using a univariate general linear model with the following DS-associated medical comorbidities: congenital cardiac disease, infantile spasms, and hypothyroidism. RESULTS We identified 27 candidate measurements with large effect sizes (absolute d > 0.8) and statistically significant differences (P < 6.9 × 10-3). Among them were decreased volumes in bilateral cerebellar gray matter and right cerebellar white matter and brainstem and cortical abnormalities in the right superior temporal, right rostral anterior cingulate, and left rostral middle frontal gyrus, independent of comorbid effects. Only bilateral cerebellar gray matter volumes and brainstem volume showed differences between DS and healthy groups during infancy. CONCLUSION These results suggest that cerebellar gray matter and brainstem may represent the primary regions affected by the presence of an additional copy of chromosome 21.
Collapse
Affiliation(s)
- Tadashi Shiohama
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Pediatrics, Chiba University Hospital, Chiba-shi, Chiba, Japan.
| | - Jacob Levman
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA,Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, 2323 Notre Dame Ave, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Nicole Baumer
- Down Syndrome Program, Developmental Medicine Center, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
22
|
The possible neuroprotective role of grape seed extract on the histopathological changes of the cerebellar cortex of rats prenatally exposed to Valproic Acid: animal model of autism. Acta Histochem 2019; 121:841-851. [PMID: 31431301 DOI: 10.1016/j.acthis.2019.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disease characterized by defect in verbal and nonverbal communications. As, the cerebellum has the greatest number of neurons and synapses in the central nervous system so, the cerebellum has emerged as one of the target brain areas affected in autism. The aim of this work was to study the biochemical, immunohistochemical and ultrastructural characteristics of autism and the possible neuroprotective role of grape seed extract. In this study 28 male pups were divided into Control groups; Group I (saline), Group II (GSE 400 mg/kg), Group III (VPA 500 mg/kg) and Group IV (VPA and GSE). Cerebellar hemispheres were dissected out and prepared to determine the oxidative stress markers, histological, immunohistochemical and morphometric study were done. A significant elevation in oxidative stress markers in off spring of VPA treated rats in comparison to control group was detected. A significant decrease in the Purkinje cell count and nuclear size were observed. Numerous shrunken cells with hyperchromatic nuclei and ultrastructural degeneration of cytoplasmic organelles were detected. A significant rise in the area percentage of GFAP-positive immune stained cells in comparison to that of the control groups was seen. Strikingly, GSE revealed significant improvement in the oxidative stress markers and then the histological and morphometric picture of the cerebellum. GSE has neuroprotective effect on the cerebellum of VPA treated rats through its potent antioxidant effect.
Collapse
|
23
|
Mejias R, Chiu SL, Han M, Rose R, Gil-Infante A, Zhao Y, Huganir RL, Wang T. Purkinje cell-specific Grip1/2 knockout mice show increased repetitive self-grooming and enhanced mGluR5 signaling in cerebellum. Neurobiol Dis 2019; 132:104602. [PMID: 31476380 DOI: 10.1016/j.nbd.2019.104602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/30/2019] [Accepted: 08/30/2019] [Indexed: 01/16/2023] Open
Abstract
Cerebellar Purkinje cell (PC) loss is a consistent pathological finding in autism. However, neural mechanisms of PC-dysfunction in autism remain poorly characterized. Glutamate receptor interacting proteins 1/2 (Grip1/2) regulate AMPA receptor (AMPAR) trafficking and synaptic strength. To evaluate role of PC-AMPAR signaling in autism, we produced PC-specific Grip1/2 knockout mice by crossing Grip2 conventional and Grip1 conditional KO with L7-Cre driver mice. PCs in the mutant mice showed normal morphology and number, and a lack of Grip1/2 expression. Rodent behavioral testing identified normal ambulation, anxiety, social interaction, and an increase in repetitive self-grooming. Electrophysiology studies revealed normal mEPSCs but an impaired mGluR-LTD at the Parallel Fiber-PC synapses. Immunoblots showed increased expression of mGluR5 and Arc, and enhanced phosphorylation of P38 and AKT in cerebellum of PC-specific Grip1/2 knockout mice. Results indicate that loss of Grip1/2 in PCs contributes to increased repetitive self-grooming, a core autism behavior in mice. Results support a role of AMPAR trafficking defects in PCs and disturbances of mGluR5 signaling in cerebellum in the pathogenesis of repetitive behaviors.
Collapse
Affiliation(s)
- Rebeca Mejias
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Physiology, University of Seville, 41012 Seville, Spain.
| | - Shu-Ling Chiu
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mei Han
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Rebecca Rose
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ana Gil-Infante
- Department of Physiology, University of Seville, 41012 Seville, Spain
| | - Yifan Zhao
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tao Wang
- McKusick-Nathans Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Lucibello S, Verdolotti T, Giordano FM, Lapenta L, Infante A, Piludu F, Tartaglione T, Chieffo D, Colosimo C, Mercuri E, Battini R. Brain morphometry of preschool age children affected by autism spectrum disorder: Correlation with clinical findings. Clin Anat 2018; 32:143-150. [DOI: 10.1002/ca.23252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/13/2018] [Indexed: 01/28/2023]
Affiliation(s)
- S. Lucibello
- Pediatric Neurology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - T. Verdolotti
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - F. M. Giordano
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - L. Lapenta
- Pediatric Neurology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - A. Infante
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - F. Piludu
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - T. Tartaglione
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
- Catholic University of Sacred Heart; Rome Italy
| | - D. Chieffo
- Pediatric Neurology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
| | - C. Colosimo
- Radiology and Neuroradiology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
- Catholic University of Sacred Heart; Rome Italy
| | - E. Mercuri
- Pediatric Neurology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
- Catholic University of Sacred Heart; Rome Italy
| | - R. Battini
- Pediatric Neurology Unit; Fondazione Policlinico A. Gemelli IRCSS; Rome Italy
- Department of Clinical and Experimental Medicine; University of Pisa; Pisa Italy
| |
Collapse
|
25
|
Abstract
OBJECTIVES As surprisingly little is known about the developing brain studied in vivo in youth with Down syndrome (DS), the current review summarizes the small DS pediatric structural neuroimaging literature and begins to contextualize existing research within a developmental framework. METHODS A systematic review of the literature was completed, effect sizes from published studies were reviewed, and results are presented with respect to the DS cognitive behavioral phenotype and typical brain development. RESULTS The majority of DS structural neuroimaging studies describe gross differences in brain morphometry and do not use advanced neuroimaging methods to provide nuanced descriptions of the brain. There is evidence for smaller total brain volume (TBV), total gray matter (GM) and white matter, cortical lobar, hippocampal, and cerebellar volumes. When reductions in TBV are accounted for, specific reductions are noted in subregions of the frontal lobe, temporal lobe, cerebellum, and hippocampus. A review of cortical lobar effect sizes reveals mostly large effect sizes from early childhood through adolescence. However, deviance is smaller in adolescence. Despite these smaller effects, frontal GM continues to be largely deviant in adolescence. An examination of age-frontal GM relations using effect sizes from published studies and data from Lee et al. (2016) reveals that while there is a strong inverse relationship between age and frontal GM volume in controls across childhood and adolescence, this is not observed in DS. CONCLUSIONS Further developmentally focused research, ideally using longitudinal neuroimaging, is needed to elucidate the nature of the DS neuroanatomic phenotype during childhood and adolescence. (JINS, 2018, 24, 966-976).
Collapse
|
26
|
Traut N, Beggiato A, Bourgeron T, Delorme R, Rondi-Reig L, Paradis AL, Toro R. Cerebellar Volume in Autism: Literature Meta-analysis and Analysis of the Autism Brain Imaging Data Exchange Cohort. Biol Psychiatry 2018; 83:579-588. [PMID: 29146048 DOI: 10.1016/j.biopsych.2017.09.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/13/2017] [Accepted: 09/27/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND The neuroanatomical bases of autism spectrum disorder remain largely unknown. Among the most widely discussed candidate endophenotypes, differences in cerebellar volume have been often reported as statistically significant. METHODS We aimed at objectifying this possible alteration by performing a systematic meta-analysis of the literature and an analysis of the ABIDE (Autism Brain Imaging Data Exchange) cohort. Our meta-analysis sought to determine a combined effect size of autism spectrum disorder diagnosis on different measures of the cerebellar anatomy as well as the effect of possible factors of variability across studies. We then analyzed the cerebellar volume of 328 patients and 353 control subjects from the ABIDE project. RESULTS The meta-analysis of the literature suggested a weak but significant association between autism spectrum disorder diagnosis and increased cerebellar volume (p = .049, uncorrected), but the analysis of ABIDE did not show any relationship. The studies meta-analyzed were generally underpowered; however, the number of statistically significant findings was larger than expected. CONCLUSIONS Although we could not provide a conclusive explanation for this excess of significant findings, our analyses would suggest publication bias as a possible reason. Finally, age, sex, and IQ were important sources of cerebellar volume variability, although independent of autism diagnosis.
Collapse
Affiliation(s)
- Nicolas Traut
- Unité de Génétique Humaine et Fonctions Cognitives, Département de Neuroscience, Institut Pasteur, Paris, France; Neuroscience Paris Seine, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France; Genes, Synapses and Cognition, Unité Mixte de Recherche 3571, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France; Human Genetics and Cognitive Functions, University Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | - Anita Beggiato
- Unité de Génétique Humaine et Fonctions Cognitives, Département de Neuroscience, Institut Pasteur, Paris, France; Département de Psychiatrie de l'Enfant et de l'Adolescent, Hôpital Robert Debré, L'Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thomas Bourgeron
- Unité de Génétique Humaine et Fonctions Cognitives, Département de Neuroscience, Institut Pasteur, Paris, France; Genes, Synapses and Cognition, Unité Mixte de Recherche 3571, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France; Human Genetics and Cognitive Functions, University Paris Diderot, Sorbonne Paris Cité, Paris, France; Foundation Fondamentale, Créteil, France
| | - Richard Delorme
- Unité de Génétique Humaine et Fonctions Cognitives, Département de Neuroscience, Institut Pasteur, Paris, France; Département de Psychiatrie de l'Enfant et de l'Adolescent, Hôpital Robert Debré, L'Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laure Rondi-Reig
- Neuroscience Paris Seine, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Anne-Lise Paradis
- Neuroscience Paris Seine, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Roberto Toro
- Unité de Génétique Humaine et Fonctions Cognitives, Département de Neuroscience, Institut Pasteur, Paris, France; Genes, Synapses and Cognition, Unité Mixte de Recherche 3571, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France; Human Genetics and Cognitive Functions, University Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
27
|
Bruchhage MMK, Bucci MP, Becker EBE. Cerebellar involvement in autism and ADHD. HANDBOOK OF CLINICAL NEUROLOGY 2018; 155:61-72. [PMID: 29891077 DOI: 10.1016/b978-0-444-64189-2.00004-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The cerebellum has long been known for its importance in motor learning and coordination. However, increasing evidence supports a role for the cerebellum in cognition and emotion. Consistent with a role in cognitive functions, the cerebellum has emerged as one of the key brain regions affected in nonmotor disorders, including autism spectrum disorder and attention deficit-hyperactivity disorder. Here, we discuss behavioral, postmortem, genetic, and neuroimaging studies in humans in order to understand the cerebellar contributions to the pathogenesis of both disorders. We also review relevant animal model findings.
Collapse
Affiliation(s)
- Muriel M K Bruchhage
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Maria-Pia Bucci
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - Esther B E Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
28
|
Bennett GA, Palliser HK, Shaw JC, Palazzi KL, Walker DW, Hirst JJ. Maternal stress in pregnancy affects myelination and neurosteroid regulatory pathways in the guinea pig cerebellum. Stress 2017; 20:580-588. [PMID: 28969480 DOI: 10.1080/10253890.2017.1378637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prenatal stress predisposes offspring to behavioral pathologies. These may be attributed to effects on cerebellar neurosteroids and GABAergic inhibitory signaling, which can be linked to hyperactivity disorders. The aims were to determine the effect of prenatal stress on markers of cerebellar development, a key enzyme in neurosteroid synthesis and the expression of GABAA receptor (GABAAR) subunits involved in neurosteroid signaling. We used a model of prenatal stress (strobe light exposure, 2 h on gestational day 50, 55, 60 and 65) in guinea pigs, in which we have characterized anxiety and neophobic behavioral outcomes. The cerebellum and plasma were collected from control and prenatally stressed offspring at term (control fetus: n = 9 male, n = 7 female; stressed fetus: n = 7 male, n = 8 female) and postnatal day (PND) 21 (control: n = 8 male, n = 8 female; stressed: n = 9 male, n = 6 female). We found that term female offspring exposed to prenatal stress showed decreased expression of mature oligodendrocytes (∼40% reduction) and these deficits improved to control levels by PND21. Reactive astrocyte expression was lower (∼40% reduction) following prenatal stress. GABAAR subunit (δ and α6) expression and circulating allopregnanolone concentrations were not affected by prenatal stress. Prenatal stress increased expression (∼150-250% increase) of 5α-reductase type-1 mRNA in the cerebellum, which may be a neuroprotective response to promote GABAergic inhibition and aid in repair. These observations indicate that prenatal stress exposure has marked effects on the development of the cerebellum. These findings suggest cerebellar changes after prenatal stress may contribute to adverse behavioral outcomes after exposure to these stresses.
Collapse
Affiliation(s)
- Greer A Bennett
- a Mothers and Babies Research Centre , Hunter Medical Research Institute , Newcastle , New South Wales , Australia
- b School of Biomedical Sciences and Pharmacy , University of Newcastle , New South Wales , Australia
| | - Hannah K Palliser
- a Mothers and Babies Research Centre , Hunter Medical Research Institute , Newcastle , New South Wales , Australia
- b School of Biomedical Sciences and Pharmacy , University of Newcastle , New South Wales , Australia
| | - Julia C Shaw
- a Mothers and Babies Research Centre , Hunter Medical Research Institute , Newcastle , New South Wales , Australia
- b School of Biomedical Sciences and Pharmacy , University of Newcastle , New South Wales , Australia
| | - Kerrin L Palazzi
- c Clinical Research Design , Information Technology and Statistical Support (CReDITSS), Hunter Medical Research Institute (HMRI) , Newcastle , New South Wales , Australia
| | - David W Walker
- d School of Health and Biomedical Sciences , RMIT University , Bundoora , Victoria , Australia
| | - Jonathan J Hirst
- a Mothers and Babies Research Centre , Hunter Medical Research Institute , Newcastle , New South Wales , Australia
- b School of Biomedical Sciences and Pharmacy , University of Newcastle , New South Wales , Australia
| |
Collapse
|
29
|
Cairns J, Swanson D, Yeung J, Sinova A, Chan R, Potluri P, Dickson P, Mittleman G, Goldowitz D. Abnormalities in the Structure and Function of Cerebellar Neurons and Neuroglia in the Lc/+ Chimeric Mouse Model of Variable Developmental Purkinje Cell Loss. THE CEREBELLUM 2017; 16:40-54. [PMID: 26837618 DOI: 10.1007/s12311-015-0756-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders characterized by impaired and disordered language, decreased social interactions, stereotyped and repetitive behaviors, and impaired fine and gross motor skills. It has been well established that cerebellar abnormalities are one of the most common structural changes seen in the brains of people diagnosed with autism. Common cerebellar pathology observed in autistic individuals includes variable loss of cerebellar Purkinje cells (PCs) and increased numbers of reactive neuroglia in the cerebellum and cortical brain regions. The Lc/+ mutant mouse loses 100 % of cerebellar PCs during the first few weeks of life and provided a valuable model to study the effects of developmental PC loss on underlying structural and functional changes in cerebellar neural circuits. Lurcher (Lc) chimeric mice were also generated to explore the link between variable cerebellar pathology and subsequent changes in the structure and function of cerebellar neurons and neuroglia. Chimeras with the most severe cerebellar pathology (as quantified by cerebellar PC counts) had the largest changes in cFos expression (an indirect reporter of neural activity) in cerebellar granule cells (GCs) and cerebellar nucleus (CN) neurons. In addition, Lc chimeras with the fewest PCs also had numerous reactive microglia and Bergmann glia located in the cerebellar cortex. Structural and functional abnormalities observed in the cerebella of Lc chimeras appeared to be along a continuum, with the degree of pathology related to the number of PCs in individual chimeras.
Collapse
Affiliation(s)
- James Cairns
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3
| | - Doug Swanson
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
| | - Joanna Yeung
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
| | - Anna Sinova
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3
| | - Ronny Chan
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
| | - Praneetha Potluri
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
- Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4
| | - Price Dickson
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Guy Mittleman
- Department of Psychological Science, Ball State University, Muncie, IN, 47306, USA
| | - Dan Goldowitz
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4.
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4.
- Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada, V5Z 4H4.
- Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3.
| |
Collapse
|
30
|
Anil Kumar BN, Malhotra S, Bhattacharya A, Grover S, Batra YK. Regional Cerebral Glucose Metabolism and its Association with Phenotype and Cognitive Functioning in Patients with Autism. Indian J Psychol Med 2017; 39:262-270. [PMID: 28615758 PMCID: PMC5461834 DOI: 10.4103/0253-7176.207344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION In spite of three decades of neuroimaging, we are unable to find consistent and coherent anatomical or pathophysiological basis for autism as changes are subtle and there are no studies from India. AIM To study the regional cerebral glucose metabolism in children with autism using positron emission tomography (PET) scan and to study the behavior and cognitive functioning among them. MATERIALS AND METHODS Ten subjects (8-19 years) meeting Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria for autism were evaluated on Childhood Autism Rating Scale (CARS), trail making test (TMT) A and B, Wisconsin card sorting test, Raven's progressive matrices, and PET scan. A control group of 15 matched subjects without any brain pathology or neurological disorder was similarly studied. RESULTS Four out of the ten patients with autism had abnormal PET scan findings, and in contrast, none of the patients in the control group had abnormal PET scan. Of the four patients with abnormality in the PET scan, two patients had findings suggestive of hypometabolism in cerebellum bilaterally; one patient showed bilateral hypometabolism in anterior temporal cortices and cerebellum, and the fourth patient had hypermetabolism in the bilateral frontal cortices and medial occipital cortices. Subjects with autism performed poorly on neuropsychological testing. Patients with abnormal PET scan findings had significantly higher scores on the "body use" domain of CARS indicating more stereotypy. CONCLUSION Findings of this study support the view of altered brain functioning in subjects with autism.
Collapse
Affiliation(s)
- B. N. Anil Kumar
- Department of Psychiatry, Shridevi Institute of Medical Sciences and Research Hospital, Tumkur, Karnataka, India
| | - Savita Malhotra
- Department of Psychiatry, M. M. Institute of Medical Sciences and Research, Ambala, Haryana, India
| | | | | | - Y. K. Batra
- Department of Anaesthesia and Pain Management, Max Super Speciality Hospital, Mohali, Punjab, India
| |
Collapse
|
31
|
Whittaker DE, Riegman KL, Kasah S, Mohan C, Yu T, Sala BP, Hebaishi H, Caruso A, Marques AC, Michetti C, Smachetti MES, Shah A, Sabbioni M, Kulhanci O, Tee WW, Reinberg D, Scattoni ML, Volk H, McGonnell I, Wardle FC, Fernandes C, Basson MA. The chromatin remodeling factor CHD7 controls cerebellar development by regulating reelin expression. J Clin Invest 2017; 127:874-887. [PMID: 28165338 PMCID: PMC5330721 DOI: 10.1172/jci83408] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
The mechanisms underlying the neurodevelopmental deficits associated with CHARGE syndrome, which include cerebellar hypoplasia, developmental delay, coordination problems, and autistic features, have not been identified. CHARGE syndrome has been associated with mutations in the gene encoding the ATP-dependent chromatin remodeler CHD7. CHD7 is expressed in neural stem and progenitor cells, but its role in neurogenesis during brain development remains unknown. Here we have shown that deletion of Chd7 from cerebellar granule cell progenitors (GCps) results in reduced GCp proliferation, cerebellar hypoplasia, developmental delay, and motor deficits in mice. Genome-wide expression profiling revealed downregulated expression of the gene encoding the glycoprotein reelin (Reln) in Chd7-deficient GCps. Recessive RELN mutations have been associated with severe cerebellar hypoplasia in humans. We found molecular and genetic evidence that reductions in Reln expression contribute to GCp proliferative defects and cerebellar hypoplasia in GCp-specific Chd7 mouse mutants. Finally, we showed that CHD7 is necessary for maintaining an open, accessible chromatin state at the Reln locus. Taken together, this study shows that Reln gene expression is regulated by chromatin remodeling, identifies CHD7 as a previously unrecognized upstream regulator of Reln, and provides direct in vivo evidence that a mammalian CHD protein can control brain development by modulating chromatin accessibility in neuronal progenitors.
Collapse
Affiliation(s)
- Danielle E. Whittaker
- King’s College London, Department of Craniofacial Development and Stem Cell Biology, Guy’s Hospital Tower Wing
- Department of Comparative Biomedical Sciences, Royal Veterinary College, and
| | - Kimberley L.H. Riegman
- King’s College London, Department of Craniofacial Development and Stem Cell Biology, Guy’s Hospital Tower Wing
| | - Sahrunizam Kasah
- King’s College London, Department of Craniofacial Development and Stem Cell Biology, Guy’s Hospital Tower Wing
| | - Conor Mohan
- King’s College London, Department of Craniofacial Development and Stem Cell Biology, Guy’s Hospital Tower Wing
| | - Tian Yu
- King’s College London, Department of Craniofacial Development and Stem Cell Biology, Guy’s Hospital Tower Wing
| | - Blanca Pijuan Sala
- King’s College London, Department of Craniofacial Development and Stem Cell Biology, Guy’s Hospital Tower Wing
| | - Husam Hebaishi
- King’s College London, Randall Division, New Hunt’s House, London, United Kingdom
| | - Angela Caruso
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, and
- School of Behavioural Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Ana Claudia Marques
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Caterina Michetti
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, and
- Department of Physiology and Pharmacology “V. Erspamer,” Sapienza University of Rome, Rome, Italy
| | | | - Apar Shah
- King’s College London, Department of Craniofacial Development and Stem Cell Biology, Guy’s Hospital Tower Wing
| | - Mara Sabbioni
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, and
| | - Omer Kulhanci
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Wee-Wei Tee
- Howard Hughes Medical Institute, Department of Molecular Pharmacology and Biochemistry, New York University School of Medicine, New York, New York, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, Department of Molecular Pharmacology and Biochemistry, New York University School of Medicine, New York, New York, USA
| | - Maria Luisa Scattoni
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, and
| | - Holger Volk
- Department of Comparative Biomedical Sciences, Royal Veterinary College, and
| | - Imelda McGonnell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, and
| | - Fiona C. Wardle
- King’s College London, Randall Division, New Hunt’s House, London, United Kingdom
| | - Cathy Fernandes
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- King’s College London, MRC Centre for Neurodevelopmental Disorders, New Hunt’s House, London, United Kingdom
| | - M. Albert Basson
- King’s College London, Department of Craniofacial Development and Stem Cell Biology, Guy’s Hospital Tower Wing
- King’s College London, MRC Centre for Neurodevelopmental Disorders, New Hunt’s House, London, United Kingdom
| |
Collapse
|
32
|
Constantin L. The Role of MicroRNAs in Cerebellar Development and Autism Spectrum Disorder During Embryogenesis. Mol Neurobiol 2016; 54:6944-6959. [PMID: 27774573 DOI: 10.1007/s12035-016-0220-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/12/2016] [Indexed: 02/03/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules with wide-ranging and subtle effects on protein production. Their activity during the development of the cerebellum provides a valuable exemplar of how non-coding molecules may assist the development and function of the central nervous system and drive neurodevelopmental disorders. Three distinct aspects of miRNA contribution to early cerebellar development will here be reviewed. Aspects are the establishment of the cerebellar anlage, the generation and maturation of at least two principal cell types of the developing cerebellar microcircuit, and the etiology and early progression of autism spectrum disorder. It will be argued here that the autism spectrum is an adept model to explore miRNA impact on the cognitive and affective processes that descend from the developing cerebellum.
Collapse
Affiliation(s)
- Lena Constantin
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia. .,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
33
|
Ismail MMT, Keynton RS, Mostapha MMMO, ElTanboly AH, Casanova MF, Gimel'farb GL, El-Baz A. Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey. Front Hum Neurosci 2016; 10:211. [PMID: 27242476 PMCID: PMC4862981 DOI: 10.3389/fnhum.2016.00211] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. Multiple MRI modalities, such as different types of the sMRI and DTI, have been employed to investigate facets of ASD in order to better understand this complex syndrome. This paper reviews recent applications of structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI), to study autism spectrum disorder (ASD). Main reported findings are sometimes contradictory due to different age ranges, hardware protocols, population types, numbers of participants, and image analysis parameters. The primary anatomical structures, such as amygdalae, cerebrum, and cerebellum, associated with clinical-pathological correlates of ASD are highlighted through successive life stages, from infancy to adulthood. This survey demonstrates the absence of consistent pathology in the brains of autistic children and lack of research investigations in patients under 2 years of age in the literature. The known publications also emphasize advances in data acquisition and analysis, as well as significance of multimodal approaches that combine resting-state, task-evoked, and sMRI measures. Initial results obtained with the sMRI and DTI show good promise toward the early and non-invasive ASD diagnostics.
Collapse
Affiliation(s)
- Marwa M. T. Ismail
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | - Robert S. Keynton
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | | | - Ahmed H. ElTanboly
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | - Manuel F. Casanova
- Departments of Pediatrics and Biomedical Sciences, University of South CarolinaColumbia, SC, USA
| | | | - Ayman El-Baz
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| |
Collapse
|
34
|
Jumah F, Ghannam M, Jaber M, Adeeb N, Tubbs RS. Neuroanatomical variation in autism spectrum disorder: A comprehensive review. Clin Anat 2016; 29:454-65. [PMID: 27004599 DOI: 10.1002/ca.22717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/27/2023]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by impairments in socialization, communication, and behavior. Many investigators have described the anatomical abnormalities in autistic brains, in an attempt to correlate them with the manifestations of ASD. Herein, we reviewed all the available literature about the neuroanatomical findings in ASD available via "PubMed" and "Google Scholar." References found in review articles were also searched manually. There was substantial discrepancy throughout the literature regarding the reported presence and significance of neuroanatomical findings in ASD, and this is thoroughly discussed in the present review.
Collapse
Affiliation(s)
- Fareed Jumah
- Department of Neuroscience, an-Najah National University Hospital, Nablus, Palestine
| | - Malik Ghannam
- Department of Neuroscience, an-Najah National University Hospital, Nablus, Palestine
| | - Mohammad Jaber
- Department of Neuroscience, an-Najah National University Hospital, Nablus, Palestine
| | - Nimer Adeeb
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada.,Seattle Science Foundation, Seattle, Washington
| |
Collapse
|
35
|
Regional brain volumes changes in adult male FMR1-KO mouse on the FVB strain. Neuroscience 2016; 318:12-21. [DOI: 10.1016/j.neuroscience.2016.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/06/2016] [Accepted: 01/09/2016] [Indexed: 11/17/2022]
|
36
|
Torres EB, Isenhower RW, Nguyen J, Whyatt C, Nurnberger JI, Jose JV, Silverstein SM, Papathomas TV, Sage J, Cole J. Toward Precision Psychiatry: Statistical Platform for the Personalized Characterization of Natural Behaviors. Front Neurol 2016; 7:8. [PMID: 26869988 PMCID: PMC4735831 DOI: 10.3389/fneur.2016.00008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/18/2016] [Indexed: 01/09/2023] Open
Abstract
There is a critical need for new analytics to personalize behavioral data analysis across different fields, including kinesiology, sports science, and behavioral neuroscience. Specifically, to better translate and integrate basic research into patient care, we need to radically transform the methods by which we describe and interpret movement data. Here, we show that hidden in the “noise,” smoothed out by averaging movement kinematics data, lies a wealth of information that selectively differentiates neurological and mental disorders such as Parkinson’s disease, deafferentation, autism spectrum disorders, and schizophrenia from typically developing and typically aging controls. In this report, we quantify the continuous forward-and-back pointing movements of participants from a large heterogeneous cohort comprising typical and pathological cases. We empirically estimate the statistical parameters of the probability distributions for each individual in the cohort and report the parameter ranges for each clinical group after characterization of healthy developing and aging groups. We coin this newly proposed platform for individualized behavioral analyses “precision phenotyping” to distinguish it from the type of observational–behavioral phenotyping prevalent in clinical studies or from the “one-size-fits-all” model in basic movement science. We further propose the use of this platform as a unifying statistical framework to characterize brain disorders of known etiology in relation to idiopathic neurological disorders with similar phenotypic manifestations.
Collapse
Affiliation(s)
- Elizabeth B Torres
- Psychology Department, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Cognitive Science, Rutgers University, New Brunswick, NJ, USA; Computer Science Department, Center for Biomedical Imaging and Modeling, Rutgers University, New Brunswick, NJ, USA
| | | | - Jillian Nguyen
- Psychology Department, Rutgers University , New Brunswick, NJ , USA
| | - Caroline Whyatt
- Psychology Department, Rutgers University , New Brunswick, NJ , USA
| | - John I Nurnberger
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine , Indianapolis, IN , USA
| | - Jorge V Jose
- Department of Physics, Indiana University, Bloomington, IN, USA; Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, IN, USA
| | - Steven M Silverstein
- Department of Psychiatry, Rutgers University Robert Wood Johnson Medical School , New Brunswick, NJ , USA
| | - Thomas V Papathomas
- Rutgers Center for Cognitive Science, Rutgers University, New Brunswick, NJ, USA; Department of Biomedical Engineering, Rutgers University, New Brunswick, NJ, USA
| | - Jacob Sage
- Movement Disorders, Rutgers University Robert Wood Johnson Medical School , New Brunswick, NJ , USA
| | - Jonathan Cole
- Poole Hospital and Bournemouth University , Poole , UK
| |
Collapse
|
37
|
Kleinhans NM, Reiter MA, Neuhaus E, Pauley G, Martin N, Dager S, Estes A. Subregional differences in intrinsic amygdala hyperconnectivity and hypoconnectivity in autism spectrum disorder. Autism Res 2015; 9:760-72. [PMID: 26666502 DOI: 10.1002/aur.1589] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 11/15/2015] [Indexed: 01/13/2023]
Abstract
The amygdala is a complex structure with distinct subregions and dissociable functional networks. The laterobasal subregion of the amygdala is hypothesized to mediate the presentation and severity of autism symptoms, although very little data are available regarding amygdala dysfunction at the subregional level. In this study, we investigated the relationship between abnormal amygdalar intrinsic connectivity, autism symptom severity, and anxiety and depressive symptoms. We collected resting state fMRI data on 31 high functioning adolescents and adults with autism spectrum disorder and 38 typically developing (TD) controls aged 14-45. Twenty-five participants with ASD and 28 TD participants were included in the final analyses. ASD participants were administered the Autism Diagnostic Interview-Revised and the Autism Diagnostic Observation Schedule. Adult participants were administered the Beck Depression Inventory II and the Beck Anxiety Inventory. Functional connectivity analyses were conducted from three amygdalar subregions: centromedial (CM), laterobasal (LB) and superficial (SF). In addition, correlations with the behavioral measures were tested in the adult participants. In general, the ASD group showed significantly decreased connectivity from the LB subregion and increased connectivity from the CM and SF subregions compared to the TD group. We found evidence that social symptoms are primarily associated with under-connectivity from the LB subregion whereas over-connectivity and under-connectivity from the CM, SF and LB subregions are related to co-morbid depression and anxiety in ASD, in brain regions that were distinct from those associated with social dysfunction, and in different patterns than were observed in mildly symptomatic TD participants. Our findings provide new evidence for functional subregional differences in amygdala pathophysiology in ASD. Autism Res 2016, 9: 760-772. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natalia M Kleinhans
- Department of Radiology, University of Washington, Seattle, Washington.,Integrative Brain Imaging Center, University of Washington, Seattle, Washington.,Center on Human Development and Disability, University of Washington, Seattle, Washington.,UW Autism Center, University of Washington, Seattle, Washington
| | - Maya A Reiter
- Department of Radiology, University of Washington, Seattle, Washington.,Integrative Brain Imaging Center, University of Washington, Seattle, Washington
| | - Emily Neuhaus
- UW Autism Center, University of Washington, Seattle, Washington.,Seattle Children's Research Institute, University of Washington, Seattle, Washington
| | - Greg Pauley
- Department of Radiology, University of Washington, Seattle, Washington.,Integrative Brain Imaging Center, University of Washington, Seattle, Washington
| | - Nathalie Martin
- Department of Radiology, University of Washington, Seattle, Washington
| | - Stephen Dager
- Department of Radiology, University of Washington, Seattle, Washington.,Center on Human Development and Disability, University of Washington, Seattle, Washington.,UW Autism Center, University of Washington, Seattle, Washington
| | - Annette Estes
- Department of Speech and Hearing Science, University of Washington, Seattle, Washington.,Center on Human Development and Disability, University of Washington, Seattle, Washington.,UW Autism Center, University of Washington, Seattle, Washington
| |
Collapse
|
38
|
Hampson DR, Blatt GJ. Autism spectrum disorders and neuropathology of the cerebellum. Front Neurosci 2015; 9:420. [PMID: 26594141 PMCID: PMC4635214 DOI: 10.3389/fnins.2015.00420] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022] Open
Abstract
The cerebellum contains the largest number of neurons and synapses of any structure in the central nervous system. The concept that the cerebellum is solely involved in fine motor function has become outdated; substantial evidence has accumulated linking the cerebellum with higher cognitive functions including language. Cerebellar deficits have been implicated in autism for more than two decades. The computational power of the cerebellum is essential for many, if not most of the processes that are perturbed in autism including language and communication, social interactions, stereotyped behavior, motor activity and motor coordination, and higher cognitive functions. The link between autism and cerebellar dysfunction should not be surprising to those who study its cellular, physiological, and functional properties. Postmortem studies have revealed neuropathological abnormalities in cerebellar cellular architecture while studies on mouse lines with cell loss or mutations in single genes restricted to cerebellar Purkinje cells have also strongly implicated this brain structure in contributing to the autistic phenotype. This connection has been further substantiated by studies investigating brain damage in humans restricted to the cerebellum. In this review, we summarize advances in research on idiopathic autism and three genetic forms of autism that highlight the key roles that the cerebellum plays in this spectrum of neurodevelopmental disorders.
Collapse
Affiliation(s)
- David R Hampson
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto Toronto, ON, Canada
| | - Gene J Blatt
- Program in Neuroscience, Hussman Institute for Autism Baltimore, MD, USA
| |
Collapse
|
39
|
Mosconi MW, Sweeney JA. Sensorimotor dysfunctions as primary features of autism spectrum disorders. SCIENCE CHINA. LIFE SCIENCES 2015; 58:1016-23. [PMID: 26335740 PMCID: PMC5304941 DOI: 10.1007/s11427-015-4894-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Motor impairments in autism spectrum disorders (ASD) have received far less research attention than core social-communication and cognitive features. Yet, behavioral, neurophysiological, neuroimaging and histopathological studies have documented abnormal motor system development in the majority of individuals with ASD suggesting that these deficits may be primary to the disorder. There are several unique advantages to studying motor development in ASD. First, the neurophysiological substrates of motor skills have been well-characterized via animal and human lesion studies. Second, many of the single- gene disorders associated with ASD also are characterized by motor dysfunctions. Third, recent evidence suggests that the onset of motor dysfunctions may precede the emergence of social and communication deficits during the first year of life in ASD. Motor deficits documented in ASD indicate disruptions throughout the neuroaxis affecting cortex, striatum, the cerebellum and brainstem. Questions remain regarding the timing and development of motor system alterations in ASD, their association with defining clinical features, and their potential for parsing heterogeneity in ASD. Pursuing these questions through neurobiologically informed translational research holds great promise for identifying gene-brain pathways associated with ASD.
Collapse
Affiliation(s)
- Matthew W Mosconi
- Departments of Psychiatry and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9086, USA.
| | - John A Sweeney
- Departments of Psychiatry and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9086, USA
| |
Collapse
|
40
|
Mosconi MW, Wang Z, Schmitt LM, Tsai P, Sweeney JA. The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front Neurosci 2015; 9:296. [PMID: 26388713 PMCID: PMC4555040 DOI: 10.3389/fnins.2015.00296] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/06/2015] [Indexed: 01/23/2023] Open
Abstract
The cerebellum has been repeatedly implicated in gene expression, rodent model and post-mortem studies of autism spectrum disorder (ASD). How cellular and molecular anomalies of the cerebellum relate to clinical manifestations of ASD remains unclear. Separate circuits of the cerebellum control different sensorimotor behaviors, such as maintaining balance, walking, making eye movements, reaching, and grasping. Each of these behaviors has been found to be impaired in ASD, suggesting that multiple distinct circuits of the cerebellum may be involved in the pathogenesis of patients' sensorimotor impairments. We will review evidence that the development of these circuits is disrupted in individuals with ASD and that their study may help elucidate the pathophysiology of sensorimotor deficits and core symptoms of the disorder. Preclinical studies of monogenetic conditions associated with ASD also have identified selective defects of the cerebellum and documented behavioral rescues when the cerebellum is targeted. Based on these findings, we propose that cerebellar circuits may prove to be promising targets for therapeutic development aimed at rescuing sensorimotor and other clinical symptoms of different forms of ASD.
Collapse
Affiliation(s)
- Matthew W Mosconi
- Clinical Child Psychology Program and Schiefelbusch Institute for Life Span Studies, University of Kansas Lawrence, KS, USA ; Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA ; Department of Pediatrics, University of Texas Southwestern Dallas, TX, USA
| | - Zheng Wang
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA
| | - Lauren M Schmitt
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA
| | - Peter Tsai
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA ; Department of Pediatrics, University of Texas Southwestern Dallas, TX, USA ; Department of Neurology and Neurotherapeutics, University of Texas Southwestern Dallas, TX, USA ; Department of Neuroscience, University of Texas Southwestern Dallas, TX, USA
| | - John A Sweeney
- Center for Autism and Developmental Disabilities, University of Texas Southwestern Dallas, TX, USA ; Department of Psychiatry, University of Texas Southwestern Dallas, TX, USA ; Department of Pediatrics, University of Texas Southwestern Dallas, TX, USA
| |
Collapse
|
41
|
Foti F, De Crescenzo F, Vivanti G, Menghini D, Vicari S. Implicit learning in individuals with autism spectrum disorders: a meta-analysis. Psychol Med 2015; 45:897-910. [PMID: 25126858 DOI: 10.1017/s0033291714001950] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Individuals with autism spectrum disorders (ASDs) are characterized by social communication difficulties and behavioural rigidity. Difficulties in learning from others are one of the most devastating features of this group of conditions. Nevertheless, the nature of learning difficulties in ASDs is still unclear. Given the relevance of implicit learning for social and communicative functioning, a link has been hypothesized between ASDs and implicit learning deficit. However, studies that have employed formal testing of implicit learning in ASDs provided mixed results. METHOD We undertook a systematic search of studies that examined implicit learning in ASDs using serial reaction time (SRT), alternating serial reaction time (ASRT), pursuit rotor (PR), and contextual cueing (CC) tasks, and synthesized the data using meta-analysis. A total of 11 studies were identified, representing data from 407 individuals with ASDs and typically developing comparison participants. RESULTS The results indicate that individuals with ASDs do not differ in any task considered [SRT and ASRT task: standardized mean difference (SMD) -0.18, 95% confidence interval (CI) -0.71 to 0.36; PR task: SMD -0.34, 95% CI -1.04 to 0.36; CC task: SMD 0.27, 95% CI -0.07 to 0.60]. CONCLUSIONS Based on our synthesis of the existing literature, we conclude that individuals with ASDs can learn implicitly, supporting the hypothesis that implicit learning deficits do not represent a core feature in ASDs.
Collapse
Affiliation(s)
- F Foti
- Department of Psychology,'Sapienza' University of Rome,Italy
| | - F De Crescenzo
- Child Neuropsychiatry Unit, Neuroscience Department,'Children's Hospital Bambino Gesu',Rome,Italy
| | - G Vivanti
- Olga Tennison Autism Research Centre, School of Psychological Science,La Trobe University,Melbourne, VIC,Australia
| | - D Menghini
- Child Neuropsychiatry Unit, Neuroscience Department,'Children's Hospital Bambino Gesu',Rome,Italy
| | - S Vicari
- Child Neuropsychiatry Unit, Neuroscience Department,'Children's Hospital Bambino Gesu',Rome,Italy
| |
Collapse
|
42
|
D'Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. NEUROIMAGE-CLINICAL 2015; 7:631-9. [PMID: 25844317 PMCID: PMC4375648 DOI: 10.1016/j.nicl.2015.02.007] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/04/2015] [Accepted: 02/17/2015] [Indexed: 12/22/2022]
Abstract
Neuroanatomical differences in the cerebellum are among the most consistent findings in autism spectrum disorder (ASD), but little is known about the relationship between cerebellar dysfunction and core ASD symptoms. The newly-emerging existence of cerebellar sensorimotor and cognitive subregions provides a new framework for interpreting the functional significance of cerebellar findings in ASD. Here we use two complementary analyses — whole-brain voxel-based morphometry (VBM) and the SUIT cerebellar atlas — to investigate cerebellar regional gray matter (GM) and volumetric lobular measurements in 35 children with ASD and 35 typically-developing (TD) children (mean age 10.4 ± 1.6 years; range 8–13 years). To examine the relationships between cerebellar structure and core ASD symptoms, correlations were calculated between scores on the Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview (ADI) and the VBM and volumetric data. Both VBM and the SUIT analyses revealed reduced GM in ASD children in cerebellar lobule VII (Crus I/II). The degree of regional and lobular gray matter reductions in different cerebellar subregions correlated with the severity of symptoms in social interaction, communication, and repetitive behaviors. Structural differences and behavioral correlations converged on right cerebellar Crus I/II, a region which shows structural and functional connectivity with fronto-parietal and default mode networks. These results emphasize the importance of the location within the cerebellum to the potential functional impact of structural differences in ASD, and suggest that GM differences in cerebellar right Crus I/II are associated with the core ASD profile. The cerebellum is one of the most consistent sites of abnormality in autism. We investigated cerebellar structure in autism using two independent methods. Cerebellar gray matter was reduced in several regions in children with autism. The degree of cerebellar gray matter reduction predicted core autism symptom severity. Structural differences and behavioral correlations converged on cerebellar Crus I/II.
Collapse
Affiliation(s)
- Anila M D'Mello
- Developmental Neuroscience Lab, Department of Psychology and Center for Behavioral Neuroscience, American University, Washington, DC, USA
| | - Deana Crocetti
- Center for Neurodevelopment and Imaging Research (CNIR), Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopment and Imaging Research (CNIR), Kennedy Krieger Institute, Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Catherine J Stoodley
- Developmental Neuroscience Lab, Department of Psychology and Center for Behavioral Neuroscience, American University, Washington, DC, USA
| |
Collapse
|
43
|
Piochon C, Kloth AD, Grasselli G, Titley HK, Nakayama H, Hashimoto K, Wan V, Simmons DH, Eissa T, Nakatani J, Cherskov A, Miyazaki T, Watanabe M, Takumi T, Kano M, Wang SSH, Hansel C. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism. Nat Commun 2014; 5:5586. [PMID: 25418414 PMCID: PMC4243533 DOI: 10.1038/ncomms6586] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/17/2014] [Indexed: 12/14/2022] Open
Abstract
A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning--a form of cerebellum-dependent motor learning--is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres--a model for activity-dependent synaptic pruning--is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism.
Collapse
Affiliation(s)
- Claire Piochon
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States
| | - Alexander D Kloth
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, United States
| | - Giorgio Grasselli
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States
| | - Heather K Titley
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States
| | - Hisako Nakayama
- Department of Neurophysiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Vivian Wan
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States
| | - Dana H Simmons
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States
| | - Tahra Eissa
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States
| | - Jin Nakatani
- Shiga University of Medical Science, Ohtsu 520-2192, Japan
| | - Adriana Cherskov
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, United States
| | - Taisuke Miyazaki
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako 351-0198, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Samuel S-H Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, United States
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
44
|
Abbeduto L, McDuffie A, Thurman AJ. The fragile X syndrome-autism comorbidity: what do we really know? Front Genet 2014; 5:355. [PMID: 25360144 PMCID: PMC4199273 DOI: 10.3389/fgene.2014.00355] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/24/2014] [Indexed: 01/13/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common comorbid condition in people with fragile X syndrome (FXS). It has been assumed that ASD symptoms reflect the same underlying psychological and neurobiological impairments in both FXS and non-syndromic ASD, which has led to the claim that targeted pharmaceutical treatments that are efficacious for core symptoms of FXS are likely to be beneficial for non-syndromic ASD as well. In contrast, we present evidence from a variety of sources suggesting that there are important differences in ASD symptoms, behavioral and psychiatric correlates, and developmental trajectories between individuals with comorbid FXS and ASD and those with non-syndromic ASD. We also present evidence suggesting that social impairments may not distinguish individuals with FXS with and without ASD. Finally, we present data that demonstrate that the neurobiological substrates of the behavioral impairments, including those reflecting core ASD symptoms, are different in FXS and non-syndromic ASD. Together, these data suggest that there are clinically important differences between FXS and non-syndromic ASD that are masked by reliance on the categorical diagnosis of ASD. We argue for use of a symptom-based approach in future research, including studies designed to evaluate treatment efficacy.
Collapse
Affiliation(s)
- Leonard Abbeduto
- MIND Institute, University of California, Davis , Sacramento, CA, USA ; Department of Psychiatry and Behavioral Sciences, University of California, Davis , Sacramento, CA, USA
| | - Andrea McDuffie
- MIND Institute, University of California, Davis , Sacramento, CA, USA ; Department of Psychiatry and Behavioral Sciences, University of California, Davis , Sacramento, CA, USA
| | - Angela John Thurman
- MIND Institute, University of California, Davis , Sacramento, CA, USA ; Department of Psychiatry and Behavioral Sciences, University of California, Davis , Sacramento, CA, USA
| |
Collapse
|
45
|
Abstract
Cerebellar research has focused principally on adult motor function. However, the cerebellum also maintains abundant connections with nonmotor brain regions throughout postnatal life. Here we review evidence that the cerebellum may guide the maturation of remote nonmotor neural circuitry and influence cognitive development, with a focus on its relationship with autism. Specific cerebellar zones influence neocortical substrates for social interaction, and we propose that sensitive-period disruption of such internal brain communication can account for autism's key features.
Collapse
Affiliation(s)
- Samuel S-H Wang
- Princeton Neuroscience Institute and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Alexander D Kloth
- Princeton Neuroscience Institute and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aleksandra Badura
- Princeton Neuroscience Institute and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
46
|
Stoodley CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci 2014; 8:92. [PMID: 24904314 PMCID: PMC4033133 DOI: 10.3389/fnsys.2014.00092] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/30/2014] [Indexed: 01/18/2023] Open
Abstract
Differences in cerebellar structure have been identified in autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and developmental dyslexia. However, it is not clear if different cerebellar regions are involved in each disorder, and thus whether cerebellar anatomical differences reflect a generic developmental vulnerability or disorder-specific characteristics. To clarify this, we conducted an anatomic likelihood estimate (ALE) meta-analysis on voxel-based morphometry (VBM) studies which compared ASD (17 studies), ADHD (10 studies), and dyslexic (10 studies) participants with age-matched typically-developing (TD) controls. A second ALE analysis included studies in which the cerebellum was a region of interest (ROI). There were no regions of significantly increased gray matter (GM) in the cerebellum in ASD, ADHD, or dyslexia. Data from ASD studies revealed reduced GM in the inferior cerebellar vermis (lobule IX), left lobule VIIIB, and right Crus I. In ADHD, significantly decreased GM was found bilaterally in lobule IX, whereas participants with developmental dyslexia showed GM decreases in left lobule VI. There was no overlap between the cerebellar clusters identified in each disorder. We evaluated the functional significance of the regions revealed in both whole-brain and cerebellar ROI ALE analyses using Buckner and colleagues' 7-network functional connectivity map available in the SUIT cerebellar atlas. The cerebellar regions identified in ASD showed functional connectivity with frontoparietal, default mode, somatomotor, and limbic networks; in ADHD, the clusters were part of dorsal and ventral attention networks; and in dyslexia, the clusters involved ventral attention, frontoparietal, and default mode networks. The results suggest that different cerebellar regions are affected in ASD, ADHD, and dyslexia, and these cerebellar regions participate in functional networks that are consistent with the characteristic symptoms of each disorder.
Collapse
|
47
|
Petrinovic MM, Künnecke B. Neuroimaging endophenotypes in animal models of autism spectrum disorders: lost or found in translation? Psychopharmacology (Berl) 2014; 231:1167-89. [PMID: 23852013 DOI: 10.1007/s00213-013-3200-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/26/2013] [Indexed: 11/26/2022]
Abstract
RATIONALE Autism spectrum disorder(s) (ASDs) is a neurodevelopmental disorder characterized by stereotyped behaviours and impairments in communication and social interactions. This heterogeneity has been a major obstacle in uncovering the aetiology and biomarkers of ASDs. Rodent models with genetic modifications or environmental insults have been created to study particular endophenotypes and bridge the gap between genetics and behavioural phenotypes. Translational neuroimaging modalities with their ability to screen the brain noninvasively and yield structural, biochemical and functional information provide a unique platform for discovery and evaluation of such endophenotypes in preclinical and clinical research. OBJECTIVES We reviewed literature on translational neuroimaging in rodent models of ASDs. The most prominent models will be described and the respective neuroimaging endophenotypes will be discussed with reference to human data. A perspective on future directions of translational neuroimaging in animal models of ASDs will be given. RESULTS AND CONCLUSIONS To date, we experience a proliferation of rodent models which recapitulate specific liabilities identified in ASDs patients. Translational neuroimaging in these models is emerging but is skewed towards magnetic resonance imaging (MRI) modalities. Volumetric and structural assessments of the brain are dominating and a host of endophenotypes have been reported that allude to findings in ASDs patients but with only few to converge among the models. Caveats of current studies are the diverging biological conditions related to genetic background and age of the animals. It is anticipated that longitudinal and functional assessments will gain much importance and will help elucidating mechanistic relationship between behavioural and structural endophenotypes.
Collapse
Affiliation(s)
- Marija M Petrinovic
- F. Hoffmann-La Roche AG, pRED, Pharma Research and Early Development, DTA Neuroscience, Building 68, Room 327A, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | | |
Collapse
|
48
|
Robinson AJ. Inferior vermian hypoplasia--preconception, misconception. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2014; 43:123-136. [PMID: 24497418 DOI: 10.1002/uog.13296] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Ashley J Robinson
- Department of Radiology, Children's Hospital of British Columbia, 4480 Oak Street, Vancouver, V6H 3V4, Canada.
| |
Collapse
|
49
|
Lenroot RK, Yeung PK. Heterogeneity within Autism Spectrum Disorders: What have We Learned from Neuroimaging Studies? Front Hum Neurosci 2013; 7:733. [PMID: 24198778 PMCID: PMC3812662 DOI: 10.3389/fnhum.2013.00733] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/13/2013] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorders (ASD) display significant heterogeneity. Although most neuroimaging studies in ASD have been designed to identify commonalities among affected individuals, rather than differences, some studies have explored variation within ASD. There have been two general types of approaches used for this in the neuroimaging literature to date: comparison of subgroups within ASD, and analyses using dimensional measures to link clinical variation to brain differences. This review focuses on structural and functional magnetic resonance imaging studies that have used these approaches to begin to explore heterogeneity between individuals with ASD. Although this type of data is yet sparse, recognition is growing of the limitations of behaviorally defined categorical diagnoses for understanding neurobiology. Study designs that are more informative regarding the sources of heterogeneity in ASD have the potential to improve our understanding of the neurobiological processes underlying ASD.
Collapse
Affiliation(s)
- Rhoshel K Lenroot
- School of Psychiatry, University of New South Wales , Sydney, NSW , Australia ; Neuroscience Research Australia , Sydney, NSW , Australia
| | | |
Collapse
|
50
|
Cohen OS, Varlinskaya EI, Wilson CA, Glatt SJ, Mooney SM. Acute prenatal exposure to a moderate dose of valproic acid increases social behavior and alters gene expression in rats. Int J Dev Neurosci 2013; 31:740-50. [PMID: 24055786 DOI: 10.1016/j.ijdevneu.2013.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022] Open
Abstract
Prenatal exposure to moderate doses of valproic acid (VPA) produces brainstem abnormalities, while higher doses of this teratogen elicit social deficits in the rat. In this pilot study, we examined effects of prenatal exposure to a moderate dose of VPA on behavior and on transcriptomic expression in three brain regions that mediate social behavior. Pregnant Long Evans rats were injected with 350 mg/kg VPA or saline on gestational day 13. A modified social interaction test was used to assess social behavior and social preference/avoidance during early and late adolescence and in adulthood. VPA-exposed animals demonstrated more social investigation and play fighting than control animals. Social investigation, play fighting, and contact behavior also differed as a function of age; the frequency of these behaviors increased in late adolescence. Social preference and locomotor activity under social circumstances were unaffected by treatment or age. Thus, a moderate prenatal dose of VPA produces behavioral alterations that are substantially different from the outcomes that occur following exposure to a higher dose. At adulthood, VPA-exposed subjects exhibited transcriptomic abnormalities in three brain regions: anterior amygdala, cerebellar vermis, and orbitofrontal cortex. A common feature among the proteins encoded by the dysregulated genes was their ability to be modulated by acetylation. Analysis of the expression of individual exons also revealed that genes involved in post-translational modification and epigenetic regulation had particular isoforms that were ubiquitously dysregulated across brain regions. The vulnerability of these genes to the epigenetic effects of VPA may highlight potential mechanisms by which prenatal VPA exposure alters the development of social behavior.
Collapse
Affiliation(s)
- Ori S Cohen
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | | | | | | | | |
Collapse
|