1
|
Harshaw C, Kojima S, Wellman CL, Demas GE, Morrow AL, Taft DH, Kenkel WM, Leffel JK, Alberts JR. Maternal antibiotics disrupt microbiome, behavior, and temperature regulation in unexposed infant mice. Dev Psychobiol 2022; 64:e22289. [PMID: 35748626 PMCID: PMC9236156 DOI: 10.1002/dev.22289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 12/31/2022]
Abstract
Maternal antibiotic (ABx) exposure can significantly perturb the transfer of microbiota from mother to offspring, resulting in dysbiosis of potential relevance to neurodevelopmental disorders such as autism spectrum disorder (ASD). Studies in rodent models have found long-term neurobehavioral effects in offspring of ABx-treated dams, but ASD-relevant behavior during the early preweaning period has thus far been neglected. Here, we exposed C57BL/6J mouse dams to ABx (5 mg/ml neomycin, 1.25 μg/ml pimaricin, .075% v/v acetic acid) dissolved in drinking water from gestational day 12 through offspring postnatal day 14. A number of ASD-relevant behaviors were assayed in offspring, including ultrasonic vocalization (USV) production during maternal separation, group huddling in response to cold challenge, and olfactory-guided home orientation. In addition, we obtained measures of thermoregulatory competence in pups during and following behavioral testing. We found a number of behavioral differences in offspring of ABx-treated dams (e.g., modulation of USVs by pup weight, activity while huddling) and provide evidence that some of these behavioral effects can be related to thermoregulatory deficiencies, particularly at younger ages. Our results suggest not only that ABx can disrupt microbiomes, thermoregulation, and behavior, but that metabolic effects may confound the interpretation of behavioral differences observed after early-life ABx exposure.
Collapse
Affiliation(s)
| | - Sayuri Kojima
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN
| | - Cara L. Wellman
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN
| | | | - Ardythe L. Morrow
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Diana Hazard Taft
- Department of Food Science and Technology, University of California, Davis, Davis, CA
| | - William M. Kenkel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE
| | - Joseph K. Leffel
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN
| | - Jeffrey R. Alberts
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN
| |
Collapse
|
2
|
Gore AC, Krishnan K, Reilly MP. Endocrine-disrupting chemicals: Effects on neuroendocrine systems and the neurobiology of social behavior. Horm Behav 2019; 111:7-22. [PMID: 30476496 PMCID: PMC6527472 DOI: 10.1016/j.yhbeh.2018.11.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
A contribution to SBN/ICN special issue. Endocrine-disrupting chemicals (EDCs) are pervasive in the environment. They are found in plastics and plasticizers (bisphenol A (BPA) and phthalates), in industrial chemicals such as polychlorinated biphenyls (PCBs), and include some pesticides and fungicides such as vinclozolin. These chemicals act on hormone receptors and their downstream signaling pathways, and can interfere with hormone synthesis, metabolism, and actions. Because the developing brain is particularly sensitive to endogenous hormones, disruptions by EDCs can change neural circuits that form during periods of brain organization. Here, we review the evidence that EDCs affect developing hypothalamic neuroendocrine systems, and change behavioral outcomes in juvenile, adolescent, and adult life in exposed individuals, and even in their descendants. Our focus is on social, communicative and sociosexual behaviors, as how an individual behaves with a same- or opposite-sex conspecific determines that individual's ability to exist in a community, be selected as a mate, and reproduce successfully.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Krittika Krishnan
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael P Reilly
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
3
|
Krishnan K, Rahman S, Hasbum A, Morales D, Thompson LM, Crews D, Gore AC. Maternal care modulates transgenerational effects of endocrine-disrupting chemicals on offspring pup vocalizations and adult behaviors. Horm Behav 2019; 107:96-109. [PMID: 30576639 PMCID: PMC6366859 DOI: 10.1016/j.yhbeh.2018.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can act upon a developing organism to change its endocrine health and behavior in adulthood. Beyond actions on the exposed individuals, transgenerational effects of several EDCs have been reported. This study assessed the combinatorial impact of EDC-altered maternal care and transgenerational inheritance on F3 male and female offspring. Pregnant rats were exposed to EDCs with different modes of action: the weakly estrogenic polychlorinated biphenyl (PCB) mixture Aroclor 1221, the anti-androgenic fungicide vinclozolin (VIN), or the vehicle (6% dimethylsulfoxide in sesame oil; VEH) during embryonic development. The F1 male and female offspring were bred through the paternal- or maternal-lineage with untreated partners to generate F2 offspring. This process was repeated through both maternal and paternal lineages to create the F3 generation. Maternal care of F2 dams towards their F3 offspring was altered in a lineage-dependent manner, particularly in PCB paternal-lineage animals. When F3 pups were recorded for ultrasonic vocalizations (USVs) following separation from the mother, the rate of neonatal USVs in F3 offspring were decreased in PCB paternal-lineage pups. In adulthood, anxiety-like behaviors of the F3 rats were tested, with only small effects of EDCs detected. These interactions of maternal behaviors and EDC effects across generations, especially via the paternal lineage, has implications for health and environmental responses in wildlife and humans.
Collapse
Affiliation(s)
- Krittika Krishnan
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shafaqat Rahman
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Asbiel Hasbum
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel Morales
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lindsay M Thompson
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - David Crews
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Integrative Biology, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
4
|
Krishnan K, Mittal N, Thompson LM, Rodriguez-Santiago M, Duvauchelle CL, Crews D, Gore AC. Effects of the Endocrine-Disrupting Chemicals, Vinclozolin and Polychlorinated Biphenyls, on Physiological and Sociosexual Phenotypes in F2 Generation Sprague-Dawley Rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:97005. [PMID: 30212226 PMCID: PMC6375392 DOI: 10.1289/ehp3550] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Exposure to endocrine-disrupting chemicals (EDCs) during gestation influences development of the F1 generation offspring and can result in disease and dysfunction in adulthood. Limited evidence suggests consequences on the F2 generation, exposed as germ cells within the F1 fetus. These F2s provide a unique window into the programming effects of EDCs. OBJECTIVE This study assessed intergenerational effects of EDC exposure on adult physiology and behavior in Sprague-Dawley rats. METHODS Pregnant rats were exposed to either a polychlorinated biphenyl (PCB) mixture, Aroclor 1,221 (A1221), the fungicide vinclozolin (VIN), or the vehicle (VEH) (6% dimethylsulfoxide in sesame oil) alone. A1221 is weakly estrogenic, while VIN is antiandrogenic, enabling us to compare different classes of EDCs. The F1 male and female offspring were bred to generate the paternal- and maternal-lineage F2 generation. This F2 generation was assessed for physiological outcomes, ultrasonic vocalizations (USVs), and sexual behavior in adulthood. RESULTS Each EDC caused phenotypic effects in a sex- and lineage-dependent manner. The most robustly affected group was the paternal-lineage males. F2 VIN paternal male descendants had increased body weight throughout the lifespan, lower concentrations of circulating estradiol, and lower adrenal and testicular indices. Both VIN and A1221 paternal-lineage males also exhibited the greatest number of changes in the characteristics of USVs in response to an opposite-sex animal and changes in sexual behaviors in a mating test. CONCLUSION Exposure of rats to EDCs at the germ cell stage led to differences in the physiological and behavioral phenotype later in life, especially in males. This finding has implications for multigenerational physiological and reproductive health in wildlife and humans. https://doi.org/10.1289/EHP3550.
Collapse
Affiliation(s)
- Krittika Krishnan
- 1 Department of Psychology, University of Texas at Austin , Austin, Texas, USA
| | - Nitish Mittal
- 2 Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin , Austin, Texas, USA
| | - Lindsay M Thompson
- 2 Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin , Austin, Texas, USA
| | | | - Christine L Duvauchelle
- 2 Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin , Austin, Texas, USA
| | - David Crews
- 1 Department of Psychology, University of Texas at Austin , Austin, Texas, USA
- 4 Department of Integrative Biology, University of Texas at Austin , Austin, Texas, USA
| | - Andrea C Gore
- 1 Department of Psychology, University of Texas at Austin , Austin, Texas, USA
- 2 Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin , Austin, Texas, USA
- 3 Institute of Neuroscience, University of Texas at Austin , Austin, Texas, USA
| |
Collapse
|
5
|
Gillette R, Reilly MP, Topper VY, Thompson LM, Crews D, Gore AC. Anxiety-like behaviors in adulthood are altered in male but not female rats exposed to low dosages of polychlorinated biphenyls in utero. Horm Behav 2017; 87:8-15. [PMID: 27794483 PMCID: PMC5603326 DOI: 10.1016/j.yhbeh.2016.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 11/24/2022]
Abstract
Exposure to polychlorinated biphenyls (PCBs), a class of endocrine-disrupting chemicals, can result in altered reproductive behavior in adulthood, especially when exposure occurs during critical periods of brain sexual differentiation in the fetus. Whether PCBs alter other sexually dimorphic behaviors such as those involved in anxiety is poorly understood. To address this, pregnant rat dams were injected twice, on gestational days 16 and 18, with the weakly estrogenic PCB mixture Aroclor 1221 (A1221) at one of two low dosages (0.5mg/kg or 1.0mg/kg, hereafter 1.0 and 0.5), estradiol benzoate (EB; 50μg/kg) as a positive estrogenic control, or the vehicle (3% DMSO in sesame oil). We also conducted a comprehensive assessment of developmental milestones of the F1 male and female offspring. There were no effects of treatment on sex ratio at birth and age at eye opening. Puberty, assessed by vaginal opening in females and preputial separation in males, was not affected in females but was advanced in males treated with A1221 (1.0). Males and females treated with A1221 (both dosages) were heavier in early adulthood relative to controls. The earliest manifestation of this effect developed in males prior to puberty and in females slightly later, during puberty. Anxiety-like behaviors were tested using the light:dark box and elevated plus maze tests in adulthood. In females, anxiety behaviors were unaffected by treatment. Males treated with A1221 (1.0) showed reduced indices of anxiety and increased activity in the light:dark box but not the elevated plus maze. EB failed to replicate the phenotype produced by A1221 for any of the developmental and behavioral endpoints. Collectively, these results indicate that PCBs increase body weight in both sexes, but their effects on anxiety-like behaviors are specific to males. Furthermore, differences between the results of A1221 and EB suggest that the PCBs are likely acting through mechanisms distinct from their estrogenic activity.
Collapse
Affiliation(s)
- Ross Gillette
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Michael P Reilly
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Viktoria Y Topper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Lindsay M Thompson
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - David Crews
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States; Section of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Andrea C Gore
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States; Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
6
|
Suvorov A, Vandenberg LN. To Cull or Not To Cull? Considerations for Studies of Endocrine-Disrupting Chemicals. Endocrinology 2016; 157:2586-94. [PMID: 27175970 PMCID: PMC4929555 DOI: 10.1210/en.2016-1145] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The power of animal models is derived from the ability to control experimental variables so that observed effects may be unequivocally attributed to the factor that was changed. One variable that is difficult to control in animal experiments is the number and composition of offspring in a litter. To account for this variability, artificial equalization of the number of offspring in a litter (culling) is often used. The rationale for culling, however, has always been controversial. The Developmental Origins of Health and Disease concept provides a new context to evaluate the pros and cons of culling in laboratory animal studies, especially in the context of endocrine-disrupting chemicals. Emerging evidence indicates that culling, especially of large litters, can drastically change the feeding status of a pup, which can result in compensatory growth with long-term consequences for the animal, including increased risk of cardio-metabolic diseases. Similarly, culling of litters to intentionally bias sex ratios can alter the animal's behavior and physiology, with effects observed on a wide range of outcomes. Thus, in an attempt to control for variability in developmental rates, culling introduces an uncontrolled or confounding variable, which itself may affect a broad spectrum of health-related consequences. Variabilities in culling protocols could be responsible for differences in responses to endocrine-disrupting chemicals reported across studies. Because litter sex composition and size are vectors that can influence both prenatal and postnatal growth, they are essential considerations for the interpretation of results from laboratory animal studies.
Collapse
Affiliation(s)
- Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
7
|
Joel D, Fausto-Sterling A. Beyond sex differences: new approaches for thinking about variation in brain structure and function. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150451. [PMID: 26833844 DOI: 10.1098/rstb.2015.0451] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
In the study of variation in brain structure and function that might relate to sex and gender, language matters because it frames our research questions and methods. In this article, we offer an approach to thinking about variation in brain structure and function that pulls us outside the sex differences formulation. We argue that the existence of differences between the brains of males and females does not unravel the relations between sex and the brain nor is it sufficient to characterize a population of brains. Such characterization is necessary for studying sex effects on the brain as well as for studying brain structure and function in general. Animal studies show that sex interacts with environmental, developmental and genetic factors to affect the brain. Studies of humans further suggest that human brains are better described as belonging to a single heterogeneous population rather than two distinct populations. We discuss the implications of these observations for studies of brain and behaviour in humans and in laboratory animals. We believe that studying sex effects in context and developing or adopting analytical methods that take into account the heterogeneity of the brain are crucial for the advancement of human health and well-being.
Collapse
Affiliation(s)
- Daphna Joel
- School of Psychological Sciences, Tel-Aviv University, Ramat Aviv, Tel-Aviv, Israel Sagol School of Neuoroscience, Tel-Aviv University, Ramat Aviv, Tel-Aviv, Israel
| | - Anne Fausto-Sterling
- Department of Molecular Biology, Cell and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
8
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1318] [Impact Index Per Article: 146.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
9
|
Fausto-Sterling A, Crews D, Sung J, García-Coll C, Seifer R. Multimodal sex-related differences in infant and in infant-directed maternal behaviors during months three through twelve of development. Dev Psychol 2015; 51:1351-66. [PMID: 26372294 PMCID: PMC4580286 DOI: 10.1037/dev0000033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Using the concepts of sensory and affective experience, this work relates the concepts of socialization and cognitive development to the embodiment of gender in the human infant. Evidence obtained from biweekly observations from 30 children and their mothers observed from age 3 months to age 12 months revealed measurable sex-related differences in how mothers handle and touch their infants. This work offers novel approaches to visualizing combinations of behaviors with the aim of encouraging researchers to think in terms of suites of action rather than singular sensory or motor systems. New avenues of research into the mechanisms which produce sex-related differences in behavior are suggested.
Collapse
|
10
|
Abstract
Many, if not all, questions in biology and psychology today were formulated and considered in depth, though typically in a different language, from the 1700's to the early 1900's. However, because of politics or fashion, some topics fell out of favor or failed to recruit new scientists and hence languished. Despite greatly expanded scholarship in the history of the life sciences in the twentieth century, many such topics have had to be rediscovered in recent years, while much of the wisdom already accrued stays in the older literature and not in active minds. This is particularly true today when scientific advances appear at breakneck speed. It would not be an exaggeration to say that many 'breakthroughs' turn out really to be rediscoveries of forgotten observations. Two areas of particular significance to the interdisciplinary study of behavior are the Norms of Reaction (from Biology) and the concept of Plasticity (from Psychology). These and related fields benefit from the perspective of epigenetics so long as rigorous operational definitions are implemented. It is also important to revive Hogben's admonition that the interaction of hereditary and environment cannot be understood outside of the context of development. Five examples of increasing complexity in phenotypic plasticity in brain and behavior are presented to illustrate this perspective.
Collapse
Affiliation(s)
- David Crews
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Seth A Weisberg
- Institute of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sahotra Sarkar
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Departments of Integrative Biology and Philosophy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Sex differences in thermogenesis structure behavior and contact within huddles of infant mice. PLoS One 2014; 9:e87405. [PMID: 24498099 PMCID: PMC3909189 DOI: 10.1371/journal.pone.0087405] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/24/2013] [Indexed: 11/19/2022] Open
Abstract
Brown adipose tissue (BAT) is a thermogenic effector abundant in most mammalian infants. For multiparous species such as rats and mice, the interscapular BAT deposit provides both an emergency "thermal blanket" and a target for nestmates seeking warmth, thereby increasing the cohesiveness of huddling groups. Sex differences in BAT regulation and thermogenesis have been documented in a number of species, including mice (Mus musculus)--with females generally exhibiting relative upregulation of BAT. It is nonetheless unknown whether this difference affects the behavioral dynamics occurring within huddles of infant rodents. We investigated sex differences in BAT thermogenesis and its relation to contact while huddling in eight-day-old C57BL/6 mouse pups using infrared thermography, scoring of contact, and causal modeling of the relation between interscapular temperature relative to other pups in the huddle (T IS (rel)) and contacts while huddling. We found that females were warmer than their male siblings during cold challenge, under conditions both in which pups were isolated and in which pups could actively huddle in groups of six (3 male, 3 female). This difference garnered females significantly more contacts from other pups than males during cold-induced huddling. Granger analyses revealed a significant negative feedback relationship between contacts with males and T IS (rel) for females, and positive feedback between contacts with females and T IS (rel) for males, indicating that male pups drained heat from female siblings while huddling. Significant sex assortment nonetheless occurred, such that females made more contacts with other females than expected by chance, apparently outcompeting males for access to each other. These results provide further evidence of enhanced BAT thermogenesis in female mice. Slight differences in BAT can significantly structure the behavioral dynamics occurring in huddles, resulting in differences in the quantity and quality of contacts obtained by the individuals therein, creating sex differences in behavioral interactions beginning in early infancy.
Collapse
|
12
|
Jensen Peña C, Champagne FA. Implications of temporal variation in maternal care for the prediction of neurobiological and behavioral outcomes in offspring. Behav Neurosci 2013; 127:33-46. [PMID: 23398440 DOI: 10.1037/a0031219] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous studies in Long-Evans rats demonstrated a significant relationship between variation in pup licking/grooming and arched-back nursing (LG-ABN) and offspring development. However, maternal care is dynamic and exhibits significant temporal variation. In the current study, we assessed temporal variation in LG and ABN in lactating rats across the circadian cycle and determined the impact of these behaviors for the prediction of offspring hypothalamic gene expression, anxiety-like behavior, and responsiveness to a high fat diet (HFD). We find that distinguishing between dams that engage in stable individual differences in maternal behavior (Low, Mid, High) requires assessment across the light-dark phases of the light cycle and across multiple postpartum days. Among juvenile female offspring, we find a positive correlation between maternal LG and mRNA levels of estrogen receptor alpha and beta and the oxytocin receptor (when LG is assessed across the light-dark cycle or in the dark phase). In young adults, we find sex-specific effects, with female High LG offspring exhibiting increased exploration of a novel environment and increased latency to approach HFD, and male High LG offspring displaying increased activity in a novel environment and reduced HFD consumption. Importantly, these effects on behavior were primarily evident when LG was assessed across the light-dark cycle and ABN was not associated with these measures. Overall, our findings illustrate the dissociation between the effects of LG and ABN on offspring development and provide critical insights into the temporal characteristics of maternal behavior that have methodological implications for the study of maternal effects.
Collapse
|
13
|
|
14
|
Crews D. Epigenetic modifications of brain and behavior: theory and practice. Horm Behav 2011; 59:393-8. [PMID: 20633562 PMCID: PMC3401366 DOI: 10.1016/j.yhbeh.2010.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/25/2010] [Accepted: 07/06/2010] [Indexed: 01/11/2023]
Abstract
Evolutionary change is a product of selection. Selection operates on the phenotype, and its consequences are manifest in representation of the genotype in successive generations. Of particular interest to both evolutionary and behavioral biologists is the newly emerging field of epigenetics and behavior. Two broad categories of epigenetic modifications must be distinguished. Context-dependent epigenetic change can be observed if the environmental factors that bring about the epigenetic modification persists (e.g., the frequency and quality of maternal care modifying the brain and future behavior of the offspring each generation). Because the environment induces epiallelic change, removing the causative factor can reverse a context-dependent epigenetic state. Germline-dependent epigenetic change occurs when the epigenetic imprint is mediated through the germline. Such effects are independent of the causative agent and there is no evidence at present that a germline-dependent epigenetic state can be reversed. Finally, only germline-dependent epigenetic modifications can be truly transgenerational. Although an individual's life history is progressive and continuous, it might usefully be viewed as the cumulation of divisions: each period emerging from what has gone before and, at the same time, setting the stage for what follows. These life history stages are somewhat arbitrary, with many traits spanning conventional divisions, but each period tends to have its own characteristic ethologies and particular contribution to neural and behavioral phenotypes. To understand how these episodes 'fit' together, it is necessary to deconstruct early life events and study each period both in its' own right and how it interacts with the preceding and subsequent stages. Lastly, it seems intuitive that germline- and context-dependent epigenetic modifications interact, resulting in the individual variation observed in behaviors, but until now this hypothesis has never been tested experimentally.
Collapse
Affiliation(s)
- David Crews
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|