1
|
Einstein SA, Steyn LV, Weegman BP, Suszynski TM, Sambanis A, O'Brien TD, Avgoustiniatos ES, Firpo MT, Graham ML, Janecek J, Eberly LE, Garwood M, Putnam CW, Papas KK. Hypoxia within subcutaneously implanted macroencapsulation devices limits the viability and functionality of densely loaded islets. FRONTIERS IN TRANSPLANTATION 2023; 2:1257029. [PMID: 38993891 PMCID: PMC11235299 DOI: 10.3389/frtra.2023.1257029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/20/2023] [Indexed: 07/13/2024]
Abstract
Introduction Subcutaneous macroencapsulation devices circumvent disadvantages of intraportal islet therapy. However, a curative dose of islets within reasonably sized devices requires dense cell packing. We measured internal PO2 of implanted devices, mathematically modeled oxygen availability within devices and tested the predictions with implanted devices containing densely packed human islets. Methods Partial pressure of oxygen (PO2) within implanted empty devices was measured by noninvasive 19F-MRS. A mathematical model was constructed, predicting internal PO2, viability and functionality of densely packed islets as a function of external PO2. Finally, viability was measured by oxygen consumption rate (OCR) in day 7 explants loaded at various islet densities. Results In empty devices, PO2 was 12 mmHg or lower, despite successful external vascularization. Devices loaded with human islets implanted for 7 days, then explanted and assessed by OCR confirmed trends proffered by the model but viability was substantially lower than predicted. Co-localization of insulin and caspase-3 immunostaining suggested that apoptosis contributed to loss of beta cells. Discussion Measured PO2 within empty devices declined during the first few days post-transplant then modestly increased with neovascularization around the device. Viability of islets is inversely related to islet density within devices.
Collapse
Affiliation(s)
- Samuel A Einstein
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Department of Radiology, The Pennsylvania State University, Hershey, PA, United States
| | - Leah V Steyn
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Bradley P Weegman
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Sylvatica Biotech Inc., North Charleston, SC, United States
| | - Thomas M Suszynski
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Athanassios Sambanis
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Timothy D O'Brien
- Veterinary Population Medicine Department, University of Minnesota, Saint Paul, MN, United States
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | | | - Meri T Firpo
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Melanie L Graham
- Veterinary Population Medicine Department, University of Minnesota, Saint Paul, MN, United States
- Department of Surgery, Preclinical Research Center, University of Minnesota, Saint Paul, MN, United States
| | - Jody Janecek
- Department of Surgery, Preclinical Research Center, University of Minnesota, Saint Paul, MN, United States
| | - Lynn E Eberly
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Charles W Putnam
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Klearchos K Papas
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
2
|
Kotecha M, Wang L, Hameed S, Viswakarma N, Ma M, Stabler C, Hoesli CA, Epel B. In vitro oxygen imaging of acellular and cell-loaded beta cell replacement devices. Sci Rep 2023; 13:15641. [PMID: 37730815 PMCID: PMC10511476 DOI: 10.1038/s41598-023-42099-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing beta cells. Bioartificial pancreas (BAP) or beta cell replacement strategies have shown promise in curing T1D and providing long-term insulin independence. Hypoxia (low oxygen concentration) that may occur in the BAP devices due to cell oxygen consumption at the early stages after implantation damages the cells, in addition to imposing limitations to device dimensions when translating promising results from rodents to humans. Finding ways to provide cells with sufficient oxygenation remains the major challenge in realizing BAP devices' full potential. Therefore, in vitro oxygen imaging assessment of BAP devices is crucial for predicting the devices' in vivo efficiency. Electron paramagnetic resonance oxygen imaging (EPROI, also known as electron MRI or eMRI) is a unique imaging technique that delivers absolute partial pressure of oxygen (pO2) maps and has been used for cancer hypoxia research for decades. However, its applicability for assessing BAP devices has not been explored. EPROI utilizes low magnetic fields in the mT range, static gradients, and the linear relationship between the spin-lattice relaxation rate (R1) of oxygen-sensitive spin probes such as trityl OX071 and pO2 to generate oxygen maps in tissues. With the support of the Juvenile Diabetes Research Foundation (JDRF), an academic-industry partnership consortium, the "Oxygen Measurement Core" was established at O2M to perform oxygen imaging assessment of BAP devices originated from core members' laboratories. This article aims to establish the protocols and demonstrate a few examples of in vitro oxygen imaging of BAP devices using EPROI. All pO2 measurements were performed using a recently introduced 720 MHz/25 mT preclinical oxygen imager instrument, JIVA-25™. We began by performing pO2 calibration of the biomaterials used in BAPs at 25 mT magnetic field since no such data exist. We compared the EPROI pO2 measurement with a single-point probe for a few selected materials. We also performed trityl OX071 toxicity studies with fibroblasts, as well as insulin-producing cells (beta TC6, MIN6, and human islet cells). Finally, we performed proof-of-concept in vitro pO2 imaging of five BAP devices that varied in size, shape, and biomaterials. We demonstrated that EPROI is compatible with commonly used biomaterials and that trityl OX071 is nontoxic to cells. A comparison of the EPROI with a fluorescent-based point oxygen probe in selected biomaterials showed higher accuracy of EPROI. The imaging of typically heterogenous BAP devices demonstrated the utility of obtaining oxygen maps over single-point measurements. In summary, we present EPROI as a quality control tool for developing efficient cell transplantation devices and artificial tissue grafts. Although the focus of this work is encapsulation systems for diabetes, the techniques developed in this project are easily transferable to other biomaterials, tissue grafts, and cell therapy devices used in the field of tissue engineering and regenerative medicine (TERM). In summary, EPROI is a unique noninvasive tool to experimentally study oxygen distribution in cell transplantation devices and artificial tissues, which can revolutionize the treatment of degenerative diseases like T1D.
Collapse
Affiliation(s)
- Mrignayani Kotecha
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA.
| | - Longhai Wang
- Department of Biological and Environmental Engineering, Cornell University, NY, 14853, USA
| | - Safa Hameed
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA
| | - Navin Viswakarma
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, NY, 14853, USA
| | - Cherie Stabler
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, QC, H3C 0C5, Canada
| | - Boris Epel
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
3
|
Brovkina O, Dashinimaev E. Advances and complications of regenerative medicine in diabetes therapy. PeerJ 2020; 8:e9746. [PMID: 33194345 PMCID: PMC7485501 DOI: 10.7717/peerj.9746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022] Open
Abstract
The rapid development of technologies in regenerative medicine indicates clearly that their common application is not a matter of if, but of when. However, the regeneration of beta-cells for diabetes patients remains a complex challenge due to the plurality of related problems. Indeed, the generation of beta-cells masses expressing marker genes is only a first step, with maintaining permanent insulin secretion, their protection from the immune system and avoiding pathological modifications in the genome being the necessary next developments. The prospects of regenerative medicine in diabetes therapy were promoted by the emergence of promising results with embryonic stem cells (ESCs). Their pluripotency and proliferation in an undifferentiated state during culture have ensured the success of ESCs in regenerative medicine. The discovery of induced pluripotent stem cells (iPSCs) derived from the patients’ own mesenchymal cells has provided further hope for diabetes treatment. Nonetheless, the use of stem cells has significant limitations related to the pluripotent stage, such as the risk of development of teratomas. Thus, the direct conversion of mature cells into beta-cells could address this issue. Recent studies have shown the possibility of such transdifferentiation and have set trends for regeneration medicine, directed at minimizing genome modifications and invasive procedures. In this review, we will discuss the published results of beta-cell regeneration and the advantages and disadvantages illustrated by these experiments.
Collapse
Affiliation(s)
- Olga Brovkina
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russia
| | - Erdem Dashinimaev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
4
|
Oxygenation strategies for encapsulated islet and beta cell transplants. Adv Drug Deliv Rev 2019; 139:139-156. [PMID: 31077781 DOI: 10.1016/j.addr.2019.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023]
Abstract
Human allogeneic islet transplantation (ITx) is emerging as a promising treatment option for qualified patients with type 1 diabetes. However, widespread clinical application of allogeneic ITx is hindered by two critical barriers: the need for systemic immunosuppression and the limited supply of human islet tissue. Biocompatible, retrievable immunoisolation devices containing glucose-responsive insulin-secreting tissue may address both critical barriers by enabling the more effective and efficient use of allogeneic islets without immunosuppression in the near-term, and ultimately the use of a cell source with a virtually unlimited supply, such as human stem cell-derived β-cells or xenogeneic (porcine) islets with minimal or no immunosuppression. However, even though encapsulation methods have been developed and immunoprotection has been successfully tested in small and large animal models and to a limited extent in proof-of-concept clinical studies, the effective use of encapsulation approaches to convincingly and consistently treat diabetes in humans has yet to be demonstrated. There is increasing consensus that inadequate oxygen supply is a major factor limiting their clinical translation and routine implementation. Poor oxygenation negatively affects cell viability and β-cell function, and the problem is exacerbated with the high-density seeding required for reasonably-sized clinical encapsulation devices. Approaches for enhanced oxygen delivery to encapsulated tissues in implantable devices are therefore being actively developed and tested. This review summarizes fundamental aspects of islet microarchitecture and β-cell physiology as well as encapsulation approaches highlighting the need for adequate oxygenation; it also evaluates existing and emerging approaches for enhanced oxygen delivery to encapsulation devices, particularly with the advent of β-cell sources from stem cells that may enable the large-scale application of this approach.
Collapse
|
5
|
Ernst AU, Bowers DT, Wang LH, Shariati K, Plesser MD, Brown NK, Mehrabyan T, Ma M. Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev 2019; 139:116-138. [PMID: 30716349 PMCID: PMC6677642 DOI: 10.1016/j.addr.2019.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Islet transplantation is a promising long-term, compliance-free, complication-preventing treatment for type 1 diabetes. However, islet transplantation is currently limited to a narrow set of patients due to the shortage of donor islets and side effects from immunosuppression. Encapsulating cells in an immunoisolating membrane can allow for their transplantation without the need for immunosuppression. Alternatively, "open" systems may improve islet health and function by allowing vascular ingrowth at clinically attractive sites. Many processes that enable graft success in both approaches occur at the nanoscale level-in this review we thus consider nanotechnology in cell replacement therapies for type 1 diabetes. A variety of biomaterial-based strategies at the nanometer range have emerged to promote immune-isolation or modulation, proangiogenic, or insulinotropic effects. Additionally, coating islets with nano-thin polymer films has burgeoned as an islet protection modality. Materials approaches that utilize nanoscale features manipulate biology at the molecular scale, offering unique solutions to the enduring challenges of islet transplantation.
Collapse
Affiliation(s)
- Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell D Plesser
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Natalie K Brown
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tigran Mehrabyan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
6
|
Abstract
A logical cure for type 1 diabetes (T1D) involves replacing the lost insulin-producing cells with new ones, preferably cells from a well-characterized and unlimited source of human insulin-producing cells. This straightforward and simple solution to provide a cure for T1D is immensely attractive but entails at least two inherent and thus far unresolved hurdles: 1) provision of an unlimited source of functional human insulin-producing cells and 2) prevention of rejection without the side effects of systemic immunosuppression. Generation of transplantable insulin-producing cells from human embryonic stem cells or induced pluripotent stem cells is at present close to reality, and we are currently awaiting the first clinical studies. Focus is now directed to foster development of novel means to control the immune system to enable large-scale clinical application. Encapsulation introduces a physical barrier that prevents access of immune cells to the transplanted cells but also hinders blood vessel ingrowth. Therefore, oxygen, nutrient, and hormonal passage over the encapsulation membrane is solely dependent on diffusion over the immune barrier, contributing to delays in glucose sensing and insulin secretion kinetics. This Perspective focuses on the physiological possibilities and limitations of an encapsulation strategy to establish near-normoglycemia in subjects with T1D, assuming that glucose-responsive insulin-producing cells are available for transplantation.
Collapse
Affiliation(s)
- Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Miki A, Rivas-Carrillo JD, Navarro-Alvarez N, Soto-Gutierrez A, Chen Y, Tanaka K, Narushima M, Tabata Y, Okitsu T, Noguchi H, Matsumoto S, Tanaka N, Kobayashi N. Maintenance of Neovascularization at the Implantation Site of an Artificial Device by bFGF and Endothelial Cell Transplant. Cell Transplant 2017; 15:893-901. [PMID: 17299994 DOI: 10.3727/000000006783981378] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Development of a subcutaneously implantable bioartificial pancreas (BAP) with immunoisolatory function could have a great impact on the treatment of diabetes mellitus. We have developed an implantable BAP device with an ethylene vinyl alcohol (EVAL) membrane. In the present study, we used basic fibroblast growth factors (bFGF), which was incorporated in a carrier for sustained release, in order to induce neovascularization when the device was implanted subcutaneously. To maintain the vasculature thus formed, a cell infusion port was attached to the BAP device, through which the device was filled with human liver vascular endothelial cell line TMNK-1, and the vasculature could be adequately maintained. Mice were divided into the following three groups. In group 1, a bFGF-free BAP device was implanted subcutaneously. In group 2, a sustained-release bFGF-impregnated BAP device was implanted. In group 3, a sustained-release bFGF-impregnated BAP device was implanted, and 3 × 106 TMNK-1 cells were infused into the implanted device every week. Neovascularization induced in the subcutaneous tissue around the implanted BAP device was macroscopically examined and histologically evaluated. In addition, the tissue blood flow was measured using a laser blood flow meter. In mice in group 3, neovascularization was significantly induced and maintained until week 8 postimplantation. It was confirmed by scanning electron microscopy that infused TMNK-1 cells adhered to the inner polyethylene surface of the device. It was demonstrated that the use of bFGF and vascular endothelial TMNK-1 cells induced and maintained adequate vasculature and tissue blood flow surrounding the implantable bag-type BAP device. We believe that the present study will contribute to BAP development for the treatment of diabetes.
Collapse
Affiliation(s)
- Atsushi Miki
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tibell A, Rafael E, Wennberg L, Nordenström J, Bergström M, Geller RL, Loudovaris T, Johnson RC, Brauker JH, Neuenfeldt S, Wernerson A. Survival of Macroencapsulated Allogeneic Parathyroid Tissue One Year after Transplantation in Nonimmunosuppressed Humans. Cell Transplant 2017. [DOI: 10.3727/000000001783986404] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Annika Tibell
- Departments of Transplantation Surgery, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | - Ehab Rafael
- Departments of Transplantation Surgery, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | - Lars Wennberg
- Departments of Transplantation Surgery, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | - Jörgen Nordenström
- Departments of Surgery, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | - Mats Bergström
- Departments of Clinical Chemistry, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | | - Annika Wernerson
- Departments of Transplantation Surgery, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
|
10
|
Colton CK. Oxygen supply to encapsulated therapeutic cells. Adv Drug Deliv Rev 2014; 67-68:93-110. [PMID: 24582600 DOI: 10.1016/j.addr.2014.02.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 02/07/2023]
Abstract
Therapeutic cells encapsulated in immunobarrier devices have promise for treatment of a variety of human diseases without immunosuppression. The absence of sufficient oxygen supply to maintain viability and function of encapsulated tissue has been the most critical impediment to progress. Within the framework of oxygen supply limitations, we review the major issues related to development of these devices, primarily in the context of encapsulated islets of Langerhans for treating diabetes, including device designs and materials, supply of tissue, protection from immune rejection, and maintenance of cell viability and function. We describe various defensive measures investigated to enhance survival of transplanted tissue, and we review the diverse approaches to enhancement of oxygen transport to encapsulated tissue, including manipulation of diffusion distances and oxygen permeability of materials, induction of neovascularization with angiogenic factors and vascularizing membranes, and methods for increasing the oxygen concentration adjacent to encapsulated tissue so as to exceed that in the microvasculature. Recent developments, particularly in this latter area, suggest that the field is ready for clinical trials of encapsulated therapeutic cells to treat diabetes.
Collapse
|
11
|
Jia X, Sharma A, Kumagai-Braesch M, Wernerson AM, Sörenby AK, Yamamoto S, Wang F, Tibell AB. Exendin-4 increases the expression of hypoxia-inducible factor-1α in rat islets and preserves the endocrine cell volume of both free and macroencapsulated islet grafts. Cell Transplant 2012; 21:1269-83. [PMID: 22405036 DOI: 10.3727/096368911x627408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this study, we evaluated the effects of exendin-4 on free and encapsulated islet grafts in a rodent model. We also investigated the role of a transcription factor, hypoxia-inducible factor-1 (HIF-1), in mediating the beneficial effects of exendin-4. Diabetic athymic mice were transplanted with free rat islets under the kidney capsule or with macroencapsulated rat islets SC with or without exendin-4, islet preculture (exendin-4 0.1 nM for 20 h), and/or recipient treatment (IP 100 ng/day, day 0-7). The mice were followed for 4 weeks and the graft function and β-cell volume were evaluated. The effects of exendin-4 on islet HIF-1α mRNA and protein expression and on ATP content in a rat insulinoma cell line (INS-1E) were also examined. Preculture with exendin-4 followed by recipient treatment improved the outcome of both free (73% graft function vs. 26% in controls, p = 0.03) and macroencapsulated islet grafts (100% vs. 25% in controls, p = 0.02). In macroencapsulated grafts, the exendin-4-treated group had significantly larger endocrine volume, less graft necrosis, and more blood vessels around the capsule. In rat islets cultured with exendin-4, HIF-1α mRNA and protein expression were significantly enhanced. ATP content was increased in exendin-4-treated INS-1E cells under hypoxic conditions. The improved functional outcome after transplantation of a marginal islet mass with a brief initial treatment with exendin-4 is related to a larger surviving endocrine cell volume. Exendin-4 may improve islet graft resistance to hypoxia during the peritransplant period by increasing the expression of HIF-1α.
Collapse
Affiliation(s)
- Xiaohui Jia
- CLINTEC, Division of Transplantation Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Preimplantation of an immunoprotective device can lower the curative dose of islets to that of free islet transplantation: studies in a rodent model. Transplantation 2008; 86:364-6. [PMID: 18645504 DOI: 10.1097/tp.0b013e31817efc78] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Islet graft survival inside macroencapsulation devices is suboptimal. We hypothesized that induction of neovascularization by preimplantation of devices would improve the physiological conditions, thereby lowering the number of islets required for cure. Several rat islets were transplanted to TheraCyte immunoprotective devices implanted subcutaneously in diabetic athymic mice. Cure rates in the groups with preimplanted devices were significantly better than in those with freshly implanted devices (375 islets: 8/8 vs. 1/6, P=0.003; 125 islets: 6/6 vs. 0/7, P=0.001). Morphometric evaluations of the 125 islet groups showed higher fractional and absolute volumes of endocrine tissue in the group with preimplanted devices (P<0.001 and P=0.035, respectively). In the following dose titration study, using preimplanted devices, as low as 50 islets cured diabetic mice (100% cure, n=6). We conclude that preimplantation significantly lowers the curative dose of macroencapsulated islets to levels resembling those of free islets transplanted under the renal capsule.
Collapse
|
13
|
Kaushiva A, Turzhitsky VM, Darmoc M, Backman V, Ameer GA. A biodegradable vascularizing membrane: a feasibility study. Acta Biomater 2007; 3:631-42. [PMID: 17507300 DOI: 10.1016/j.actbio.2007.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 02/04/2007] [Accepted: 03/02/2007] [Indexed: 10/23/2022]
Abstract
Regenerative medicine and in vivo biosensor applications require the formation of mature vascular networks for long-term success. This study investigated whether biodegradable porous membranes could induce the formation of a vascularized fibrous capsule and, if so, the effect of degradation kinetics on neovascularization. Poly(l-lactic acid) (PLLA) and poly(dl-lactic-co-glycolic) acid (PLGA) membranes were created by a solvent casting/salt leaching method. Specifically, PLLA, PLGA 75:25 and PLGA 50:50 polymers were used to vary degradation kinetics. The membranes were designed to have an average 60mum pore diameter, as this pore size has been shown to be optimal for inducing blood vessel formation around nondegradable polymer materials. Membrane samples were imaged by scanning electron microscopy at several time points during in vitro degradation to assess any changes in pore structure. The in vivo performance of the membranes was assessed in Sprague-Dawley rats by measuring vascularization within the fibrous capsule that forms adjacent to implants. The vascular density within 100microm of the membranes was compared with that seen in normal tissue, and to that surrounding the commercially available vascularizing membrane TheraCyte. The hemoglobin content of tissue containing the membranes was measured by four-dimensional elastic light scattering as a novel method to assess tissue perfusion. Results from this study show that slow-degrading membranes induce greater amounts of neovascularization and a thinner fibrous capsule relative to fast degrading membranes. These results may be due both to an initially increased number of macrophages surrounding the slower degrading membranes and to the maintenance of their initial pore structure.
Collapse
Affiliation(s)
- Anchal Kaushiva
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Road E310, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
14
|
Dulong JL, Legallais C. A theoretical study of oxygen transfer including cell necrosis for the design of a bioartificial pancreas. Biotechnol Bioeng 2007; 96:990-8. [PMID: 16897784 DOI: 10.1002/bit.21140] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In an extravascular bioartificial pancreas (BAP), islet functions are probably limited by diffusive mass transfer and local consumption, leading to low oxygenation. A mathematical model based on finite elements and focusing on local oxygen transport in both the alginate core and the islets of Langerhans has been proposed to help design an efficient pancreas supply. It was possible to randomly localize islets in a hollow fiber at different densities, and the effects of hypoxia and necrosis were included in the mass transfer simulations. Thorough study of the numerical results first led to the analysis of several relevant parameters, such as necrosis factor and efficacy in terms of insulin secretion, as a way to optimize fiber geometry. The approach was then to calculate the number of islets that needed to be implanted in order to obtain a correct response in terms of insulin secretion. In most configurations, it was found to be much higher than that of ultimately functional islets, because of hypoxia and necrosis. Fiber length should thus be adjusted accordingly. Finally, we demonstrated that the compromise to be found between the reduction of the number of implanted islets and fiber length and diameter did not correspond to realistic hollow fiber systems. The alternative of using flat geometry was also envisaged with more optimistic feasibility assessments.
Collapse
Affiliation(s)
- Jean-Luc Dulong
- Department of Biological Engineering, Technological University of Compiègne, UMR 6600 CNRS, Compiègne, France
| | | |
Collapse
|
15
|
Soto-Gutiérrez A, Kobayashi N, Rivas-Carrillo JD, Navarro-Alvarez N, Zhao D, Zhao D, Okitsu T, Noguchi H, Basma H, Tabata Y, Chen Y, Tanaka K, Narushima M, Miki A, Ueda T, Jun HS, Yoon JW, Lebkowski J, Tanaka N, Fox IJ. Reversal of mouse hepatic failure using an implanted liver-assist device containing ES cell-derived hepatocytes. Nat Biotechnol 2006; 24:1412-9. [PMID: 17086173 DOI: 10.1038/nbt1257] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 10/06/2006] [Indexed: 01/10/2023]
Abstract
Severe acute liver failure, even when transient, must be treated by transplantation and lifelong immune suppression. Treatment could be improved by bioartificial liver (BAL) support, but this approach is hindered by a shortage of human hepatocytes. To generate an alternative source of cells for BAL support, we differentiated mouse embryonic stem (ES) cells into hepatocytes by coculture with a combination of human liver nonparenchymal cell lines and fibroblast growth factor-2, human activin-A and hepatocyte growth factor. Functional hepatocytes were isolated using albumin promoter-based cell sorting. ES cell-derived hepatocytes expressed liver-specific genes, secreted albumin and metabolized ammonia, lidocaine and diazepam. Treatment of 90% hepatectomized mice with a subcutaneously implanted BAL seeded with ES cell-derived hepatocytes or primary hepatocytes improved liver function and prolonged survival, whereas treatment with a BAL seeded with control cells did not. After functioning in the BAL, ES cell-derived hepatocytes developed characteristics nearly identical to those of primary hepatocytes.
Collapse
Affiliation(s)
- Alejandro Soto-Gutiérrez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mahgoub MA, Ammar A, Fayez M, Edris A, Hazem A, Akl M, Hammam O. Neovascularization of the amniotic membrane as a biological immune barrier. Transplant Proc 2005; 36:1194-8. [PMID: 15194414 DOI: 10.1016/j.transproceed.2004.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The clinical application of islet transplantation is limited due to the limited source and the morbidity of systemic immunosuppression to prevent rejection. The two problems can be solved by using encapsulated islets. We have used amniotic membranes as biocompatible natural immune barriers. The objective of this study was to assess the revascularization of the membrane, which is necessary to ensure islet viability when the membrane is used for islet encapsulation. The amniotic membranes, obtained from full-term pregnant female dogs, were molded to form macrocapsules, which were implanted in the peritoneal cavity. The capsules were removed after 3, 10, 15, and 30 days and examined histopathologically using hematoxylin and eosin and by immunohistochemistry for neovascularization using factor VIII to detect angiogenesis. Upon histopathological examination, all specimens showed localized, moderate inflammation and congested blood vessels with no thrombosis or rejection. There was a mild degree of fibroblast proliferation starting from day 10 to day 30. Immunohistochemical staining revealed that the number of blood vessels was 7, 11, 13, 10 per high-power microscopic field on days 3, 10, 15, and 30, respectively. We concluded from this study that implanted amniotic sac capsules were vascularized within the omental tissue from day 10 on with significant blood vessel formation starting on day 3 by immunohistochemical study.
Collapse
Affiliation(s)
- M A Mahgoub
- Pancreatic Islet Transplantation and Diabetes Research Unit, Ain Shams University Hospital, Cairo, Egypt.
| | | | | | | | | | | | | |
Collapse
|
17
|
Rafael E, Wu GS, Hultenby K, Tibell A, Wernerson A. Improved survival of macroencapsulated islets of Langerhans by preimplantation of the immunoisolating device: a morphometric study. Cell Transplant 2004; 12:407-12. [PMID: 12911128 DOI: 10.3727/000000003108746957] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Encapsulation of cells in a semipermeable membrane may in the future provide an opportunity to treat a variety of endocrine and neurological disorders, without the need for lifelong immunosuppression. The physiological conditions in the device are crucial factors for graft survival. Previously, we have shown that the exchange across the immunoisolating membrane and the microcirculation around the TheraCyte device increase around 3 months after implantation. The aim of this study was to determine whether preimplantation of the TheraCyte device would improve the survival of a later transplanted islet graft. A TheraCyte device was implanted SC on one side of the back of a nondiabetic SD rat. After 3 months, 1500 islets isolated from SD rats were transplanted via the device port. At the same time, another device, loaded with the same number of islets, was implanted on the other side of the back. Both devices were explanted 2 weeks after islet transplantation (i.e., 3.5 months and 0.5 month after device implantation, respectively). Six pairs of devices were evaluated by morphometery. The volume densities of viable islets were 0.22 +/- 0.04 in the preimplanted device vs. 0.06 +/- 0.03 in the nonpreimplanted one (p < 0.05). The corresponding volume densities of fibrosis and necrosis were 0.64 +/- 0.13 vs. 0.85 +/- 0.08 (p < 0.05) and 0.11 +/- 0.14 vs. 0.09 +/- 0.07 (ns), respectively. When the absolute volumes (mm3) were calculated, preimplanted devices contained 1.1 +/- 0.7 endocrine cells while nonpreimplanted ones contained 0.4 +/- 0.2 (p < 0.05). The percentages of insulin- positive beta-cells in the preimplanted versus nonpreimplanted device were 80 +/- 5% and 67 +/- 6%, respectively (p < 0.01). The corresponding volumes of fibrotic tissue were 3.0 +/- 1.8 vs. 5.2 +/- 1.2 (p < 0.05), while the amount of necrotic tissue did not differ significantly (0.42 +/- 0.5 vs. 0.50 +/- 0.3). Preimplantation of the TheraCyte device seems to improve the survival of an encapsulated islet graft and reduce fibroblast outgrowth in the device.
Collapse
Affiliation(s)
- E Rafael
- Department of Transplantation Surgery, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
18
|
Itkin-Ansari P, Geron I, Hao E, Demeterco C, Tyrberg B, Levine F. Cell-based therapies for diabetes: progress towards a transplantable human beta cell line. Ann N Y Acad Sci 2004; 1005:138-47. [PMID: 14679048 DOI: 10.1196/annals.1288.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Achieving normoglycemia is the goal of diabetes therapy. Potentially, there are many ways to achieve this goal, including transplantation of cells exhibiting glucose-responsive insulin secretion. However, to be applicable to the large number of people who might benefit from beta cell replacement, an unlimited supply of beta cells must be found. To address this problem, we have been developing cell lines from the human endocrine pancreas. In one case, a cell line, betalox5, has been developed from human islets that can be induced under some circumstances to differentiate into functional beta cells exhibiting appropriate glucose-responsive insulin secretion. Inducing differentiation is complex, requiring the activation of multiple signaling pathways, including those downstream of those involved in cell-cell contact and the glucagon-like peptide-1 receptor. In addition, transfer of the PDX-1 gene is also necessary to render the cells competent for differentiation. However, it is clear that many other genes are involved in maintaining the commitment of betalox5 cells towards the beta cell lineage. Understanding the complement of genes required to establish and maintain a beta cell lineage commitment would be enormously helpful in efforts to develop a cell line that can be used for beta cell replacement therapies. Here, we provide further information on the characteristics of cell lines that we have developed from the human pancreas that are relevant to the development of a beta cell replacement therapy for diabetes.
Collapse
Affiliation(s)
- Pamela Itkin-Ansari
- Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
19
|
Yang Z, Chen M, Fialkow LB, Ellett JD, Wu R, Nadler JL. Survival of pancreatic islet xenografts in NOD mice with the theracyte device. Transplant Proc 2002; 34:3349-50. [PMID: 12493470 DOI: 10.1016/s0041-1345(02)03685-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Z Yang
- Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|