1
|
Pandey KK, Mehta K, Kaur B, Dhar P. Curcumin alleviates arsenic trioxide-induced neural damage in the murine striatal region. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06700-y. [PMID: 39443330 DOI: 10.1007/s00213-024-06700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
RATIONALE Arsenic-induced neurotoxicity, with dose-dependent effects, is well-documented in rodents. Curcumin (CUR), a cost-effective plant polyphenol, shows neuroprotective effects by modulating oxidative stress, apoptosis, and neurochemistry. This study evaluates curcumin's neuroprotective potential against arsenic trioxide (As2O3) in the mouse striatal region. METHODS Healthy adult male mice were chronically administered with varying concentrations of As2O3 (2, 4 and 8 mg/kg bw) alone and along with CUR (100 mg/kg bw) orally for 45 days. Towards the end of the experimental period, the animals were subjected to behavioural paradigms including open field task, novel object recognition, rota-rod, and Morris water maze. Striatal tissues were freshly collected from the animals on day 46 for biochemical analyses (MDA, GPx, and GSH). Additionally, perfusion-fixed brains were processed for morphological observations. RESULTS Behavioural study showed an apparent decrease in certain cognitive functions (learning and memory) and locomotor activity in mice exposed to As2O3 compared to controls. Simultaneous treatment of As2O3 (2, 4 and 8 mg/kg bw) and curcumin (100 mg/kg bw) alleviated the As-induced locomotor and cognitive deficits. As2O3 alone exposure also exhibited a significant increase in oxidative stress marker (MDA) and a decrease in antioxidant enzyme levels (GPx, GSH). Morphological alterations were noted in mice subjected to elevated doses of As2O3 (4 and 8 mg/kg bw). However, these changes were reversed in mice who received As2O3 + CUR co-treatment. CONCLUSIONS Collectively, our findings indicate that curcumin offers neuroprotection to the striatal region against As2O3-induced behavioral deficits, as well as biochemical and morphological alterations.
Collapse
Affiliation(s)
- Kamlesh Kumar Pandey
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Kamakshi Mehta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Department of Ophthalmology, University of Pittsburgh School of Medicine, UPMC Vision Institute, Pittsburgh, PA, 15219, USA.
| | - Balpreet Kaur
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pushpa Dhar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
2
|
Asghar H, Siddiqui A, Batool L, Batool Z, Ahmed T. Post-exposure self-recovery reverses oxidative stress, ameliorates pathology and neurotransmitters imbalance and rescues spatial memory after time-dependent aluminum exposure in rat brain. Biometals 2024; 37:819-838. [PMID: 38233603 DOI: 10.1007/s10534-023-00570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Aluminum is a potent neurotoxin, responsible for memory impairment and cognitive dysfunction. The neurotoxic effect of aluminum on cognitive impairment is well documented, however, exposure to aluminum in a time-dependent manner and post-exposure self-recovery still needs to be elaborated. This research aimed to (1) study the time-dependent effect of aluminum exposure by administering a total dose of 5850 mg/kg of Al over two different time periods: 30 and 45 days (130 and 195 mg/kg of AlCl3 respectively), and (2) study 20 days post-exposure self-recovery effect in both aluminum-exposed groups by giving distilled water. Cognitive abilities were investigated through Morris water maze test and hole board test and compared in both exposure and recovery groups. Oxidative stress markers and neurotransmitter levels were measured for both exposure and recovery groups. To understand the mechanism of aluminum exposure and recovery, immunohistochemical analysis of synaptophysin (Syp) and glial fibrillary acidic protein (GFAP) was performed. Results showed cognitive dysfunction, oxidative stress-induced damage, reduced neurotransmitter levels, decreased immunoreactivity of Syp, and increased GFAP. However, these parameters showed a larger improvement in the recovery group where rats were given aluminum for 30 days period in comparison to recovery group followed by 45 days of aluminum exposure. These results suggest that restoration of cognitive ability is affected by the duration of aluminum exposure. The study findings provide us with insight into the adverse effects of aluminum exposure and can be utilized to guide future preventive and therapeutic strategies against aluminum neurotoxicity.
Collapse
Affiliation(s)
- Humna Asghar
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Alveena Siddiqui
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Laraib Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
3
|
Vázquez Cervantes GI, González Esquivel DF, Ramírez Ortega D, Blanco Ayala T, Ramos Chávez LA, López-López HE, Salazar A, Flores I, Pineda B, Gómez-Manzo S, Pérez de la Cruz V. Mechanisms Associated with Cognitive and Behavioral Impairment Induced by Arsenic Exposure. Cells 2023; 12:2537. [PMID: 37947615 PMCID: PMC10649068 DOI: 10.3390/cells12212537] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Arsenic (As) is a metalloid naturally present in the environment, in food, water, soil, and air; however, its chronic exposure, even with low doses, represents a public health concern. For a long time, As was used as a pigment, pesticide, wood preservative, and for medical applications; its industrial use has recently decreased or has been discontinued due to its toxicity. Due to its versatile applications and distribution, there is a wide spectrum of human As exposure sources, mainly contaminated drinking water. The fact that As is present in drinking water implies chronic human exposure to this metalloid; it has become a worldwide health problem, since over 200 million people live where As levels exceed safe ranges. Many health problems have been associated with As chronic exposure including cancer, cardiovascular diseases, gastrointestinal disturbances, and brain dysfunctions. Because As can cross the blood-brain barrier (BBB), the brain represents a target organ where this metalloid can exert its long-term toxic effects. Many mechanisms of As neurotoxicity have been described: oxidative stress, inflammation, DNA damage, and mitochondrial dysfunction; all of them can converge, thus leading to impaired cellular functions, cell death, and in consequence, long-term detrimental effects. Here, we provide a current overview of As toxicity and integrated the global mechanisms involved in cognitive and behavioral impairment induced by As exposure show experimental strategies against its neurotoxicity.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez Cervantes
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Dinora Fabiola González Esquivel
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Daniela Ramírez Ortega
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Tonali Blanco Ayala
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Lucio Antonio Ramos Chávez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Humberto Emanuel López-López
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, México City 04530, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| |
Collapse
|
4
|
Hu X, Yuan X, Yang M, Han M, Ommati MM, Ma Y. Arsenic exposure induced anxiety-like behaviors in male mice via influencing the GABAergic Signaling in the prefrontal cortex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86352-86364. [PMID: 37402917 DOI: 10.1007/s11356-023-28426-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Arsenic contamination in drinking water causes a global public health problem. Emerging evidence suggests that arsenic may act as an environmental risk factor for anxiety disorders. However, the exact mechanism underlying the adverse effects has not been fully elucidated. This study aimed to evaluate the anxiety-like behaviors of mice exposed to arsenic trioxide (As2O3), to observe the neuropathological changes, and to explore the link between the GABAergic system and behavioral manifestations. For this purpose, male C57BL/6 mice were exposed to various doses of As2O3 (0, 0.15, 1.5, and 15 mg/L) through drinking water for 12 weeks. Anxiety-like behaviors were assessed using the open field test (OFT), light/dark choice test, and elevated zero maze (EZM). Neuronal injuries in the cerebral cortex and hippocampus were assessed by light microscopy with H&E and Nissl staining. Ultrastructural alteration in the cerebral cortex was assessed by transmission electron microscope (TEM). The expression levels of GABAergic system-related molecules (i.e., glutamate decarboxylase, GABA transporter, and GABAB receptor subunits) in the prefrontal cortex (PFC) were determined by qRT-PCR and western blotting. Arsenic exposure showed a striking anxiogenic effect on mice, especially in the group exposed to 15 mg/L As2O3. Light microscopy showed neuron necrosis and reduced cell counts. TEM revealed marked ultrastructural changes, including the vacuolated mitochondria, disrupted Nissl bodies, an indentation in the nucleus membrane, and delamination of myelin sheath in the cortex. In addition, As2O3 influenced the GABAergic system in the PFC by decreasing the expression of the glutamate decarboxylase 1 (GAD1) and the GABAB2 receptor subunit, but not the GABAB1 receptor subunit. To sum up, sub-chronic exposure to As2O3 is associated with increased anxiety-like behaviors, which may be mediated by altered GABAergic signaling in the PFC. These findings shed light on the mechanisms responsible for the neurotoxic effects of arsenic and therefore more cautions should be taken.
Collapse
Affiliation(s)
- Xin Hu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaohong Yuan
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mingyu Yang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mingsheng Han
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yanqin Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
5
|
Perego MC, McMichael BD, McMurry NR, Ventrello SW, Bain LJ. Arsenic Impairs Differentiation of Human Induced Pluripotent Stem Cells into Cholinergic Motor Neurons. TOXICS 2023; 11:644. [PMID: 37624150 PMCID: PMC10458826 DOI: 10.3390/toxics11080644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023]
Abstract
Arsenic exposure during embryogenesis can lead to improper neurodevelopment and changes in locomotor activity. Additionally, in vitro studies have shown that arsenic inhibits the differentiation of sensory neurons and skeletal muscle. In the current study, human-induced pluripotent stem (iPS) cells were differentiated into motor neurons over 28 days, while being exposed to up to 0.5 μM arsenic. On day 6, neuroepithelial progenitor cells (NEPs) exposed to arsenic had reduced transcript levels of the neural progenitor/stem cell marker nestin (NES) and neuroepithelial progenitor marker SOX1, while levels of these transcripts were increased in motor neuron progenitors (MNPs) at day 12. In day 18 early motor neurons (MNs), choline acetyltransferase (CHAT) expression was reduced two-fold in cells exposed to 0.5 μM arsenic. RNA sequencing demonstrated that the cholinergic synapse pathway was impaired following exposure to 0.5 μM arsenic, and that transcript levels of genes involved in acetylcholine synthesis (CHAT), transport (solute carriers, SLC18A3 and SLC5A7) and degradation (acetylcholinesterase, ACHE) were all downregulated in day 18 early MNs. In day 28 mature motor neurons, arsenic significantly downregulated protein expression of microtubule-associated protein 2 (MAP2) and ChAT by 2.8- and 2.1-fold, respectively, concomitantly with a reduction in neurite length. These results show that exposure to environmentally relevant arsenic concentrations dysregulates the differentiation of human iPS cells into motor neurons and impairs the cholinergic synapse pathway, suggesting that exposure impairs cholinergic function in motor neurons.
Collapse
Affiliation(s)
- M. Chiara Perego
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | | - Nicholas R. McMurry
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Scott W. Ventrello
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Lisa J. Bain
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
6
|
Shayan M, Barangi S, Hosseinzadeh H, Mehri S. The protective effect of natural or chemical compounds against arsenic-induced neurotoxicity: Cellular and molecular mechanisms. Food Chem Toxicol 2023; 175:113691. [PMID: 36871878 DOI: 10.1016/j.fct.2023.113691] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Arsenic is a notorious metalloid that exists in the earth's crust and is considered toxic for humans and the environment. Both cancerous and non-cancerous complications are possible after arsenic exposure. Target organs include the liver, lungs, kidney, heart, and brain. Arsenic-induced neurotoxicity, the main focus of our study, can occur in central and peripheral nervous systems. Symptoms can develop in a few hours, weeks, or years depending on the quantity of arsenic and the duration of exposure. In this review, we aimed to gather all the compounds, natural and chemical, that have been studied as protective agents in cellular, animal, and human reports. Oxidative stress, apoptosis, and inflammation are frequently described as destructive mechanisms in heavy metal toxicity. Moreover, reduced activity of acetylcholinesterase, the altered release of monoamine neurotransmitters, down-regulation of N-methyl-D-aspartate receptors, and decreased brain-derived neurotrophic factor are important underlying mechanisms of arsenic-induced neurotoxicity. As for neuroprotection, though some compounds have yet limited data, there are others, such as curcumin, resveratrol, taurine, or melatonin which have been studied more deeply and might be closer to a reliable protective agent. We collected the available information on all protective agents and the mechanisms by which they fight against arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Mersedeh Shayan
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Samad N, Rao T, Rehman MHU, Bhatti SA, Imran I. Inhibitory Effects of Selenium on Arsenic-Induced Anxiety-/Depression-Like Behavior and Memory Impairment. Biol Trace Elem Res 2022; 200:689-698. [PMID: 33745108 DOI: 10.1007/s12011-021-02679-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Elevated arsenic (As) contamination in drinking water was detected in many areas of Pakistan. The intoxication of As causes various neurological diseases in humans, which can be inhibited by the administration of potent antioxidants. Trace elements are also found in drinking water such as selenium (Se), which possess antioxidant potential. The main purpose of the current study is to find out the protective effect of Se against As toxicity which can cause anxiety- and depression-like behaviors as well as memory impairment. Thirty-six male rats were divided into six groups: (1) distilled water (dw)+dw, (2) dw+Se (0.175 mg/ml/kg), (3) dw+Se (0.35mg/ml/kg), (4) dw+As (2.5mg/ml/kg), (5) As (2.5mg/ml/kg) + Se (0.175 mg/ml/kg), and (6) As (2.5mg/ml/kg) + Se (0.35 mg/ml/kg). Rats were treated with respective treatment for 4 weeks. Sub-chronic treatment of As reduced time spent in open arm (elevated plus maze), and lightbox (light-dark activity test) and increased immobility time in forced swim test indicate anxiety- and/or depression-like behavior, respectively. Conversely, rats treated with As+Se (at both doses) increased time spent in open arm (elevated plus maze), and lightbox (light-dark activity test) and decreased immobility time in forced swim test indicate the anxiolytic and anti-depressive effect of Se, respectively. Co-administration of Se (0.175 and 0.35) inhibited As instigated reduction of spatial memory performed in Morris water maze. The reversal in the reduced level of malondialdehyde and activity of acetylcholinesterase in the hippocampus by Se was observed in As-treated animals, while the activity of antioxidant enzymes in the hippocampus was increased in As+Se than dw+As-treated animals. Histopathological studies have shown the reversal of hippocampus deterioration by Se in As-treated rats. The results may imply to prevent the intoxication of As instigated impairment in behavioral and biochemical indices by Se supplementation and/or increased safer intake.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Tazeen Rao
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | | | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
8
|
Sijko M, Kozłowska L. Influence of Dietary Compounds on Arsenic Metabolism and Toxicity. Part I-Animal Model Studies. TOXICS 2021; 9:toxics9100258. [PMID: 34678954 PMCID: PMC8536957 DOI: 10.3390/toxics9100258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
Population and laboratory studies indicate that exposure to various forms of arsenic (As) is associated with many adverse health effects; therefore, methods are being sought out to reduce them. Numerous studies focus on the effects of nutrients on inorganic As (iAs) metabolism and toxicity, mainly in animal models. Therefore, the aim of this review was to analyze the influence of methionine, betaine, choline, folic acid, vitamin B2, B6, B12 and zinc on the efficiency of iAs metabolism and the reduction of the severity of the whole spectrum of disorders related to iAs exposure. In this review, which includes 58 (in vivo and in vitro studies) original papers, we present the current knowledge in the area. In vitro and in vivo animal studies showed that methionine, choline, folic acid, vitamin B2, B12 and zinc reduced the adverse effects of exposure to iAs in the gastrointestinal, urinary, lymphatic, circulatory, nervous, and reproductive systems. On the other hand, it was observed that these compounds (methionine, choline, folic acid, vitamin B2, B12 and zinc) may increase iAs metabolism and reduce toxicity, whereas their deficiency or excess may impair iAs metabolism and increase iAs toxicity. Promising results of in vivo and in vitro on animal model studies show the possibility of using these nutrients in populations particularly exposed to As.
Collapse
Affiliation(s)
- Monika Sijko
- Correspondence: (M.S.); (L.K.); Tel.: +48-22-59-370-23 (M.S.); +48-22-59-370-17 (L.K.)
| | - Lucyna Kozłowska
- Correspondence: (M.S.); (L.K.); Tel.: +48-22-59-370-23 (M.S.); +48-22-59-370-17 (L.K.)
| |
Collapse
|
9
|
Wang Y, Zhao H, Liu Y, Nie X, Xing M. Zinc exerts its renal protection effect on arsenic-exposed common carp: A signaling network comprising Nrf2, NF-κB and MAPK pathways. FISH & SHELLFISH IMMUNOLOGY 2020; 104:383-390. [PMID: 32544558 DOI: 10.1016/j.fsi.2020.06.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Epidemiological and laboratory investigations have extensively indicated that arsenic exposure accounts for several kidney diseases. Zinc has been suggested as a possible natural preventive and therapeutic agent. This study is designed to explore the beneficial effect of zinc supplementation against arsenic-induced renal toxicity in common carp, and the results point to signaling pathway possibly compromised. In the present study, renal injury was induced in common carp by waterborne exposure to arsenic (2.83 mg/L) for 30 days, and zinc (1 mg/L) was simultaneously supplemented. First, the arsenic-exposed fish showed histological and functional renal alterations (indicated by hematoxylin-eosin staining, biochemical indexes and a TUNEL assay). Moreover, as a reactive oxygen species (ROS) stimulant, arsenic was found to induce oxidative toxicity as determined by increased renal ROS, malondialdehyde, protein carbonyl and 8-hydroxydeoxyguanosine levels. When antioxidant-mediation attempts (through superoxide dismutase and glutathione)-mediated to restore homeostasis failed and ROS increased to extreme levels, inflammation (indicated by elevated inducible nitric oxide synthetase, tumor necrosis factor-alpha and interleukins levels) and apoptosis (through both mitochondrial- and death receptor-dependent pathways) were triggered. However, abnormalities in the upstream mediators Nrf2, NF-κB and MAPK were significantly ameliorated and blocked by treatment with zinc. In conclusion, zinc exerts a substantial protective effect against arsenic-triggered subchronic renal injury in common carp via the amelioration of oxidative stress, suppression of apoptosis and reduced inflammation through Nrf2, NF-κB and MAPK signaling.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - XiaoPan Nie
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
10
|
Wang X, Liu X, Chen Y, Wang H, Zhang R, Zhang Q, Wei Y, Shi S, Li X. Calreticulin regulated intrinsic apoptosis through mitochondria-dependent and independent pathways mediated by ER stress in arsenite exposed HT-22 cells. CHEMOSPHERE 2020; 251:126466. [PMID: 32443253 DOI: 10.1016/j.chemosphere.2020.126466] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Arsenic is a naturally occurring environmental toxicant. Chronic exposure to arsenic is linked with neurological damage. Although the mechanisms remain to be elucidated, it is currently believed that neural cell apoptosis is one of the underlying mechanisms of arsenic-induced neurotoxicity. Calreticulin (CRT) is a quality control chaperone located in the lumen of the endoplasmic reticulum (ER), which participates in many signaling pathways including apoptosis. However, the role of CRT in apoptosis is controversial. Whether CRT plays a role in arsenite-induced apoptosis and the relationship between CRT and ER stress-mediated apoptosis have not been mentioned before. In this study, we found that CRT expression as well as the cell apoptosis levels increased in a dose dependent manner upon arsenite exposure in HT-22 cells, a mouse hippocampal neural cell line. In addition, arsenite exposure resulted in the up-regulation of ER stress indicator GRP78 and ER stress-related proteins including p-PERK, ATF4, CHOP, calpain2 and cleaved caspases-12, accompanied by the down-regulation of Bcl-2 and up-regulation of Bax and cleaved caspase-3. Silence of CRT remarkably alleviated arsenite-induced apoptosis and reversed the expression of the proteins above. Our findings confirmed the role of CRT in the induction of apoptosis upon arsenite exposure and suggested that CRT mediated the intrinsic apoptotic cell death including both mitochondria-dependent (PERK/ATF4/CHOP/Bcl-2) and independent (calpain2/caspases-12) pathways initiated by ER stress, which we believed to be a previously undocumented property of arsenite-induced apoptosis.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Xudan Liu
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yao Chen
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Huanhuan Wang
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Ruo Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Qianhui Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Yuting Wei
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Sainan Shi
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Xin Li
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
11
|
Zwolak I. The Role of Selenium in Arsenic and Cadmium Toxicity: an Updated Review of Scientific Literature. Biol Trace Elem Res 2020; 193:44-63. [PMID: 30877523 PMCID: PMC6914719 DOI: 10.1007/s12011-019-01691-w] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/28/2019] [Indexed: 02/01/2023]
Abstract
Arsenic (As) and cadmium (Cd) are elements arousing major public health concerns associated with environmental pollution, high toxicity potential, and carcinogenic nature. However, selenium (Se) at low doses and incorporated into enzymes and proteins has antioxidant properties and protects animals and humans from the risk of various diseases. It also has an exceptionally narrow range between necessary and toxic concentrations, which is a well-known hindrance in its use as a dietary supplement. The present article aims to update and expand the role of Se in As and Cd toxicity discussed in our earlier paper. In general, recent reports show that Se, regardless of its form (as selenite, selenomethionine, nanoSe, or Se from lentils), can reduce As- or Cd-mediated toxicity in the liver, kidney, spleen, brain, or heart in animal models and in cell culture studies. As was suggested in our earlier review, Se antagonizes the toxicity of As and Cd mainly through sequestration of these elements into biologically inert complexes and/or through the action of Se-dependent antioxidant enzymes. An increase in the As methylation efficiency is proposed as a possible mechanism by which Se can reduce As toxicity. However, new studies indicate that Se may also diminish As or Cd toxicity by activation of the Nrf2 pathway. In addition, this paper discusses possible signs of Se toxic effects, which may be a challenge for its future use in the therapy of As and Cd poisoning and provide future directions to address this issue.
Collapse
Affiliation(s)
- Iwona Zwolak
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Konstantynów 1 J, 20-708, Lublin, Poland.
| |
Collapse
|
12
|
Dai C, Xiao X, Sun F, Zhang Y, Hoyer D, Shen J, Tang S, Velkov T. T-2 toxin neurotoxicity: role of oxidative stress and mitochondrial dysfunction. Arch Toxicol 2019; 93:3041-3056. [PMID: 31570981 DOI: 10.1007/s00204-019-02577-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
Abstract
Mycotoxins are highly diverse secondary metabolites produced in nature by a wide variety of fungi. Mycotoxins cause animal feed and food contamination, resulting in mycotoxicosis. T-2 toxin is one of the most common and toxic trichothecene mycotoxins. For the last decade, it has garnered considerable attention due to its potent neurotoxicity. Worryingly, T-2 toxin can cross the blood-brain barrier and accumulate in the central nervous system (CNS) to cause neurotoxicity. This review covers the current knowledge base on the molecular mechanisms of T-2 toxin-induced oxidative stress and mitochondrial dysfunction in the CNS. In vitro and animal data have shown that induction of reactive oxygen species (ROS) and oxidative stress plays a critical role during T-2 toxin-induced neurotoxicity. Mitochondrial dysfunction and cascade signaling pathways including p53, MAPK, Akt/mTOR, PKA/CREB and NF-κB contribute to T-2 toxin-induced neuronal cell death. T-2 toxin exposure can also result in perturbations of mitochondrial respiratory chain complex and mitochondrial biogenesis. T-2 toxin exposure decreases the mitochondria unfolded protein response and dampens mitochondrial energy metabolism. Antioxidants such as N-acetylcysteine (NAC), activation of Nrf2/HO-1 and autophagy have been shown to provide a protective effect against these detrimental effects. Clearly, translational research and the discovery of effective treatment strategies are urgently required against this common food-borne threat to human health and livestock.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China. .,Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Harry Hines Blvd, Dallas, TX, 5323, USA.
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feifei Sun
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuan Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
13
|
Avram S, Udrea AM, Negrea A, Ciopec M, Duteanu N, Postolache C, Duda-Seiman C, Duda-Seiman D, Shaposhnikov S. Prevention of Deficit in Neuropsychiatric Disorders through Monitoring of Arsenic and Its Derivatives as Well as Through Bioinformatics and Cheminformatics. Int J Mol Sci 2019; 20:ijms20081804. [PMID: 31013686 PMCID: PMC6514589 DOI: 10.3390/ijms20081804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/26/2022] Open
Abstract
Neuropsychiatric disorders are induced by various risk factors, including direct exposure to environmental chemicals. Arsenic exposure induces neurodegeneration and severe psychiatric disorders, but the molecular mechanisms by which brain damage is induced are not yet elucidated. Our aim is to better understand the molecular mechanisms of arsenic toxicity in the brain and to elucidate possible ways to prevent arsenic neurotoxicity, by reviewing significant experimental, bioinformatics, and cheminformatics studies. Brain damage induced by arsenic exposure is discussed taking in account: the correlation between neuropsychiatric disorders and the presence of arsenic and its derivatives in the brain; possible molecular mechanisms by which arsenic induces disturbances of cognitive and behavioral human functions; and arsenic influence during psychiatric treatments. Additionally, we present bioinformatics and cheminformatics tools used for studying brain toxicity of arsenic and its derivatives, new nanoparticles used as arsenic delivery systems into the human body, and experimental ways to prevent arsenic contamination by its removal from water. The main aim of the present paper is to correlate bioinformatics, cheminformatics, and experimental information on the molecular mechanism of cerebral damage induced by exposure to arsenic, and to elucidate more efficient methods used to reduce its toxicity in real groundwater.
Collapse
Affiliation(s)
- Speranta Avram
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
| | - Ana Maria Udrea
- National Institute for Laser Plasma and Radiation Physics, Atomistilor Street 409, 077125 Magurele, Romania.
| | - Adina Negrea
- Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, Piata Victoriei, 2, 300006 Timisoara, Romania.
| | - Mihaela Ciopec
- Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, Piata Victoriei, 2, 300006 Timisoara, Romania.
| | - Narcis Duteanu
- Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, Piata Victoriei, 2, 300006 Timisoara, Romania.
| | - Carmen Postolache
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
| | - Corina Duda-Seiman
- Faculty of Chemistry, Biology, Geography, West University of Timișoara, I.H.Pestalozzi 16, 300115 Timisoara, Romania.
| | - Daniel Duda-Seiman
- University of Medicine and Pharmacy "Victor Babes, Timişoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania.
| | | |
Collapse
|
14
|
Oxidative stress in the neurodegenerative brain following lifetime exposure to lead in rats: Changes in lifespan profiles. Toxicology 2019; 411:101-109. [DOI: 10.1016/j.tox.2018.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022]
|
15
|
Manthari RK, Tikka C, Ommati MM, Niu R, Sun Z, Wang J, Zhang J, Wang J. Arsenic-Induced Autophagy in the Developing Mouse Cerebellum: Involvement of the Blood-Brain Barrier's Tight-Junction Proteins and the PI3K-Akt-mTOR Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8602-8614. [PMID: 30032600 DOI: 10.1021/acs.jafc.8b02654] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study was designed to determine whether the tight-junction (TJ) proteins of the blood-brain barrier (BBB) and the PI3K-Akt-mTOR signaling pathway are involved during arsenic (As)-induced autophagy in developing mouse cerebella after exposure to different As concentrations (0, 0.15, 1.5, and 15 mg/L As(III)) during gestational and lactational periods. The dosage was continually given to the pups until postnatal day (PND) 42. Studies conducted at different developmental age points, like PND21, 28, 35, and 42, showed that exposure to As led to a significant decrease in the mRNA-expression levels of TJ proteins (occludin, claudin, ZO-1, and ZO-2), PI3K, Akt, mTOR, and p62, with concomitant increases in Beclin1, LC3I, LC3II, Atg5, and Atg12. Also, As significantly downregulated occludin and mTOR protein-expression levels with concomitant upregulation of Beclin1, LC3, and Atg12 at all the developmental age points. However, no significant alterations were observed in low- and medium-dose-exposed groups at PND42. Histopathological analysis revealed the irregular arrangement of the Purkinje cell layer in the As-exposed mice. Ultrastructural analysis by transmission electron microscopy (TEM) revealed the occurrence of autophagosomes and vacuolated axons in the cerebella of the mice exposed to high doses of As at PND21 and 42, respectively. Finally, we conclude that developmental As exposure significantly alters TJ proteins, resulting an increase in BBB permeability, facilitating the ability of As to cross the BBB and induce autophagy, which might be partly the result of inhibition of the PI3K-Akt-mTOR signaling pathway, in an age-dependent manner (i.e., PND21 mice were found to be more vulnerable to As-induced neurotoxicity), which could be due to the immature BBB allowing As to cross through it. However, the effect was not significant in PND42, which could be due to the developed BBB.
Collapse
Affiliation(s)
- Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Chiranjeevi Tikka
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Mohammad Mehdi Ommati
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
- Department of Animal Science, College of Agriculture , Shiraz University , Shiraz 71441-65186 , Iran
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Jinming Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| |
Collapse
|