1
|
Adel A, Abdul-Hamid M, Abdel-Kawi SH, A. Abdelaziz M, Sakr HI, Ahmed OM. Bone marrow-derived mesenchymal stem cells reduce CCl 4-induced kidney injury and fibrosis in male Wistar rats. Ren Fail 2024; 46:2319330. [PMID: 39049729 PMCID: PMC11275530 DOI: 10.1080/0886022x.2024.2319330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/11/2024] [Indexed: 07/27/2024] Open
Abstract
AIM This study explores the possible therapeutic role of rats and mice bone marrow-derived mesenchymal stem cells (BM-MSCs) on renal damage and toxicity brought on by carbon tetrachloride (CCl4) in Wistar rats. METHODS Following an intraperitoneal injection of CCl4 (0.5 mL/kg b.w. twice weekly) for eight weeks, male Wistar rats were intravenously treated with rats and mice BM-MSCs (1 × 106 cells in 0.2 mL Dulbecco's Modified Eagle Medium (DMEM)/rat/week) a week for four weeks. Kidney functions were evaluated and kidney samples were examined using hematoxylin and eosin (H&E), Masson's trichrome (MT) staining techniques, and electron microscopy analysis. Kidney cyclooxygenase-2 (COX-2), protein 53 (p53), and tumor necrosis factor-α (TNF-α) were detected by immunohistochemical staining techniques. Additionally, bioindicators of oxidative stress and antioxidant defense systems were identified in kidney tissue. RESULTS In CCl4-injected rats, serum creatinine, urea, and uric acid levels significantly increased, as did renal lipid peroxidation (LPO), while superoxide dismutase, glutathione peroxidase (GPx), glutathione (GSH) transferase, and GSH levels significantly dropped in the kidneys. Histologically, the kidneys displayed a wide range of structural abnormalities, such as glomerular shrinkage, tubular dilations, inflammatory leukocytic infiltration, fibroblast proliferation, and elevated collagen content. Inflammatory cytokines like COX-2 and TNF-α as well as the pro-apoptotic mediator p53 were considerably upregulated. Treatment of BM-MSCs from mice and rats with CCl4-injected rats considerably reduced the previously noted abnormalities. CONCLUSIONS By boosting antioxidant defense and reducing apoptosis and inflammation, BM-MSCs from mice and rats were able to enhance kidney function and histological integrity in rats that had received CCl4 injections.
Collapse
Affiliation(s)
- Asmaa Adel
- Histology, Cell Biology and Genetic Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Manal Abdul-Hamid
- Histology, Cell Biology and Genetic Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Samraa H. Abdel-Kawi
- Medical Histology and Cell Biology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A. Abdelaziz
- Basic Medical Sciences Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hader I. Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Osama M. Ahmed
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Focak M, Mitrasinovic-Brulic M, Filipic F, Suljevic D. A comparison of the potential of melatonin and tryptophan to ameliorate CCl 4-induced hepatic and renal toxicity in Wistar rats. Drug Chem Toxicol 2024:1-10. [PMID: 39257210 DOI: 10.1080/01480545.2024.2401023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/02/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
CCl4 causes oxidative injury, fatty degeneration, fibrosis of the liver, renal failure, and even hepatocellular and renal carcinoma. Certain substances have the potential to neutralize the harmful effects of CCl4, so it will lead to numerous beneficial effects. Melatonin (MEL) is a powerful antioxidant that regulates circadian rhythm and has beneficial effects on organism; tryptophan (TRP) is its precursor necessary for the synthesis of MEL. The aim of the current study was to determine whether MEL and TRP, have protective effects during subchronic application of CCl4 to the liver and kidneys. Results suggest that CCl4 led to decrease of total proteins, albumins, globulins, erythrocytes, hemoglobin, and hematocrit; and increase of creatinine, AST, ALT values, and leukocytes. MEL and TRP both showing protective effects on regulation of serum proteins, albumins, globulins, A/G, AST, ALT, and creatinine levels. TRP had been shown to have potential in regulation of disbalanced hematological parameters caused by CCl4. TRP had beneficial effects on hepatocyte morphology in term of beaded chromatin and preserved cell morphology. Overall, oral supplementation of TRP had better protective effects on liver/kidneys compared to MEL.
Collapse
Affiliation(s)
- Muhamed Focak
- Laboratory for Biochemistry and Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Maja Mitrasinovic-Brulic
- Laboratory for Biochemistry and Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Damir Suljevic
- Laboratory for Biochemistry and Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
3
|
Suljević D, Fočak M, Škrijelj R, Mitrašinović-Brulić M. Therapeutic benefit of oregano oil in the acute idiosyncratic hepatotoxicity induced by carbon tetrachloride in rats: Adverse effects of high dose of oreganum. Cell Biochem Funct 2024; 42:e4015. [PMID: 38613208 DOI: 10.1002/cbf.4015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Toxicity caused by carbon tetrachloride (CCl4) can lead to serious liver injury. The aim of the study is to investigate the protective effects of oregano oil (Origanum minutiflorum extract oil) against CCl4-induced liver injury. Two doses of oregano oil were used in the experiment: a low dose (LD; 20 mg/kg) and a high dose (HD; 60 mg/kg) during 2 weeks. CCl4 caused severe liver damage, nucleolus destruction in hepatocytes and cytogenetic changes in the nucleus. Indirectly, CCl4 causes decreased protein synthesis and significantly high creatinine and urea values. Hematological disorders have been recorded, such as decreased RBC and hemoglobin concentration, increased WBC and deformability of the erythrocyte membrane. Both doses of oregano oil had protective effects. Improved protein synthesis and high globulins level, creatinine and urea were found in both groups. Cytogenetic changes in the nucleus of hepatocytes were reduced. A high dose of oregano oil had maximal protective effects for RBC, but a very weak effect on hemoglobin synthesis. Also, WBC and lymphocyte values were low. Origanum stimulates protein synthesis and recovery of hepatocytes after liver injury, reduces the deformability of the erythrocyte membrane. High doses of oregano oil decreased WBC and lymphocytes which may lead to a weakening of the immune response. However, high doses are more effective against severe platelet aggregation than low doses, suggesting an effective treatment against thrombocytosis.
Collapse
Affiliation(s)
- Damir Suljević
- Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Rifat Škrijelj
- Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Maja Mitrašinović-Brulić
- Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
4
|
Eassawy MMT, Ismail AFM. Protective effect of chicory and/or artichoke leaves extracts on carbon tetrachloride and gamma-irradiation-induced chronic nephrotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:1666-1681. [PMID: 38031637 DOI: 10.1002/tox.24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
The prevalence of chronic kidney disease (CKD) is in progress that causes kidney failure, leading to global problems. This manuscript investigated the nephroprotective effects of chicory (CLE) and/or artichoke (ALE) leaves extracts on carbon tetrachloride (CCl4 ) and gamma-irradiation (Rad)-induced chronic nephrotoxicity in rats. Rats were divided into 10 groups (10 animals/group): group 1: control, groups 2-7 rats were treated with CLE, ALE, CLE/ALE, CCl4 , Rad, and CCl4 /Rad, respectively. Groups 8 to 10, rats were intoxicated with CCl4 /Rad, and treated with CLE, ALE, and CLE/ALE extracts, respectively, for 4 weeks. The data demonstrated that CCl4 administration or Rad exposure induced high levels of urea and creatinine, with low levels of total protein and albumin in the serum. However, high levels of malondialdehyde (MDA), nitric oxide (NO), hydrogen peroxide (H2 O2 ), some pro-inflammatory markers such as interleukins (IL-1β, IL-2, IL-6), TNF-α, NF-κB, the fibrotic marker; TGF-β1, calcium, and copper, low contents of reduced glutathione (GSH), iron, and zinc, and suppression of the antioxidant enzymes' activity, superoxide dismutase (SOD), and catalase (CAT) were observed. In addition, the Wnt and β-catenin protein expression ratios were up-regulated in the kidney tissues of the CCl4 , and Rad intoxicated animals. However, the combined treatment CCl4 /Rad augmented these measurements. On the other hand, CLE, ALE, and CLE/ALE treatments demonstrated nephroprotection in the kidney tissues of CCl4 /Rad intoxicated animals, in the order of CLE/ALE>ALE>CLE by ameliorating the investigated parameters. Kidney tissues' histopathological examinations confirmed these results. In conclusion, CLE and/or ALE demonstrated nephroprotection against CCl4 /Rad co-toxicity mediated by down-regulation of renal Wnt/β-catenin protein expressions.
Collapse
Affiliation(s)
- Mamdouh M T Eassawy
- Regional Center for Food and Feed (RCFF), Agricultural Research Center, Giza, Egypt
| | - Amel F M Ismail
- Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
5
|
Aysal H, Atasoy N, Kömüroğlu AU. Protective Effect of Calcium Fructoborate Against Carbon Tetrachloride-Induced Toxicity in Rats. Biol Trace Elem Res 2023; 201:800-809. [PMID: 35353337 DOI: 10.1007/s12011-022-03202-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/11/2022] [Indexed: 01/21/2023]
Abstract
Carbon tetrachloride (CCl4) is a xenbiotic that can cause cellular damage with free radical production. Calcium fructoborate (CFB) is a boron-based nutritional supplement with antioxidant properties. Calcium fructoborate used in our study is marketed by Future Ceutical Corporation as FruiteX-B, which has a chemical structure similar to the natural form of boron found in edible plants. In this study, it was aimed to determine the antioxidant activity, DNA damage, and histopathological effects of CFB on the liver and kidney tissues of rats in the toxicity induced by CCl4. During 14 days of treatment, 42 wistar albino rats were divided into 7 in each group, control group, olive oil (0.25 ml twice a week), CFB (1 mg/day), CFB-CCl4 (1 mg/day, twice a week 0.5 ml), ZY-CFB (0.25 ml/twice a week, 1 mg/2 times day twice), and CCl4 (0.5 ml twice a week). AST, ALT, HDL, LDH, urea, creatinine, triglyceride, total protein and albumin levels were analyzed in the blood serum of rats. The antioxidant defense system enzymes CAT, GR, GPx, SOD activities and GSH, MDA and 8-OHdG levels in liver and kidney tissues were determined and evaluated. In addition, liver and kidney tissues were examined with only hispatological tests. As a result of the findings, it shows that CCl4 disrupts antioxidant defense mechanisms by disrupting some enzyme systems in the kidney and liver. CFB (Fruit-XB), a boronbased dietary supplement, regulates antioxidant metabolism by strengthening biochemical metabolic profiles against oxidation, and also has a protective effect against DNA damage caused by oxidation. Thus, it was concluded that CFB has antioxidant property against CCl4-induced liver and kidney toxicity.
Collapse
Affiliation(s)
- Hatice Aysal
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| | - Nurhayat Atasoy
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey.
| | - Ahmet Ufuk Kömüroğlu
- Van Vocational Higher School of Healthcare Studies, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
6
|
Nomier YA, Alshahrani S, Elsabahy M, Asaad GF, Hassan A, El-Dakroury WA. Ameliorative effect of chitosan nanoparticles against carbon tetrachloride-induced nephrotoxicity in Wistar rats. PHARMACEUTICAL BIOLOGY 2022; 60:2134-2144. [PMID: 36305518 PMCID: PMC9621247 DOI: 10.1080/13880209.2022.2136208] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/18/2022] [Accepted: 10/08/2022] [Indexed: 05/24/2023]
Abstract
CONTEXT Chitosan is a biocompatible polysaccharide that has been widely exploited in biomedical and drug delivery applications. OBJECTIVE This study explores the renoprotective effect of chitosan nanoparticles in vivo in rats. MATERIALS AND METHODS Chitosan nanoparticles were prepared via ionotropic gelation method, and several in vitro characterizations were performed, including measurements of particle size, zeta potential, polydispersity index, Fourier transform-infrared spectroscopy, differential scanning calorimetry, and transmission electron microscopy (TEM) imaging. Wistar rats were divided randomly into four groups; negative control, CCl4-induced nephrotoxicity (untreated), and two groups receiving CCl4 + chitosan NPs (10 and 20 mg/kg) orally for 2 weeks. The renoprotective effect was assessed by measuring oxidative, apoptotic, and inflammatory biomarkers, and via histopathological and immunohistochemical examinations for the visualization of NF-κB and COX-2 in renal tissues. RESULTS Monodisperse spherical nanosized (56 nm) particles were successfully prepared as evidenced by dynamic light scattering and TEM. Oral administration of chitosan nanoparticles (10 and 20 mg/kg) concurrently with CCl4 for 2 weeks resulted in 13.6% and 21.5% reduction in serum creatinine and increase in the level of depleted reduced glutathione (23.1% and 31.8%), respectively, when compared with the positive control group. Chitosan nanoparticles (20 mg/kg) revealed a significant (p ˂ 0.05) decrease in malondialdehyde levels (30.6%), tumour necrosis factor-α (33.6%), interleukin-1β (31.1%), and caspase-3 (36.6%). CONCLUSIONS Chitosan nanoparticles afforded significant protection and amelioration against CCl4-induced nephrotoxicity. Thus, chitosan nanoparticles could afford a potential nanotherapeutic system for the management of nephrotoxicity which allows for broadening their role in biomedical delivery applications.
Collapse
Affiliation(s)
- Yousra A. Nomier
- Pharmacology and Toxicology Department, Pharmacy College, Jazan University, Jazan, Saudi Arabia
| | - Saeed Alshahrani
- Pharmacology and Toxicology Department, Pharmacy College, Jazan University, Jazan, Saudi Arabia
| | - Mahmoud Elsabahy
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo, Egypt
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Gihan F. Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Walaa A. El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, Egypt
| |
Collapse
|
7
|
Oluremi BB, Osamudiamen PM, Adeniji JA, Aiyelaagbe OO. Anti-Measles Virus Activity of 4-Hydroxy-3-Methoxy Benzaldehyde (Vanillin) isolated from Xylopia aethiopica (Dunal) A. Rich. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
8
|
Ammar NM, Hassan HA, Abdallah HMI, Afifi SM, Elgamal AM, Farrag ARH, El-Gendy AENG, Farag MA, Elshamy AI. Protective Effects of Naringenin from Citrus sinensis (var. Valencia) Peels against CCl 4-Induced Hepatic and Renal Injuries in Rats Assessed by Metabolomics, Histological and Biochemical Analyses. Nutrients 2022; 14:841. [PMID: 35215494 PMCID: PMC8924893 DOI: 10.3390/nu14040841] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Citrus fruits are grown worldwide for their special nutritive and several health benefits. Among citrus bioactives, naringenin, a major flavanone, exhibits a potential hepatoprotective effect that is not fully elucidated. Herein, serum biochemical parameters and histopathological assays were used to estimate the hepatoprotective activity of naringenin, isolated from Citrus sinensis (var. Valencia) peels, in CCl4-induced injury in a rat model. Further, GC-MS-based untargeted metabolomics was used to characterize the potential metabolite biomarkers associated with its activity. Present results revealed that naringenin could ameliorate the increases in liver enzymes (ALT and AST) induced by CCl4 and attenuate the pathological changes in liver tissue. Naringenin decreased urea, creatinine and uric acid levels and improved the kidney tissue architecture, suggesting its role in treating renal disorders. In addition, naringenin increased the expression of the antiapoptoic cell marker, Bcl-2. Significant changes in serum metabolic profiling were noticed in the naringenin-treated group compared to the CCl4 group, exemplified by increases in palmitic acid, stearic acid, myristic acid and lauric acids and decrease levels of alanine, tryptophan, lactic acid, glucosamine and glucose in CCl4 model rats. The results suggested that naringenin's potential hepato- and renoprotective effects could be related to its ability to regulate fatty acids (FAs), amino acids and energy metabolism, which may become effective targets for liver and kidney toxicity management. In conclusion, the current study presents new insights into the hepato- and renoprotective mechanisms of naringenin against CCl4-induced toxicity.
Collapse
Affiliation(s)
- Naglaa M. Ammar
- Therapeutic Chemistry Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza 12622, Egypt; (N.M.A.); (H.A.H.)
| | - Heba A. Hassan
- Therapeutic Chemistry Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza 12622, Egypt; (N.M.A.); (H.A.H.)
| | - Heba M. I. Abdallah
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt;
| | - Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt;
| | - Abdelbaset M. Elgamal
- Chemistry of Microbial and Natural Products Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza 12622, Egypt;
| | - Abdel Razik H. Farrag
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt;
| | - Abd El-Nasser G. El-Gendy
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Cairo 12622, Egypt;
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt;
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Abdelsamed I. Elshamy
- Chemistry of Natural Compounds Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
9
|
Metwaly HA, El‐Eraky AM, Ibrahim EE, Kandil KK, El‐Sayed MA, El‐Tabakh NM, Motawea AM, Ali HA, Jabban MZ, Mahmoud ME, Abdelfattah WH, Elmorsy MA, Ghanim AMH. Vanillin attenuates thioacetamide‐induced renal assault by direct and indirect mediation of the
TGFβ
,
ERK
and Smad signalling pathways in rats. Cell Biochem Funct 2022; 40:175-188. [DOI: 10.1002/cbf.3686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Heba A. Metwaly
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy Alexandria University Alexandria Egypt
- Department of Biochemistry, Faculty of Pharmacy Delta University Gamasa Egypt
| | | | | | | | | | | | | | - Helmi A. Ali
- Faculty of Pharmacy Delta University Gamasa Egypt
| | | | | | | | - Mohammad A. Elmorsy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| | - Amal M. H. Ghanim
- Department of Biochemistry, Faculty of Pharmacy Fayoum University Fayoum Egypt
| |
Collapse
|
10
|
El-Haskoury R, Al-Waili N, Kamoun Z, Makni M, Al-Waili A, Lyoussi B. Antioxidant activity and protective effect of propolis against carbon tetrachloride-induced liver and kidney injury by modulation of oxidative parameters. Vet World 2021; 14:3076-3083. [PMID: 35153395 PMCID: PMC8829412 DOI: 10.14202/vetworld.2021.3076-3083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background and Aim: Propolis has a protective effect against cellular damage caused by toxic agents such as drugs, metals, xenobiotics, and chemicals. The aim of this study was to investigate the antioxidant activity and the effect of ethanolic extract of propolis on carbon tetrachloride (CCl4)-induced oxidative stress on kidney and liver injury in rat. Materials and Methods: The study quantified phenol, flavone, and flavonol in propolis and assessed antioxidant activity using 2, 2-diphenyl-1-picrylhydrazyl, ferric reducing antioxidant power, and molybdate. The investigators used four groups of rats to study the effect of propolis on CCl4-induced toxicity. Propolis extract was given orally (500 mg/kg) for 12 days, and CCl4 (1 mL/kg) was administered intraperitoneally on day 5 of the experiment. Blood and tissue samples of the liver and kidney were collected on day 13 to measure biochemical and oxidative parameters. The parameters included malondialdehyde (MDA), protein carbonyl formation (PCO), advanced oxidation protein products (AOPP), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and ascorbic acid (AA). Biochemical parameters included liver enzymes, blood urea (BU), creatinine, and uric acid (UA). Results: CCl4 decreased antioxidant agents, including CAT, GPx, GSH, and AA in the liver and kidney tissues. The oxidative agents’ levels, including MDA, PCO, and AOPP, increased by CCl4 compared to the control group. CCl4 increased liver enzymes, UA, BU, and creatinine in the blood samples. Propolis significantly alleviated liver and kidney function, improved antioxidant parameters, and decreased levels of oxidative agents. Conclusion: The data showed for the 1st time that Moroccan propolis has a protective effect against CCl4-induced kidney and liver toxicity by maintaining the activity of the antioxidant defense system, which was most likely due to its antioxidant activity.
Collapse
Affiliation(s)
- Redouan El-Haskoury
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Noori Al-Waili
- New York Medical Care for Nephrology, Richmond Hill, New York, United States
| | - Zeineb Kamoun
- Laboratory of Toxicology-Microbiology, and Environmental Health (UR11ES70), Faculty of Sciences of Sfax, Higher Institute of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Mohamed Makni
- Laboratory of Toxicology-Microbiology, and Environmental Health (UR11ES70), Faculty of Sciences of Sfax, Higher Institute of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Ahmed Al-Waili
- New York Medical Care for Nephrology, Richmond Hill, New York, United States
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
11
|
Antioxidant Activity, Phenolic Profile, and Nephroprotective Potential of Anastatica hierochuntica Ethanolic and Aqueous Extracts against CCl 4-Induced Nephrotoxicity in Rats. Nutrients 2021; 13:nu13092973. [PMID: 34578850 PMCID: PMC8468951 DOI: 10.3390/nu13092973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022] Open
Abstract
Kaff-e-Maryam (Anastatica hierochuntica L.) is extensively used to treat a range of health problems, most notably to ease childbirth and alleviate reproductive system-related disorders. This study aimed to evaluate the effect of A. hierochuntica ethanolic (KEE), and aqueous (KAE) extracts on CCl4-induced oxidative stress and nephrotoxicity in rats using the biochemical markers for renal functions and antioxidant status as well as histopathological examinations of kidney tissue. A. hierochuntica contained 67.49 mg GAE g−1 of total phenolic compounds (TPC), 3.51 µg g−1 of total carotenoids (TC), and 49.78 and 17.45 mg QE g−1 of total flavonoids (TF) and total flavonols (TFL), respectively. It resulted in 128.71 µmol of TE g−1 of DPPH-RSA and 141.92 µmol of TE g−1 of ABTS-RSA. A. hierochuntica presented superior antioxidant activity by inhibiting linoleic acid radicals and chelating oxidation metals. The HPLC analysis resulted in 9 and 21 phenolic acids and 6 and 2 flavonoids in KEE and KAE with a predominance of sinapic and syringic acids, respectively. Intramuscular injection of vit. E + Se and oral administration of KEE, KAE, and KEE + KAE at 250 mg kg−1 body weight significantly restored serum creatinine, urea, K, total protein, and albumin levels. Additionally, they reduced malondialdehyde (MOD), restored reduced-glutathione (GSH), and enhanced superoxide dismutase (SOD) levels. KEE, KAE, and KEE + KAE protected the kidneys from CCl4-nephrotoxicity as they mainly attenuated induced oxidative stress. Total nephroprotection was about 83.27%, 97.62%, and 78.85% for KEE, KAE, and KEE + KAE, respectively. Both vit. E + Se and A. hierochuntica extracts attenuated the histopathological alteration in CCl4-treated rats. In conclusion, A. hierochuntica, especially KAE, has the potential capability to restore oxidative stability and improve kidney function after CCl4 acute kidney injury better than KEE. Therefore, A. hierochuntica has the potential to be a useful therapeutic agent in the treatment of drug-induced nephrotoxicity.
Collapse
|
12
|
Unsal V, Cicek M, Sabancilar İ. Toxicity of carbon tetrachloride, free radicals and role of antioxidants. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:279-295. [PMID: 32970608 DOI: 10.1515/reveh-2020-0048] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Several chemicals, including environmental toxicants and clinically useful drugs, cause severe cellular damage to different organs of our body through metabolic activation to highly reactive substances such as free radicals. Carbon tetrachloride is an organic compound of which chemical formula is CCl₄. CCl4 is strong toxic in the kidney, testicle, brain, heart, lung, other tissues, and particularly in the liver. CCl4 is a powerful hepatoxic, nephrotoxic and prooxidant agent which is widely used to induce hepatotoxicity in experimental animals and to create hepatocellular carcinoma, hepatic fibrosis/cirrhosis and liver injury, chemical hepatitis model, renal failure model, and nephrotoxicity model in recent years. The damage-causing mechanism of CCl4 in tissues can be explained as oxidative damage caused by lipid peroxidation which starts after the conversion of CCl4 to free radicals of highly toxic trichloromethyl radicals (•CCl₃) and trichloromethyl peroxyl radical (•CCl₃O2) via cytochrome P450 enzyme. Complete disruption of lipids (i.e., peroxidation) is the hallmark of oxidative damage. Free radicals are structures that contain one or more unpaired electrons in atomic or molecular orbitals. These toxic free radicals induce a chain reaction and lipid peroxidation in membrane-like structures rich in phospholipids, such as mitochondria and endoplasmic reticulum. CCl4-induced lipid peroxidation is the cause of oxidative stress, mitochondrial stress, endoplasmic reticulum stress. Free radicals trigger many biological processes, such as apoptosis, necrosis, ferroptosis and autophagy. Recent researches state that the way to reduce or eliminate these CCl4-induced negative effects is the antioxidants originated from natural sources. For normal physiological function, there must be a balance between free radicals and antioxidants. If this balance is in favor of free radicals, various pathological conditions occur. Free radicals play a role in various pathological conditions including Pulmonary disease, ischemia / reperfusion rheumatological diseases, autoimmune disorders, cardiovascular diseases, cancer, kidney diseases, hypertension, eye diseases, neurological disorders, diabetes and aging. Free radicals are antagonized by antioxidants and quenched. Antioxidants do not only remove free radicals, but they also have anti-inflammatory, anti-allergic, antithrombotic, antiviral, and anti-carcinogenic activities. Antioxidants contain high phenol compounds and antioxidants have relatively low side effects compared to synthetic drugs. The antioxidants investigated in CCI4 toxicity are usually antioxidants from plants and are promising because of their rich resources and low side effects. Data were investigated using PubMed, EBSCO, Embase, Web of Science, DOAJ, Scopus and Google Scholar, Carbon tetrachloride, carbon tetrachloride-induced toxicity, oxidative stress, and free radical keywords. This study aims to enlighten the damage-causing mechanism created by free radicals which are produced by CCl4 on tissues/cells and to discuss the role of antioxidants in the prevention of tissue/cell damage. In the future, Antioxidants can be used as a therapeutic strategy to strengthen effective treatment against substances with high toxicity such as CCl4 and increase the antioxidant capacity of cells.
Collapse
Affiliation(s)
- Velid Unsal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, Mardin, Turkey
| | - Mustafa Cicek
- Department of Anatomy, Faculty of Medicine, Kahramanmaraş Sütçü imam University, Kahramanmaraş, Turkey
| | - İlhan Sabancilar
- Department of Biochemistry, Health Sciences Institute, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
13
|
Mirzaei S, Mohammadi AT, Gholami MH, Hashemi F, Zarrabi A, Zabolian A, Hushmandi K, Makvandi P, Samec M, Liskova A, Kubatka P, Nabavi N, Aref AR, Ashrafizadeh M, Khan H, Najafi M. Nrf2 signaling pathway in cisplatin chemotherapy: Potential involvement in organ protection and chemoresistance. Pharmacol Res 2021; 167:105575. [PMID: 33771701 DOI: 10.1016/j.phrs.2021.105575] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor and its induction is of significant importance for protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) stimulate Nrf2 signaling, enhancing the activity of antioxidant enzymes such as catalase, superoxide dismutase and glutathione peroxidase. These enzymes are associated with retarding oxidative stress. On the other hand, Nrf2 activation in cancer cells is responsible for the development of chemoresistance due to disrupting oxidative mediated-cell death by reducing ROS levels. Cisplatin (CP), cis-diamminedichloroplatinum(II), is a potent anti-tumor agent extensively used in cancer therapy, but its frequent application leads to the development of chemoresistance as well. In the present study, association of Nrf2 signaling with chemoresistance to CP and protection against its deleterious effects is discussed. Anti-tumor compounds, mainly phytochemicals, retard chemoresistance by suppressing Nrf2 signaling. Upstream mediators such as microRNAs can regulate Nrf2 expression during CP chemotherapy regimens. Protection against side effects of CP is mediated via activating Nrf2 signaling and its downstream targets activating antioxidant defense system. Protective agents that activate Nrf2 signaling, can ameliorate CP-mediated ototoxicity, nephrotoxicity and neurotoxicity. Reducing ROS levels and preventing cell death are the most important factors involved in alleviating CP toxicity upon Nrf2 activation. As pre-clinical experiments advocate the role of Nrf2 in chemoprotection and CP resistance, translating these findings to the clinic can provide a significant progress in treatment of cancer patients.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aliasghar Tabatabaei Mohammadi
- Asu Vanda Gene Research Company, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, 56025 Pisa, Pontedera, Italy
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6 Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanashah University of Medical Sciences, Kermanshah 6715847141, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
14
|
Mahmod II, Ismail IS, Alitheen NB, Normi YM, Abas F, Khatib A, Rudiyanto, Latip J. NMR and LCMS analytical platforms exhibited the nephroprotective effect of Clinacanthus nutans in cisplatin-induced nephrotoxicity in the in vitro condition. BMC Complement Med Ther 2020; 20:320. [PMID: 33092571 PMCID: PMC7579835 DOI: 10.1186/s12906-020-03067-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Background Clinacanthus nutans (C. nutans) Lind. locally known as Belalai Gajah or Sabah snake grass is a medicinal plant belonging to Acanthaceae family. In Asia, this plant is traditionally used for treating skin rashes, insects and snake bites, diabetes mellitus, fever and for diuretic effect. C. nutans has been reported to possess biological activities including anti-oxidant, anti-inflammation, anti-cancer, anti-diabetic and anti-viral activities. Methods Proton Nuclear Magnetic Resonance (1H NMR) and Liquid Chromatography Mass Spectroscopy (LCMS) coupled with multivariate data analysis were employed to characterize the metabolic variations of intracellular metabolites and the compositional changes of the corresponding culture media in rat renal proximal tubular cells (NRK-52E). Results NMR and LCMS analysis highlighted choline, creatine, phosphocholine, valine, acetic acid, phenylalanine, leucine, glutamic acid, threonine, uridine and proline as the main metabolites which differentiated the cisplatin-induced group of NRK-52E from control cells extract. The corresponding media exhibited lactic acid, glutamine, glutamic acid and glucose-1-phosphate as the varied metabolites. The altered pathways perturbed by cisplatin nephrotoxic on NRK-52E cells included changes in amino acid metabolism, lipid metabolism and glycolysis. Conclusion The C. nutans aqueous extract (1000 μg/mL) exhibited the most potential nephroprotective effect against cisplatin toxicity on NRK-52E cell lines at 89% of viability. The protective effect could be seen through the changes of the metabolites such as choline, alanine and valine in the C. nutans pre-treated samples with those of the cisplatin-induced group. Supplementary information Supplementary information accompanies this paper at 10.1186/s12906-020-03067-3.
Collapse
Affiliation(s)
- Ilya Iryani Mahmod
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Alfi Khatib
- Faculty of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Rudiyanto
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Jalifah Latip
- School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bandar Baru Bangi, Selangor, Malaysia
| |
Collapse
|
15
|
Alshanwani AR, Faddah LM, Hagar H, Alhusaini AM, Shaheen S, Mohammad RA, Alharbi FMB, AlHarthii A, Badr AM. The beneficial effects of antioxidants combination on cardiac injury induced by tetrachloromethane. Drug Chem Toxicol 2020; 45:1364-1372. [PMID: 33059470 DOI: 10.1080/01480545.2020.1831012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The purpose of this research was to evaluate the efficacy of carsil (CAR) either alone or in combination with α-tocopherol (α-TOCO) and/or turmeric (TUMR) against tetrachloromethane (TCM)-induced cardiomyocyte injury in rats. Administration of CAR either alone or in combination with α-TOCO and/or TUMR post-TCM injection, significantly mitigated the increases in serum troponin T, creatine kinase-MB (CK-MB) as well as interleukin-6 (IL-6), interferon γ (IFN-γ), tumor necrosis factor-α (TNF-α), C-reactive protein (CRP). They also decline the elevation of caspase-3, vascular endothelial growth factor (VEGF) protein expression as well as DNA damage in cardiac tissues induced by TCM. The biochemical results were confirmed by histopathological investigation. Conclusion: The combination of the three antioxidants showed greater cardioprotective potential, compared to individual drugs. Therefore, this combination may be recommended as a complementary therapy to antagonize cardiac injury induced by different insults.
Collapse
Affiliation(s)
- Aliah R Alshanwani
- College of Medicine, Pharmacology and Physiology Department, King Saud University, Riyadh, Saudi Arabia
| | - Laila M Faddah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Hagar
- College of Medicine, Pharmacology and Physiology Department, King Saud University, Riyadh, Saudi Arabia
| | - Ahlam M Alhusaini
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sameerah Shaheen
- College of Medicine, Anatomy Department and Stem Cell Unit, King Saud University, Riyadh, Saudi Arabia
| | - Raeesa A Mohammad
- College of Science, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Fatima M B Alharbi
- College of Science, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Alaa AlHarthii
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amira M Badr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
16
|
Ellagic acid prevents kidney injury and oxidative damage via regulation of Nrf-2/NF-κB signaling in carbon tetrachloride induced rats. Mol Biol Rep 2020; 47:7959-7970. [PMID: 33006714 DOI: 10.1007/s11033-020-05873-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
Phytochemicals, bioactive food compounds, found in plants have been described as protective agents against renal injury. This work was planned to evaluate the effects of EA on anti-oxidative and anti-inflammation pathways in kidney damage induced with carbon tetrachloride. In this study, experimental animals (n = 36, 8 weeks old rats) were divided into 4 groups as follows: 1) Control group 2) EA group (10 mg/kg body weight) 3) CCl4 group (1.5 ml/kg, body weight) 4) EA + CCl4 group. The potentially protective effect of EA on kidney damage exposed by CCl4 in rats were evaluated. EA administration protects CCl4 induced kidney damage against oxidative stress through its antioxidant protection. Treatment of EA significantly reduced lipid peroxidation and improved glutathione and catalase enzyme activity. Recently studies showed that EA activated caspase-3 and nuclear transcription factor erythroid 2 related factor driven antioxidant signal pathway and protected the kidney against damage induced by oxidative stress. Furthermore, EA also markedly decreased the level of cyclooxygenase-2, the vascular endothelial growth factor and tumor necrosis factor-alpha and suppressed the protein synthesis of nuclear factor-kappa-B. This study reveals that EA has kidney protective effect against CCl4 induced oxidative damage and inflammation.
Collapse
|
17
|
Younis NN, Elsherbiny NM, Shaheen MA, Elseweidy MM. Modulation of NADPH oxidase and Nrf2/HO-1 pathway by vanillin in cisplatin-induced nephrotoxicity in rats. J Pharm Pharmacol 2020; 72:1546-1555. [PMID: 32746497 DOI: 10.1111/jphp.13340] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/28/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To investigate the protective effect of vanillin in cisplatin (CP)-induced nephrotoxicity in rats and elucidate the role of nrf-2 and its downstream antioxidant molecules. METHODS Rats received vanillin (100 mg/kg orally) for 10 constitutive days and CP (7.5 mg/kg, once, ip) on day 6 of vanillin administration. KEY FINDINGS Cisplatin suppressed body weight gain, increased serum urea and creatinine and renal malondialdehyde and nitric oxide while decreased renal total antioxidant capacity. Up-regulation of NADPH oxidase-4 (NOX-4) was marked in renal tissue of CP-treated rats along with down-regulation of the antioxidant genes (nuclear factor erythroid 2-related factor2 (NRF2) and haem oxygenase-1(HO-1)). Increased tumour necrosis factor-α and decreased interleukin-10 with increased myeloperoxidase activity were apparent in renal tissue of CP-treated rats along with marked tubular injury, neutrophil infiltration and increased apoptosis (caspase-3) and some degree of interstitial fibrosis. Vanillin prophylactic administration prevented the deterioration of kidney function, oxidative and nitrosative stress. It also suppressed NOX-4 and up-regulated NRF2 and HO-1 expression in renal tissue. Inflammation, apoptosis and tubular injury were also inhibited by vanillin. CONCLUSIONS The antioxidant mechanism by which vanillin protected against CP-induced nephrotoxicity involved the inhibition of NOX-4 along with the stimulation of Nrf2/HO-1 signalling pathway. These in turn inhibited inflammation and apoptosis.
Collapse
Affiliation(s)
- Nahla N Younis
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Nehal M Elsherbiny
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohamed A Shaheen
- Histology and Cell Biology department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M Elseweidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Hamed H, Boulila S, Ghrab F, Kallel R, Boudawara T, El Feki A. The preventive effect of aqueous extract of Rosemary ( Rosmarinus officinalis) leaves against the nephrotoxicity of carbon tetrachloride in mice. Arch Physiol Biochem 2020; 126:201-208. [PMID: 30501137 DOI: 10.1080/13813455.2018.1508236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study aimed to evaluate the performance effect of aqueous extract of Rosmarinus officinalis (AERO) against the kidney toxicity induced by CCl4 in mice. The results showed that the renal damage induced by CCl4 was associated with a rise in oxidative stress monitored by a significant increase of TBARS and PCO levels (+89% and +136% respectively, p < .001) and a significant decrease of GSH level (-68%, p < .001) and antioxidants enzymes such as SOD, CAT, and GPX activities (-41.7%, -47.8%, and -50.5%; p < .001, respectively). Also, the nephropathology parameters including creatinine, BUN, and urea (+68.9%, +47%, +48·6% respectively, p < .05) were remarkably increased. These findings were substantiated by histological study. Pretreatment with Rosemary extract significantly attenuated the CCl4 related toxic effects via more than one mechanism such as the inhibition of lipid peroxidation, the stimulation of the synthesis of cellular antioxidants, the decrease of the biomarker kidney and the correction of the kidney structure. We can conclude that the Rosemary is efficient in the prevention of kidney function against CCl4 toxicity.
Collapse
Affiliation(s)
- Houda Hamed
- Laboratory of Animal Ecophysiology Faculty of Sciences of Sfax, Sfax, Tunisia
| | - Salha Boulila
- Laboratory of Animal Ecophysiology Faculty of Sciences of Sfax, Sfax, Tunisia
| | - Ferdaws Ghrab
- Laboratory of Animal Ecophysiology Faculty of Sciences of Sfax, Sfax, Tunisia
| | - Rim Kallel
- Anatomopathology Laboratory, CHU Habib Bourguiba, Sfax, Tunisia
| | - Tahia Boudawara
- Anatomopathology Laboratory, CHU Habib Bourguiba, Sfax, Tunisia
| | - Abdelfattah El Feki
- Laboratory of Animal Ecophysiology Faculty of Sciences of Sfax, Sfax, Tunisia
| |
Collapse
|
19
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
20
|
Bezerra-Filho CS, Barboza JN, Souza MT, Sabry P, Ismail NS, de Sousa DP. Therapeutic Potential of Vanillin and its Main Metabolites to Regulate the Inflammatory Response and Oxidative Stress. Mini Rev Med Chem 2019; 19:1681-1693. [DOI: 10.2174/1389557519666190312164355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
Many phenolic compounds found in foods and medicinal plants have shown interesting
therapeutic potential and have attracted the attention of the pharmaceutical industry as promising
pharmacologically active compounds in health promotion and disease prevention. Vanillin is a phenolic
aldehyde, widely used as a flavoring agent in the food, pharmaceutical, and cosmetics industries. A
variety of pharmacological activities has been attributed to this compound and its main metabolites,
vanillic acid and vanillyl alcohol, including their anti-inflammatory ability. The relationship of the anti-
inflammatory effects of vanillin, vanillic acid, and vanillyl alcohol and their actions on oxidative
stress is well established. Considering that the inflammatory process is related to several pathologies,
including new diseases with few therapeutic options, and limited efficiency, the search for effective
treatment strategies and discovery of new anti-inflammatory agents capable of modulating inflammation
becomes necessary. Therefore, in this review, we discuss the therapeutic potential of vanillin and
its main metabolites for the treatment of inflammatory diseases and their actions on redox status. In
addition, the molecular docking evaluation of vanillin, its metabolites and isoeugenol were carried out
into the phospholipase A2 binding site.
Collapse
Affiliation(s)
| | - Joice N. Barboza
- Department of Pharmaceutical Sciences, Universidade Federal da Paraiba, Joao Pessoa, Brazil
| | - Marilia T.S. Souza
- Department of Pharmacy, Universidade Federal de Sergipe, Sao Cristóvao, Brazil
| | - Peter Sabry
- National Organization for Drug Control and Research, Cairo, Egypt
| | - Nasser S.M. Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Damião P. de Sousa
- Department of Pharmaceutical Sciences, Universidade Federal da Paraiba, Joao Pessoa, Brazil
| |
Collapse
|
21
|
Zabad IEM, Amin MN, El-Shishtawy MM. Protective effect of vanillin on diabetic nephropathy by decreasing advanced glycation end products in rats. Life Sci 2019; 239:117088. [PMID: 31759039 DOI: 10.1016/j.lfs.2019.117088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/09/2019] [Accepted: 11/17/2019] [Indexed: 12/16/2022]
Abstract
AIMS Diabetic nephropathy (DN) is a common chronic microvascular complication of both types of diabetes mellitus, which leads to renal dysfunction and subsequent need of dialysis and organ transplantation. Advanced glycation end products (AGEs) are metabolic consequence of hyperglycemia and are main contributory factor in the DN pathogenesis through mediating establishment of oxidative status and chronic inflammatory milieu. This study aimed to explore the impact of vanillin on preventing the progression of DN. MAIN METHODS Experimental DN model was established in rats utilizing streptozotocin. Serum concentration of AGEs and Interleukin-6 (IL-6) and transforming growth factor β1 (TGFβ1) levels in kidney homogenate were assessed using ELISA technique. Also, we evaluated the expression of nuclear factor kappa B (NF-κB) using immunohistochemistry. KEY FINDINGS Treatment with vanillin for 8 weeks significantly ameliorated DN. Vanillin significantly decreased hyperglycemia and improved kidney function reflected by decreased serum levels of blood urea nitrogen, creatinine, and decreased proteinuria. Also, vanillin significantly decreased malondialdehyde content and elevated superoxide dismutase activity in renal tissues. Moreover, vanillin decreased renal expression of NF-κB and renal concentrations of IL-6, TGFβ1 and collagen. In addition, vanillin significantly decreased serum AGEs concentration. Also, vanillin attenuated histological abnormalities in kidney architecture. SIGNIFICANCE Vanillin, which is a cheap and abundant natural product, exhibited anti-AGEs, antioxidant, anti-inflammatory and anti-fibrotic activities. These activities might be helpful and potent mechanisms in preventing the progression of DN.
Collapse
Affiliation(s)
- Imad Eddin M Zabad
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed N Amin
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mamdouh M El-Shishtawy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
22
|
Popović D, Kocić G, Katić V, Jović Z, Zarubica A, Janković Veličković L, Nikolić V, Jović A, Kundalić B, Rakić V, Ulrih NP, Skrt M, Sokolović D, Dinić L, Stojanović M, Milosavljević A, Veličković F, Sokolović D. Protective effects of anthocyanins from bilberry extract in rats exposed to nephrotoxic effects of carbon tetrachloride. Chem Biol Interact 2019; 304:61-72. [PMID: 30825423 DOI: 10.1016/j.cbi.2019.02.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/07/2019] [Accepted: 02/22/2019] [Indexed: 11/30/2022]
Abstract
This study examined the nephroprotective effects of 15 different anthocyanins from the bilberry extract on the acute kidney injury caused by CCl4. The acute nephrotoxicity in rats was induced 24 h after the treatment with a single dose of CCl4 (3 mL/kg, i.p.).The nephroprotective effects of the anthocyanins were examined in the animals that had been given the bilberry extract in a single dose of 200 mg of anthocyanins/kg daily, 7 days orally, while on the seventh day, 3 h after the last dose of anthocyanins, the animals received a single dose of CCl4 (3 mL/kg, i.p.) and were sacrificed 24 h later. When the nephrotoxicant alone was administered, it resulted in a substantial increase of the pro-oxidative (TBARS, CD, H2O2, XO, and GSSG) and pro-inflammatory markers (TNF-α, NO, and MPO), as well as a noticeable reduction of the antioxidant enzymes (CAT, SOD, POD, GPx, GST, GR) and GSH when compared to the results of the control group. Moreover, the application of CCl4 significantly influenced a reduction of the renal function, as well as an increase in the sensitive and specific injury indicators of the kidney epithelial cells (β2-microglobulin, NGAL, KIM1/TIM1) in the serum and urine of rats. The pretreatment of the animals poisoned with CCl4 with the anthocyanins from the bilberry extract led to a noticeable reduction in the pro-oxidative and pro-inflammatory markers with reduced consumption of the antioxidant defence kidney capacity, compared to the animals exposed to CCl4 alone. Anthocyanins have been protective for the kidney parenchyma, with an apparent absence of the tubular and periglomerular necrosis, severe degenerative changes, inflammatory mononuclear infiltrates and dilatation of proximal and distal tubules, in contrast to the CCl4-intoxicated animals. The nephroprotective effects of anthocyanins can be explained by strong antioxidant and anti-inflammatory effects achieved through the stabilization and neutralization of highly reactive and unstable toxic CCl4 metabolites.
Collapse
Affiliation(s)
- Dejan Popović
- Department of Biochemistry, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000, Niš, Serbia.
| | - Gordana Kocić
- Department of Biochemistry, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000, Niš, Serbia
| | - Vuka Katić
- Department of Pathology, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000, Niš, Serbia
| | - Zorica Jović
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000, Niš, Serbia
| | - Aleksandra Zarubica
- Department of Chemistry, Faculty of Science and Mathematics, Višegradska 33, 18000, Niš, Serbia
| | - Ljubinka Janković Veličković
- Department of Pathology, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000, Niš, Serbia
| | - Valentina Nikolić
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000, Niš, Serbia
| | - Andrija Jović
- Clinic of Skin and Venereal Diseases, Clinical Center of Niš, Bulevar dr Zorana Đinđića 48, Serbia
| | - Braca Kundalić
- Department of Anatomy, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000, Niš, Serbia
| | - Violeta Rakić
- College of Agriculture and Food Technology, Ćirila i Metodija 1, 18400, Prokuplje, Serbia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Mihaela Skrt
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Danka Sokolović
- Institute for Blood Transfusion in Niš, Bulevar dr Zorana Đinđića 48, 18000, Niš, Serbia
| | - Ljubomir Dinić
- Clinic of Urology, Clinical Center of Niš, Bulevar dr Zorana Đinđića 48, 18000, Niš, Serbia
| | - Marko Stojanović
- Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000, Niš, Serbia
| | | | - Filip Veličković
- Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000, Niš, Serbia
| | - Dušan Sokolović
- Department of Biochemistry, Faculty of Medicine, University of Niš, Bulevar dr Zorana Đinđića 81, 18000, Niš, Serbia
| |
Collapse
|
23
|
Yusufoglu HS, Soliman GA, Foudah AI, Abdulkader MS, A. El-Bann H, Alam A, Ayman Salk M. Protective Effect of Arnebia hispidissima Against Carbon Tetrachloride-induced Heart and Kidney Injury in Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.1010.1019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Fouad AA, Al-Melhim WN. Vanillin mitigates the adverse impact of cisplatin and methotrexate on rat kidneys. Hum Exp Toxicol 2017; 37:937-943. [DOI: 10.1177/0960327117745694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present study investigated the probable protective effect of vanillin (VLN) against kidney injury induced by cisplatin (CSN) and methotrexate (MTX) in rats. The rats received a single injection of either CSN (7.5 mg/kg, i.p.) or MTX (20 mg/kg, i.p.). VLN treatment (150 mg/kg/day, i.p.) was started 1 day before administration of the nephrotoxic agents and continued for 7 days. Both CSN and MTX significantly increased serum creatinine, cystatin C, and neutrophil gelatinase–associated lipocalin and kidney tissue renal malondialdehyde, inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-18, nuclear factor-κB p65, cytosolic cytochrome C, and caspase-3 and significantly decreased renal total antioxidant capacity and Bcl-2/Bax ratio in rats. VLN significantly ameliorated the changes of biochemical parameters induced by CSN and MTX. VLN also significantly reduced CSN- and MTX-induced histopathological injury and the expression of Fas ligand in rat kidneys. In conclusion, VLN significantly protected against CSN- and MTX-induced kidney injury in rats by inhibiting oxidative/nitrosative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- AA Fouad
- Division of Pharmacology, Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - WN Al-Melhim
- Division of Histopathology, Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
25
|
The impact of oat (Avena sativa) consumption on biomarkers of renal function in patients with chronic kidney disease: A parallel randomized clinical trial. Clin Nutr 2016; 37:78-84. [PMID: 28003041 DOI: 10.1016/j.clnu.2016.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND & OBJECTIVE Animal studies report that oat (Avena sativa L) intake has favorable effects on kidney function. However, the effects of oat consumption have not been assessed in humans. The aim of this study was to examine the impact of oat intake on biomarkers of renal function in patients with chronic kidney disease (CKD). METHODS Fifty-two patients with CKD were randomly assigned to a control group (recommended to reduce intake of dietary protein, phosphorus, sodium and potassium) or an oat consumption group (given nutritional recommendations for controls +50 g/day oats). Blood urea nitrogen (BUN), serum creatinine (SCr), urine creatinine, serum albumin, serum potassium, parathyroid hormone (PTH), serum klotho and urine protein concentration were measured at baseline and after an eight-week intervention. Creatinine clearance was calculated using urine creatinine concentration. RESULTS Within group analysis showed a significant increase in BUN (P = 0.02) and serum potassium (P = 0.01) and a marginally significant increment in SCr (P = 0.08) among controls. However, changes in the oat group were not significant. In a multivariate adjusted model, we observed a significant difference in change of serum potassium (-0.03 mEq/L for oat group and 0.13 mEq/L for control group; P = 0.01) and a marginally significant difference in change of serum albumin (0.01 g/dl for oat group and -0.08 for control group; P = 0.08) between the two groups. There was no change in PTH concentration. CONCLUSION Intake of oats may have a beneficial effect on serum albumin and serum potassium in patients with CKD. REGISTRATION CODE Present study registered under IRCT.ir identifier no. IRCT2015050414551N2.
Collapse
|
26
|
Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease. Neurochem Res 2016; 41:1899-910. [PMID: 27038927 DOI: 10.1007/s11064-016-1901-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/14/2016] [Accepted: 03/24/2016] [Indexed: 12/14/2022]
Abstract
Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD.
Collapse
|
27
|
Al Asmari A, Al Shahrani H, Al Masri N, Al Faraidi A, Elfaki I, Arshaduddin M. Vanillin abrogates ethanol induced gastric injury in rats via modulation of gastric secretion, oxidative stress and inflammation. Toxicol Rep 2015; 3:105-113. [PMID: 28959528 PMCID: PMC5615375 DOI: 10.1016/j.toxrep.2015.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/01/2015] [Accepted: 11/06/2015] [Indexed: 02/07/2023] Open
Abstract
Vanillin is commonly used as an additive in food, medicine and cosmetics, but its effect has not yet been studied in gastric injury. Therefore the effect of vanillin was studied in experimental gastric ulcer. Gastric secretion and acidity were studied in pylorus ligated rats. Ulcer index, levels of gastric mucus, malondialdehyde (MDA), myeloperoxidase activity (MPO), expression of nuclear factor kappa B (NF-κB) p65, and histopathological changes were determined in ethanol induced gastric ulcer. Pre treatment with vanillin significantly reduced gastric secretion (P < 0.001) and acidity (P < 0.0001) and gastric ulcer index scores (P < 0.001). and augmented the gastric mucosal defense. Vanillin significantly restored the depleted gastric wall mucus levels (P < 0.0001) induced by ethanol and also significantly attenuated ethanol induced inflammation and oxidative stress by the suppression of gastric MPO activity (P < 0.001), reducing the expression of NF-κB p65 and the increased MDA levels (P < 0.001). Vanillin was also effective in alleviating the damage to the histological architecture and the activation of mast cells induced by ethanol. Together the results of this study highlight the gastroprotective activity of vanillin in gastric ulcers of rats through multiple actions that include inhibition of gastric secretion and acidity, reduction of inflammation and oxidative stress, suppression of expression of NF-κB, and restoration of the histological architecture.
Collapse
Affiliation(s)
| | - Hamoud Al Shahrani
- Department of Ophthalmology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Nasser Al Masri
- Department of Gastroenterology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ahmed Al Faraidi
- Department of Psychiatry, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ibrahim Elfaki
- Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | |
Collapse
|
28
|
Neurosupportive Role of Vanillin, a Natural Phenolic Compound, on Rotenone Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:626028. [PMID: 26664453 PMCID: PMC4664805 DOI: 10.1155/2015/626028] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023]
Abstract
Vanillin, a phenolic compound, has been reported to offer neuroprotection against experimental Huntington's disease and global ischemia by virtue of its antioxidant, anti-inflammatory, and antiapoptotic properties. The present study aims to elucidate the underlying neuroprotective mechanism of vanillin in rotenone induced neurotoxicity. Cell viability was assessed by exposing SH-SY5Y cells to various concentrations of rotenone (5–200 nM) for 24 h. The therapeutic effectiveness of vanillin against rotenone was measured by pretreatment of vanillin at various concentrations (5–200 nM) and then incubation with rotenone (100 nM). Using effective dose of vanillin (100 nM), mitochondrial membrane potential, levels of reactive oxygen species (ROS), and expression patterns of apoptotic markers were assessed. Toxicity of rotenone was accompanied by the loss of mitochondrial membrane potential, increased ROS generation, release of cyt-c, and enhanced expressions of proapoptotic and downregulation of antiapoptotic indices via the upregulation of p38 and JNK-MAPK pathway proteins. Our results indicated that the pretreatment of vanillin attenuated rotenone induced mitochondrial dysfunction, oxidative stress, and apoptosis. Thus, vanillin may serve as a potent therapeutic agent in the future by virtue of its multiple pharmacological properties in the treatment of neurodegenerative diseases including PD.
Collapse
|
29
|
Elmubarak SMEO, Özsoy N. Histoprotective effect of vitamin D against carbon tetrachloride nephrotoxicity in rats. Hum Exp Toxicol 2015; 35:713-23. [DOI: 10.1177/0960327115598387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the protective effect of vitamin D against carbon tetrachloride (CCl4)-induced nephrotoxicity in rats. Adult male Wistar albino rats were divided into four groups ((A) control; (B) 10-week exposure to CCl4; (C) 10-week exposure to CCl4 + vitamin D treatment; and (D) 10-week exposure to CCl4 + 12 weeks of vitamin D treatment). The CCl4 dose (1.5 ml kg−1) was injected subcutaneously twice a week, while the 0.5 mg kg−1 dose of vitamin D was administered intraperitoneally every day, as appropriate for each group. Whole animal and kidney weights as well as serum urea, creatinine, and glucose levels were measured. Kidney tissue sections were stained with hematoxylin–eosin, Masson’s trichrome, and periodic acid–Schiff. Tubular and glomerular degeneration were detected in the kidney tissues of CCl4-treated rats, together with dilatation and vacuolization within the tubules and hemorrhage in the intertubular region. In the kidney glomeruli; congestion, atrophy, and adhesion to parietal layer were observed. Tissue disorganization and aggregation of Bowman’s capsules were noted. Mononuclear cell infiltration was observed between the glomeruli and the tubules. In contrast, the kidney sections and functional parameters of vitamin D-treated rats were similar to the controls, suggesting that vitamin D treatment is able to reduce renal damage.
Collapse
Affiliation(s)
- SMEO Elmubarak
- Department of Biology, Faculty of Sciences, Ankara University, Ankara, Turkey
| | - N Özsoy
- Department of Biology, Faculty of Sciences, Ankara University, Ankara, Turkey
| |
Collapse
|
30
|
Ahmed AF, Al-Qahtani JH, Al-Yousef HM, Al-Said MS, Ashour AE, Al-Sohaibani M, Rafatullah S. Proanthocyanidin-rich date seed extract protects against chemically induced hepatorenal toxicity. J Med Food 2015; 18:280-9. [PMID: 25569813 PMCID: PMC4350264 DOI: 10.1089/jmf.2014.3157] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 10/09/2014] [Indexed: 11/13/2022] Open
Abstract
A hydroacetone extract was prepared from seeds of Phoenix dactylifera L. var. Khalas, which is an industrial by-product of date processing. The proanthocyanidin nature of the extract (coded as DTX) was characterized by phytochemical and nuclear magnetic resonance (NMR) analyses. The total phenol/proanthocyanidin content and antioxidant activity of DTX were estimated by Folin-Ciocalteu, vanillin-sulfuric acid, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, respectively. The hepatorenal protective activity of DTX was evaluated using CCl4-induced toxicity model in rats, in comparison with silymarin (SYL). Results of the histopathological examination and measurements of various hepatorenal serum indices and tissue biochemical markers demonstrated that DTX displayed marked protective potential against CCl4-induced liver and kidney injury at 100 mg/kg/rat. Relative to the control CCl4-intoxicated group, pretreatment with DTX significantly (P<.001) suppressed the elevated serum levels of alanine aminotransferase and aspartate aminotransferase (ALT and AST), alkaline phosphatase (ALP), γ-glutamyl transferase (GGT), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), bilirubin, creatinine, and calcium, whereas it significantly (P<.001) increased the diminished serum levels of high-density lipoprotein cholesterol (HDL-C) and total protein (TP). Moreover, DTX significantly decreased malondialdehyde (MDA) formation and increased TP synthesis in hepatorenal tissues compared with the intoxicated control. The improvement in biochemical parameters by DTX was observed in a dose-dependent manner and confirmed by restoration of normal histological features. The acute toxicity test of DTX in rats revealed safety of the extract. This study reveals that DTX enhances the recovery from xenobiotics-induced toxicity initiated by free radicals.
Collapse
Affiliation(s)
- Atallah F. Ahmed
- Department of Pharmacognosy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | | | - Mansour S. Al-Said
- Department of Pharmacognosy, King Saud University, Riyadh, Saudi Arabia
- Medicinal, Aromatic and Poisonous Plants Research Center, King Saud University, Riyadh, Saudi Arabia
| | - AbdelKader E. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Al-Sohaibani
- Department of Pathology, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Syed Rafatullah
- Medicinal, Aromatic and Poisonous Plants Research Center, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Yilmaz-Ozden T, Can A, Karatug A, Pala-Kara Z, Okyar A, Bolkent S. Carbon tetrachloride-induced kidney damage and protective effect of Amaranthus lividus L. in rats. Toxicol Ind Health 2014; 32:1143-52. [DOI: 10.1177/0748233714555390] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study was designed to evaluate the protective effect of water extract of Amaranthus lividus L. ( A. lividus) (Amaranthaceae) on carbon tetrachloride (CCl4)-induced toxicity in kidneys of rats. For this purpose, male albino Wistar rats were pretreated with A. lividus (250 and 500 mg/kg body weight (b.w.)) daily for 9 days and a single dose of CCl4 was applied intraperitoneally (50% in olive oil; 1.5 mL/kg b.w.) on the 10th day. All rats were killed 24 h after CCl4 administration, and kidneys were excised and used for determination of histopathological and biochemical parameters. CCl4 administration caused a remarkable increase in lipid peroxidation (LPO) and glutathione levels and glutathione- S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, myeloperoxidase (MPO) activities and a decrease in catalase (CAT) activity when compared to the control group. Pretreatment with A. lividus (250 and 500 mg/kg b.w.) significantly prevented the elevation in LPO level and MPO activity as well as protected the decrease in CAT activity but did not alter other biochemical parameters. The protective effect of A. lividus was further evident through the decreased histological alterations in kidneys. In conclusion, this study has indicated that A. lividus possesses protective and antioxidant effects against CCl4-induced oxidative kidney damage.
Collapse
Affiliation(s)
- Tugba Yilmaz-Ozden
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ayse Can
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ayse Karatug
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Zeliha Pala-Kara
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Sehnaz Bolkent
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
32
|
Gupta S, Sharma B. Pharmacological benefits of agomelatine and vanillin in experimental model of Huntington's disease. Pharmacol Biochem Behav 2014; 122:122-35. [DOI: 10.1016/j.pbb.2014.03.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/01/2014] [Accepted: 03/23/2014] [Indexed: 12/20/2022]
|
33
|
Al-Rasheed NM, Al-Rasheed NM, Faddah L, Mohamed AM, Mohammad RA, Al-Amin M. Potential impact of silymarin in combination with chlorogenic acid and/or melatonin in combating cardiomyopathy induced by carbon tetrachloride. Saudi J Biol Sci 2014; 21:265-74. [PMID: 24955012 PMCID: PMC4061402 DOI: 10.1016/j.sjbs.2013.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the effective role of silymarin either alone or in combination with chlorogenic acid and/or melatonin against the toxic impact of carbon tetrachloride (CCl4) induced cardiac infarction. CCl4 (l.2 ml/kg body weight) was administered as a single dose intraperitoneally. The results revealed that the administration of silymarin alone or in combination with chlorogenic acid (CGA) and/or melatonin for 21 consecutive days, 24 h after CCl4 injection to rats, markedly ameliorated the increases in serum markers of cardiac infarction, including troponin T and creatine kinase-MB (CK-MB), as well as increases in the pro-inflammatory biomarkers, including interleukin-6 (IL-6), interferon-γ (IFN-γ) in serum and tumor necrosis factor-α (TNF-α) and C-reactive protein in cardiac tissue compared to CCl4 intoxicated rats. The used agents also successfully modulated the alteration in vascular endothelial growth factor (VEGF) in serum and the oxidative DNA damage and the increase in the apoptosis marker caspase 3 in cardiac tissue in response to CCl4 toxicity. The present biochemical results are supported by histo-pathological examination. The current results proved that treatment with silymarin in combination with CGA and melatonin was the most effective one in ameliorating the toxicity of CCl4 induced cardiac damage and this may support the use of this combination as an effective drug to treat cardiac damage induced by toxic agents.
Collapse
Affiliation(s)
- Nouf M. Al-Rasheed
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nawal M. Al-Rasheed
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - L.M. Faddah
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azza M. Mohamed
- Biochemistry Department, Faculty of Science for Girls, King Abdulaziz University, P.O Box 51459, Jeddah 21453, Saudi Arabia
- Theraputic Chemistry Department, National Research Center, Dokki, Egypt
| | - Raeesa A. Mohammad
- Anatomy Department-Faculty of Medicine-King Saud University, Riyadh, Saudi Arabia
| | - Maha Al-Amin
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|