1
|
Vacca S, Scicolone R, Gupta A, Allan Wasserman B, Song J, Nardi V, Yang Q, Benson J, Lanzino G, Paraskevas K, Suri JS, Saba L. Atherosclerotic carotid artery disease Radiomics: A systematic review with meta-analysis and radiomic quality score assessment. Eur J Radiol 2024; 177:111547. [PMID: 38852329 DOI: 10.1016/j.ejrad.2024.111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Stroke, a leading global cause of mortality and neurological disability, is often associated with atherosclerotic carotid artery disease. Distinguishing between symptomatic and asymptomatic carotid artery disease is crucial for appropriate treatment decisions. Radiomics, a quantitative image analysis technique, and ML have emerged as promising tools in medical imaging, including neuroradiology. This systematic review and meta-analysis aimed to evaluate the methodological quality of studies employing radiomics for atherosclerotic carotid artery disease analysis and ML algorithms for culprit plaque identification using CT or MRI. MATERIALS AND METHODS Pubmed, WoS and Scopus databases were searched for relevant studies published from January 2005 to May 2023. RQS assessed methodological quality of studies included in the review. QUADAS-2 assessed the risk of bias. A meta-analysis and three meta regressions were conducted on study performance based on model type, imaging modality and segmentation method. RESULTS RQS assessed methodological quality, revealing an overall low score and consistent findings with other radiology domains. QUADAS-2 indicated an overall low risk, except for a single study with high bias. The meta-analysis demonstrated that radiomics-based ML models for predicting culprit plaques had a satisfactory performance, with an AUC of 0.85, surpassing clinical models. However, combining radiomics with clinical features yielded the highest AUC of 0.89. Meta-regression analyses confirmed these findings. MRI-based models slightly outperformed CT-based ones, but the difference was not significant. CONCLUSION In conclusion, radiomics and ML hold promise for assessing carotid plaque vulnerability, aiding in early cerebrovascular event prediction. Combining radiomics with clinical data enhances predictive performance.
Collapse
Affiliation(s)
- Sebastiano Vacca
- University of Cagliari, School of Medicine and Surgery, Cagliari, Italy
| | - Roberta Scicolone
- Department of Radiology, Azienda Ospedaliero-Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, Cagliari, Italy
| | - Ajay Gupta
- Department of Radiology Weill, Cornell Medical College, New York, NY, USA
| | - Bruce Allan Wasserman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, 367 East Park building, 600 N Wolfe St, Baltimore, MD 21287, USA
| | - Jae Song
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Valentina Nardi
- Department of Cardiovascular Sciences, Mayo Clinic, Rochester, MN
| | - Qi Yang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - John Benson
- Department of Radiology Mayo Clinic Rochester MN, USA
| | | | | | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero-Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, Cagliari, Italy.
| |
Collapse
|
2
|
Scicolone R, Vacca S, Pisu F, Benson JC, Nardi V, Lanzino G, Suri JS, Saba L. Radiomics and artificial intelligence: General notions and applications in the carotid vulnerable plaque. Eur J Radiol 2024; 176:111497. [PMID: 38749095 DOI: 10.1016/j.ejrad.2024.111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 06/17/2024]
Abstract
Carotid atherosclerosis plays a substantial role in cardiovascular morbidity and mortality. Given the multifaceted impact of this disease, there has been increasing interest in harnessing artificial intelligence (AI) and radiomics as complementary tools for the quantitative analysis of medical imaging data. This integrated approach holds promise not only in refining medical imaging data analysis but also in optimizing the utilization of radiologists' expertise. By automating time consuming tasks, AI allows radiologists to focus on more pertinent responsibilities. Simultaneously, the capacity of AI in radiomics to extract nuanced patterns from raw data enhances the exploration of carotid atherosclerosis, advancing efforts in terms of (1) early detection and diagnosis, (2) risk stratification and predictive modeling, (3) improving workflow efficiency, and (4) contributing to advancements in research. This review provides an overview of general concepts related to radiomics and AI, along with their application in the field of carotid vulnerable plaque. It also offers insights into various research studies conducted on this topic across different imaging techniques.
Collapse
Affiliation(s)
- Roberta Scicolone
- Department of Radiology, Azienda Ospedaliero-Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, Cagliari, Italy
| | - Sebastiano Vacca
- University of Cagliari, School of Medicine and Surgery, Cagliari, Italy
| | - Francesco Pisu
- Department of Radiology, Azienda Ospedaliero-Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, Cagliari, Italy
| | - John C Benson
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Valentina Nardi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero-Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, Cagliari, Italy.
| |
Collapse
|
3
|
Westwood M, Ramaekers B, Grimm S, Armstrong N, Wijnen B, Ahmadu C, de Kock S, Noake C, Joore M. Software with artificial intelligence-derived algorithms for analysing CT brain scans in people with a suspected acute stroke: a systematic review and cost-effectiveness analysis. Health Technol Assess 2024; 28:1-204. [PMID: 38512017 PMCID: PMC11017149 DOI: 10.3310/rdpa1487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Background Artificial intelligence-derived software technologies have been developed that are intended to facilitate the review of computed tomography brain scans in patients with suspected stroke. Objectives To evaluate the clinical and cost-effectiveness of using artificial intelligence-derived software to support review of computed tomography brain scans in acute stroke in the National Health Service setting. Methods Twenty-five databases were searched to July 2021. The review process included measures to minimise error and bias. Results were summarised by research question, artificial intelligence-derived software technology and study type. The health economic analysis focused on the addition of artificial intelligence-derived software-assisted review of computed tomography angiography brain scans for guiding mechanical thrombectomy treatment decisions for people with an ischaemic stroke. The de novo model (developed in R Shiny, R Foundation for Statistical Computing, Vienna, Austria) consisted of a decision tree (short-term) and a state transition model (long-term) to calculate the mean expected costs and quality-adjusted life-years for people with ischaemic stroke and suspected large-vessel occlusion comparing artificial intelligence-derived software-assisted review to usual care. Results A total of 22 studies (30 publications) were included in the review; 18/22 studies concerned artificial intelligence-derived software for the interpretation of computed tomography angiography to detect large-vessel occlusion. No study evaluated an artificial intelligence-derived software technology used as specified in the inclusion criteria for this assessment. For artificial intelligence-derived software technology alone, sensitivity and specificity estimates for proximal anterior circulation large-vessel occlusion were 95.4% (95% confidence interval 92.7% to 97.1%) and 79.4% (95% confidence interval 75.8% to 82.6%) for Rapid (iSchemaView, Menlo Park, CA, USA) computed tomography angiography, 91.2% (95% confidence interval 77.0% to 97.0%) and 85.0 (95% confidence interval 64.0% to 94.8%) for Viz LVO (Viz.ai, Inc., San Fransisco, VA, USA) large-vessel occlusion, 83.8% (95% confidence interval 77.3% to 88.7%) and 95.7% (95% confidence interval 91.0% to 98.0%) for Brainomix (Brainomix Ltd, Oxford, UK) e-computed tomography angiography and 98.1% (95% confidence interval 94.5% to 99.3%) and 98.2% (95% confidence interval 95.5% to 99.3%) for Avicenna CINA (Avicenna AI, La Ciotat, France) large-vessel occlusion, based on one study each. These studies were not considered appropriate to inform cost-effectiveness modelling but formed the basis by which the accuracy of artificial intelligence plus human reader could be elicited by expert opinion. Probabilistic analyses based on the expert elicitation to inform the sensitivity of the diagnostic pathway indicated that the addition of artificial intelligence to detect large-vessel occlusion is potentially more effective (quality-adjusted life-year gain of 0.003), more costly (increased costs of £8.61) and cost-effective for willingness-to-pay thresholds of £3380 per quality-adjusted life-year and higher. Limitations and conclusions The available evidence is not suitable to determine the clinical effectiveness of using artificial intelligence-derived software to support the review of computed tomography brain scans in acute stroke. The economic analyses did not provide evidence to prefer the artificial intelligence-derived software strategy over current clinical practice. However, results indicated that if the addition of artificial intelligence-derived software-assisted review for guiding mechanical thrombectomy treatment decisions increased the sensitivity of the diagnostic pathway (i.e. reduced the proportion of undetected large-vessel occlusions), this may be considered cost-effective. Future work Large, preferably multicentre, studies are needed (for all artificial intelligence-derived software technologies) that evaluate these technologies as they would be implemented in clinical practice. Study registration This study is registered as PROSPERO CRD42021269609. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis programme (NIHR award ref: NIHR133836) and is published in full in Health Technology Assessment; Vol. 28, No. 11. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
| | - Bram Ramaekers
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands
| | | | | | - Ben Wijnen
- Kleijnen Systematic Reviews (KSR) Ltd, York, UK
| | | | | | - Caro Noake
- Kleijnen Systematic Reviews (KSR) Ltd, York, UK
| | - Manuela Joore
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands
| |
Collapse
|
4
|
Prediction of O-6-methylguanine-DNA methyltransferase and overall survival of the patients suffering from glioblastoma using MRI-based hybrid radiomics signatures in machine and deep learning framework. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
5
|
Lv P, Yang J, Wang J, Guo Y, Tang Q, Magnier B, Lin J, Zhou J. Ischemic stroke prediction of patients with carotid atherosclerotic stenosis via multi-modality fused network. Front Neurosci 2023; 17:1118376. [PMID: 36908778 PMCID: PMC9998529 DOI: 10.3389/fnins.2023.1118376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Carotid atherosclerotic stenosis of the carotid artery is an important cause of ischemic cerebrovascular disease. The aim of this study was to predict the presence or absence of clinical symptoms in unknown patients by studying the existence or lack of symptoms of patients with carotid atherosclerotic stenosis. First, a deep neural network prediction model based on brain MRI imaging data of patients with multiple modalities is constructed; it uses the multi-modality features extracted from the neural network as inputs and the incidence of diagnosis as output to train the model. Then, a machine learning-based classification algorithm is developed to utilize the clinical features for comparison and evaluation. The experimental results showed that the deep learning model using imaging data could better predict the clinical symptom classification of patients. As part of preventive medicine, this study could help patients with carotid atherosclerosis narrowing to prepare for stroke prevention based on the prediction results.
Collapse
Affiliation(s)
- Peng Lv
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jing Yang
- School of Medicine, Xiamen University, Xiamen, China
| | - Jiacheng Wang
- Department of Computer Science at School of Informatics, Xiamen University, Xiamen, China
| | - Yi Guo
- Department of Radiology, Zhongshan Hospital Xiamen, Fudan University, Xiamen, China.,Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen, China
| | - Qiying Tang
- Department of Radiology, Zhongshan Hospital Xiamen, Fudan University, Xiamen, China.,Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen, China
| | - Baptiste Magnier
- Euromov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
| | - Jiang Lin
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital Xiamen, Fudan University, Xiamen, China.,Xiamen Municipal Clinical Research Center for Medical Imaging, Xiamen, China
| |
Collapse
|
6
|
Cilla S, Macchia G, Lenkowicz J, Tran EH, Pierro A, Petrella L, Fanelli M, Sardu C, Re A, Boldrini L, Indovina L, De Filippo CM, Caradonna E, Deodato F, Massetti M, Valentini V, Modugno P. CT angiography-based radiomics as a tool for carotid plaque characterization: a pilot study. Radiol Med 2022; 127:743-753. [DOI: 10.1007/s11547-022-01505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022]
|
7
|
Saba L, Antignani PL, Gupta A, Cau R, Paraskevas KI, Poredos P, Wasserman B, Kamel H, Avgerinos ED, Salgado R, Caobelli F, Aluigi L, Savastano L, Brown M, Hatsukami T, Hussein E, Suri JS, Mansilha A, Wintermark M, Staub D, Montequin JF, Rodriguez RTT, Balu N, Pitha J, Kooi ME, Lal BK, Spence JD, Lanzino G, Marcus HS, Mancini M, Chaturvedi S, Blinc A. International Union of Angiology (IUA) consensus paper on imaging strategies in atherosclerotic carotid artery imaging: From basic strategies to advanced approaches. Atherosclerosis 2022; 354:23-40. [DOI: 10.1016/j.atherosclerosis.2022.06.1014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022]
|
8
|
Wang X, Luo P, Du H, Li S, Wang Y, Guo X, Wan L, Zhao B, Ren J. Ultrasound Radiomics Nomogram Integrating Three-Dimensional Features Based on Carotid Plaques to Evaluate Coronary Artery Disease. Diagnostics (Basel) 2022; 12:diagnostics12020256. [PMID: 35204347 PMCID: PMC8871132 DOI: 10.3390/diagnostics12020256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to explore the feasibility of ultrasound radiomics analysis before invasive coronary angiography (ICA) for evaluating the severity of coronary artery disease (CAD) quantified by the SYNTAX score (SS). This study included 105 carotid plaques from 105 patients (64 low-SS patients, 41 intermediate-high-SS patients). The clinical characteristics and three-dimensional ultrasound (3D-US) features before ICA were assessed. Ultrasound images of carotid plaques were used for radiomics analysis. Least absolute shrinkage and selection operator (LASSO) regression, which generated several nonzero coefficients, was used to select features that could predict intermediate-high SS. Based on those coefficients, the radiomics score (Rad-score) was calculated. The selected clinical characteristics, 3D-US features, and Rad-score were finally integrated into a radiomics nomogram. Among the clinical characteristics and 3D-US features, high-density lipoprotein (HDL), apolipoprotein B (Apo B), and plaque volume were identified as predictors for distinguishing between low SS and intermediate-high SS. During the radiomics process, 8 optimal radiomics features most capable of identifying intermediate-high SS were selected from 851 candidate radiomics features. The differences in Rad-score between the training and the validation set were significant (p = 0.016 and 0.006). The radiomics nomogram integrating HDL, Apo B, plaque volume, and Rad-score showed excellent results in the training set (AUC, 0.741 (95% confidence interval (CI): 0.646–0.835)) and validation set (AUC, 0.939 (95% CI: 0.860–1.000)), with good calibration (mean absolute errors of 0.028 and 0.059 in training and validation sets, respectively). Decision curve analysis showed that the radiomics nomogram could identify patients who could obtain the most benefit. We concluded that the radiomics nomogram based on carotid plaque ultrasound has favorable value for the noninvasive prediction of intermediate-high SS. This radiomics nomogram has potential value for the risk stratification of CAD before ICA and provides clinicians with a noninvasive diagnostic tool.
Collapse
Affiliation(s)
- Xiaoting Wang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (X.W.); (P.L.); (S.L.); (Y.W.); (X.G.); (L.W.)
| | - Peng Luo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (X.W.); (P.L.); (S.L.); (Y.W.); (X.G.); (L.W.)
| | - Huaan Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (H.D.); (B.Z.)
| | - Shiyu Li
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (X.W.); (P.L.); (S.L.); (Y.W.); (X.G.); (L.W.)
| | - Yi Wang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (X.W.); (P.L.); (S.L.); (Y.W.); (X.G.); (L.W.)
| | - Xun Guo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (X.W.); (P.L.); (S.L.); (Y.W.); (X.G.); (L.W.)
| | - Li Wan
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (X.W.); (P.L.); (S.L.); (Y.W.); (X.G.); (L.W.)
| | - Binyi Zhao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (H.D.); (B.Z.)
| | - Jianli Ren
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; (X.W.); (P.L.); (S.L.); (Y.W.); (X.G.); (L.W.)
- Correspondence:
| |
Collapse
|
9
|
A hybrid deep learning paradigm for carotid plaque tissue characterization and its validation in multicenter cohorts using a supercomputer framework. Comput Biol Med 2021; 141:105131. [PMID: 34922173 DOI: 10.1016/j.compbiomed.2021.105131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/20/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Early and automated detection of carotid plaques prevents strokes, which are the second leading cause of death worldwide according to the World Health Organization. Artificial intelligence (AI) offers automated solutions for plaque tissue characterization. Recently, solo deep learning (SDL) models have been used, but they do not take advantage of the tandem connectivity offered by AI's hybrid nature. Therefore, this study explores the use of hybrid deep learning (HDL) models in a multicenter framework, making this study the first of its kind. METHODS We hypothesize that HDL techniques perform better than SDL and transfer learning (TL) techniques. We propose two kinds of HDL frameworks: (i) the fusion of two SDLs (Inception with ResNet) or (ii) 10 other kinds of tandem models that fuse SDL with ML. The system Atheromatic™ 2.0HDL (AtheroPoint, CA, USA) was designed on an augmentation framework and three kinds of loss functions (cross-entropy, hinge, and mean-square-error) during training to determine the best optimization paradigm. These 11 combined HDL models were then benchmarked against one SDL model and five types of TL models; thus, this study considers a total of 17 AI models. RESULTS Among the 17 AI models, the best performing HDL system was that comprising CNN and decision tree (DT), as its accuracy and area-under-the-curve were 99.78 ± 1.05% and 0.99 (p<0.0001), respectively. These values are 6.4% and 3.2% better than those recorded for the SDL and TL models, respectively. We validated the performance of the HDL models with diagnostics odds ratio (DOR) and Cohen and Kappa statistics; here, HDL outperformed DL and TL by 23% and 7%, respectively. The online system ran in <2 s. CONCLUSION HDL is a fast, reliable, and effective tool for characterizing the carotid plaque for early stroke risk stratification.
Collapse
|
10
|
Saba L, Sanagala SS, Gupta SK, Koppula VK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Misra DP, Agarwal V, Sharma AM, Viswanathan V, Rathore VS, Turk M, Kolluri R, Viskovic K, Cuadrado-Godia E, Kitas GD, Sharma N, Nicolaides A, Suri JS. Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1206. [PMID: 34430647 PMCID: PMC8350643 DOI: 10.21037/atm-20-7676] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in the United States of America and globally. Carotid arterial plaque, a cause and also a marker of such CVD, can be detected by various non-invasive imaging modalities such as magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound (US). Characterization and classification of carotid plaque-type in these imaging modalities, especially into symptomatic and asymptomatic plaque, helps in the planning of carotid endarterectomy or stenting. It can be challenging to characterize plaque components due to (I) partial volume effect in magnetic resonance imaging (MRI) or (II) varying Hausdorff values in plaque regions in CT, and (III) attenuation of echoes reflected by the plaque during US causing acoustic shadowing. Artificial intelligence (AI) methods have become an indispensable part of healthcare and their applications to the non-invasive imaging technologies such as MRI, CT, and the US. In this narrative review, three main types of AI models (machine learning, deep learning, and transfer learning) are analyzed when applied to MRI, CT, and the US. A link between carotid plaque characteristics and the risk of coronary artery disease is presented. With regard to characterization, we review tools and techniques that use AI models to distinguish carotid plaque types based on signal processing and feature strengths. We conclude that AI-based solutions offer an accurate and robust path for tissue characterization and classification for carotid artery plaque imaging in all three imaging modalities. Due to cost, user-friendliness, and clinical effectiveness, AI in the US has dominated the most.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (AOU), Cagliari, Italy
| | - Skandha S Sanagala
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India.,CSE Department, Bennett University, Greater Noida, UP, India
| | - Suneet K Gupta
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Vijaya K Koppula
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, Rhode Island, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention, National and Kapodistrian University of Athens, Athens, Greece
| | - Durga P Misra
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes & Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Vijay S Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | | | | | | | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Neeraj Sharma
- Department of Biomedical Engineering, IIT-BHU, Banaras, UP, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
11
|
Machine Learning Quantitation of Cardiovascular and Cerebrovascular Disease: A Systematic Review of Clinical Applications. Diagnostics (Basel) 2021; 11:diagnostics11030551. [PMID: 33808677 PMCID: PMC8003459 DOI: 10.3390/diagnostics11030551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/10/2023] Open
Abstract
Research into machine learning (ML) for clinical vascular analysis, such as those useful for stroke and coronary artery disease, varies greatly between imaging modalities and vascular regions. Limited accessibility to large diverse patient imaging datasets, as well as a lack of transparency in specific methods, are obstacles to further development. This paper reviews the current status of quantitative vascular ML, identifying advantages and disadvantages common to all imaging modalities. Literature from the past 8 years was systematically collected from MEDLINE® and Scopus database searches in January 2021. Papers satisfying all search criteria, including a minimum of 50 patients, were further analysed and extracted of relevant data, for a total of 47 publications. Current ML image segmentation, disease risk prediction, and pathology quantitation methods have shown sensitivities and specificities over 70%, compared to expert manual analysis or invasive quantitation. Despite this, inconsistencies in methodology and the reporting of results have prevented inter-model comparison, impeding the identification of approaches with the greatest potential. The clinical potential of this technology has been well demonstrated in Computed Tomography of coronary artery disease, but remains practically limited in other modalities and body regions, particularly due to a lack of routine invasive reference measurements and patient datasets.
Collapse
|
12
|
Agarwal M, Saba L, Gupta SK, Carriero A, Falaschi Z, Paschè A, Danna P, El-Baz A, Naidu S, Suri JS. A Novel Block Imaging Technique Using Nine Artificial Intelligence Models for COVID-19 Disease Classification, Characterization and Severity Measurement in Lung Computed Tomography Scans on an Italian Cohort. J Med Syst 2021; 45:28. [PMID: 33496876 PMCID: PMC7835451 DOI: 10.1007/s10916-021-01707-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/31/2023]
Abstract
Computer Tomography (CT) is currently being adapted for visualization of COVID-19 lung damage. Manual classification and characterization of COVID-19 may be biased depending on the expert's opinion. Artificial Intelligence has recently penetrated COVID-19, especially deep learning paradigms. There are nine kinds of classification systems in this study, namely one deep learning-based CNN, five kinds of transfer learning (TL) systems namely VGG16, DenseNet121, DenseNet169, DenseNet201 and MobileNet, three kinds of machine-learning (ML) systems, namely artificial neural network (ANN), decision tree (DT), and random forest (RF) that have been designed for classification of COVID-19 segmented CT lung against Controls. Three kinds of characterization systems were developed namely (a) Block imaging for COVID-19 severity index (CSI); (b) Bispectrum analysis; and (c) Block Entropy. A cohort of Italian patients with 30 controls (990 slices) and 30 COVID-19 patients (705 slices) was used to test the performance of three types of classifiers. Using K10 protocol (90% training and 10% testing), the best accuracy and AUC was for DCNN and RF pairs were 99.41 ± 5.12%, 0.991 (p < 0.0001), and 99.41 ± 0.62%, 0.988 (p < 0.0001), respectively, followed by other ML and TL classifiers. We show that diagnostics odds ratio (DOR) was higher for DL compared to ML, and both, Bispecturm and Block Entropy shows higher values for COVID-19 patients. CSI shows an association with Ground Glass Opacities (0.9146, p < 0.0001). Our hypothesis holds true that deep learning shows superior performance compared to machine learning models. Block imaging is a powerful novel approach for pinpointing COVID-19 severity and is clinically validated.
Collapse
Affiliation(s)
- Mohit Agarwal
- CSE Department, Bennett University, Greater Noida, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Monserrato, Italy
| | - Suneet K Gupta
- CSE Department, Bennett University, Greater Noida, India
| | - Alessandro Carriero
- Department of Radiology, A.O.U, "Maggiore d.c." Universiy of Eastern Piedmont, Novara, Italy
| | - Zeno Falaschi
- Department of Radiology, A.O.U, "Maggiore d.c." Universiy of Eastern Piedmont, Novara, Italy
| | - Alessio Paschè
- Department of Radiology, A.O.U, "Maggiore d.c." Universiy of Eastern Piedmont, Novara, Italy
| | - Pietro Danna
- Department of Radiology, A.O.U, "Maggiore d.c." Universiy of Eastern Piedmont, Novara, Italy
| | - Ayman El-Baz
- Biomedical Engineering Department, Louisville, KY, USA
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN, USA
| | - Jasjit S Suri
- Stroke Diagnosis and Monitoring Division, AtheroPoint™, Roseville, CA, 95661, USA.
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA, USA.
| |
Collapse
|
13
|
Ultrasound-based internal carotid artery plaque characterization using deep learning paradigm on a supercomputer: a cardiovascular disease/stroke risk assessment system. Int J Cardiovasc Imaging 2021; 37:1511-1528. [DOI: 10.1007/s10554-020-02124-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022]
|
14
|
Zaccagna F, Ganeshan B, Arca M, Rengo M, Napoli A, Rundo L, Groves AM, Laghi A, Carbone I, Menezes LJ. CT texture-based radiomics analysis of carotid arteries identifies vulnerable patients: a preliminary outcome study. Neuroradiology 2021; 63:1043-1052. [PMID: 33392734 DOI: 10.1007/s00234-020-02628-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To assess the potential role of computed tomography (CT) texture analysis (CTTA) in identifying vulnerable patients with carotid artery atherosclerosis. METHODS In this case-control pilot study, 12 patients with carotid atherosclerosis and a subsequent history of transient ischemic attack or stroke were age and sex matched with 12 control cases with asymptomatic carotid atherosclerosis (follow-up time 103.58 ± 9.2 months). CTTA was performed using a commercially available research software package (TexRAD) by an operator blinded to clinical data. CTTA comprised a filtration-histogram technique to extract features at different scales corresponding to spatial scale filter (fine = 2 mm, medium = 3 mm, coarse = 4 mm), followed by quantification using histogram-based statistical parameters: mean, kurtosis, skewness, entropy, standard deviation, and mean value of positive pixels. A single axial slice was selected to best represent the largest cross-section of the carotid bifurcation or the greatest degree of stenosis, in presence of an atherosclerotic plaque, on each side. RESULTS CTTA revealed a statistically significant difference in skewness between symptomatic and asymptomatic patients at the medium (0.22 ± 0.35 vs - 0.18 ± 0.39, p < 0.001) and coarse (0.23 ± 0.22 vs 0.03 ± 0.29, p = 0.003) texture scales. At the fine-texture scale, skewness (0.20 ± 0.59 vs - 0.18 ± 0.58, p = 0.009) and standard deviation (366.11 ± 117.19 vs 300.37 ± 82.51, p = 0.03) were significant before correction. CONCLUSION Our pilot study highlights the potential of CTTA to identify vulnerable patients in stroke and TIA. CT texture may have the potential to act as a novel risk stratification tool in patients with carotid atherosclerosis.
Collapse
Affiliation(s)
- Fulvio Zaccagna
- Division of Neuroimaging, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.
- Department of Radiological, Oncological and Pathological Sciences, University of Rome - Sapienza, Rome, Italy.
| | - Balaji Ganeshan
- Institute of Nuclear Medicine, University College London, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Marcello Arca
- Internal Medicine Unit, Department of Internal Medicine and Medical Specialties, University of Rome - Sapienza, Rome, Italy
| | - Marco Rengo
- Department of Radiological, Oncological and Pathological Sciences, University of Rome-Sapienza, Polo Pontino, I.C.O.T. Hospital, Latina, Italy
| | - Alessandro Napoli
- Department of Radiological, Oncological and Pathological Sciences, University of Rome - Sapienza, Rome, Italy
| | - Leonardo Rundo
- Department of Radiology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Ashley M Groves
- Institute of Nuclear Medicine, University College London, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Andrea Laghi
- Department of Radiological, Oncological and Pathological Sciences, University of Rome-Sapienza, Polo Pontino, I.C.O.T. Hospital, Latina, Italy
| | - Iacopo Carbone
- Department of Radiological, Oncological and Pathological Sciences, University of Rome - Sapienza, Rome, Italy
| | - Leon J Menezes
- Institute of Nuclear Medicine, University College London, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| |
Collapse
|
15
|
Zhang R, Zhang Q, Ji A, Lv P, Zhang J, Fu C, Lin J. Identification of high-risk carotid plaque with MRI-based radiomics and machine learning. Eur Radiol 2020; 31:3116-3126. [PMID: 33068185 DOI: 10.1007/s00330-020-07361-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/01/2020] [Accepted: 03/12/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We sought to build a high-risk plaque MRI-based model (HRPMM) using radiomics features and machine learning for differentiating symptomatic from asymptomatic carotid plaques. MATERIALS AND METHODS One hundred sixty-two patients with carotid stenosis were randomly divided into training and test cohorts. Multi-contrast MRI including time of flight (TOF), T1- and T2-weighted imaging, and contrast-enhanced imaging was done. Radiological characteristics of the carotid plaques were recorded and calculated to build a traditional model. After extracting the radiomics features on these images, we constructed HRPMM with least absolute shrinkage and selection operator algorithm in the training cohort and evaluated its performance in the test cohort. A combined model was also built using both the traditional and radiomics features. The performance of all the models in the identification of high-risk carotid plaque was compared. RESULTS Intraplaque hemorrhage and lipid-rich necrotic core were independently associated with clinical symptoms and were used to build the traditional model, which achieved an area under the curve (AUC) of 0.825 versus 0.804 in the training and test cohorts. The HRPMM and the combined model achieved an AUC of 0.988 versus 0.984 and of 0.989 versus 0.986 respectively in the two cohorts. Both the radiomics model and combined model outperformed the traditional model, whereas the combined model showed no significant difference with the HRPMM. CONCLUSIONS Our MRI-based radiomics model can accurately distinguish symptomatic from asymptomatic carotid plaques. It is superior to the traditional model in the identification of high-risk plaques. KEY POINTS • Carotid plaque multi-contrast MRI stores other valuable information to be further exploited by radiomics analysis. • Radiomics analysis can accurately distinguish symptomatic from asymptomatic carotid plaques. • The radiomics model is superior to the traditional model in the identification of high-risk plaques.
Collapse
Affiliation(s)
- Ranying Zhang
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China
| | - Qingwei Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Aihua Ji
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China
| | - Peng Lv
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China
| | - Jingjing Zhang
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China
| | - Caixia Fu
- MR Application Development, Siemens Shenzhen Magnetic Resonance Ltd., Gaoxin C. Ave, 2nd, Hi-Tech Industrial Park, Shenzhen, 518057, China
| | - Jiang Lin
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Medical Imaging, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
16
|
Skandha SS, Gupta SK, Saba L, Koppula VK, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Misra DP, Agarwal V, Sharma AM, Viswanathan V, Rathore VS, Turk M, Kolluri R, Viskovic K, Cuadrado-Godia E, Kitas GD, Nicolaides A, Suri JS. 3-D optimized classification and characterization artificial intelligence paradigm for cardiovascular/stroke risk stratification using carotid ultrasound-based delineated plaque: Atheromatic™ 2.0. Comput Biol Med 2020; 125:103958. [PMID: 32927257 DOI: 10.1016/j.compbiomed.2020.103958] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE Atherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce cardiovascular morbidity and mortality. Manual ultrasound plaque classification and characterization methods are time-consuming and can be imprecise due to significant variations in tissue characteristics. We report a novel artificial intelligence (AI)-based plaque tissue classification and characterization system. METHODS We hypothesize that symptomatic plaque is hypoechoic due to its large lipid core and minimal collagen, as well as its heterogeneous makeup. Meanwhile, asymptomatic plaque is hyperechoic due to its small lipid core, abundant collagen, and the fact that it is often calcified. We designed a computer-aided diagnosis (CADx) system consisting of three kinds of deep learning (DL) classification paradigms: Deep Convolutional Neural Network (DCNN), Visual Geometric Group-16 (VGG16), and transfer learning, (tCNN). DCNN was 3-D optimized by varying the number of CNN layers and data augmentation frameworks. The DL systems were benchmarked against four types of machine learning (ML) classification systems, and the CADx system was characterized using two novel strategies consisting of DL mean feature strength (MFS) and a bispectrum model using higher-order spectra. RESULTS After balancing symptomatic and asymptomatic plaque classes, a five-fold augmentation process was applied, yielding 1000 carotid scans in each class. Then, using a K10 protocol (trained to test the ratio of 90%-10%), tCNN and DCNN yielded accuracy (area under the curve (AUC)) pairs of 83.33%, 0.833 (p < 0.0001) and 95.66%, 0.956 (p < 0.0001), respectively. DCNN was superior to ML by 7.01%. As part of the characterization process, the MFS of the symptomatic plaque was found to be higher compared to the asymptomatic plaque by 17.5% (p < 0.0001). A similar pattern was seen in the bispectrum, which was higher for symptomatic plaque by 5.4% (p < 0.0001). It took <2 s to perform the online CADx process on a supercomputer. CONCLUSIONS The performance order of the three AI systems was DCNN > tCNN > ML. Bispectrum-based on higher-order spectra proved a powerful paradigm for plaque tissue characterization. Overall, the AI-based systems offer a powerful solution for plaque tissue classification and characterization.
Collapse
Affiliation(s)
- Sanagala S Skandha
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India; CSE Department, Bennett University, Greater Noida, UP, India
| | - Suneet K Gupta
- CSE Department, Bennett University, Greater Noida, UP, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Vijaya K Koppula
- CSE Department, CMR College of Engineering & Technology, Hyderabad, India
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, RI, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention, National and Kapodistrian Univ. of Athens, Greece
| | - Durga P Misra
- Dept. of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Vikas Agarwal
- Dept. of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
| | - Aditya M Sharma
- Division of Cardiovascular Medicine, University of Virginia, VA, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes & Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Vijay S Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | | | | | | | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
17
|
Jamthikar A, Gupta D, Khanna NN, Saba L, Laird JR, Suri JS. Cardiovascular/stroke risk prevention: A new machine learning framework integrating carotid ultrasound image-based phenotypes and its harmonics with conventional risk factors. Indian Heart J 2020; 72:258-264. [PMID: 32861380 PMCID: PMC7474133 DOI: 10.1016/j.ihj.2020.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION Machine learning (ML)-based stroke risk stratification systems have typically focused on conventional risk factors (CRF) (AtheroRisk-conventional). Besides CRF, carotid ultrasound image phenotypes (CUSIP) have shown to be powerful phenotypes risk stratification. This is the first ML study of its kind that integrates CUSIP and CRF for risk stratification (AtheroRisk-integrated) and compares against AtheroRisk-conventional. METHODS Two types of ML-based setups called (i) AtheroRisk-integrated and (ii) AtheroRisk-conventional were developed using random forest (RF) classifiers. AtheroRisk-conventional uses a feature set of 13 CRF such as age, gender, hemoglobin A1c, fasting blood sugar, low-density lipoprotein, and high-density lipoprotein (HDL) cholesterol, total cholesterol (TC), a ratio of TC and HDL, hypertension, smoking, family history, triglyceride, and ultrasound-based carotid plaque score. AtheroRisk-integrated system uses the feature set of 38 features with a combination of 13 CRF and 25 CUSIP features (6 types of current CUSIP, 6 types of 10-year CUSIP, 12 types of quadratic CUSIP (harmonics), and age-adjusted grayscale median). Logistic regression approach was used to select the significant features on which the RF classifier was trained. The performance of both ML systems was evaluated by area-under-the-curve (AUC) statistics computed using a leave-one-out cross-validation protocol. RESULTS Left and right common carotid arteries of 202 Japanese patients were retrospectively examined to obtain 404 ultrasound scans. RF classifier showed higher improvement in AUC (~57%) for leave-one-out cross-validation protocol. Using RF classifier, AUC statistics for AtheroRisk-integrated system was higher (AUC = 0.99,p-value<0.001) compared to AtheroRisk-conventional (AUC = 0.63,p-value<0.001). CONCLUSION The AtheroRisk-integrated ML system outperforms the AtheroRisk-conventional ML system using RF classifier.
Collapse
Affiliation(s)
- Ankush Jamthikar
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
18
|
Puvvula A, Jamthikar AD, Gupta D, Khanna NN, Porcu M, Saba L, Viskovic K, Ajuluchukwu JNA, Gupta A, Mavrogeni S, Turk M, Laird JR, Pareek G, Miner M, Sfikakis PP, Protogerou A, Kitas GD, Nicolaides A, Viswanathan V, Suri JS. Morphological Carotid Plaque Area Is Associated With Glomerular Filtration Rate: A Study of South Asian Indian Patients With Diabetes and Chronic Kidney Disease. Angiology 2020; 71:520-535. [PMID: 32180436 DOI: 10.1177/0003319720910660] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We evaluated the association between automatically measured carotid total plaque area (TPA) and the estimated glomerular filtration rate (eGFR), a biomarker of chronic kidney disease (CKD). Automated average carotid intima-media thickness (cIMTave) and TPA measurements in carotid ultrasound (CUS) were performed using AtheroEdge (AtheroPoint). Pearson correlation coefficient (CC) was then computed between the TPA and eGFR for (1) males versus females, (2) diabetic versus nondiabetic patients, and (3) between the left and right carotid artery. Overall, 339 South Asian Indian patients with either type 2 diabetes mellitus (T2DM) or CKD, or hypertension (stage 1 or stage 2) were retrospectively analyzed by acquiring cIMTave and TPA measurements of their left and right common carotid arteries (CCA; total CUS: 678, mean age: 54.2 ± 9.8 years; 75.2% males; 93.5% with T2DM). The CC between TPA and eGFR for different scenarios were (1) for males and females -0.25 (P < .001) and -0.35 (P < .001), respectively; (2) for T2DM and non-T2DM -0.26 (P < .001) and -0.49 (P = .02), respectively, and (3) for left and right CCA -0.25 (P < .001) and -0.23 (P < .001), respectively. Automated TPA is an equally reliable biomarker compared with cIMTave for patients with CKD (with or without T2DM) with subclinical atherosclerosis.
Collapse
Affiliation(s)
- Anudeep Puvvula
- Annu's Hospitals for Skin and Diabetes, Nellore, Andhra Pradesh, India
| | - Ankush D Jamthikar
- Department of Electronics and Communications Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of Electronics and Communications Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha Apollo Hospitals, New Delhi, Delhi, India
| | - Michele Porcu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, Zagreb, Croatia
| | | | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York City, NY, USA
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, Slovenia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St Helena, St Helena, CA, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital, Providence, RI, USA
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention and Research Unit Clinic and Laboratory of Pathophysiology, National and Kapodistrian University of Athens, Greece
| | - George D Kitas
- R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, United Kingdom
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Vijay Viswanathan
- M. V. Hospital for Diabetes and Professor M. Viswanathan Diabetes Research Centre, Chennai, Tamil Nadu, India
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint, Roseville, CA, USA
| |
Collapse
|
19
|
Jamthikar A, Gupta D, Khanna NN, Araki T, Saba L, Nicolaides A, Sharma A, Omerzu T, Suri HS, Gupta A, Mavrogeni S, Turk M, Laird JR, Protogerou A, Sfikakis PP, Kitas GD, Viswanathan V, Pareek G, Miner M, Suri JS. A Special Report on Changing Trends in Preventive Stroke/Cardiovascular Risk Assessment Via B-Mode Ultrasonography. Curr Atheroscler Rep 2019; 21:25. [PMID: 31041615 DOI: 10.1007/s11883-019-0788-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) and stroke risk assessment have been largely based on the success of traditional statistically derived risk calculators such as Pooled Cohort Risk Score or Framingham Risk Score. However, over the last decade, automated computational paradigms such as machine learning (ML) and deep learning (DL) techniques have penetrated into a variety of medical domains including CVD/stroke risk assessment. This review is mainly focused on the changing trends in CVD/stroke risk assessment and its stratification from statistical-based models to ML-based paradigms using non-invasive carotid ultrasonography. RECENT FINDINGS In this review, ML-based strategies are categorized into two types: non-image (or conventional ML-based) and image-based (or integrated ML-based). The success of conventional (non-image-based) ML-based algorithms lies in the different data-driven patterns or features which are used to train the ML systems. Typically these features are the patients' demographics, serum biomarkers, and multiple clinical parameters. The integrated (image-based) ML-based algorithms integrate the features derived from the ultrasound scans of the arterial walls (such as morphological measurements) with conventional risk factors in ML frameworks. Even though the review covers ML-based system designs for carotid and coronary ultrasonography, the main focus of the review is on CVD/stroke risk scores based on carotid ultrasound. There are two key conclusions from this review: (i) fusion of image-based features with conventional cardiovascular risk factors can lead to more accurate CVD/stroke risk stratification; (ii) the ability to handle multiple sources of information in big data framework using artificial intelligence-based paradigms (such as ML and DL) is likely to be the future in preventive CVD/stroke risk assessment.
Collapse
Affiliation(s)
- Ankush Jamthikar
- Department of ECE, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Deep Gupta
- Department of ECE, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University, Tokyo, Japan
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Cyprus, Nicosia, Cyprus
| | - Aditya Sharma
- Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | | | - Ajay Gupta
- Department of Radiology, Cornell Medical Center, New York, NY, USA
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, USA
| | - Athanasios Protogerou
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology
- , National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
| | - George D Kitas
- R&D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor M Viswanathan Diabetes Research Centre, Chennai, India
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Providence, RI, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA.
| |
Collapse
|
20
|
VASIM: an automated tool for the quantification of carotid atherosclerosis by computed tomography angiography. Int J Cardiovasc Imaging 2019; 35:1149-1159. [DOI: 10.1007/s10554-019-01549-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
21
|
SMITHA B, JOSEPH KPAUL. A NEW APPROACH FOR CLASSIFICATION OF ATHEROSCLEROSIS OF COMMON CAROTID ARTERY FROM ULTRASOUND IMAGES. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419400013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background and objectives: The diagnosis of carotid atherosclerosis is of vital importance, as this cardiovascular disease may cause myocardial infarction. One-third of deaths in the world occur due to myocardial infarction, commonly known as heart attack. Atherosclerosis is deposition of plaque in artery wall. It could be detected from the features of intima-media complex of the artery wall. This study proposes a new classification approach to distinguish between symptomatic and asymptomatic plaques using non-invasive carotid B-mode ultrasound images. These two types of plaques have diverse impacts on human life. In the first condition, slowly plaque formation reaches life-threatening condition and the second condition is acute in nature. Hence treatment protocol is to be decided based on the type of plaque. Methods: To locate the intima-media-complex region, the images are segmented using snake-based segmentation algorithm. Several features are extracted using fixed size blocks selected from the segmented region using gray-level co-occurrence matrix. Finally classification is performed using support vector machine. Results: The performance shows improvement in accuracy using lesser number of features than previous works. The reduction in feature size is achieved by incorporating segmentation in the pre-processing stage. In the classifier, 10-fold cross-validation protocol is used for training and testing and an accuracy of 100% is obtained. Conclusion: This proposed technique could work as an adjunct tool in quick decision-making for cardiologists and radiologists.
Collapse
Affiliation(s)
- B. SMITHA
- Department of Electrical Engineering, National Institute of Technology, Calicut 673601, Kerala, India
| | - K. PAUL JOSEPH
- Department of Electrical Engineering, National Institute of Technology, Calicut 673601, Kerala, India
| |
Collapse
|
22
|
Saba L, Jain PK, Suri HS, Ikeda N, Araki T, Singh BK, Nicolaides A, Shafique S, Gupta A, Laird JR, Suri JS. Plaque Tissue Morphology-Based Stroke Risk Stratification Using Carotid Ultrasound: A Polling-Based PCA Learning Paradigm. J Med Syst 2017; 41:98. [PMID: 28501967 DOI: 10.1007/s10916-017-0745-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/27/2017] [Indexed: 01/18/2023]
Abstract
Severe atherosclerosis disease in carotid arteries causes stenosis which in turn leads to stroke. Machine learning systems have been previously developed for plaque wall risk assessment using morphology-based characterization. The fundamental assumption in such systems is the extraction of the grayscale features of the plaque region. Even though these systems have the ability to perform risk stratification, they lack the ability to achieve higher performance due their inability to select and retain dominant features. This paper introduces a polling-based principal component analysis (PCA) strategy embedded in the machine learning framework to select and retain dominant features, resulting in superior performance. This leads to more stability and reliability. The automated system uses offline image data along with the ground truth labels to generate the parameters, which are then used to transform the online grayscale features to predict the risk of stroke. A set of sixteen grayscale plaque features is computed. Utilizing the cross-validation protocol (K = 10), and the PCA cutoff of 0.995, the machine learning system is able to achieve an accuracy of 98.55 and 98.83%corresponding to the carotidfar wall and near wall plaques, respectively. The corresponding reliability of the system was 94.56 and 95.63%, respectively. The automated system was validated against the manual risk assessment system and the precision of merit for same cross-validation settings and PCA cutoffs are 98.28 and 93.92%for the far and the near wall, respectively.PCA-embedded morphology-based plaque characterization shows a powerful strategy for risk assessment and can be adapted in clinical settings.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Pankaj K Jain
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - Harman S Suri
- Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Nobutaka Ikeda
- Cardiovascular Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Bikesh K Singh
- Department of Biomedical Engineering, NIT Raipur, Raipur, Chhattisgarh, India
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, England, UK.,Vascular Diagnostic Centre, University of Cyprus, Nicosia, Cyprus
| | - Shoaib Shafique
- CorVasc Vascular Laboratory, 8433 Harcourt Rd #100, Indianapolis, IN, USA
| | - Ajay Gupta
- Brain and Mind Research Institute and Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - John R Laird
- UC Davis Vascular Centre, University of California, Davis, CA, USA
| | - Jasjit S Suri
- Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA. .,Department of Electrical Engineering, University of Idaho (Affl.), Pocatello, ID, USA.
| |
Collapse
|
23
|
Araki T, Jain PK, Suri HS, Londhe ND, Ikeda N, El-Baz A, Shrivastava VK, Saba L, Nicolaides A, Shafique S, Laird JR, Gupta A, Suri JS. Stroke Risk Stratification and its Validation using Ultrasonic Echolucent Carotid Wall Plaque Morphology: A Machine Learning Paradigm. Comput Biol Med 2016; 80:77-96. [PMID: 27915126 DOI: 10.1016/j.compbiomed.2016.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/20/2016] [Accepted: 11/25/2016] [Indexed: 01/26/2023]
Abstract
Stroke risk stratification based on grayscale morphology of the ultrasound carotid wall has recently been shown to have a promise in classification of high risk versus low risk plaque or symptomatic versus asymptomatic plaques. In previous studies, this stratification has been mainly based on analysis of the far wall of the carotid artery. Due to the multifocal nature of atherosclerotic disease, the plaque growth is not restricted to the far wall alone. This paper presents a new approach for stroke risk assessment by integrating assessment of both the near and far walls of the carotid artery using grayscale morphology of the plaque. Further, this paper presents a scientific validation system for stroke risk assessment. Both these innovations have never been presented before. The methodology consists of an automated segmentation system of the near wall and far wall regions in grayscale carotid B-mode ultrasound scans. Sixteen grayscale texture features are computed, and fed into the machine learning system. The training system utilizes the lumen diameter to create ground truth labels for the stratification of stroke risk. The cross-validation procedure is adapted in order to obtain the machine learning testing classification accuracy through the use of three sets of partition protocols: (5, 10, and Jack Knife). The mean classification accuracy over all the sets of partition protocols for the automated system in the far and near walls is 95.08% and 93.47%, respectively. The corresponding accuracies for the manual system are 94.06% and 92.02%, respectively. The precision of merit of the automated machine learning system when compared against manual risk assessment system are 98.05% and 97.53% for the far and near walls, respectively. The ROC of the risk assessment system for the far and near walls is close to 1.0 demonstrating high accuracy.
Collapse
Affiliation(s)
- Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Pankaj K Jain
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - Harman S Suri
- Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Narendra D Londhe
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India
| | - Nobutaka Ikeda
- Cardiovascular Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, USA
| | | | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, England; Vascular Diagnostic Centre, University of Cyprus, Nicosia, Cyprus
| | - Shoaib Shafique
- CorVasc Vascular Laboratory, 8433 Harcourt Rd #100, Indianapolis, IN, USA
| | - John R Laird
- UC Davis Vascular Centre, University of California, Davis, CA, USA
| | - Ajay Gupta
- Brain and Mind Research Institute and Department of Radiology, Weill Cornell Medical College, NY, USA
| | - Jasjit S Suri
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA; Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA; Department of Electrical Engineering, University of Idaho (Affl.), ID, USA.
| |
Collapse
|
24
|
Saba L, Dey N, Ashour AS, Samanta S, Nath SS, Chakraborty S, Sanches J, Kumar D, Marinho R, Suri JS. Automated stratification of liver disease in ultrasound: An online accurate feature classification paradigm. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 130:118-134. [PMID: 27208527 DOI: 10.1016/j.cmpb.2016.03.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/17/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
PURPOSE Fatty liver disease (FLD) is one of the most common diseases in liver. Early detection can improve the prognosis considerably. Using ultrasound for FLD detection is highly desirable due to its non-radiation nature, low cost and easy use. However, the results can be slow and ambiguous due to manual detection. The lack of computer trained systems leads to low image quality and inefficient disease classification. Thus, the current study proposes novel, accurate and reliable detection system for the FLD using computer-based training system. MATERIALS AND METHODS One hundred twenty-four ultrasound sample images were selected retrospectively from a database of 62 patients consisting of normal and cancerous. The proposed training system was generated offline parameters using training liver image database. The classifier applied transformation parameters to an online system in order to facilitate real-time detection during the ultrasound scan. The system utilized six sets of features (a total of 128 features), namely Haralick, basic geometric, Fourier transform, discrete cosine transform, Gupta transform and Gabor transform. These features were extracted for both offline training and online testing. Levenberg-Marquardt back propagation network (BPN) classifier was used to classify the liver disease into normal and abnormal categories. RESULTS Random partitioning approach was adapted to evaluate the classifier performance and compute its accuracy. Utilizing all the six sets of 128 features, the computer aided diagnosis (CAD) system achieved classification accuracy of 97.58%. Furthermore, the four performance metrics consisting of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) realized 98.08%, 97.22%, 96.23%, and 98.59%, respectively. CONCLUSION The proposed system was successfully able to detect and classify the FLD. Furthermore, the proposed system was benchmarked against previous methods. The comparison established an advanced set of features in the Levenberg-Marquardt back propagation network reports a significant improvement compared to the existing techniques.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari - Polo di Monserrato, Università di Cagliari, Italy
| | - Nilanjan Dey
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - Amira S Ashour
- Department of Electronics and Electrical Communications Engineering, Faculty of Engineering, Tanta University, Egypt
| | - Sourav Samanta
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | | | - Sayan Chakraborty
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - João Sanches
- Institute for Systems and Robotics (ISR), Instituto Superior Técnico (IST), Lisbon, Portugal
| | - Dinesh Kumar
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - RuiTato Marinho
- Liver Unit, Department of Gastroenterology and Hepatology, Hospital de Santa Maria, Medical School of Lisbon, Portugal
| | - Jasjit S Suri
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA; Electrical Engineering Department (Affl.), Idaho State University, ID, USA.
| |
Collapse
|
25
|
dos Santos FLC, Joutsen A, Paci M, Salenius J, Eskola H. Automatic detection of carotid arteries in computed tomography angiography: a proof of concept protocol. Int J Cardiovasc Imaging 2016; 32:1299-310. [DOI: 10.1007/s10554-016-0880-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/18/2016] [Indexed: 10/21/2022]
|
26
|
Dey N, Bose S, Das A, Chaudhuri SS, Saba L, Shafique S, Nicolaides A, Suri JS. Effect of Watermarking on Diagnostic Preservation of Atherosclerotic Ultrasound Video in Stroke Telemedicine. J Med Syst 2016; 40:91. [PMID: 26860914 DOI: 10.1007/s10916-016-0451-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/29/2016] [Indexed: 11/29/2022]
Abstract
Embedding of diagnostic and health care information requires secure encryption and watermarking. This research paper presents a comprehensive study for the behavior of some well established watermarking algorithms in frequency domain for the preservation of stroke-based diagnostic parameters. Two different sets of watermarking algorithms namely: two correlation-based (binary logo hiding) and two singular value decomposition (SVD)-based (gray logo hiding) watermarking algorithms are used for embedding ownership logo. The diagnostic parameters in atherosclerotic plaque ultrasound video are namely: (a) bulb identification and recognition which consists of identifying the bulb edge points in far and near carotid walls; (b) carotid bulb diameter; and (c) carotid lumen thickness all along the carotid artery. The tested data set consists of carotid atherosclerotic movies taken under IRB protocol from University of Indiana Hospital, USA-AtheroPoint™ (Roseville, CA, USA) joint pilot study. ROC (receiver operating characteristic) analysis was performed on the bulb detection process that showed an accuracy and sensitivity of 100 % each, respectively. The diagnostic preservation (DPsystem) for SVD-based approach was above 99 % with PSNR (Peak signal-to-noise ratio) above 41, ensuring the retention of diagnostic parameter devalorization as an effect of watermarking. Thus, the fully automated proposed system proved to be an efficient method for watermarking the atherosclerotic ultrasound video for stroke application.
Collapse
Affiliation(s)
- Nilanjan Dey
- Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India.,Department of Information Technology, Techno India College of Technology, Kolkata, India.,Point of Care Devices, Global Biomedical Technologies, Inc, Roseville, CA, USA
| | - Soumyo Bose
- Department of Information Technology, Techno India College of Technology, Kolkata, India
| | - Achintya Das
- Department of ECE, Kalyani Government Engineering College, Bengal, India
| | - Sheli Sinha Chaudhuri
- Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India
| | - Luca Saba
- Radiology Department, zienda Ospedaliero Universitaria (A.O.U.) di Cagliari, Via Roma, 67, 56126, Pisa, PI, Italy
| | - Shoaib Shafique
- CorVasc Vascular Laboratory, 8433 Harcourt Rd #100, Indianapolis, IN, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, UK.,Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Jasjit S Suri
- Point of Care Devices, Global Biomedical Technologies, Inc, Roseville, CA, USA. .,Diagnostic and Monitoring Division, AtheroPoint™ LLC, Roseville, CA, USA. .,Electrical Engineering Department (Affl.), Idaho State University, 921 S 8th Ave, Pocatello, ID, 83201, USA.
| |
Collapse
|
27
|
MOOKIAH MUTHURAMAKRISHNAN, TAN JENHONG, CHUA CHUAKUANG, NG EYK, LAUDE AUGUSTINUS, TONG LOUIS. AUTOMATED CHARACTERIZATION AND DETECTION OF DIABETIC RETINOPATHY USING TEXTURE MEASURES. J MECH MED BIOL 2015. [DOI: 10.1142/s0219519415500451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The chronic and uncontrolled diabetes mellitus (DM) damages the retinal blood vessels leading to diabetic retinopathy (DR). The advanced stage of DR leads to loss of vision and subsequently blindness. The morphological changes during the progression of DR can be diagnosed using digital fundus images. The pathological changes in the retina influence the variations in pixel patterns which can be quantified using texture measures. In this paper, we have explored different texture measures namely statistical moments, gray level co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), local binary pattern (LBP), laws mask energy (LME), fractal dimension (FD), fourier spectrum (FS) and Gabor wavelet to characterize and classify the normal and DR classes. We have tabulated 109 texture parameters for the normal and DR classes. Further, these features were subjected to empirical receiver operating characteristic (ROC) based ranking to select optimal feature set. The ranked nested features were fed to the support vector machine (SVM) classifier with different kernel functions to evaluate the highest performance measure using the least number of features to discriminate normal and DR classes. Our proposed system was evaluated using two different databases Kasturba Medical College Hospital (KMCH) and Tan Tock Seng Hospital (TTSH), each with 340 images (170 normal and 170 DR). We have also formulated an integrated index called as diabetic retinopathy risk index (DRRI) using selected texture features to discriminate normal and DR classes using single number. The proposed frame work can be used to help the clinicians and also for mass DR screening programs.
Collapse
Affiliation(s)
| | - JEN HONG TAN
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
| | - CHUA KUANG CHUA
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
| | - E. Y. K. NG
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - AUGUSTINUS LAUDE
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - LOUIS TONG
- Singapore National Eye Center, Singapore 168751, Singapore
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore 168751, Singapore
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
28
|
Kotze CW, Rudd JH, Ganeshan B, Menezes LJ, Brookes J, Agu O, Yusuf SW, Groves AM. CT signal heterogeneity of abdominal aortic aneurysm as a possible predictive biomarker for expansion. Atherosclerosis 2014; 233:510-517. [DOI: 10.1016/j.atherosclerosis.2014.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 12/18/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
|