1
|
Elitt MS, Tesar PJ. Pelizaeus-Merzbacher disease: on the cusp of myelin medicine. Trends Mol Med 2024; 30:459-470. [PMID: 38582621 PMCID: PMC11081862 DOI: 10.1016/j.molmed.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024]
Abstract
Pelizaeus-Merzbacher disease (PMD) is caused by mutations in the proteolipid protein 1 (PLP1) gene encoding proteolipid protein (PLP). As a major component of myelin, mutated PLP causes progressive neurodegeneration and eventually death due to severe white matter deficits. Medical care has long been limited to symptomatic treatments, but first-in-class PMD therapies with novel mechanisms now stand poised to enter clinical trials. Here, we review PMD disease mechanisms and outline rationale for therapeutic interventions, including PLP1 suppression, cell transplantation, iron chelation, and intracellular stress modulation. We discuss available preclinical data and their implications on clinical development. With several novel treatments on the horizon, PMD is on the precipice of a new era in the diagnosis and treatment of patients suffering from this debilitating disease.
Collapse
Affiliation(s)
- Matthew S Elitt
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
2
|
Perrier S, Gauquelin L, Bernard G. Inherited white matter disorders: Hypomyelination (myelin disorders). HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:197-223. [PMID: 39322379 DOI: 10.1016/b978-0-323-99209-1.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelinating leukodystrophies are a subset of genetic white matter diseases characterized by insufficient myelin deposition during development. MRI patterns are used to identify hypomyelinating disorders, and genetic testing is used to determine the causal genes implicated in individual disease forms. Clinical course can range from severe, with patients manifesting neurologic symptoms in infancy or early childhood, to mild, with onset in adolescence or adulthood. This chapter discusses the most common hypomyelinating leukodystrophies, including X-linked Pelizaeus-Merzbacher disease and other PLP1-related disorders, autosomal recessive Pelizaeus-Merzbacher-like disease, and POLR3-related leukodystrophy. PLP1-related disorders are caused by hemizygous pathogenic variants in the proteolipid protein 1 (PLP1) gene, and encompass classic Pelizaeus-Merzbacher disease, the severe connatal form, PLP1-null syndrome, spastic paraplegia type 2, and hypomyelination of early myelinating structures. Pelizaeus-Merzbacher-like disease presents a similar clinical picture to Pelizaeus-Merzbacher disease, however, it is caused by biallelic pathogenic variants in the GJC2 gene, which encodes for the gap junction protein Connexin-47. POLR3-related leukodystrophy, or 4H leukodystrophy (hypomyelination, hypodontia, and hypogonadotropic hypogonadism), is caused by biallelic pathogenic variants in genes encoding specific subunits of the transcription enzyme RNA polymerase III. In this chapter, the clinical features, disease pathophysiology and genetics, imaging patterns, as well as supportive and future therapies are discussed for each disorder.
Collapse
Affiliation(s)
- Stefanie Perrier
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Laurence Gauquelin
- Division of Pediatric Neurology, Department of Pediatrics, CHUL et Centre Mère-Enfant Soleil du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
3
|
Yamamoto-Shimojima K, Imaizumi T, Aoki Y, Inoue K, Kaname T, Okuno Y, Muramatsu H, Kato K, Yamamoto T. Elucidation of the pathogenic mechanism and potential treatment strategy for a female patient with spastic paraplegia derived from a single-nucleotide deletion in PLP1. J Hum Genet 2019; 64:665-671. [PMID: 31004103 DOI: 10.1038/s10038-019-0600-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/24/2019] [Accepted: 04/04/2019] [Indexed: 11/09/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) is an X-linked recessive disorder caused by abnormalities in the gene PLP1. Most females harboring heterozygous PLP1 abnormalities are basically asymptomatic. However, as a result of abnormal patterns of X-chromosome inactivation, it is possible for some female carriers to be symptomatic. Whole-exome sequencing of a female patient with unknown spastic paraplegia was performed to obtain a molecular diagnosis. As a result, a de novo heterozygous single-nucleotide deletion in PLP1 [NM_000533.5(PLP1_v001):c.783del; p.Thr262Leufs*20] was identified. RNA sequencing was performed in a patient-derived lymphoblastoid cell line, confirming mono-allelic expression of the mutated allele and abnormal inactivation of the wild-type allele. The patient-derived lymphoblastoid cell line was then treated with VX680 or 5azadC, which resulted in restored expression of the wild-type allele. These two agents thus have the potential to reverse inappropriately-skewed inactivation of the X-chromosome.
Collapse
Affiliation(s)
- Keiko Yamamoto-Shimojima
- Japan Society for the Promotion of Science (RPD), Tokyo, 160-8582, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.,Tokyo Women's Medical University, Institute of Integrated Medical Sciences, Tokyo, 162-8666, Japan
| | - Taichi Imaizumi
- Department of Gene Medicine, Graduate school of Medicine, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.,Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan
| | - Yusuke Aoki
- Department of Neurology, Aichi Children's Health and Medical Center, Aichi, 474-8710, Japan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, 187-0031, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, 466-8560, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Kohji Kato
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan. .,Tokyo Women's Medical University, Institute of Integrated Medical Sciences, Tokyo, 162-8666, Japan. .,Department of Gene Medicine, Graduate school of Medicine, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.
| |
Collapse
|
4
|
Inoue K. Pelizaeus-Merzbacher Disease: Molecular and Cellular Pathologies and Associated Phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:201-216. [PMID: 31760646 DOI: 10.1007/978-981-32-9636-7_13] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pelizaeus-Merzbacher disease (PMD) represents a group of disorders known as hypomyelinating leukodystrophies, which are characterized by abnormal development and maintenance of myelin in the central nervous system. PMD is caused by different types of mutations in the proteolipid protein 1 (PLP1) gene, which encodes a major myelin membrane lipoprotein. These mutations in the PLP1 gene result in distinct cellular and molecular pathologies and a spectrum of clinical phenotypes. In this chapter, I discuss the historical aspects and current understanding of the mechanisms underlying how different PLP1 mutations disrupt the normal process of myelination and result in PMD and other disorders.
Collapse
Affiliation(s)
- Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| |
Collapse
|
5
|
Tantzer S, Sperle K, Kenaley K, Taube J, Hobson GM. Morpholino Antisense Oligomers as a Potential Therapeutic Option for the Correction of Alternative Splicing in PMD, SPG2, and HEMS. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:420-432. [PMID: 30195779 PMCID: PMC6036941 DOI: 10.1016/j.omtn.2018.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 01/10/2023]
Abstract
DNA variants of the proteolipid protein 1 gene (PLP1) that shift PLP1/DM20 alternative splicing away from the PLP1 form toward DM20 cause the allelic X-linked leukodystrophies Pelizaeus-Merzbacher disease (PMD), spastic paraplegia 2 (SPG2), and hypomyelination of early myelinating structures (HEMS). We designed a morpholino oligomer (MO-PLP) to block use of the DM20 5' splice donor site, thereby shifting alternative splicing toward the PLP1 5' splice site. Treatment of an immature oligodendrocyte cell line with MO-PLP significantly shifted alternative splicing toward PLP1 expression from the endogenous gene and from transfected human minigene splicing constructs harboring patient variants known to reduce the amount of the PLP1 spliced product. Additionally, a single intracerebroventricular injection of MO-PLP into the brains of neonatal mice, carrying a deletion of an intronic splicing enhancer identified in a PMD patient that reduces the Plp1 spliced form, corrected alternative splicing at both RNA and protein levels in the CNS. The effect lasted to post-natal day 90, well beyond the early post-natal spike in myelination and PLP production. Further, the single injection produced a sustained reduction of inflammatory markers in the brains of the mice. Our results suggest that morpholino oligomers have therapeutic potential for the treatment of PMD, SPG2, and HEMS.
Collapse
Affiliation(s)
- Stephanie Tantzer
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Karen Sperle
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kaitlin Kenaley
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Pediatrics/Neonatology, Christiana Care Health System, Newark, DE 19713, USA
| | - Jennifer Taube
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Grace M Hobson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Pediatrics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
6
|
Abstract
Pelizaeus-Merzbacher disease (PMD) is an X-linked disorder caused by mutations in the PLP1 gene, which encodes the proteolipid protein of myelinating oligodendroglia. PMD exhibits phenotypic variability that reflects its considerable genotypic heterogeneity, but all forms of the disease result in central hypomyelination associated with early neurologic dysfunction, progressive deterioration, and ultimately death. PMD has been classified into three major subtypes, according to the age of presentation: connatal PMD, classic PMD, and transitional PMD, combining features of both connatal and classic forms. Two other less severe phenotypes were subsequently described, including the spastic paraplegia syndrome and PLP1-null disease. These disorders may be associated with duplications, as well as with point, missense, and null mutations within the PLP1 gene. A number of clinically similar Pelizaeus-Merzbacher-like disorders (PMLD) are considered in the differential diagnosis of PMD, the most prominent of which is PMLD-1, caused by misexpression of the GJC2 gene encoding connexin-47. No effective therapy for PMD exists. Yet, as a relatively pure central nervous system hypomyelinating disorder, with limited involvement of the peripheral nervous system and little attendant neuronal pathology, PMD is an attractive therapeutic target for neural stem cell and glial progenitor cell transplantation, efforts at which are now underway in a number of centers internationally.
Collapse
Affiliation(s)
- M Joana Osório
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Steven A Goldman
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| |
Collapse
|
7
|
Inoue K. Cellular Pathology of Pelizaeus-Merzbacher Disease Involving Chaperones Associated with Endoplasmic Reticulum Stress. Front Mol Biosci 2017; 4:7. [PMID: 28286750 PMCID: PMC5323380 DOI: 10.3389/fmolb.2017.00007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/09/2017] [Indexed: 11/23/2022] Open
Abstract
Disease-causing mutations in genes encoding membrane proteins may lead to the production of aberrant polypeptides that accumulate in the endoplasmic reticulum (ER). These mutant proteins have detrimental conformational changes or misfolding events, which result in the triggering of the unfolded protein response (UPR). UPR is a cellular pathway that reduces ER stress by generally inhibiting translation, increasing ER chaperones levels, or inducing cell apoptosis in severe ER stress. This process has been implicated in the cellular pathology of many neurological disorders, including Pelizaeus-Merzbacher disease (PMD). PMD is a rare pediatric disorder characterized by the failure in the myelination process of the central nervous system (CNS). PMD is caused by mutations in the PLP1 gene, which encodes a major myelin membrane protein. Severe clinical PMD phenotypes appear to be the result of cell toxicity, due to the accumulation of PLP1 mutant proteins and not due to the lack of functional PLP1. Therefore, it is important to clarify the pathological mechanisms by which the PLP1 mutants negatively impact the myelin-generating cells, called oligodendrocytes, to overcome this devastating disease. This review discusses how PLP1 mutant proteins change protein homeostasis in the ER of oligodendrocytes, especially focusing on the reaction of ER chaperones against the accumulation of PLP1 mutant proteins that cause PMD.
Collapse
Affiliation(s)
- Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry Kodaira, Japan
| |
Collapse
|
8
|
Kevelam SH, Taube JR, van Spaendonk RML, Bertini E, Sperle K, Tarnopolsky M, Tonduti D, Valente EM, Travaglini L, Sistermans EA, Bernard G, Catsman-Berrevoets CE, van Karnebeek CDM, Østergaard JR, Friederich RL, Fawzi Elsaid M, Schieving JH, Tarailo-Graovac M, Orcesi S, Steenweg ME, van Berkel CGM, Waisfisz Q, Abbink TEM, van der Knaap MS, Hobson GM, Wolf NI. Altered PLP1 splicing causes hypomyelination of early myelinating structures. Ann Clin Transl Neurol 2015; 2:648-61. [PMID: 26125040 PMCID: PMC4479525 DOI: 10.1002/acn3.203] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/03/2015] [Accepted: 03/12/2015] [Indexed: 12/19/2022] Open
Abstract
Objective The objective of this study was to investigate the genetic etiology of the X-linked disorder “Hypomyelination of Early Myelinating Structures” (HEMS). Methods We included 16 patients from 10 families diagnosed with HEMS by brain MRI criteria. Exome sequencing was used to search for causal mutations. In silico analysis of effects of the mutations on splicing and RNA folding was performed. In vitro gene splicing was examined in RNA from patients’ fibroblasts and an immortalized immature oligodendrocyte cell line after transfection with mutant minigene splicing constructs. Results All patients had unusual hemizygous mutations of PLP1 located in exon 3B (one deletion, one missense and two silent), which is spliced out in isoform DM20, or in intron 3 (five mutations). The deletion led to truncation of PLP1, but not DM20. Four mutations were predicted to affect PLP1/DM20 alternative splicing by creating exonic splicing silencer motifs or new splice donor sites or by affecting the local RNA structure of the PLP1 splice donor site. Four deep intronic mutations were predicted to destabilize a long-distance interaction structure in the secondary PLP1 RNA fragment involved in regulating PLP1/DM20 alternative splicing. Splicing studies in fibroblasts and transfected cells confirmed a decreased PLP1/DM20 ratio. Interpretation Brain structures that normally myelinate early are poorly myelinated in HEMS, while they are the best myelinated structures in Pelizaeus–Merzbacher disease, also caused by PLP1 alterations. Our data extend the phenotypic spectrum of PLP1-related disorders indicating that normal PLP1/DM20 alternative splicing is essential for early myelination and support the need to include intron 3 in diagnostic sequencing.
Collapse
Affiliation(s)
- Sietske H Kevelam
- Department of Child Neurology, VU University Medical Center Amsterdam, The Netherlands ; Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Jennifer R Taube
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children Wilmington, Delaware
| | | | - Enrico Bertini
- Unit for Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, IRCCS Rome, Italy
| | - Karen Sperle
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children Wilmington, Delaware
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster Children's Hospital Hamilton, Ontario, Canada
| | - Davide Tonduti
- Child Neuropsychiatry Unit, Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Enza Maria Valente
- Department of Medicine and Surgery, University of Salerno Salerno, Italy ; CSS-Mendel Institute, IRCCS Casa Sollievo della Sofferenza San Giovanni Rotondo, Italy
| | - Lorena Travaglini
- Unit for Neuromuscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Bambino Gesu' Children's Research Hospital, IRCCS Rome, Italy
| | - Erik A Sistermans
- Department of Clinical Genetics, VU University Medical Center Amsterdam, The Netherlands
| | - Geneviève Bernard
- Division of Pediatric Neurology, Departments of Pediatrics, Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Center Montreal, Quebec, Canada
| | - Coriene E Catsman-Berrevoets
- Department of Pediatric Neurology, Erasmus University Hospital - Sophia Children's Hospital Rotterdam, The Netherlands
| | - Clara D M van Karnebeek
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, Centre for Molecular Medicine and Therapeutics, University of British Columbia Vancouver, Canada
| | - John R Østergaard
- Centre for Rare diseases, Department of Paediatrics, Aarhus University Hospital Aarhus, Denmark
| | - Richard L Friederich
- Department of Child Neurology, Kaiser Permanente Pediatric Specialties Roseville, California
| | | | - Jolanda H Schieving
- Department of Child Neurology, Radboud University Medical Center Nijmegen, The Netherlands
| | - Maja Tarailo-Graovac
- Department of Medical Genetics, University of British Colombia Vancouver, Canada
| | - Simona Orcesi
- Child Neurology and Psychiatry Unit, C. Mondino National Neurological Institute Pavia, Italy
| | - Marjan E Steenweg
- Department of Child Neurology, VU University Medical Center Amsterdam, The Netherlands ; Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Carola G M van Berkel
- Department of Child Neurology, VU University Medical Center Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, VU University Medical Center Amsterdam, The Netherlands
| | - Truus E M Abbink
- Department of Child Neurology, VU University Medical Center Amsterdam, The Netherlands ; Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, VU University Medical Center Amsterdam, The Netherlands ; Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands ; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, The Netherlands
| | - Grace M Hobson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children Wilmington, Delaware ; Department of Biological Sciences, University of Delaware Newark, Delaware ; Department of Pediatrics, Jefferson Medical College, Thomas Jefferson University Philadelphia, Pennsylvania
| | - Nicole I Wolf
- Department of Child Neurology, VU University Medical Center Amsterdam, The Netherlands ; Neuroscience Campus Amsterdam, VU University Amsterdam, The Netherlands
| |
Collapse
|
9
|
Caminsky NG, Mucaki EJ, Rogan PK. Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res 2015. [DOI: 10.12688/f1000research.5654.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The interpretation of genomic variants has become one of the paramount challenges in the post-genome sequencing era. In this review we summarize nearly 20 years of research on the applications of information theory (IT) to interpret coding and non-coding mutations that alter mRNA splicing in rare and common diseases. We compile and summarize the spectrum of published variants analyzed by IT, to provide a broad perspective of the distribution of deleterious natural and cryptic splice site variants detected, as well as those affecting splicing regulatory sequences. Results for natural splice site mutations can be interrogated dynamically with Splicing Mutation Calculator, a companion software program that computes changes in information content for any splice site substitution, linked to corresponding publications containing these mutations. The accuracy of IT-based analysis was assessed in the context of experimentally validated mutations. Because splice site information quantifies binding affinity, IT-based analyses can discern the differences between variants that account for the observed reduced (leaky) versus abolished mRNA splicing. We extend this principle by comparing predicted mutations in natural, cryptic, and regulatory splice sites with observed deleterious phenotypic and benign effects. Our analysis of 1727 variants revealed a number of general principles useful for ensuring portability of these analyses and accurate input and interpretation of mutations. We offer guidelines for optimal use of IT software for interpretation of mRNA splicing mutations.
Collapse
|
10
|
Unusual presentation of pelizaeus-merzbacher disease: female patient with deletion of the proteolipid protein 1 gene. Case Rep Genet 2015; 2015:453105. [PMID: 25789183 PMCID: PMC4348602 DOI: 10.1155/2015/453105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/10/2015] [Indexed: 11/20/2022] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is neurodegenerative leukodystrophy caused by dysfunction of the proteolipid protein 1 (PLP1) gene on Xq22, which codes for an essential myelin protein. As an X-linked condition, PMD primarily affects males; however there have been a small number of affected females reported in the medical literature with a variety of different mutations in this gene. No affected females to date have a deletion like our patient. In addition to this, our patient has skewed X chromosome inactivation which adds to her presentation as her unaffected mother also carries the mutation.
Collapse
|
11
|
Caminsky N, Mucaki EJ, Rogan PK. Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res 2014; 3:282. [PMID: 25717368 PMCID: PMC4329672 DOI: 10.12688/f1000research.5654.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
The interpretation of genomic variants has become one of the paramount challenges in the post-genome sequencing era. In this review we summarize nearly 20 years of research on the applications of information theory (IT) to interpret coding and non-coding mutations that alter mRNA splicing in rare and common diseases. We compile and summarize the spectrum of published variants analyzed by IT, to provide a broad perspective of the distribution of deleterious natural and cryptic splice site variants detected, as well as those affecting splicing regulatory sequences. Results for natural splice site mutations can be interrogated dynamically with Splicing Mutation Calculator, a companion software program that computes changes in information content for any splice site substitution, linked to corresponding publications containing these mutations. The accuracy of IT-based analysis was assessed in the context of experimentally validated mutations. Because splice site information quantifies binding affinity, IT-based analyses can discern the differences between variants that account for the observed reduced (leaky) versus abolished mRNA splicing. We extend this principle by comparing predicted mutations in natural, cryptic, and regulatory splice sites with observed deleterious phenotypic and benign effects. Our analysis of 1727 variants revealed a number of general principles useful for ensuring portability of these analyses and accurate input and interpretation of mutations. We offer guidelines for optimal use of IT software for interpretation of mRNA splicing mutations.
Collapse
Affiliation(s)
- Natasha Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Peter K Rogan
- Departments of Biochemistry and Computer Science, Western University, London, ON, N6A 2C1, Canada
| |
Collapse
|
12
|
Siva K, Covello G, Denti MA. Exon-skipping antisense oligonucleotides to correct missplicing in neurogenetic diseases. Nucleic Acid Ther 2014; 24:69-86. [PMID: 24506781 DOI: 10.1089/nat.2013.0461] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alternative splicing is an important regulator of the transcriptome. However, mutations may cause alteration of splicing patterns, which in turn leads to disease. During the past 10 years, exon skipping has been looked upon as a powerful tool for correction of missplicing in disease and progress has been made towards clinical trials. In this review, we discuss the use of antisense oligonucleotides to correct splicing defects through exon skipping, with a special focus on diseases affecting the nervous system, and the latest stage achieved in its progress.
Collapse
Affiliation(s)
- Kavitha Siva
- 1 Center for Integrative Biology (CIBIO), University of Trento , Trento, Italy
| | | | | |
Collapse
|
13
|
Taube JR, Sperle K, Banser L, Seeman P, Cavan BCV, Garbern JY, Hobson GM. PMD patient mutations reveal a long-distance intronic interaction that regulates PLP1/DM20 alternative splicing. Hum Mol Genet 2014; 23:5464-78. [PMID: 24890387 DOI: 10.1093/hmg/ddu271] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alternative splicing of the proteolipid protein 1 gene (PLP1) produces two forms, PLP1 and DM20, due to alternative use of 5' splice sites with the same acceptor site in intron 3. The PLP1 form predominates in central nervous system RNA. Mutations that reduce the ratio of PLP1 to DM20, whether mutant or normal protein is formed, result in the X-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD). We investigated the ability of sequences throughout PLP1 intron 3 to regulate alternative splicing using a splicing minigene construct transfected into the oligodendrocyte cell line, Oli-neu. Our data reveal that the alternative splice of PLP1 is regulated by a long-distance interaction between two highly conserved elements that are separated by 581 bases within the 1071-base intron 3. Further, our data suggest that a base-pairing secondary structure forms between these two elements, and we demonstrate that mutations of either element designed to destabilize the secondary structure decreased the PLP1/DM20 ratio, while swap mutations designed to restore the structure brought the PLP1/DM20 ratio to near normal levels. Sequence analysis of intron 3 in families with clinical symptoms of PMD who did not have coding-region mutations revealed mutations that segregated with disease in three families. We showed that these patient mutations, which potentially destabilize the secondary structure, also reduced the PLP1/DM20 ratio. This is the first report of patient mutations causing disease by disruption of a long-distance intronic interaction controlling alternative splicing. This finding has important implications for molecular diagnostics of PMD.
Collapse
Affiliation(s)
- Jennifer R Taube
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Karen Sperle
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Linda Banser
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Pavel Seeman
- Department of Child Neurology, DNA Laboratory, 2nd School of Medicine, Charles University and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | | | - James Y Garbern
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Grace M Hobson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA and Department of Pediatrics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|