1
|
Mandal D, Pandey D, Sarkar DP, Kumar M. Nucleoside and non-nucleoside reverse transcriptase inhibitor drugs (NRTIs and NNRTIs) are capable of binding Chandipura virus polymerase protein (L) and inhibit virus replication. Virusdisease 2024; 35:420-427. [PMID: 39464733 PMCID: PMC11502645 DOI: 10.1007/s13337-024-00883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/03/2024] [Indexed: 10/29/2024] Open
Abstract
Chandipura virus (CHPV) is an emerging pathogen of Indian subcontinent. It is a vector borne virus and belongs to Rhabdovirus family. In recent past several outbreaks reported from the states of "Maharastha", "Gujrat", "Andra Pradesh" causing more than 300 deaths of children below 15 years and case-fatality rate was more than 50%. There is no targeted drug or vaccine available against CHPV and symptomatic treatment is the option. We hypothesized that nucleoside and non-nucleoside reverse transcriptase inhibitor drugs will be able to inhibit CHPV replication because of close structural similarity of the viral polymerases within the finger, palm and thumb domains. We examined the inhibitory effects of NRTI drugs AZT, tenofovir, abacavir and NNRTI drug nevirapine on CHPV replication in Vero cells. We have performed plaque assays and western blotting to determine the levels of inhibition of virus replication. We found significant inhibition of CHPV by all these 4 drugs in the order abacavir > nevirapine > tenofovir > AZT. To gain an insight into drug mediated inhibition, we performed docking and molecular modelling of CHPV polymerase protein L bound to these drugs. Detailed methodology and a part of these results have been published in a preprint server (BioRxiv, 2022, doi: https://doi.org/10.1101/2022.03.02.482698). We summarize that abacavir, tenofovir, AZT and nevirapine are effective inhibitors of CHPV and a combination therapy may be designed to treat the disease. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00883-w.
Collapse
Affiliation(s)
| | - Deeksha Pandey
- Department of Biophysics, University of Delhi, South Campus, Benito Jaurez Marg, New Delhi, 110021 India
| | - Debi P. Sarkar
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi, South Campus, Benito Jaurez Marg, New Delhi, 110021 India
| |
Collapse
|
2
|
Jyoti Maiti N, Ganguly S, Choowongkomon K, Seetaha S, Saehlee S, Aiebchun T. Synthesis, in vitro Anti-HIV-1RT evaluation, molecular modeling, DFT and acute oral toxicity studies of some benzotriazole derivatives. J Struct Biol 2024; 216:108094. [PMID: 38653343 DOI: 10.1016/j.jsb.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
This study synthesized and evaluated a series of benzotriazole derivatives denoted 3(a-j) and 6(a-j) for their anti-HIV-1 RT activities compared to the standard drug efavirenz. Notably, compound 3 h, followed closely by 6 h, exhibited significant anti-HIV-1 RT efficacy relative to the standard drug. In vivo oral toxicity studies were conducted for the most active compound 3 h, confirming its nontoxic nature to ascertain the safety profile. By employing molecular docking techniques, we explored the potential interactions between the synthesized compounds (ligands) and a target biomolecule (protein)(PDB ID 1RT2) at the molecular level. We undertook the molecular dynamics study of 3 h, the most active compound, within the active binding pocket of the cocrystallized structure of HIV-1 RT (PDB ID 1RT2). We aimed to learn more about how biomolecular systems behave, interact, and change at the atomic or molecular level over time. Finally, the DFT-derived HOMO and LUMO orbitals, as well as analysis of the molecular electrostatic potential map, aid in discerning the reactivity characteristics of our molecule.
Collapse
Affiliation(s)
- Nigam Jyoti Maiti
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Swastika Ganguly
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Pahon - Yothin Road, Chatuchak, Bangkok 10900, Thailand.
| | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Pahon - Yothin Road, Chatuchak, Bangkok 10900, Thailand
| | - Siriwan Saehlee
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Pahon - Yothin Road, Chatuchak, Bangkok 10900, Thailand
| | - Thitinan Aiebchun
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Pahon - Yothin Road, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Kim MJ, Yu KL, Han R, Lee Y, Oh K, You JC. Identification of a Non-Nucleoside Reverse Transcriptase Inhibitor against Human Immunodeficiency Virus-1. ACS Infect Dis 2023; 9:1582-1592. [PMID: 37415514 DOI: 10.1021/acsinfecdis.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The HIV-1 infection epidemic remains a global health problem. Current antiretroviral treatments are effective in controlling the progression of a severe infection. However, the emergence of drug resistance requires an urgent identification of new treatment regimes. HIV-1 reverse transcriptase (RTs) has been a successful therapeutic target owing to its high specificity and potent antiviral properties; therefore, it has become an essential component of current HIV-1 standard treatments. This study identified a new HIV-1 RTs inhibitor (Compound #8) that is structurally unique and greatly effective against HIV-1 through chemical library screening and a medicinal chemistry program by analyzing the structure-activity relationship (SAR). Further analysis of molecular docking and mechanisms of action demonstrated that Compound #8 is a novel type of HIV-1 non-nucleoside reverse transcriptase inhibitor (NNRTI) with a flexible binding mode. Therefore, it exhibits great therapeutic potential when combined with other existing HIV-1 drugs. Our current studies suggest that Compound #8 is a promising novel scaffold for the development of new HIV-1 treatments.
Collapse
Affiliation(s)
- Min-Jung Kim
- Avixgen Inc., 2477 Nambusunhwan-ro, Seocho, Seoul 06725, Republic of Korea
| | - Kyung Lee Yu
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho, Seoul 06591, Republic of Korea
| | - Ri Han
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Ji Chang You
- Avixgen Inc., 2477 Nambusunhwan-ro, Seocho, Seoul 06725, Republic of Korea
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Ovung A, Jamir N, Bhattacharyya J. Lysozyme binding with sulfa group of antibiotics: comparative binding thermodynamics and computational study. LUMINESCENCE 2022; 37:702-712. [DOI: 10.1002/bio.4211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Aben Ovung
- Department of Chemistry National Institute of Technology Nagaland, Chumukedima Dimapur India
| | - Nungshioba Jamir
- Department of Chemistry National Institute of Technology Nagaland, Chumukedima Dimapur India
| | - Jhimli Bhattacharyya
- Department of Chemistry National Institute of Technology Nagaland, Chumukedima Dimapur India
| |
Collapse
|
5
|
Sharma A, Kaur G, Singh D, Gupta VK, Banerjee B. A General Method for the Synthesis of 11H-Indeno[1,2-B]Quinoxalin- 11-Ones and 6H-Indeno[1,2-B]Pyrido[3,2-E]Pyrazin-6-One Derivatives Using Mandelic Acid as an Efficient Organo-Catalyst at Room Temperature. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/2213337208666210825112301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aims:
Synthesis of 11H-indeno[1,2-b]quinoxalin-11-ones as well as 6H-indeno[1,2-b]pyrido[3,2-e]pyrazin-6-one derivatives under greener conditions.
Background:
Quinoxaline and related skeletons are very common in naturally occurring bioactive compounds.
Objective:
Design a facile, green and organo-catalyzed method for the synthesis of 11H-indeno[1,2-b]quinoxalin-11-ones as well as 6H-indeno[1,2-b]pyrido[3,2-e]pyrazin-6-one derivatives.
Methods:
Both the scaffolds were synthesized via the condensation of ninhydrin and o-phenylenediamines or pyridine-2,3-diamines respectively by using a catalytic amount of mandelic acid as an efficient, commercially available, low cost, organo-catalyst in aqueous ethanol at room temperature.
Results:
Mild reaction conditions, use of metal-free organocatalyst, non-toxic solvent, ambient temperature, and no column chromatographic separation are some of the notable advantages of our developed protocol.
Conclusion:
In conclusion, we have developed a simple, mild, facile and efficient method for the synthesis of structurally diverse 11H-indeno[1,2-b]quinoxalin-11-one derivatives via the condensation reactions of ninhydrin and various substituted benzene-1,2-diamines using a catalytic amount of mandelic acid as a commercially available metal-free organo-catalyst in aqueous ethanol at room temperature. Under the same optimized reaction conditions, synthesis of 6H-indeno[1,2-b]pyrido[3,2-e]pyrazin-6-one derivatives was also accomplished with excellent yields by using pyridine-2,3-diamines instead of o-phenylenediamine.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab-151302, India
| | - Gurpreet Kaur
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab-151302, India
| | - Diksha Singh
- Department of Chemistry, Indus International University, V.P.O Bathu, Dist. Una, Himachal Pradesh, Pin-174301, India
| | - Vivek Kumar Gupta
- Department of Physics, University of Jammu, Jammu Tawi-180 006, India
| | - Bubun Banerjee
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab-151302, India
| |
Collapse
|
6
|
Dejmek M, Konkoľová E, Eyer L, Straková P, Svoboda P, Šála M, Krejčová K, Růžek D, Boura E, Nencka R. Non-Nucleotide RNA-Dependent RNA Polymerase Inhibitor That Blocks SARS-CoV-2 Replication. Viruses 2021; 13:1585. [PMID: 34452451 PMCID: PMC8402726 DOI: 10.3390/v13081585] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 has caused an extensive pandemic of COVID-19 all around the world. Key viral enzymes are suitable molecular targets for the development of new antivirals against SARS-CoV-2 which could represent potential treatments of the corresponding disease. With respect to its essential role in the replication of viral RNA, RNA-dependent RNA polymerase (RdRp) is one of the prime targets. HeE1-2Tyr and related derivatives were originally discovered as inhibitors of the RdRp of flaviviruses. Here, we present that these pyridobenzothiazole derivatives also significantly inhibit SARS-CoV-2 RdRp, as demonstrated using both polymerase- and cell-based antiviral assays.
Collapse
Affiliation(s)
- Milan Dejmek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha, Czech Republic; (M.D.); (E.K.); (M.Š.); (K.K.)
| | - Eva Konkoľová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha, Czech Republic; (M.D.); (E.K.); (M.Š.); (K.K.)
| | - Luděk Eyer
- Veterinary Research Institute, Emerging Viral Diseases, Hudcova 296/70, 621 00 Brno, Czech Republic; (L.E.); (P.S.); (P.S.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Petra Straková
- Veterinary Research Institute, Emerging Viral Diseases, Hudcova 296/70, 621 00 Brno, Czech Republic; (L.E.); (P.S.); (P.S.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Pavel Svoboda
- Veterinary Research Institute, Emerging Viral Diseases, Hudcova 296/70, 621 00 Brno, Czech Republic; (L.E.); (P.S.); (P.S.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha, Czech Republic; (M.D.); (E.K.); (M.Š.); (K.K.)
| | - Kateřina Krejčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha, Czech Republic; (M.D.); (E.K.); (M.Š.); (K.K.)
| | - Daniel Růžek
- Veterinary Research Institute, Emerging Viral Diseases, Hudcova 296/70, 621 00 Brno, Czech Republic; (L.E.); (P.S.); (P.S.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha, Czech Republic; (M.D.); (E.K.); (M.Š.); (K.K.)
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00 Praha, Czech Republic; (M.D.); (E.K.); (M.Š.); (K.K.)
| |
Collapse
|
7
|
Kaur G, Singh A, Kaur N, Banerjee B. A general method for the synthesis of structurally diverse quinoxalines and pyrido-pyrazine derivatives using camphor sulfonic acid as an efficient organo-catalyst at room temperature. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1873383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Gurpreet Kaur
- Department of Chemistry, Indus International University, Himachal Pradesh, India
| | - Arvind Singh
- Department of Chemistry, Indus International University, Himachal Pradesh, India
| | - Navdeep Kaur
- Department of Chemistry, Indus International University, Himachal Pradesh, India
| | - Bubun Banerjee
- Department of Chemistry, Indus International University, Himachal Pradesh, India
| |
Collapse
|
8
|
Synthesis and Characterization of New Fluoro/Trifluoromethyl-Substituted Acylthiourea Derivatives with Promising Activity against Planktonic and Biofilm-Embedded Microbial Cells. Processes (Basel) 2020. [DOI: 10.3390/pr8050503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was preparation of new derivatives based on 2-((4-chlorophenoxy)methyl)-N-(arylcarbamothioyl)benzamide structure; the new compounds were characterized by IR, NMR (1H, 13C) spectroscopy, and elemental analysis. The obtained compounds were evaluated for their in vitro antimicrobial activity against planktonic and biofilm-embedded microbial cells (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Candida albicans), by qualitative and quantitative assays. Some of the compounds revealed promising antibacterial and antifungal activities, with low minimum inhibitory concentration values between 0.15 and 2.5 mg/mL and minimal biofilm eradication concentrations of 0.019–2.5 mg/mL. To investigate the potential target of their antibacterial activity, in silico drug-likeness and molecular docking screenings on Staphylococcus aureus DNA gyrase were performed. The compound with the best antibacterial activity (1g) was docked into topoisomerase II DNA gyrase enzymes (PDB ID: 2XCS) and showed valuable interactions with the target protein along with good docking scores, suggesting that it can act by the inhibition of DNA replication. The tested compounds exhibited only a poor antioxidant activity, as revealed by the in vitro assay using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay.
Collapse
|
9
|
Charbe NB, Zacconi FC, Amnerkar N, Ramesh B, Tambuwala MM, Clementi E. Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review. CURRENT DRUG THERAPY 2019. [DOI: 10.2174/1574885514666181217125550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Several clinical trials, as well as observational statistics, have exhibited that the advantages of antiretroviral [ARV] treatment for humans with Human Immunodeficiency Virus / Acquired Immune Deficiency Syndrome HIV/AIDS exceed their risks. Therapeutic drug monitoring [TDM] plays a key role in optimization of ARV therapy. Determination of ARV’s in plasma, blood cells, and other biological matrices frequently requires separation techniques capable of high effectiveness, specific selectivity and high sensitivity. High-performance liquid chromatography [HPLC] coupled with ultraviolet [UV], Photodiode array detectors [PDA], Mass spectrophotometer [MS] detectors etc. are the important quantitative techniques used for the estimation of pharmaceuticals in biological samples. </P><P> Objective: This review article is aimed to give an extensive outline of different bio-analytical techniques which have been reported for direct quantitation of ARV’s. This article aimed to establish an efficient role played by the TDM in the optimum therapeutic outcome of the ARV treatment. It also focused on establishing the prominent role played by the separation techniques like HPLC and UPLC along with the detectors like UV and Mass in TDM. </P><P> Methods: TDM is based on the principle that for certain drugs, a close relationship exists between the plasma level of the drug and its clinical effect. TDM is of no value if the relationship does not exist. The analytical methodology employed in TDM should: 1) distinguish similar compounds; 2) be sensitive and precise and 3) is easy to use. </P><P> Results: This review highlights the advancement of the chromatographic techniques beginning from the HPLC-UV to the more advanced technique like UPLC-MS/MS. TDM is essential to ensure adherence, observe viral resistance and to personalize ARV dose regimens. It is observed that the analytical methods like immunoassays and liquid chromatography with detectors like UV, PDA, Florescent, MS, MS/MS and Ultra performance liquid chromatography (UPLC)-MS/MS have immensely contributed to the clinical outcome of the ARV therapy. Assay methods are not only helping physicians in limiting the side effects and drug interactions but also assisting in monitoring patient’s compliance. </P><P> Conclusion: The present review revealed that HPLC has been the most widely used system irrespective of the availability of more sensitive chromatographic technique like UPLC.
Collapse
Affiliation(s)
- Nitin B. Charbe
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuna McKenna 4860, Macul, Santiago 7820436, Chile
| | - Flavia C. Zacconi
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuna McKenna 4860, Macul, Santiago 7820436, Chile
| | - Nikhil Amnerkar
- Adv V. R. Manohar Institute of Diploma in Pharmacy, Wanadongri, Hingna Road, Nagpur, Maharashtra 441110, India
| | - B. Ramesh
- Sri Adichunchunagiri University, Sri Adichunchunagiri College of Pharmacy, BG Nagar, Karnataka 571418, India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, University of Ulster, Coleraine, County Londonderry, Northern Ireland BT52 1SA, United Kingdom
| | - Emilio Clementi
- Clinical Pharmacology Unit, CNR Institute of Neuroscience, Department of Biomedical and Clinical Sciences, Luigi Sacco University Hospital, Universita di Milano, Milan, Italy
| |
Collapse
|
10
|
El-Brollosy NR. Synthesis of New Quinazoline-2,4(1H,3H)-dione non-nucleoside Analogues of the reverse transcriptase inhibitor TNK-651. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/030823407x227101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The synthesis is described of a series of new non-nucleoside analogues of the reverse transcriptase inhibitor TNK-651 from quinazoline-2,4(1 H,3 H)-diones. Compounds 2a–c were silylated and treated with benzyl chloromethyl ether in the presence of CsI to give 1-benzyloxymethylquinazoline derivatives 3a–c. Treatment of the silylated quinazolinediones 2a–c with the appropriate acetals 5a–e in the presence of TMS triflate afforded the corresponding TNK-651 analogues 6–10.
Collapse
|
11
|
Chander S, Tang CR, Penta A, Wang P, Bhagwat DP, Vanthuyne N, Albalat M, Patel P, Sankpal S, Zheng YT, Sankaranarayanan M. Hit optimization studies of 3-hydroxy-indolin-2-one analogs as potential anti-HIV-1 agents. Bioorg Chem 2018; 79:212-222. [DOI: 10.1016/j.bioorg.2018.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/13/2018] [Accepted: 04/27/2018] [Indexed: 02/08/2023]
|
12
|
Keri RS, Pandule SS, Budagumpi S, Nagaraja BM. Quinoxaline and quinoxaline-1,4-di-N
-oxides: An emerging class of antimycobacterials. Arch Pharm (Weinheim) 2018; 351:e1700325. [DOI: 10.1002/ardp.201700325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/27/2018] [Accepted: 03/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Rangappa S. Keri
- Centre for Nano and Material Sciences, Jain University; Jain Global Campus; Bangalore India
| | | | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences, Jain University; Jain Global Campus; Bangalore India
| | - Bhari M. Nagaraja
- Centre for Nano and Material Sciences, Jain University; Jain Global Campus; Bangalore India
| |
Collapse
|
13
|
Dalecki AG, Crawford CL, Wolschendorf F. Copper and Antibiotics: Discovery, Modes of Action, and Opportunities for Medicinal Applications. Adv Microb Physiol 2017; 70:193-260. [PMID: 28528648 DOI: 10.1016/bs.ampbs.2017.01.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Copper is a ubiquitous element in the environment as well as living organisms, with its redox capabilities and complexation potential making it indispensable for many cellular functions. However, these same properties can be highly detrimental to prokaryotes and eukaryotes when not properly controlled, damaging many biomolecules including DNA, lipids, and proteins. To restrict free copper concentrations, all bacteria have developed mechanisms of resistance, sequestering and effluxing labile copper to minimize its deleterious effects. This weakness is actively exploited by phagocytes, which utilize a copper burst to destroy pathogens. Though administration of free copper is an unreasonable therapeutic antimicrobial itself, due to insufficient selectivity between host and pathogen, small-molecule ligands may provide an opportunity for therapeutic mimicry of the immune system. By modulating cellular entry, complex stability, resistance evasion, and target selectivity, ligand/metal coordination complexes can synergistically result in high levels of antibacterial activity. Several established therapeutic drugs, such as disulfiram and pyrithione, display remarkable copper-dependent inhibitory activity. These findings have led to development of new drug discovery techniques, using copper ions as the focal point. High-throughput screens for copper-dependent inhibitors against Mycobacterium tuberculosis and Staphylococcus aureus uncovered several new compounds, including a new class of inhibitors, the NNSNs. In this review, we highlight the microbial biology of copper, its antibacterial activities, and mechanisms to discover new inhibitors that synergize with copper.
Collapse
Affiliation(s)
- Alex G Dalecki
- The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | |
Collapse
|
14
|
Ganta KK, Mandal A, Chaubey B. Depolarization of mitochondrial membrane potential is the initial event in non-nucleoside reverse transcriptase inhibitor efavirenz induced cytotoxicity. Cell Biol Toxicol 2016; 33:69-82. [PMID: 27639578 DOI: 10.1007/s10565-016-9362-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 09/05/2016] [Indexed: 12/23/2022]
Abstract
Efavirenz is a non-nucleoside reverse transcriptase inhibitor (NNRTI) and an active constituent of the highly active antiretroviral therapy regime. It has significantly contributed in control and management of human immunodeficiency virus propagation. However, EFV administration has also led to severe adverse effects, several reports highlighted the role of EFV in mitochondrial dysfunction and toxicity but the molecular mechanism has been poorly understood. In present study, human hepatoma cells Huh 7.5 were treated with clinically relevant concentrations of EFV and parameters like cytotoxicity, mitochondrial transmembrane potential, mitochondrial morphology, cytochrome c release, mitochondria-mediated apoptosis, mtDNA and mtRNA levels and EFV distribution into mitochondrial compartment were evaluated to understand sequence of events leading to cell death in EFV-treated cells. EFV at its clinically relevant concentration was significantly toxic after 48 and 72 h of treatments. EFV-mediated toxicity is initiated with the permeabilization of mitochondrial outer membrane and change in mitochondrial membrane potential (Δψm) which triggers a series of events like cytochrome c release, alteration in mitochondrial morphology and mitochondria-mediated apoptosis. Total mitochondrial content is reduced after 48 h of EFV treatment at IC50 concentration which is also reflected in reduced mitochondrial DNA and RNA levels. After detecting EFV in mitochondrial compartment after 12 h of incubation with EFV, we hypothesize that EFV being a lipophilic molecule is internalized into the mitochondrial compartment causing depolarization of Δψm which subsequently leads to a cascade of events causing cell death.
Collapse
Affiliation(s)
- Krishna Kumar Ganta
- Functional Genomics Lab., Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Anirban Mandal
- Functional Genomics Lab., Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Binay Chaubey
- Functional Genomics Lab., Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India. .,Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822, Gdansk, Poland.
| |
Collapse
|
15
|
Zhang Z, Hamatake R, Hong Z. Clinical Utility of Current NNRTIs and Perspectives of New Agents in This Class under Development. ACTA ACUST UNITED AC 2016; 15:121-34. [PMID: 15266894 DOI: 10.1177/095632020401500302] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Highly active antiretroviral therapy (HAART) has significantly reduced the number of deaths caused by AIDS. However, the antiviral efficacy of HAART comprising protease inhibitors (PIs) and nucleoside reverse transcriptase inhibitors (NRTIs) is frequently accompanied by a decrease in patients' quality of life. PI-based therapies often fail due to poor adherence caused by heavy pill burden, complex dosing schedules and undesirable side effects. The current trend is to switch from PI-based to PI-sparing regimens consisting of non-nucleoside reverse transcriptase inhibitors (NNRTIs) and NRTIs. Despite some encouraging results from NNRTI-containing therapies, two major concerns in using the currently available NNRTIs remain: 1) low genetic barrier to the emergence of resistance and 2) cross-resistance due to single mutations that often render the whole class of NNRTIs ineffective. Clearly, new and improved NNRTIs are needed to address these concerns.
Collapse
Affiliation(s)
- Zhijun Zhang
- Drug Discovery, Valeant Pharmaceuticals International, Costa Mesa, Calif., USA.
| | | | | |
Collapse
|
16
|
Bonache MC, Chamorro C, Lobatón E, De Clercq E, Balzarini J, Velázquez S, Camarasa MJ, San-Félix A. Structure-Activity Relationship Studies on a Novel Family of Specific HIV-1 Reverse Transcriptase Inhibitors. ACTA ACUST UNITED AC 2016; 14:249-62. [PMID: 14694988 DOI: 10.1177/095632020301400504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously reported the discovery and preliminary structure-activity relationships of a new class of specific HIV-1 reverse transcriptase (RT) inhibitors whose prototype compound is the 1-[2′,5′-bis- O-( tert-butyldimethylsilyl)-β-D-ribofuranosyl]-3- N-[(carboxy) methyl]-thymine. In an attempt to increase the inhibitory efficacy against HIV-1 RT of this new class of nucleosides, and to further explore the structural features required for anti-HIV-1 activity, different types of modifications have been carried out on the prototype compound. These include substitution of the tert-butyldimethylsilyl groups by other liphophilic groups, replacement of the carboxy group at the N-3 position of the nucleobase by other functional groups, change in the length of the spacer between the thymine and the carboxylic acid residue and substitution of the thymine moiety by other pyrimidine (uracil, 5-ethyluracil) or purine (hypoxanthine) nucleobases. In addition, the most salient structural features of this new class of HIV-1-specific nucleosides have been incorporated into classical HIV RT nucleoside inhibitors such as ddI, AZT, d4T. Our studies demonstrate that both the carboxymethyl moiety at the nucleobase and tert-butyldimethylsilyl groups at the sugar are important structural components since deletion of either of them is detrimental to the antiviral activity.
Collapse
|
17
|
Sakakibara N, Baba M, Okamoto M, Toyama M, Demizu Y, Misawa T, Kurihara M, Irie K, Kato Y, Maruyama T. Design, synthesis, and anti-HIV-1 activity of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives. Antivir Chem Chemother 2016; 24:3-18. [PMID: 26149262 DOI: 10.1177/2040206614566584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A new series of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives were synthesized and evaluated as non-nucleoside HIV-1 reverse transcriptase inhibitors. METHODS A series of new 6-azido and 6-amino derivatives of 1-substituted-3-(3,5-dimethylbenzyl)uracils were synthesized using our previously reported method, and three acyclic derivatives were synthesized from urea. The anti-HIV-1 activities of these compounds were determined based on the inhibition of virus-induced cytopathogenicity in MT-4 cells. The cytotoxicities of the compounds were evaluated using the viability of mock-infected cells. RESULTS Some of these compounds showed good-to-moderate activities against HIV-1 with half maximal effective concentration (EC50) values in the submicromolar or subnanomolar range. Compared with emivirine, compound 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil showed significant anti-HIV-1 activity with an EC50 value of 10 nM and a high selectivity index of 1923. Preliminary structure-activity relationship studies and molecular modeling analyses were carried out to explore the major interactions between HIV-1 reverse transcriptase and the potent inhibitor 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil; these results may be important for further development of this class of compounds as anti-HIV-1 agents. CONCLUSION The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants.
Collapse
Affiliation(s)
- Norikazu Sakakibara
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki City, Kagawa, Japan
| | - Masanori Baba
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mika Okamoto
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masaaki Toyama
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, Setagaya, Tokyo, Japan
| | - Takashi Misawa
- Division of Organic Chemistry, National Institute of Health Sciences, Setagaya, Tokyo, Japan
| | - Masaaki Kurihara
- Division of Organic Chemistry, National Institute of Health Sciences, Setagaya, Tokyo, Japan
| | - Kohji Irie
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki City, Kagawa, Japan
| | - Yoshihisa Kato
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki City, Kagawa, Japan
| | - Tokumi Maruyama
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki City, Kagawa, Japan
| |
Collapse
|
18
|
Hameed A, Abdullah MI, Ahmed E, Sharif A, Irfan A, Masood S. Anti-HIV cytotoxicity enzyme inhibition and molecular docking studies of quinoline based chalcones as potential non-nucleoside reverse transcriptase inhibitors (NNRT). Bioorg Chem 2016; 65:175-82. [PMID: 26964017 DOI: 10.1016/j.bioorg.2016.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 11/20/2022]
Abstract
A series of fourteen (A1 - A14) qunioline based chalcones were screened for reverse transcriptase inhibitors (RT) and found potentially active against RT. Bioassay, theoretical and dockings studies with RT (the enzyme required for reverse transcription of viral RNA) results showed that the type and positions of the substituents seemed to be critical for their inhibition against RT. The bromo and chloro substituted chalcone displayed high degree of inhibition against RT. The A4 andA6 showed high interaction with RT, contributing high free binding energy (ΔG -9.30 and -9.13kcal) and RT inhibition value (IC50 0.10μg/ml and 0.11μg/ml).
Collapse
Affiliation(s)
- Asima Hameed
- Institute of Chemistry, University of the Punjab, Lahore, P.O 54590, Pakistan
| | | | - Ejaz Ahmed
- Institute of Chemistry, University of the Punjab, Lahore, P.O 54590, Pakistan.
| | - Ahsan Sharif
- Institute of Chemistry, University of the Punjab, Lahore, P.O 54590, Pakistan
| | - Ahmad Irfan
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Sara Masood
- Sheikh Zayed Madical College & Hospital Rahim Yar Khan, Pakistan
| |
Collapse
|
19
|
Focus on Chirality of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. Molecules 2016; 21:molecules21020221. [PMID: 26891289 PMCID: PMC6273187 DOI: 10.3390/molecules21020221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 02/02/2023] Open
Abstract
Chiral HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) are of great interest since one enantiomer is often more potent than the corresponding counterpart against the HIV-1 wild type (WT) and the HIV-1 drug resistant mutant strains. This review exemplifies the various studies made to investigate the effect of chirality on the antiretroviral activity of top HIV-1 NNRTI compounds, such as nevirapine (NVP), efavirenz (EFV), alkynyl- and alkenylquinazolinone DuPont compounds (DPC), diarylpyrimidine (DAPY), dihydroalkyloxybenzyloxopyrimidine (DABO), phenethylthiazolylthiourea (PETT), indolylarylsulfone (IAS), arylphosphoindole (API) and trifluoromethylated indole (TFMI) The chiral separation, the enantiosynthesis, along with the biological properties of these HIV-1 NNRTIs, are discussed.
Collapse
|
20
|
Chander S, Ashok P, Zheng YT, Wang P, Raja KS, Taneja A, Murugesan S. Design, synthesis and in-vitro evaluation of novel tetrahydroquinoline carbamates as HIV-1 RT inhibitor and their antifungal activity. Bioorg Chem 2016; 64:66-73. [DOI: 10.1016/j.bioorg.2015.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
|
21
|
Abstract
Viruses are major pathogenic agents causing a variety of serious diseases in humans, other animals, and plants. Drugs that combat viral infections are called antiviral drugs. There are no effective antiviral drugs for many viral infections. However, there are several drugs for influenza, a couple of drugs for herpesviruses, and some new antiviral drugs for treatment of HIV and hepatitis C infections. The arsenal of antivirals is complex. As of March 2014, it consists of approximately 50 drugs approved by the FDA, approximately half of which are directed against HIV. Antiviral drug creation strategies are focused on two different approaches: targeting the viruses themselves or targeting host cell factors. Direct virus-targeting antiviral drugs include attachment inhibitors, entry inhibitors, uncoating inhibitors, protease inhibitors, polymerase inhibitors, nucleoside and nucleotide reverse transcriptase inhibitors, nonnucleoside reverse-transcriptase inhibitors, and integrase inhibitors. Protease inhibitors (darunavir, atazanavir, and ritonavir), viral DNA polymerase inhibitors (acyclovir, valacyclovir, valganciclovir, and tenofovir), and an integrase inhibitor (raltegravir) are included in the list of Top 200 Drugs by sales for the 2010s.
Collapse
|
22
|
Hecht M, Erber S, Harrer T, Klinker H, Roth T, Parsch H, Fiebig N, Fietkau R, Distel LV. Efavirenz Has the Highest Anti-Proliferative Effect of Non-Nucleoside Reverse Transcriptase Inhibitors against Pancreatic Cancer Cells. PLoS One 2015; 10:e0130277. [PMID: 26086472 PMCID: PMC4473268 DOI: 10.1371/journal.pone.0130277] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/19/2015] [Indexed: 02/06/2023] Open
Abstract
Background Cancer prevention and therapy in HIV-1-infected patients will play an important role in future. The non-nucleoside reverse transcriptase inhibitors (NNRTI) Efavirenz and Nevirapine are cytotoxic against cancer cells in vitro. As other NNRTIs have not been studied so far, all clinically used NNRTIs were tested and the in vitro toxic concentrations were compared to drug levels in patients to predict possible anti-cancer effects in vivo. Methods Cytotoxicity was studied by Annexin-V-APC/7AAD staining and flow cytometry in the pancreatic cancer cell lines BxPC-3 and Panc-1 and confirmed by colony formation assays. The 50% effective cytotoxic concentrations (EC50) were calculated and compared to the blood levels in our patients and published data. Results The in vitro EC50 of the different drugs in the BxPC-3 pancreatic cancer cells were: Efavirenz 31.5μmol/l (= 9944ng/ml), Nevirapine 239μmol/l (= 63786ng/ml), Etravirine 89.0μmol/l (= 38740ng/ml), Lersivirine 543μmol/l (= 168523ng/ml), Delavirdine 171μmol/l (= 78072ng/ml), Rilpivirine 24.4μmol/l (= 8941ng/ml). As Efavirenz and Rilpivirine had the highest cytotoxic potential and Nevirapine is frequently used in HIV-1 positive patients, the results of these three drugs were further studied in Panc-1 pancreatic cancer cells and confirmed with colony formation assays. 205 patient blood levels of Efavirenz, 127 of Rilpivirine and 31 of Nevirapine were analyzed. The mean blood level of Efavirenz was 3587ng/ml (range 162–15363ng/ml), of Rilpivirine 144ng/ml (range 0-572ng/ml) and of Nevirapine 4955ng/ml (range 1856–8697ng/ml). Blood levels from our patients and from published data had comparable Efavirenz levels to the in vitro toxic EC50 in about 1 to 5% of all patients. Conclusion All studied NNRTIs were toxic against cancer cells. A low percentage of patients taking Efavirenz reached in vitro cytotoxic blood levels. It can be speculated that in HIV-1 positive patients having high Efavirenz blood levels pancreatic cancer incidence might be reduced. Efavirenz might be a new option in the treatment of cancer.
Collapse
Affiliation(s)
- Markus Hecht
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
- * E-mail:
| | - Sonja Erber
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Thomas Harrer
- Department of Internal Medicine 3, University Hospital Erlangen, Erlangen, Germany
| | - Hartwig Klinker
- Department of Internal Medicine 2, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Roth
- Central Laboratory, University Hospital Erlangen, Erlangen, Germany
| | - Hans Parsch
- Central Laboratory, University Hospital Erlangen, Erlangen, Germany
| | - Nora Fiebig
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Luitpold V. Distel
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
23
|
Nazar MF, Abdullah MI, Badshah A, Mahmood A, Rana UA, Khan SUD. Synthesis, structure–activity relationship and molecular docking of cyclohexenone based analogous as potent non-nucleoside reverse-transcriptase inhibitors. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.12.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Khalifa NM, Al-Omar MA. Synthesis and biological evaluation of 2-thioxopyrimidin-4(1H)-one derivatives as potential non-nucleoside HIV-1 reverse transcriptase inhibitors. Int J Mol Sci 2014; 15:20723-35. [PMID: 25397597 PMCID: PMC4264192 DOI: 10.3390/ijms151120723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/18/2014] [Accepted: 11/03/2014] [Indexed: 11/28/2022] Open
Abstract
A series of new 5-allyl-6-benzylpyrimidin-4(3H)-ones bearing different substituents at the C-2 position of the pyrimidine core have been synthesized and evaluated for their in vitro activities against human immunodeficiency virus type 1 (HIV-1) in the human T-lymphotropic type (MT-4 cell cultures). The majority of the title compounds showed moderate to good activities against HIV-1. Amongst them, 5-allyl-6-benzyl-2-(3-hydroxypropylthio)pyrimidin-4(3H)-one analogue 11c exhibited the most potent anti-HIV-1 activity (IC50 0.32 µM). The biological testing results clearly indicated that the substitution at C-2 position of the pyrimidine ring could increase the anti-HIV-1 reverse transcriptase (RT) activity.
Collapse
Affiliation(s)
- Nagy M Khalifa
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair, College of Pharmacy, King Saud University, Riyadh 11451, Saudia Arabia.
| | - Mohamed A Al-Omar
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair, College of Pharmacy, King Saud University, Riyadh 11451, Saudia Arabia.
| |
Collapse
|
25
|
Dual role of novel ingenol derivatives from Euphorbia tirucalli in HIV replication: inhibition of de novo infection and activation of viral LTR. PLoS One 2014; 9:e97257. [PMID: 24827152 PMCID: PMC4020785 DOI: 10.1371/journal.pone.0097257] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/16/2014] [Indexed: 11/19/2022] Open
Abstract
HIV infection is not cleared by antiretroviral drugs due to the presence of latently infected cells that are not eliminated with current therapies and persist in the blood and organs of infected patients. New compounds to activate these latent reservoirs have been evaluated so that, along with HAART, they can be used to activate latent virus and eliminate the latently infected cells resulting in eradication of viral infection. Here we describe three novel diterpenes isolated from the sap of Euphorbia tirucalli, a tropical shrub. These molecules, identified as ingenols, were modified at carbon 3 and termed ingenol synthetic derivatives (ISD). They activated the HIV-LTR in reporter cell lines and human PBMCs with latent virus in concentrations as low as 10 nM. ISDs were also able to inhibit the replication of HIV-1 subtype B and C in MT-4 cells and human PBMCs at concentrations of EC50 0.02 and 0.09 µM respectively, which are comparable to the EC50 of some antiretroviral currently used in AIDS treatment. Control of viral replication may be caused by downregulation of surface CD4, CCR5 and CXCR4 observed after ISD treatment in vitro. These compounds appear to be less cytotoxic than other diterpenes such as PMA and prostratin, with effective dose versus toxic dose TI>400. Although the mechanisms of action of the three ISDs are primarily attributed to the PKC pathway, downregulation of surface receptors and stimulation of the viral LTR might be differentially modulated by different PKC isoforms.
Collapse
|
26
|
Etravirine: a guide to its use in treatment-experienced adults with HIV-1 infection. DRUGS & THERAPY PERSPECTIVES 2014. [DOI: 10.1007/s40267-013-0094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Muchiri JM, Li D, Dykes C, Bambara RA. Efavirenz stimulates HIV-1 reverse transcriptase RNase H activity by a mechanism involving increased substrate binding and secondary cleavage activity. Biochemistry 2013; 52:4981-90. [PMID: 23806074 DOI: 10.1021/bi400618q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Efavirenz is a non-nucleoside reverse transcriptase inhibitor used for treating HIV/AIDS. We found that polymerization activity of a reverse transcriptase (RT) with the E478Q mutation that inactivates the RNase H catalytic site is much more sensitive to efavirenz than wild-type RT, indicating that a functional RNase H attenuates the effectiveness of efavirenz. Moreover, efavirenz actually stimulated wild-type RNase H binding and catalytic functions, indicating another link between efavirenz action and RNase H function. During reverse transcription in vivo, the RT that is extending the DNA primer also periodically cleaves the genomic RNA. The RNase H makes primary template cuts ~18 nucleotides from the growing DNA 3'-end, and when the RT pauses synthesis, it shifts to make secondary cuts ~9 nucleotides from the DNA 3'-end. After synthesis, RTs return to bind the remaining template RNA segments at their 5'-ends and make primary and secondary cuts, 18 and 9 nucleotides in, respectively. We found that efavirenz stimulates both 3'- and 5'-directed RNase H activity. Use of specific substrates revealed a particular acceleration of secondary cuts. Efavirenz specifically promoted binding of the RT to RNase H substrates, suggesting that it stabilizes the shifting of RTs to make the secondary cuts. We further showed that efavirenz similarly stimulates the RNase H of an RT from a patient-derived virus that is highly resistant and grows more rapidly in the presence of low concentrations of efavirenz. We suggest that for efavirenz-resistant RTs, stimulated RNase H activity contributes to increased viral fitness.
Collapse
Affiliation(s)
- John M Muchiri
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, New York 14642, United States
| | | | | | | |
Collapse
|
28
|
Nanorod-Shaped Basic Al2O3 Catalyzed N,N-Diformylation of Bisuracil Derivatives: A Greener "NOSE" Approach. ISRN ORGANIC CHEMISTRY 2013; 2013:793159. [PMID: 24052870 PMCID: PMC3767338 DOI: 10.1155/2013/793159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/10/2013] [Indexed: 12/04/2022]
Abstract
A feasible “NOSE” (nanoparticles-catalyzed organic synthesis enhancement) protocol has been developed for N,N-diformylation of bisuracil derivatives using nano-Al2O3 rods as an efficient, inexpensive, and recyclable catalyst under solvent-free reaction condition at 40°C. The catalyst was reused up to the 4th cycle without affecting the rate and yield of the N,N-diformylation products appreciably.
Collapse
|
29
|
Abstract
INTRODUCTION Etravirine (TMC125) is an orally administered second-generation non-nucleoside reverse transcriptase inhibitor (NNRTI) that is approved in treatment-experienced patients as addition to an optimized background therapy (OBT). AREAS COVERED A Medline search was conducted of Phase II - IV clinical trials, as well as a review of abstracts from major HIV and infectious disease conferences from 2010 - 2013, involving etravirine. EXPERT OPINION Etravirine is a well-tolerated NNRTI with a good safety profile and a higher genetic barrier for resistance compared to first-generation NNRTIs. Rash is a potential side effect but remains mostly mild to moderate. The necessity of taking it twice daily with food (200 mg bid.), potential pharmacokinetic interactions and low concentrations in the central nervous system (CNS) represent limitations. The efficacy of once daily etravirine (400 mg qid.) and the use in treatment modification/simplification strategies requires further research. Despite its favorable profile, etravirine is currently not sufficiently investigated nor approved for use in treatment-naïve patients which should be balanced against its potential as a backup NNRTI and the broad cross-resistance conferred by etravirine failure to other NNRTIs. Etravirine should be avoided following treatment failure with regimens containing rilpivirine, another second-generation NNRTI.
Collapse
Affiliation(s)
- Rik Schrijvers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Virology and Gene Therapy, Herestraat 49, 3000 KU Leuven, Belgium.
| |
Collapse
|
30
|
Synthesis and evaluation of coumarin derivatives as potential dual-action HIV-1 protease and reverse transcriptase inhibitors. Bioorg Med Chem 2013; 21:1964-71. [DOI: 10.1016/j.bmc.2013.01.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/06/2013] [Accepted: 01/12/2013] [Indexed: 11/21/2022]
|
31
|
Modh RP, Patel AC, Mahajan DH, Pannecouque C, De Clercq E, Chikhalia KH. Synthesis and evaluation of novel 4-substituted styryl quinazolines as potential antimicrobial agents. Arch Pharm (Weinheim) 2012; 345:964-72. [PMID: 23018557 DOI: 10.1002/ardp.201200291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 08/19/2012] [Accepted: 08/21/2012] [Indexed: 01/02/2023]
Abstract
In an attempt to afford possible antibacterial and anti-human immunodeficiency virus (HIV) agents, a series of 22 novel styryl quinazoline-based heterocyclic entities were designed and synthesized. Various substituted aryl urea and thiourea cores were incorporated at position 4 of quinazoline, followed by styrylation of position 2, aiming at an augmented biological potential. The synthesized compounds were well characterized through IR, (1) H NMR, (13) C NMR and elemental analyses. All compounds were screened for their in vitro anti-HIV activity against the HIV-1 (IIIB) and HIV-2 (ROD) strains. The antibacterial activity was also evaluated against various pathogenic Gram-positive and Gram-negative bacterial strains.
Collapse
Affiliation(s)
- Rahul P Modh
- Department of Chemistry, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | | | | | | | | | | |
Collapse
|
32
|
Seniya C, Yadav A, Uchadia K, Kumar S, Sagar N, Shrivastava P, Shrivastava S, Wadhwa G. Molecular docking of (5E)-3-(2-aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione on HIV-1 reverse transcriptase: novel drug acting on enzyme. Bioinformation 2012; 8:678-83. [PMID: 23055609 PMCID: PMC3449371 DOI: 10.6026/97320630008678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 07/05/2012] [Indexed: 11/23/2022] Open
Abstract
The study of Human immunodeficiency virus (HIV) in humans and animal models in last 31 years suggested that it is a causative agent of AIDS. This causes serious pandemic public health concern globally. It was reported that the HIV-1 reverse transcriptase (RT) played a critical role in the life cycle of HIV. Therefore, inhibition of HIV-1RT enzyme is one of the major and potential targets in the treatment of AIDS. The enzyme (HIV-1RT) was successfully targeted by non nucleotide reverse transcriptase inhibitors (NNRTIs). But frequent application of NNRTIs led drug resistance mutation on HIV infections. Therefore, there is a need to search new NNRTIs with appropriate pharmacophores. For the purpose, a virtually screened 3D model of unliganded HIV-1RT (1DLO) was explored. The unliganded HIV-1RT (1DLO) was docked with 4-thiazolidinone and its derivatives (ChemBank Database) by using AutoDock4. The best seven docking solutions complex were selected and analyzed by Ligplot. The analysis showed that derivative (5E)-3-(2- aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione (CID 3087795) has maximum potential against unliganded HIV-1RT (1DLO). The analysis was done on the basis of scoring and binding ability. The derivative (5E)-3-(2- aminoethyl)-5-(2- thienylmethylene)-1, 3-thiazolidine-2, 4-dione (CID 3087795) indicated minimum energy score and highest number of interactions with active site residue and could be a promising inhibitor for HIV-1 RT as Drug target.
Collapse
Affiliation(s)
- Chandrabhan Seniya
- Department of Biotechnology, Madhav Institute of Technology & Science Gwalior – 474005, M. P., India
| | - Ajay Yadav
- Department of Biotechnology, Madhav Institute of Technology & Science Gwalior – 474005, M. P., India
| | - Kuldeep Uchadia
- Department of Biotechnology, Madhav Institute of Technology & Science Gwalior – 474005, M. P., India
| | - Sanjay Kumar
- Department of Botany, Nagaland University, Headquarter Lumami, Nagaland- 798601, India
| | - Nitin Sagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai-400076
| | - Priyanka Shrivastava
- Department of Biotechnology, Madhav Institute of Technology & Science Gwalior – 474005, M. P., India
| | - Shilpi Shrivastava
- Department of Biotechnology, Madhav Institute of Technology & Science Gwalior – 474005, M. P., India
| | - Gulshan Wadhwa
- Apex Bioinformatics Centre, Department of Biotechnology, Ministry of Science and Technology, CGO complex, Lodhi Road, New Delhi – 110 003, India
| |
Collapse
|
33
|
Akyüz L, Sarıpınar E. Conformation depends on 4D-QSAR analysis using EC-GA method: pharmacophore identification and bioactivity prediction of TIBOs as non-nucleoside reverse transcriptase inhibitors. J Enzyme Inhib Med Chem 2012; 28:776-91. [PMID: 22591319 DOI: 10.3109/14756366.2012.684051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The electron conformational and genetic algorithm methods (EC-GA) were integrated for the identification of the pharmacophore group and predicting the anti HIV-1 activity of tetrahydroimidazo[4,5,1-jk][1,4]benzodiazepinone (TIBO) derivatives. To reveal the pharmacophore group, each conformation of all compounds was arranged by electron conformational matrices of congruity. Multiple comparisons of these matrices, within given tolerances for high active and low active TIBO derivatives, allow the identification of the pharmacophore group that refers to the electron conformational submatrix of activity. The effects of conformations, internal and external validation were investigated by four different models based on an ensemble of conformers and a single conformer, both with and without a test set. Model 1 using an ensemble of conformers for the training (39 compounds) and test sets (13 compounds), obtained by the optimum seven parameters, gave satisfactory results (R²(training) = 0.878, R²(test)= 0.910, q² = 0.840, q²(ext1) = 0.926 and q²(ext2) = 0.900).
Collapse
Affiliation(s)
- Lalehan Akyüz
- Faculty of Science, Department of Chemistry, Erciyes University, Kayseri, Turkey
| | | |
Collapse
|
34
|
Chakraborty S, Sanz Miguel PJ, Albertí FM, Das N. Construction of preorganized uracil based polytopic tectons for hydrogen-bonded supramolecular architectures. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
|
36
|
Docking-based 3D-QSAR analyses of pyrazole derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors. J Mol Model 2011; 18:1573-82. [DOI: 10.1007/s00894-011-1190-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/14/2011] [Indexed: 10/17/2022]
|
37
|
Das S, Thakur AJ. A Clean, Highly Efficient and One-Pot Green Synthesis of Aryl/Alkyl/Heteroaryl-Substituted Bis(6-amino-1,3-dimethyluracil-5-yl)methanes in Water. European J Org Chem 2011. [DOI: 10.1002/ejoc.201001581] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Cichero E, Buffa L, Fossa P. 3,4,5-Trisubstituted-1,2,4-4H-triazoles as WT and Y188L mutant HIV-1 non-nucleoside reverse transcriptase inhibitors: docking-based CoMFA and CoMSIA analyses. J Mol Model 2010; 17:1537-50. [PMID: 20922443 DOI: 10.1007/s00894-010-0857-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
3,4,5-Trisubstituted-1,2,4-4H-triazoles (TTs) have recently been identified as a new class of potent non-nucleoside HIV-1 reverse transcriptase (RT) inhibitors. Two series of triazoles have been studied, one of which was also screened against the Y188L mutant. A computational strategy based on molecular docking studies followed by comparative molecular fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) has been used to elucidate the atomic details of the RT/TT interactions and to identify the most important features impacting the TT antiretroviral activity. Two 3D-QSAR CoMFA and CoMSIA models were derived, using the TT pEC₅₀ values measured against wild-type (WT) HIV-1 (model A) and the Y188L mutant form (model B), respectively, as the dependent variable. The final model A CoMSIA (r(ncv)² = 0.97, r(cv)² = 0.89, SEE = 0.314, and r(pred)² = 0.82) and model B CoMSIA (r(ncv)² = 0.91, r(cv)² = 0.61, SEE = 0.236, and r(pred)² = 0.73) analyses were more predictive. The results allowed us to obtain useful information for the design of new compounds with improved potency towards WT HIV-1 or that are potentially active against the Y188L mutant.
Collapse
Affiliation(s)
- Elena Cichero
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Genova, Viale Benedetto XV n.3., 16132 Genova, Italy.
| | | | | |
Collapse
|
39
|
La Regina G, Coluccia A, Silvestri R. Looking for an active conformation of the future HIV type-1 non-nucleoside reverse transcriptase inhibitors. Antivir Chem Chemother 2010; 20:213-37. [PMID: 20710063 DOI: 10.3851/imp1607] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
HIV type-1 (HIV-1) non-nucleoside reverse transcriptase inhibitors (NNRTIs) are key drugs of highly active antiretroviral therapy (HAART) in the clinical management of AIDS/HIV infection. NNRTI-based HAART regimes effectively suppress viral reproduction, are not cytotoxic and show favourable pharmacokinetic properties. First-generation NNRTIs suffer the rapid selection of viral variants, hampering the binding of inhibitors into the reverse transcriptase (RT) non-nucleoside binding site (NNBS). Efforts to improve these first inhibitors led to the discovery of second-generation NNRTIs that proved to be effective against the drug-resistant mutant HIV-1 strains. The success of such agents launched a new season of NNRTI design and synthesis. This paper reviews the characteristics of second-generation NNRTIs, including etravirine, rilpivirine, RDEA-806, UK-453061, BIRL 355 BS, IDX 899, MK-4965 and HBY 097. In particular, the binding modes of these inhibitors into the NNBS of the HIV-1 RT and the most clinically relevant mutant RTs are analysed and discussed.
Collapse
Affiliation(s)
- Giuseppe La Regina
- Department of Chimica e Tecnologie del Farmaco, Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | | | | |
Collapse
|
40
|
Mangelinckx S, Nural Y, Dondas HA, Denolf B, Sillanpää R, De Kimpe N. Diastereoselective synthesis of 6-functionalized 4-aryl-1,3-oxazinan-2-ones and their application in the synthesis of 3-aryl-1,3-aminoalcohols and 6-arylpiperidine-2,4-diones. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.03.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
El-Brollosy NR, Al-Deeb OA, El-Emam AA, Pedersen EB, La Colla P, Collu G, Sanna G, Loddo R. Synthesis of novel uracil non-nucleoside derivatives as potential reverse transcriptase inhibitors of HIV-1. Arch Pharm (Weinheim) 2010; 342:663-70. [PMID: 19856332 DOI: 10.1002/ardp.200900139] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Novel emivirine and TNK-651 analogues 5a-d were synthesized by reaction of chloromethyl ethyl ether and / or benzyl chloromethyl ether, respectively, with uracils having 5-ethyl and 6-(4-methylbenzyl) or 6-(3,4-dimethoxybenzyl) substituents. A series of new uracil non-nucleosides substituted at N-1 with cyclopropylmethyloxymethyl 9a-d, 2-phenylethyloxymethyl 9e-h, and 3-phenylprop-1-yloxymethyl 9i-l were prepared on treatment of the corresponding uracils with the appropriate acetals 8a-c. Some of the tested compounds showed good activity against HIV-1 wild type. Among them, 1-cyclopropylmethyloxymethyl-5-ethyl-6-(3,5-dimethylbenzyl)uracil 9c and 5-ethyl-6-(3,5-dimethylbenzyl)-1-(2-phenylethyloxymethyl)uracil 9g showed inhibitory potency equally to emivirine against HIV-1 wild type. Furthermore, compounds 9c and 9g showed marginal better activity against NNRTI resistant mutants than emivirine.
Collapse
Affiliation(s)
- Nasser R El-Brollosy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: A review of the last 20 years (1989–2009). Antiviral Res 2010; 85:75-90. [DOI: 10.1016/j.antiviral.2009.09.008] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/08/2009] [Accepted: 09/12/2009] [Indexed: 11/20/2022]
|
43
|
Riahi S, Pourbasheer E, Dinarvand R, Ganjali MR, Norouzi P. Quantitative Structure-Activity Relationship Study on the Anti-HIV-1 Activity of Novel 6-Naphthylthio HEPT Analogs. Chem Biol Drug Des 2009; 74:165-72. [DOI: 10.1111/j.1747-0285.2009.00843.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Thakur AJ, Das S, Phukan AK. Replay of amide type resonance in 6-[(dimethylamino)methylene]1,3-dimethylaminouracil: A dynamic NMR and density functional theory study. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2009.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Cesarini S, Spallarossa A, Ranise A, Schenone S, La Colla P, Collu G, Sanna G, Loddo R. (Hetero)aroyl esters of 2-(N-phthalimido)ethanol and analogues: parallel synthesis, anti-HIV-1 activity and cytotoxicity. Med Chem Res 2009. [DOI: 10.1007/s00044-009-9192-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Cichero E, Cesarini S, Spallarossa A, Mosti L, Fossa P. Acylthiocarbamates as non-nucleoside HIV-1 reverse transcriptase inhibitors: docking studies and ligand-based CoMFA and CoMSIA analyses. J Mol Model 2009; 15:871-84. [DOI: 10.1007/s00894-008-0441-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 11/26/2008] [Indexed: 11/30/2022]
|
47
|
Cichero E, Cesarini S, Spallarossa A, Mosti L, Fossa P. Computational studies of the binding mode and 3D-QSAR analyses of symmetric formimidoester disulfides: a new class of non-nucleoside HIV-1 reverse transcriptase inhibitor. J Mol Model 2008; 15:357-67. [DOI: 10.1007/s00894-008-0402-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 09/16/2008] [Indexed: 11/30/2022]
|
48
|
D'Cruz OJ, Uckun FM. Novel tight binding PETT, HEPT and DABO-based non-nucleoside inhibitors of HIV-1 reverse transcriptase. J Enzyme Inhib Med Chem 2008; 21:329-50. [PMID: 17059165 DOI: 10.1080/14756360600774413] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are a key component of effective combination antiretroviral therapies for HIV/AIDS. NNRTIs despite their chemical diversity, bind to a common allosteric site of HIV-1 RT, the primary target for anti-AIDS chemotherapy, and noncompetitively inhibit DNA polymerization. NNRTIs currently in clinical use have a low genetic barrier to resistance and therefore, the need for novel NNRTIs active against drug-resistant mutants selected by current therapies is of paramount importance. We describe the chemistry and biological evaluation of highly potent novel phenethylthiazolylthiourea (PETT), 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) and dihydroalkoxybenzyloxopyrimidine (DABO) derivatives targeting the hydrophobic binding pocket of HIV-1 RT. These NNRTIs were rationally designed by molecular modeling and docking studies using a novel composite binding pocket that predicted how drug-resistant mutations would change the RT binding pocket shape, volume, and chemical make-up and how these changes could affect NNRTI binding. Several ligand derivatization sites were identified for docked NNRTIs that fit the composite binding pocket. The best fit was determined by calculating an inhibition constant (Ludi Ki) of the docked compound for the composite binding pocket. Compounds with a Ludi Ki of <1 microM were identified as the most promising tight binding NNRTIs. These NNRTIs displayed high selective indices with robust anti-HIV-1 activity against the wild-type and drug-resistant isolates carrying multiple RT gene mutations. The high rate of treatment failure due to the emergence of drug resistance mutations makes the discovery of broad-spectrum PETT, HEPT and DABO-based NNRTIs useful as a component of effective combination regimens.
Collapse
Affiliation(s)
- Osmond J D'Cruz
- Drug Discovery Program, Parker Hughes Institute, 2657 Patton Road, St. Paul, MN 55113, USA.
| | | |
Collapse
|
49
|
Synthesis and antimicrobial evaluation of 6-azauracil non-nucleosides. MONATSHEFTE FUR CHEMIE 2008. [DOI: 10.1007/s00706-008-0948-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Cesarini S, Spallarossa A, Ranise A, Schenone S, Bruno O, La Colla P, Casula L, Collu G, Sanna G, Loddo R. Parallel one-pot synthesis and structure–activity relationship study of symmetric formimidoester disulfides as a novel class of potent non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem 2008; 16:6353-63. [DOI: 10.1016/j.bmc.2008.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/29/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
|