1
|
Vieceli Dalla Sega F, Fortini F, Licastro D, Monego SD, Degasperi M, Ascierto A, Marracino L, Severi P, D'Accolti M, Soffritti I, Brambilla M, Camera M, Tremoli E, Contoli M, Spadaro S, Campo G, Ferrari R, Caselli E, Rizzo P. Serum from COVID-19 patients promotes endothelial cell dysfunction through protease-activated receptor 2. Inflamm Res 2024; 73:117-130. [PMID: 38117300 DOI: 10.1007/s00011-023-01823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/06/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Endothelial dysfunction plays a central role in the pathophysiology of COVID-19 and is closely linked to the severity and mortality of the disease. The inflammatory response to SARS-CoV-2 infection can alter the capacity of the endothelium to regulate vascular tone, immune responses, and the balance between anti-thrombotic and pro-thrombotic properties. However, the specific endothelial pathways altered during COVID-19 still need to be fully understood. OBJECTIVE In this study, we sought to identify molecular changes in endothelial cells induced by circulating factors characteristic of COVID-19. METHODS AND RESULTS To this aim, we cultured endothelial cells with sera from patients with COVID-19 or non-COVID-19 pneumonia. Through transcriptomic analysis, we were able to identify a distinctive endothelial phenotype that is induced by sera from COVID-19 patients. We confirmed and expanded this observation in vitro by showing that COVID-19 serum alters functional properties of endothelial cells leading to increased apoptosis, loss of barrier integrity, and hypercoagulability. Furthermore, we demonstrated that these endothelial dysfunctions are mediated by protease-activated receptor 2 (PAR-2), as predicted by transcriptome network analysis validated by in vitro functional assays. CONCLUSION Our findings provide the rationale for further studies to evaluate whether targeting PAR-2 may be a clinically effective strategy to counteract endothelial dysfunction in COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Alessia Ascierto
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Luisa Marracino
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Maria D'Accolti
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, and LTTA, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | - Irene Soffritti
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, and LTTA, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | | | - Marina Camera
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Marco Contoli
- Respiratory Section, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Savino Spadaro
- Intensive Care Unit, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, University of Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Elisabetta Caselli
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, and LTTA, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Pan CC, Maeso-Díaz R, Lewis TR, Xiang K, Tan L, Liang Y, Wang L, Yang F, Yin T, Wang C, Du K, Huang D, Oh SH, Wang E, Lim BJW, Chong M, Alexander PB, Yao X, Arshavsky VY, Li QJ, Diehl AM, Wang XF. Antagonizing the irreversible thrombomodulin-initiated proteolytic signaling alleviates age-related liver fibrosis via senescent cell killing. Cell Res 2023; 33:516-532. [PMID: 37169907 PMCID: PMC10313785 DOI: 10.1038/s41422-023-00820-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Cellular senescence is a stress-induced, stable cell cycle arrest phenotype which generates a pro-inflammatory microenvironment, leading to chronic inflammation and age-associated diseases. Determining the fundamental molecular pathways driving senescence instead of apoptosis could enable the identification of senolytic agents to restore tissue homeostasis. Here, we identify thrombomodulin (THBD) signaling as a key molecular determinant of the senescent cell fate. Although normally restricted to endothelial cells, THBD is rapidly upregulated and maintained throughout all phases of the senescence program in aged mammalian tissues and in senescent cell models. Mechanistically, THBD activates a proteolytic feed-forward signaling pathway by stabilizing a multi-protein complex in early endosomes, thus forming a molecular basis for the irreversibility of the senescence program and ensuring senescent cell viability. Therapeutically, THBD signaling depletion or inhibition using vorapaxar, an FDA-approved drug, effectively ablates senescent cells and restores tissue homeostasis in liver fibrosis models. Collectively, these results uncover proteolytic THBD signaling as a conserved pro-survival pathway essential for senescent cell viability, thus providing a pharmacologically exploitable senolytic target for senescence-associated diseases.
Collapse
Affiliation(s)
- Christopher C Pan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Raquel Maeso-Díaz
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Tylor R Lewis
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Fengrui Yang
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Calvin Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kuo Du
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Seh Hoon Oh
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | | | - Mengyang Chong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Peter B Alexander
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Xuebiao Yao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Vadim Y Arshavsky
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University, Durham, NC, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Silva BRS, Jara CP, Sidarta-Oliveira D, Velloso LA, Velander WH, Araújo EP. Downregulation of the Protein C Signaling System Is Associated with COVID-19 Hypercoagulability-A Single-Cell Transcriptomics Analysis. Viruses 2022; 14:2753. [PMID: 36560757 PMCID: PMC9785999 DOI: 10.3390/v14122753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Because of the interface between coagulation and the immune response, it is expected that COVID-19-associated coagulopathy occurs via activated protein C signaling. The objective was to explore putative changes in the expression of the protein C signaling network in the liver, peripheral blood mononuclear cells, and nasal epithelium of patients with COVID-19. Single-cell RNA-sequencing data from patients with COVID-19 and healthy subjects were obtained from the COVID-19 Cell Atlas database. A functional protein-protein interaction network was constructed for the protein C gene. Patients with COVID-19 showed downregulation of protein C and components of the downstream protein C signaling cascade. The percentage of hepatocytes expressing protein C was lower. Part of the liver cell clusters expressing protein C presented increased expression of ACE2. In PBMC, there was increased ACE2, inflammatory, and pro-coagulation transcripts. In the nasal epithelium, PROC, ACE2, and PROS1 were expressed by the ciliated cell cluster, revealing co-expression of ACE-2 with transcripts encoding proteins belonging to the coagulation and immune system interface. Finally, there was upregulation of coagulation factor 3 transcript in the liver and PBMC. Protein C could play a mechanistic role in the hypercoagulability syndrome affecting patients with severe COVID-19.
Collapse
Affiliation(s)
- Bruna Rafaela Santos Silva
- Nursing School, University of Campinas, Tessalia Vieira de Camargo, 126, Campinas 13084-970, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Center, OCRC, University of Campinas, Carl Von Linnaeus, s/n, Campinas 13084-864, Brazil
| | - Carlos Poblete Jara
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588-0643, USA
| | - Davi Sidarta-Oliveira
- Laboratory of Cell Signalling, Obesity and Comorbidities Center, OCRC, University of Campinas, Carl Von Linnaeus, s/n, Campinas 13084-864, Brazil
- School of Medical Sciences, University of Campinas, Tessalia Vieira de Camargo, 126, Campinas 13083-887, Brazil
| | - Licio A. Velloso
- Laboratory of Cell Signalling, Obesity and Comorbidities Center, OCRC, University of Campinas, Carl Von Linnaeus, s/n, Campinas 13084-864, Brazil
- School of Medical Sciences, University of Campinas, Tessalia Vieira de Camargo, 126, Campinas 13083-887, Brazil
| | - William H. Velander
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588-0643, USA
| | - Eliana P. Araújo
- Nursing School, University of Campinas, Tessalia Vieira de Camargo, 126, Campinas 13084-970, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Center, OCRC, University of Campinas, Carl Von Linnaeus, s/n, Campinas 13084-864, Brazil
| |
Collapse
|
4
|
Dysregulated haemostasis in thrombo-inflammatory disease. Clin Sci (Lond) 2022; 136:1809-1829. [PMID: 36524413 PMCID: PMC9760580 DOI: 10.1042/cs20220208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Inflammatory disease is often associated with an increased incidence of venous thromboembolism in affected patients, although in most instances, the mechanistic basis for this increased thrombogenicity remains poorly understood. Acute infection, as exemplified by sepsis, malaria and most recently, COVID-19, drives 'immunothrombosis', where the immune defence response to capture and neutralise invading pathogens causes concurrent activation of deleterious prothrombotic cellular and biological responses. Moreover, dysregulated innate and adaptive immune responses in patients with chronic inflammatory conditions, such as inflammatory bowel disease, allergies, and neurodegenerative disorders, are now recognised to occur in parallel with activation of coagulation. In this review, we describe the detailed cellular and biochemical mechanisms that cause inflammation-driven haemostatic dysregulation, including aberrant contact pathway activation, increased tissue factor activity and release, innate immune cell activation and programmed cell death, and T cell-mediated changes in thrombus resolution. In addition, we consider how lifestyle changes increasingly associated with modern life, such as circadian rhythm disruption, chronic stress and old age, are increasingly implicated in unbalancing haemostasis. Finally, we describe the emergence of potential therapies with broad-ranging immunothrombotic functions, and how drug development in this area is challenged by our nascent understanding of the key molecular and cellular parameters that control the shared nodes of proinflammatory and procoagulant pathways. Despite the increasing recognition and understanding of the prothrombotic nature of inflammatory disease, significant challenges remain in effectively managing affected patients, and new therapeutic approaches to curtail the key pathogenic steps in immune response-driven thrombosis are urgently required.
Collapse
|
5
|
Haidar MA, Jourdi H, Haj Hassan Z, Ashekyan O, Fardoun M, Wehbe Z, Maaliki D, Wehbe M, Mondello S, Abdelhady S, Shahjouei S, Bizri M, Mechref Y, Gold MS, Dbaibo G, Zaraket H, Eid AH, Kobeissy F. Neurological and Neuropsychological Changes Associated with SARS-CoV-2 Infection: New Observations, New Mechanisms. Neuroscientist 2021; 28:552-571. [PMID: 33393420 DOI: 10.1177/1073858420984106] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 infects cells through angiotensin-converting enzyme 2 (ACE2), a ubiquitous receptor that interacts with the virus' surface S glycoprotein. Recent reports show that the virus affects the central nervous system (CNS) with symptoms and complications that include dizziness, altered consciousness, encephalitis, and even stroke. These can immerge as indirect immune effects due to increased cytokine production or via direct viral entry into brain tissue. The latter is possible through neuronal access via the olfactory bulb, hematogenous access through immune cells or directly across the blood-brain barrier (BBB), and through the brain's circumventricular organs characterized by their extensive and highly permeable capillaries. Last, the COVID-19 pandemic increases stress, depression, and anxiety within infected individuals, those in isolation, and high-risk populations like children, the elderly, and health workers. This review surveys the recent updates of CNS manifestations post SARS-CoV-2 infection along with possible mechanisms that lead to them.
Collapse
Affiliation(s)
- Muhammad Ali Haidar
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hussam Jourdi
- Department of Biology, University of Balamand, Souk El Gharb, Aley, Lebanon
| | - Zeinab Haj Hassan
- Department of Animal Biology, Faculty of Science, Lebanese University, Beirut, Lebanon
| | - Ohanes Ashekyan
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Manal Fardoun
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Zena Wehbe
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maya Wehbe
- Department of Internal Medicine, Basingstoke & North Hampshire Hospital, Basingstoke, Hampshire, UK
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Shima Shahjouei
- Neurology Department, Neuroscience Institute, Geisinger Health System, Danville, PA, USA
| | - Maya Bizri
- Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ghassan Dbaibo
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Faculty of Medicine, Hariri School of Nursing, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- Faculty of Medicine, Hariri School of Nursing, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Faculty of Medicine, Hariri School of Nursing, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Lee C, Viswanathan G, Choi I, Jassal C, Kohlmann T, Rajagopal S. Beta-Arrestins and Receptor Signaling in the Vascular Endothelium. Biomolecules 2020; 11:biom11010009. [PMID: 33374806 PMCID: PMC7824595 DOI: 10.3390/biom11010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 12/17/2022] Open
Abstract
The vascular endothelium is the innermost layer of blood vessels and is a key regulator of vascular tone. Endothelial function is controlled by receptor signaling through G protein-coupled receptors, receptor tyrosine kinases and receptor serine-threonine kinases. The β-arrestins, multifunctional adapter proteins, have the potential to regulate all of these receptor families, although it is unclear as to whether they serve to integrate signaling across all of these different axes. Notably, the β-arrestins have been shown to regulate signaling by a number of receptors important in endothelial function, such as chemokine receptors and receptors for vasoactive substances such as angiotensin II, endothelin-1 and prostaglandins. β-arrestin-mediated signaling pathways have been shown to play central roles in pathways that control vasodilation, cell proliferation, migration, and immune function. At this time, the physiological impact of this signaling has not been studied in detail, but a deeper understanding of it could lead to the development of novel therapies for the treatment of vascular disease.
Collapse
Affiliation(s)
- Claudia Lee
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA;
| | - Gayathri Viswanathan
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
| | - Issac Choi
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
| | - Chanpreet Jassal
- College of Arts and Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Taylor Kohlmann
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA;
| | - Sudarshan Rajagopal
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA;
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
- Correspondence:
| |
Collapse
|
7
|
Iannucci J, Johnson SL, Majchrzak M, Barlock BJ, Akhlaghi F, Seeram NP, Sen A, Grammas P. Short-term treatment with dabigatran alters protein expression patterns in a late-stage tau-based Alzheimer's disease mouse model. Biochem Biophys Rep 2020; 24:100862. [PMID: 33294639 PMCID: PMC7689047 DOI: 10.1016/j.bbrep.2020.100862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
Proteins that regulate the coagulation cascade, including thrombin, are elevated in the brains of Alzheimer's disease (AD) patients. While studies using amyloid-based AD transgenic mouse models have implicated thrombin as a protein of interest, the role of thrombin in tau-based animal models has not been explored. The current study aims to determine how inhibiting thrombin could alter oxidative stress, inflammation, and AD-related proteins in a tau-based mouse model, the Tg4510. Aged Tg4510 mice were treated with the direct thrombin inhibitor dabigatran or vehicle for 7 days, brains collected, and western blot and data-independent proteomics using mass spectrometry with SWATH-MS acquisition performed to evaluate proteins related to oxidative stress, intracellular signaling, inflammation, and AD pathology. Dabigatran reduced iNOS, NOX4, and phosphorylation of tau (S396, S416). Additionally, dabigatran treatment increased expression of several signaling proteins related to cell survival and synaptic function. Increasing evidence supports a chronic procoagulant state in AD, highlighting a possible pathogenic role for thrombin. Our data demonstrate that inhibiting thrombin produces alterations in the expression of proteins involved in oxidative stress, inflammation, and AD-related pathology, suggesting that thrombin-mediated signaling affects multiple AD-related pathways providing a potential future therapeutic target. Thrombin inhibition with dabigatran reduces markers of oxidative stress in vivo. Dabigatran treatment reduces tau pathology in vivo. Dabigatran treatment promotes factors related to cell survival, synaptic function.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Shelby L Johnson
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Mark Majchrzak
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA
| | - Benjamin J Barlock
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Navindra P Seeram
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Abhik Sen
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA
| | - Paula Grammas
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| |
Collapse
|
8
|
Biswas I, Khan GA. Coagulation Disorders in COVID-19: Role of Toll-like Receptors. J Inflamm Res 2020; 13:823-828. [PMID: 33149655 PMCID: PMC7605922 DOI: 10.2147/jir.s271768] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has spread rapidly throughout the world. The range of the disease is broad but among hospitalized patients with COVID-19 are coagulation disorders, pneumonia, respiratory failure, and acute respiratory distress syndrome (ARDS). The excess production of early response proinflammatory cytokines results in what has been described as a cytokine storm, leading to an increased risk of thrombosis, inflammations, vascular hyperpermeability, multi-organ failure, and eventually death over time. As the pandemic is spreading and the whole picture is not yet clear, we highlight the importance of coagulation disorders in COVID-19 infected subjects and summarize it. COVID-19 infection could induce coagulation disorders leading to clot formation as well as pulmonary embolism with detrimental effects in patient recovery and survival. Coagulation and inflammation are closely related. In this review, we try to establish an association between virus infections associated with innate immune activation, inflammation and coagulation activation.
Collapse
Affiliation(s)
- Indranil Biswas
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK73104, USA
| | - Gausal A Khan
- Department of Physiology & Physiotherapy, College of Medicine, Nursing and Health Sciences, Fiji National University, Suva, Fiji Islands
| |
Collapse
|
9
|
Shiono A, Sasaki H, Sekine R, Abe Y, Matsumura Y, Inagaki T, Tanaka T, Kodama T, Aburatani H, Sakai J, Takagi H. PPARα activation directly upregulates thrombomodulin in the diabetic retina. Sci Rep 2020; 10:10837. [PMID: 32616724 PMCID: PMC7331602 DOI: 10.1038/s41598-020-67579-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
Two large clinical studies showed that fenofibrate, a commonly used peroxisome proliferator-activated receptor α (PPARα) agonist, has protective effects against diabetic retinopathy. However, the underlying mechanism has not been clarified. We performed genome-wide analyses of gene expression and PPARα binding sites in vascular endothelial cells treated with the selective PPARα modulator pemafibrate and identified 221 target genes of PPARα including THBD, which encodes thrombomodulin (TM). ChIP-qPCR and luciferase reporter analyses showed that PPARα directly regulated THBD expression via binding to the promoter. In the rat diabetic retina, treatment with pemafibrate inhibited the expression of inflammatory molecules such as VCAM-1 and MCP1, and these effects were attenuated by intravitreal injection of small interfering RNA targeted to THBD. Furthermore, pemafibrate treatment inhibited diabetes-induced vascular leukostasis and leakage through the upregulation of THBD. Our results indicate that PPARα activation inhibits inflammatory and vasopermeable responses in the diabetic retina through the upregulation of TM.
Collapse
Affiliation(s)
- Akira Shiono
- Department of Ophthalmology, St. Marianna University of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | - Hiroki Sasaki
- Department of Ophthalmology, St. Marianna University of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | - Reio Sekine
- Department of Ophthalmology, St. Marianna University of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | - Yohei Abe
- Division of Metabolic Medicine, The University of Tokyo, RCAST, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Yoshihiro Matsumura
- Division of Metabolic Medicine, The University of Tokyo, RCAST, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, IMCR, Gunma University, 3-39-15 Showa-cho, Maebashi, Gunma, Japan
| | - Toshiya Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Tatsuhiko Kodama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, The University of Tokyo, RCAST, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan.,Molecular Physiology and Metabolism Division, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba, Sendai, Miyagi, Japan
| | - Hitoshi Takagi
- Department of Ophthalmology, St. Marianna University of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
10
|
Fortin CS, Hamilton S, Laforest M, Léveillé MC, Sirard MA. Patients who failed to conceive following an in vitro fertilization cycle can be clustered into different failure causes using gene expression hierarchical analysis†. Biol Reprod 2020; 103:599-607. [PMID: 32483601 DOI: 10.1093/biolre/ioaa089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/21/2020] [Accepted: 05/25/2020] [Indexed: 01/15/2023] Open
Abstract
The patient's response to an IVF stimulation protocol is highly variable and thus difficult to predict. When a cycle fails, there are often no apparent or obvious reasons to explain the failure. Having clues on what went wrong during stimulation could serve as a basis to improve and personalize the next protocol. This exploratory study aimed to investigate if it is possible to distinguish different failure causes or different follicular responses in a population of nonpregnant IVF patients. Using qRT-PCR, we analyzed a panel of genes indicative of different failure causes in patients who did not achieve pregnancy following an IVF cycle. For each patient, a pool of follicular cells from all aspirated follicles was used as a sample which gives a global picture of the patient's ovary and not a specific picture of each follicle. We performed hierarchical clustering analysis to split the patients according to the gene expression pattern. Hierarchical analysis showed that the population of nonpregnant IVF patients could be divided into three clusters. Gene expression was significantly different, and each cluster displayed a particular gene expression pattern. Follicular cells from patients in clusters 1, 2 and 3 displayed respectively a pattern of gene expression related to large incompetent follicles with a higher apoptosis (over matured), to follicles not ready to ovulate (under mature) and to an excess of inflammation with no visible symptoms. This study reinforces the idea that women often have different response to the same protocol and would benefit from more personalized treatments.
Collapse
Affiliation(s)
- Chloé S Fortin
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Université Laval, Québec, QC, Canada
| | | | | | | | - Marc-André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Université Laval, Québec, QC, Canada
| |
Collapse
|
11
|
Kumar R, Gupta S, Gautam M, Jhajhria SK, Ray SB. Diverse characters of Brennan's paw incision model regarding certain parameters in the rat. Korean J Pain 2019; 32:168-177. [PMID: 31257825 PMCID: PMC6615451 DOI: 10.3344/kjp.2019.32.3.168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
Abstract
Background Brennan’s rodent paw incision model has been extensively used for understanding mechanisms underlying postoperative pain in humans. However, alterations of physiological parameters like blood pressure and heart rate, or even feeding and drinking patterns after the incision have not been documented as yet. Moreover, though eicosanoids like prostaglandins and leukotrienes contribute to inflammation, tissue levels of these inflammatory mediators have never been studied. This work further investigates the antinociceptive effect of protein C after intra-wound administration. Methods Separate groups of Sprague–Dawley rats were used for quantitation of cyclooxygenase (COX) activity and leukotriene B4 level by enzyme-linked immunosorbent assay, as well as estimation of cardiovascular parameters and feeding and drinking behavior after paw incision. In the next part, rats were subjected to incision and 10 μg of protein C was locally administered by a micropipette. Both evoked and non-evoked pain parameters were then estimated. Results COX, particularly COX-2 activity and leukotriene B4 levels increased after incision. Hemodynamic parameters were normal. Feeding and drinking were affected on days 1 and 3, and on day 1, respectively. Protein C attenuated non-evoked pain behavior alone up to day 2. Conclusions Based upon current observations, Brennan’s rodent paw incision model appears to exhibit a prolonged period of nociception similar to that after surgery, with minimal interference of physiological parameters. Protein C, which is likely converted to activated protein C in the wound, attenuated the guarding score, which probably represents pain at rest after surgery in humans.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Shivani Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Mayank Gautam
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Saroj Kaler Jhajhria
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Basu Ray
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
12
|
Elgammal M, Mourad Z, Sadek N, Abassy H, Ibrahim H. Plasma levels of soluble endothelial protein C-receptor in patients with β-thalassemia. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2011.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Maha Elgammal
- Hematology Department, Medical Research Institute , University of Alexandria , Alexandria, Egypt
| | - Zinab Mourad
- Chemical and Clinical Pathology Department, Medical Research Institute , University of Alexandria , Alexandria, Egypt
| | - Nadia Sadek
- Chemical and Clinical Pathology Department, Medical Research Institute , University of Alexandria , Alexandria, Egypt
| | - Hadeer Abassy
- Chemical and Clinical Pathology Department, Medical Research Institute , University of Alexandria , Alexandria, Egypt
| | - Heba Ibrahim
- Chemical and Clinical Pathology Department, Medical Research Institute , University of Alexandria , Alexandria, Egypt
| |
Collapse
|
13
|
McAuley JR, Freeman TJ, Ekambaram P, Lucas PC, McAllister-Lucas LM. CARMA3 Is a Critical Mediator of G Protein-Coupled Receptor and Receptor Tyrosine Kinase-Driven Solid Tumor Pathogenesis. Front Immunol 2018; 9:1887. [PMID: 30158935 PMCID: PMC6104486 DOI: 10.3389/fimmu.2018.01887] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
The CARMA–Bcl10–MALT1 (CBM) signalosome is an intracellular protein complex composed of a CARMA scaffolding protein, the Bcl10 linker protein, and the MALT1 protease. This complex was first recognized because the genes encoding its components are targeted by mutation and chromosomal translocation in lymphoid malignancy. We now know that the CBM signalosome plays a critical role in normal lymphocyte function by mediating antigen receptor-dependent activation of the pro-inflammatory, pro-survival NF-κB transcription factor, and that deregulation of this signaling complex promotes B-cell lymphomagenesis. More recently, we and others have demonstrated that a CBM signalosome also operates in cells outside of the immune system, including in several solid tumors. While CARMA1 (also referred to as CARD11) is expressed primarily within lymphoid tissues, the related scaffolding protein, CARMA3 (CARD10), is more widely expressed and participates in a CARMA3-containing CBM complex in a variety of cell types. The CARMA3-containing CBM complex operates downstream of specific G protein-coupled receptors (GPCRs) and/or growth factor receptor tyrosine kinases (RTKs). Since inappropriate expression and activation of GPCRs and/or RTKs underlies the pathogenesis of several solid tumors, there is now great interest in elucidating the contribution of CARMA3-mediated cellular signaling in these malignancies. Here, we summarize the key discoveries leading to our current understanding of the role of CARMA3 in solid tumor biology and highlight the current gaps in our knowledge.
Collapse
Affiliation(s)
- J Randall McAuley
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tanner J Freeman
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Prasanna Ekambaram
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Peter C Lucas
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Linda M McAllister-Lucas
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Wang Q, Tang Y, Wang T, Yang HL, Wang X, Ma H, Zhang P. EPCR promotes MGC803 human gastric cancer cell tumor angiogenesis in vitro through activating ERK1/2 and AKT in a PAR1-dependent manner. Oncol Lett 2018; 16:1565-1570. [PMID: 30008838 PMCID: PMC6036513 DOI: 10.3892/ol.2018.8869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/22/2018] [Indexed: 11/26/2022] Open
Abstract
The endothelial cell protein C receptor (EPCR) serves a key role in activated protein C (APC)-mediated cytoprotective effects in endothelial cells, and is involved in the development of certain types of human cancer. To the best of our knowledge, the present study is the first to demonstrate that EPCR may exert effects on gastric cancer angiogenesis in vitro. To detect microvessel density (MVD), the microvascular endothelial cells were stained for cluster of differentiation (CD)31 and CD34 in 61 cases of surgical resection of gastric carcinoma tissues, and the association between the expression of EPCR protein and MVD was analyzed. In addition, to analyze the effect of EPCR expressed by gastric cancer cells on the proliferation, migration and angiogenic abilities of endothelial cells, human umbilical vein endothelial cells (HUVECs) were cultured with tumor-conditioned medium derived from EPCR knockdown or protease-activated receptor 1 (PAR1)-blocked MGC803 gastric cancer cells. A CCK-8 assay was used to assess the proliferation ability of the HUVECs. A Transwell assay was performed to assess the migration ability of the HUVECs and a Matrigel-based tube formation assay was used to assess the angiogenic activity of the HUVECs. The results demonstrated that the expression of EPCR was correlated with the MVD of gastric cancer tissues. When cultured with tumor-conditioned medium derived from EPCR knockdown or PAR1-blocked MGC803 cells, the proliferation, migration and tubules formation abilities of HUVECs were markedly inhibited markedly. The expression of phosphorylated (p)-extracellular signal regulated kinase 1/2, p-protein kinase B (AKT; s473) and p-AKT (T308) in the HUVECs was decreased. In addition, EPCR knockdown inhibited PAR1 activation in the MGC803 cells. These results indicated that the expression of EPCR in gastric cancer cell line MGC803 contributes to tumor angiogenesis in vitro by activating ERK1/2 and AKT, and that this effect of EPCR is dependent on PAR1 activation.
Collapse
Affiliation(s)
- Qingling Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China.,Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou, Jiangsu 221004, P.R. China
| | - Yangyang Tang
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China.,Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou, Jiangsu 221004, P.R. China
| | - Tianyuan Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China.,Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou, Jiangsu 221004, P.R. China
| | - Hong-Li Yang
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China.,Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou, Jiangsu 221004, P.R. China
| | - Xinyue Wang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Hongru Ma
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Peng Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou, Jiangsu 221004, P.R. China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
15
|
Gorbacheva LR, Kiseleva EV, Savinkova IG, Strukova SM. A new concept of action of hemostatic proteases on inflammation, neurotoxicity, and tissue regeneration. BIOCHEMISTRY (MOSCOW) 2017; 82:778-790. [DOI: 10.1134/s0006297917070033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Sidhu TS, French SL, Hamilton JR. Differential signaling by protease-activated receptors: implications for therapeutic targeting. Int J Mol Sci 2014; 15:6169-83. [PMID: 24733067 PMCID: PMC4013622 DOI: 10.3390/ijms15046169] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/14/2014] [Accepted: 04/03/2014] [Indexed: 12/29/2022] Open
Abstract
Protease-activated receptors (PARs) are a family of four G protein-coupled receptors that exhibit increasingly appreciated differences in signaling and regulation both within and between the receptor class. By nature of their proteolytic self-activation mechanism, PARs have unique processes of receptor activation, "ligand" binding, and desensitization/resensitization. These distinctive aspects have presented both challenges and opportunities in the targeting of PARs for therapeutic benefit-the most notable example of which is inhibition of PAR1 on platelets for the prevention of arterial thrombosis. However, more recent studies have uncovered further distinguishing features of PAR-mediated signaling, revealing mechanisms by which identical proteases elicit distinct effects in the same cell, as well as how distinct proteases produce different cellular consequences via the same receptor. Here we review this differential signaling by PARs, highlight how important distinctions between PAR1 and PAR4 are impacting on the progress of a new class of anti-thrombotic drugs, and discuss how these more recent insights into PAR signaling may present further opportunities for manipulating PAR activation and signaling in the development of novel therapies.
Collapse
Affiliation(s)
- Tejminder S Sidhu
- Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne 3004, Australia.
| | - Shauna L French
- Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne 3004, Australia.
| | - Justin R Hamilton
- Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne 3004, Australia.
| |
Collapse
|
17
|
Martin FA, Murphy RP, Cummins PM. Thrombomodulin and the vascular endothelium: insights into functional, regulatory, and therapeutic aspects. Am J Physiol Heart Circ Physiol 2013; 304:H1585-97. [PMID: 23604713 PMCID: PMC7212260 DOI: 10.1152/ajpheart.00096.2013] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thrombomodulin (TM) is a 557-amino acid protein with a broad cell and tissue distribution consistent with its wide-ranging physiological roles. When expressed on the lumenal surface of vascular endothelial cells in both large vessels and capillaries, its primary function is to mediate endothelial thromboresistance. The complete integral membrane-bound protein form displays five distinct functional domains, although shorter soluble (functional) variants comprising the extracellular domains have also been reported in fluids such as serum and urine. TM-mediated binding of thrombin is known to enhance the specificity of the latter serine protease toward both protein C and thrombin activatable fibrinolysis inhibitor (TAFI), increasing their proteolytic activation rate by almost three orders of magnitude with concomitant anticoagulant, antifibrinolytic, and anti-inflammatory benefits to the vascular wall. Recent years have seen an abundance of research into the cellular mechanisms governing endothelial TM production, processing, and regulation (including flow-mediated mechanoregulation)--from transcriptional and posttranscriptional (miRNA) regulation of TM gene expression, to posttranslational processing and release of the expressed protein--facilitating greater exploitation of its therapeutic potential. The goal of the present paper is to comprehensively review the endothelial/TM system from these regulatory perspectives and draw some fresh conclusions. This paper will conclude with a timely examination of the current status of TM's growing therapeutic appeal, from novel strategies to improve the clinical efficacy of recombinant TM analogs for resolution of vascular disorders such as disseminated intravascular coagulation (DIC), to an examination of the complex pleiotropic relationship between statin treatment and TM expression.
Collapse
Affiliation(s)
- Fiona A Martin
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | | |
Collapse
|
18
|
Abstract
Hemostasis encompasses the tightly regulated processes of blood clotting, platelet activation, and vascular repair. After wounding, the hemostatic system engages a plethora of vascular and extravascular receptors that act in concert with blood components to seal off the damage inflicted to the vasculature and the surrounding tissue. The first important component that contributes to hemostasis is the coagulation system, while the second important component starts with platelet activation, which not only contributes to the hemostatic plug, but also accelerates the coagulation system. Eventually, coagulation and platelet activation are switched off by blood-borne inhibitors and proteolytic feedback loops. This review summarizes new concepts of activation of proteases that regulate coagulation and anticoagulation, to give rise to transient thrombin generation and fibrin clot formation. It further speculates on the (patho)physiological roles of intra- and extravascular receptors that operate in response to these proteases. Furthermore, this review provides a new framework for understanding how signaling and adhesive interactions between endothelial cells, leukocytes, and platelets can regulate thrombus formation and modulate the coagulation process. Now that the key molecular players of coagulation and platelet activation have become clear, and their complex interactions with the vessel wall have been mapped out, we can also better speculate on the causes of thrombosis-related angiopathies.
Collapse
Affiliation(s)
- Henri H. Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Johan W. M. Heemskerk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Marcel Levi
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Pieter H. Reitsma
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
19
|
de la Fuente M, Noble DN, Verma S, Nieman MT. Mapping human protease-activated receptor 4 (PAR4) homodimer interface to transmembrane helix 4. J Biol Chem 2012; 287:10414-10423. [PMID: 22318735 DOI: 10.1074/jbc.m112.341438] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin activates platelets by binding and cleaving protease-activated receptors 1 and 4 (PAR1 and PAR4). Because of the importance of PAR4 activation on platelets in humans and mice and emerging roles for PAR4 in other tissues, experiments were done to characterize the interaction between PAR4 homodimers. Bimolecular fluorescence complementation and bioluminescence resonance energy transfer (BRET) were used to examine the PAR4 homodimer interface. In bimolecular fluorescence complementation experiments, PAR4 formed homodimers that were disrupted by unlabeled PAR4 in a concentration-dependent manner, but not by rhodopsin. In BRET experiments, the PAR4 homodimers showed a specific interaction as indicated by a hyperbolic BRET signal in response to increasing PAR4-GFP expression. PAR4 did not interact with rhodopsin in BRET assays. The threshold maximum BRET signal was disrupted in a concentration-dependent manner by unlabeled PAR4. In contrast, rhodopsin was unable to disrupt the BRET signal, indicating that the disruption of the PAR4 homodimer is not due to nonspecific interactions. A panel of rho-PAR4 chimeras and PAR4 point mutants has mapped the dimer interface to hydrophobic residues in transmembrane helix 4. Finally, mutations that disrupted dimer formation had reduced calcium mobilization in response to the PAR4 agonist peptide. These results link the loss of dimer formation to a loss of PAR4 signaling.
Collapse
Affiliation(s)
- María de la Fuente
- Division of Hematolgy/Oncology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Daniel N Noble
- Division of Hematolgy/Oncology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Sheetal Verma
- Division of Hematolgy/Oncology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Marvin T Nieman
- Division of Hematolgy/Oncology, Case Western Reserve University, Cleveland, Ohio 44106; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
20
|
Kurata T, Hayashi T, Yoshikawa T, Okamoto T, Yoshida K, Iino T, Uchida A, Suzuki K. Activated protein C stimulates osteoblast proliferation via endothelial protein C receptor. Thromb Res 2009; 125:184-91. [PMID: 19804899 DOI: 10.1016/j.thromres.2009.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 08/24/2009] [Accepted: 09/08/2009] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Bone is continually remodeled by the action of osteoblasts, osteocytes, and osteoclasts. Resting osteoblasts are able to proliferate and differentiate into mature osteoblasts when physiologically required, as after tissue injury. Activated protein C (APC) is a serine protease that functions in anticoagulation, anti-inflammation, anti-apoptosis, cell proliferation, and wound repair. In this study, we examined the effect of APC on osteoblast proliferation and differentiation. MATERIALS AND METHODS We examined the presence of protein C in human fracture hematoma by immunohistochemical staining. We then evaluated the effect of APC, diisopropyl fluorophosphate-inactivated APC (DIP-APC) or protein C zymogen on normal human osteoblast (NHOst) proliferation using tetrazolium salt assay in the presence or absence of aprotinin, hirudin, protein C, antibody against protein C, endothelial protein C receptor (EPCR) or protease-activated receptor (PAR)-1. Finally, activation of p44/42 MAP kinase was evaluated by Western blot analysis. RESULTS Both APC and DIP-APC increased osteoblast proliferation in a dose-dependent manner, while protein C did not. The APC-induced increased proliferation of osteoblast was not affected by aprotinin, hirudin, and anti-protein C antibody which inhibits the protease activity of APC. Treatment with protein C or anti-EPCR antibody which inhibits APC binding to EPCR inhibited APC-mediated osteoblast proliferation, while treatment with anti-PAR-1 antibody did not. APC promoted the phosphorylation of p44/42 MAP kinase within osteoblasts; this effect was inhibited by the anti-EPCR antibody. CONCLUSIONS APC stimulates osteoblast proliferation by activating p44/42 MAP kinase through a mechanism that requires EPCR but not PAR-1 or the proteolytic activity of APC. APC generated at fracture sites may contribute to fracture healing by promoting osteoblast proliferation.
Collapse
Affiliation(s)
- Tatsuya Kurata
- Department of Molecular Pathobiology, Mie University Graduate School of Medicine, Tsu-city, Mie 514-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The horseshoe crab is often referred to as a "living fossil," representative of the oldest classes of arthropods, almost identical to species in existence more than 500 million years ago. Comparative analyses of the defense mechanisms used by the horseshoe crab that allowed it to survive mostly unchanged throughout the millennia reveal a common ancestry of the coagulation and innate immune systems that are totally integrated-indeed, almost inseparable. In human biology, we traditionally view the hemostatic pathways and those regulating innate immune responses to infections and tissue damage as entirely separate entities. But are they? The last couple of decades have revealed a remarkable degree of interplay between these systems, and the linking cellular and molecular mechanisms are rapidly being delineated. In this review, we present some of the major points of intersection between coagulation and innate immunity. We attempt to highlight the potential impact of these findings by identifying recently established paradigms that will hopefully result in the emergence of new strategies to treat a range of inflammatory and hemostatic disorders.
Collapse
|
22
|
Endogenous activated protein C limits cancer cell extravasation through sphingosine-1-phosphate receptor 1-mediated vascular endothelial barrier enhancement. Blood 2009; 114:1968-73. [PMID: 19571314 DOI: 10.1182/blood-2009-04-217679] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activated protein C (APC) has both anticoagulant activity and direct cell-signaling properties. APC has been reported to promote cancer cell migration/invasion and to inhibit apoptosis and therefore may exacerbate metastasis. Opposing these activities, APC signaling protects the vascular endothelial barrier through sphingosine-1-phosphate receptor-1 (S(1)P(1))activation, which may counteract cancer cell extravasation. Here, we provide evidence that endogenous APC limits cancer cell extravasation, with in vivo use of monoclonal antibodies against APC. The protective effect of endogenous APC depends on its signaling properties. The MAPC1591 antibody that only blocks anticoagulant activity of APC does not affect cancer cell extravasation as opposed to MPC1609 that blocks anticoagulant and signaling properties of APC. Combined administration of anti-APC antibodies and S(1)P(1) agonist (SEW2871) resulted in a similar number of pulmonary foci in mice in presence and absence of APC, indicating that the protective effect of APC depends on the S(1)P(1) pathway. Moreover, endogenous APC prevents cancer cell-induced vascular leakage as assessed by the Evans Blue Dye assay, and SEW2871 treatment reversed MPC1609-dependent vascular leakage. Finally, we show that cancer cells combined with MPC1609 treatment diminished endothelial VE-cadherin expression. In conclusion, endogenous APC limits cancer cell extravasation because of S(1)P(1)-mediated VE-cadherin-dependent vascular barrier enhancement.
Collapse
|
23
|
Activated Protein C Decreases Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand by an EPCR- Independent Mechanism Involving Egr-1/Erk-1/2 Activation. Arterioscler Thromb Vasc Biol 2007; 27:2634-41. [DOI: 10.1161/atvbaha.107.153734] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
APC is an antithrombotic and antiinflammatory serine protease that plays an important role in vascular function. We report that APC can suppress the proapoptotic mediator TRAIL in human umbilical vein endothelial cells, and we have investigated the signaling mechanism.
Methods and Results—
APC inhibited endothelial TRAIL expression and secretion and its induction by cell activation. To explore the mechanism, we examined factors associated with TRAIL regulation and demonstrated that APC increased the level of EGR-1, a transcriptional factor known to suppress the TRAIL promoter. APC also induced a significant increase in phosphorylation of ERK-1/2, required to activate EGR-1 expression. Activation of ERK-1/2 was dependent on the protease activated receptor-1 (PAR-1), but independent of the endothelial protein C receptor (EPCR). Using siRNA, we found that the effect of APC on the EGR-1/ERK signaling required for TRAIL inhibition was dependent on the S1P1 receptor and S1P1 kinase.
Conclusions—
Our data suggest that APC may provide cytoprotective activity by activating the ERK pathway, which upregulates EGR-1 thereby suppressing the expression of TRAIL. Moreover, we provide evidence that APC can induce a cell signaling response through a PAR-1/S1P1-dependent but EPCR-independent mechanism.
Collapse
|
24
|
Nieman MT, Schmaier AH. Interaction of thrombin with PAR1 and PAR4 at the thrombin cleavage site. Biochemistry 2007; 46:8603-10. [PMID: 17595115 PMCID: PMC2553362 DOI: 10.1021/bi700597p] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Investigations determined the critical amino acids for alpha-thrombin's interaction with protease-activated receptors 1 and 4 (PAR1 and PAR4, respectively) at the thrombin cleavage site. Recombinant PAR1 wild-type (wt) exodomain was cleaved by alpha-thrombin with a Km of 28 microM, a kcat of 340 s-1, and a kcat/Km of 1.2 x 10(7). When the P4 or P2 position was mutated to alanine, PAR1-L38A or PAR1-P40A, respectively, the Km was unchanged, 29 or 23 microM, respectively; however, the kcat and kcat/Km were reduced in each case. In contrast, when Asp39 at P3 was mutated to alanine, PAR1-D39A, Km and kcat were both reduced approximately 3-fold, making the kcat/Km the same as that of PAR1-wt exodomain. Recombinant PAR4-wt exodomain was cleaved by alpha-thrombin with a Km of 61 microM, a kcat of 17 s-1, and a kcat/Km of 2.8 x 10(5). When the P5 or P4 position was mutated to alanine, PAR4-L43A or PAR4-P44A, respectively, there was no change in the Km (69 or 56 microM, respectively); however, the kcat was lowered in each case (9.7 or 7.7 s-1, respectively). Mutation of the P2 position (PAR4-P46A) also had no effect on the Km but markedly lowered the kcat and kcat/Km approximately 35-fold. PAR1-wt exodomain and P4 and P3 mutants were noncompetitive inhibitors of alpha-thrombin hydrolyzing Sar-Pro-Arg-pNA. However, PAR1-P40A displayed a mixed type of inhibition. Mutation of P4, P3, or P2 had no effect on the Ki. All PAR4 exodomains were competitive inhibitors of alpha-thrombin. Mutation of P5, P4, or P2 had no effect on the Ki. These investigations show that Leu at P4 in PAR1 or P5 in PAR4 critically influences the kinetics of alpha-thrombin binding and cleavage of PAR1 and PAR4 exodomains. It also implies that factors other than the hirudin-like binding region on PAR1 exodomain predominate in influencing PAR1 cleavage on cells.
Collapse
Affiliation(s)
- Marvin T Nieman
- Division of Hematology/Oncology, Case Western Reserve University, Cleveland, Ohio 44106-7284, USA.
| | | |
Collapse
|
25
|
Makarova AM, Rusanova AV, Gorbacheva LR, Umarova BA, Strukova SM. Effect of activated protein C on secretory activity of rat peritoneal mast cells. Bull Exp Biol Med 2007; 142:403-5. [PMID: 17415421 DOI: 10.1007/s10517-006-0376-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Generation of thrombin and activated protein C in the inflammatory focus was demonstrated in rats with experimental acute peritonitis. The contents of thrombin and activated protein C peaked by the 30th and 120th minute of inflammation, respectively. In vitro study showed a decrease in spontaneous and compound 48/80-induced secretion of beta-hexosaminidase by peritoneal mast cells under the influence of activated protein C in low concentrations. The antiinflammatory effect of protein C in the focus of acute peritonitis is probably realized through NO release from peritoneal mast cells. This conclusion is derived from the data that L-NAME abolishes the protective effect of activated protein C.
Collapse
Affiliation(s)
- A M Makarova
- Department of Human and Animal Physiology, Biological Faculty, M. V. Lomonosov Moscow State University
| | | | | | | | | |
Collapse
|
26
|
Ghosh S, Pendurthi UR, Steinoe A, Esmon CT, Rao LVM. Endothelial cell protein C receptor acts as a cellular receptor for factor VIIa on endothelium. J Biol Chem 2007; 282:11849-57. [PMID: 17327234 PMCID: PMC2591933 DOI: 10.1074/jbc.m609283200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although factor VII/factor VIIa (FVII/FVIIa) is known to interact with many non-vascular cells, activated monocytes, and endothelial cells via its binding to tissue factor (TF), the interaction of FVII/FVIIa with unperturbed endothelium and the role of this interaction in clearing FVII/FVIIa from the circulation are unknown. To investigate this, in the present study we examined the binding of radiolabeled FVIIa to endothelial cells and its subsequent internalization. (125)I-FVIIa bound to non-stimulated human umbilical vein endothelial cells (HUVEC) in time- and dose-dependent manner. The binding is specific and independent of TF and negatively charged phospholipids. Protein C and monoclonal antibodies to endothelial cell protein C receptor (EPCR) blocked effectively (125)I-FVIIa binding to HUVEC. FVIIa binding to EPCR is confirmed by demonstrating a marked increase in (125)I-FVIIa binding to CHO cells that had been stably transfected with EPCR compared with the wild-type. Binding analysis revealed that FVII, FVIIa, protein C, and activated protein C (APC) bound to EPCR with similar affinity. FVIIa binding to EPCR failed to accelerate FVIIa activation of factor X or protease-activated receptors. FVIIa binding to EPCR was shown to facilitate FVIIa endocytosis. Pharmacological concentrations of FVIIa were found to impair partly the EPCR-dependent protein C activation and APC-mediated cell signaling. Overall, the present data provide convincing evidence that EPCR serves as a cellular binding site for FVII/FVIIa. Further studies are needed to evaluate the pathophysiological consequences and relevance of FVIIa binding to EPCR.
Collapse
Affiliation(s)
- Samit Ghosh
- Biomedical Research Division, The University of Texas Health Center at Tyler, Tyler, Texas 75708
| | - Usha R. Pendurthi
- Biomedical Research Division, The University of Texas Health Center at Tyler, Tyler, Texas 75708
| | - Anne Steinoe
- Biomedical Research Division, The University of Texas Health Center at Tyler, Tyler, Texas 75708
| | - Charles T. Esmon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Howard Hughes Medical Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - L. Vijaya Mohan Rao
- Biomedical Research Division, The University of Texas Health Center at Tyler, Tyler, Texas 75708
- To whom correspondence should be addressed: Biomedical Research, The University of Texas Health Center at Tyler, 11937 US HWY 271, Tyler, TX 75708. Tel.: 903-877-7332; Fax: 903-877-7426; E-mail:
| |
Collapse
|
27
|
Abstract
Severe sepsis is a common and frequently fatal condition. Evidence showing a link between the coagulation system and the inflammatory response to sepsis led to the development of drotrecogin alfa (activated) as an agent in the treatment of severe sepsis. Recent studies have shown that the mode of action is actually more complex than initially thought. This recombinant form of the natural anticoagulant, activated protein C, has been demonstrated to reduce mortality in a large randomized controlled, Phase III study involving 1690 patients, even though the results of this and subsequent studies and the licensing of drotrecogin alfa (activated) have generated considerable debate. Administration of drotrecogin alfa (activated) is associated with an increased risk of bleeding and its use is contraindicated in patients with a high risk of bleeding or recent hemorrhagic events.
Collapse
Affiliation(s)
- Jean-Louis Vincent
- Erasme University Hospital, Department of Intensive Care, Route de Lennik, 808, B-1070 Brussels, Belgium.
| |
Collapse
|
28
|
Ludeman MJ, Kataoka H, Srinivasan Y, Esmon NL, Esmon CT, Coughlin SR. PAR1 Cleavage and Signaling in Response to Activated Protein C and Thrombin. J Biol Chem 2005; 280:13122-8. [PMID: 15665002 DOI: 10.1074/jbc.m410381200] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated protein C (APC), a natural anticoagulant protease, can trigger cellular responses via protease-activated receptor-1 (PAR1), a G protein-coupled receptor for thrombin. Whether this phenomenon contributes to the physiological effects of APC is unknown. Toward answering this question, we compared the kinetics of PAR1 cleavage on endothelial cells by APC versus thrombin. APC did cleave PAR1 on the endothelial surface, and antibodies to the endothelial protein C receptor inhibited such cleavage. Importantly, however, APC was approximately 10(4)-fold less potent than thrombin in this setting. APC and thrombin both triggered PAR1-mediated responses in endothelial cells including expression of antiapoptotic (tumor necrosis factor-alpha-induced a20 and iap-1) and chemokine (interleukin-8 (il-8) and cxcl3) genes, but again, APC was approximately 10(4)-fold less potent than thrombin. The addition of zymogen protein C to endothelial cultures did not alter the rate of PAR1 cleavage at low or high concentrations of thrombin, and PAR1 cleavage was substantial at thrombin concentrations too low to trigger detectable conversion of protein C to APC. Thus, locally generated APC did not contribute to PAR1 cleavage beyond that effected by thrombin in this system. Although consistent with reports that sufficiently high concentrations of APC can cleave and activate PAR1 in culture, our data suggest that a significant physiological role for PAR1 activation by APC is unlikely.
Collapse
MESH Headings
- Apoptosis
- Blotting, Northern
- Cells, Cultured
- Chemokine CXCL1
- Chemokines, CXC/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Humans
- Hydrolysis
- Intercellular Signaling Peptides and Proteins/metabolism
- Interleukin-8/metabolism
- Kinetics
- Phosphatidylinositols/chemistry
- Protein Binding
- Protein C/chemistry
- Protein C/physiology
- Protein Structure, Tertiary
- Receptor, PAR-1/metabolism
- Receptor, PAR-1/physiology
- Thrombin/chemistry
- Thrombin/physiology
- Time Factors
- Umbilical Veins/cytology
Collapse
Affiliation(s)
- Matthew J Ludeman
- Cardiovascular Research Institute, University of California, San Francisco, California 94143-0130, USA
| | | | | | | | | | | |
Collapse
|
29
|
Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger TA, Hollenberg MD. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 2005; 26:1-43. [PMID: 15689571 DOI: 10.1210/er.2003-0025] [Citation(s) in RCA: 364] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Serine proteinases such as thrombin, mast cell tryptase, trypsin, or cathepsin G, for example, are highly active mediators with diverse biological activities. So far, proteinases have been considered to act primarily as degradative enzymes in the extracellular space. However, their biological actions in tissues and cells suggest important roles as a part of the body's hormonal communication system during inflammation and immune response. These effects can be attributed to the activation of a new subfamily of G protein-coupled receptors, termed proteinase-activated receptors (PARs). Four members of the PAR family have been cloned so far. Thus, certain proteinases act as signaling molecules that specifically regulate cells by activating PARs. After stimulation, PARs couple to various G proteins and activate signal transduction pathways resulting in the rapid transcription of genes that are involved in inflammation. For example, PARs are widely expressed by cells involved in immune responses and inflammation, regulate endothelial-leukocyte interactions, and modulate the secretion of inflammatory mediators or neuropeptides. Together, the PAR family necessitates a paradigm shift in thinking about hormone action, to include proteinases as key modulators of biological function. Novel compounds that can modulate PAR function may be potent candidates for the treatment of inflammatory or immune diseases.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Boltzmann Institute for Immunobiology of the Skin, University of Münster, von-Esmarch-Strasse 58, 48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
How does tissue factor (TF), whose principle role is to support clotting factor VIIa (FVIIa) in triggering the coagulation cascade, affect various pathophysiological processes? One of the answers is that TF interaction with FVIIa not only initiates clotting but also induces cell signaling via activation of G-protein-coupled protease activated receptors (PARs). Recent studies using various cell model systems and limited in vivo systems are beginning to define how TF-VIIa-induced signaling regulates cellular behavior. Signaling pathways initiated by both TF-VIIa protease activation of PARs and phosphorylation of the TF-cytoplasmic domain appear to regulate cellular functions. In the present article, we review the emerging data on the mechanism of TF-mediated cell signaling and how it regulates various cellular responses, with particular focus on TF-VIIa protease-dependent signaling.
Collapse
Affiliation(s)
- L Vijaya Mohan Rao
- Biomedical Research Division, The University of Texas Health Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA.
| | | |
Collapse
|
31
|
Ganopolsky JG, Castellino FJ. A protein C deficiency exacerbates inflammatory and hypotensive responses in mice during polymicrobial sepsis in a cecal ligation and puncture model. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1433-46. [PMID: 15466407 PMCID: PMC1618621 DOI: 10.1016/s0002-9440(10)63401-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During the systemic inflammatory state induced by sepsis, the potential for coagulopathy exists because of up-regulation of natural procoagulants and anti-fibrinolytics, and down-regulation of natural anti-coagulants, with protein C (PC) being a critical example of the latter case. PC functions as an anti-coagulant, profibrinolytic, and anti-inflammatory agent, and, thus, its administration or deficiency may affect the course and outcome of sepsis in patients. In this study, a cecal ligation and puncture model of septic peritonitis was applied to wild-type mice and littermates with a targeted heterozygous deficiency of PC (PC(+/-)) to characterize the importance of a PC-deficiency on polymicrobial sepsis. An enhanced mortality rate was found to accompany a PC deficiency. Plasma cytokines, as well as organ-specific expression of cytokine transcripts, were elevated in PC(+/-) mice. No signs of severe disseminated intravascular coagulation (DIC) were observed in wild-type or PC(+/-) mice, as indicated by an increase in fibrinogen levels and the invariability of platelet counts after cecal ligation and puncture. Consumption of coagulation factors was similar in both genotypes and a decrease in the PC mRNA and protein levels was more prominent in PC(+/-) mice. Renal and organ muscle damage was enhanced in PC(+/-) mice, as shown by increases in plasma blood urea nitrogen, creatinine, and creatinine kinase. Hypotension and bradycardia were more enhanced in PC(+/-) mice than in wild-type mice, thus provoking a more severe septic shock response. Thus, the hemodynamic role of PC during sepsis is of critical importance to the outcome of the disease.
Collapse
Affiliation(s)
- Jorge G Ganopolsky
- W.M. Keck Center for Transgene Research, Department of Chemistry and Biochemistry, 434 Stepan Hall of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
32
|
Van de Wouwer M, Collen D, Conway EM. Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arterioscler Thromb Vasc Biol 2004; 24:1374-83. [PMID: 15178554 DOI: 10.1161/01.atv.0000134298.25489.92] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Late in the 18th century, William Hewson recognized that the formation of a clot is characteristic of many febrile, inflammatory diseases (Owen C. A History of Blood Coagulation. Rochester, Minnesota: Mayo Foundation; 2001). Since that time, there has been steady progress in our understanding of coagulation and inflammation, but it is only in the past few decades that the molecular mechanisms linking these 2 biologic systems have started to be delineated. Most of these can be traced to the vasculature, where the systems most intimately interact. Thrombomodulin (TM), a cell surface-expressed glycoprotein, predominantly synthesized by vascular endothelial cells, is a critical cofactor for thrombin-mediated activation of protein C (PC), an event further amplified by the endothelial cell protein C receptor (EPCR). Activated PC (APC), in turn, is best known for its natural anticoagulant properties. Recent evidence has revealed that TM, APC, and EPCR have activities that impact not only on coagulation but also on inflammation, fibrinolysis, and cell proliferation. This review highlights recent insights into the diverse functions of this complex multimolecular system and how its components are integrated to maintain homeostasis under hypercoagulable and/or proinflammatory stress conditions. Overall, the described advances underscore the usefulness of elucidating the relevant molecular pathways that link both systems for the development of novel therapeutic and diagnostic targets for a wide range of inflammatory diseases.
Collapse
Affiliation(s)
- Marlies Van de Wouwer
- The Center for Transgene Technology and Gene Therapy, University of Leuven and the Flanders Interuniversity Institute for Biotechnology (VIB), Belgium
| | | | | |
Collapse
|
33
|
Haley M, Cui X, Minneci PC, Deans KJ, Natanson C, Eichacker PQ. Activated protein C in sepsis: emerging insights regarding its mechanism of action and clinical effectiveness. Curr Opin Infect Dis 2004; 17:205-11. [PMID: 15166822 DOI: 10.1097/00001432-200406000-00006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE OF REVIEW Dysregulation of endogenous coagulant and anticoagulant systems is now believed to play an important role in the pathogenesis of sepsis and septic shock. Reductions in host activated protein C levels and resultant microvascular thrombosis provided a basis for the use of recombinant human activated protein C in sepsis. Although controversial, the findings from an initial phase III trial testing this agent resulted in its approval for use in patients with severe sepsis and high risk of death. This review highlights emerging insights into the biology of protein C and activated protein C in sepsis, summarizes additional analysis growing out of the phase III trial testing recombinant human activated protein C, and assesses the cost-effectiveness that the clinical use of the agent has had thus far. RECENT FINDINGS Binding of activated protein C to the endothelial cell protein C receptor is recognized to result in a growing number of actions including increased activity of activated protein C itself and inhibition of both nuclear factor-kappaB, a central regulator in the host inflammatory response, and apoptosis. Additional analysis of the original phase III trial testing recombinant human activated protein C appears to emphasize one of the US Food and Drug Administration's original concerns regarding an association between severity of sepsis and this agent's effects. Postmarketing analysis and growing experience with other anticoagulant agents and corticosteroids in sepsis raise questions regarding the ultimate cost-effectiveness of activated protein C. SUMMARY The protein C pathway is important both to coagulant and inflammatory pathways during sepsis. Based on emerging investigations, its actions appear to be increasingly complex ones. Despite potentially promising results in an initial phase III trial, the role of recombinant human activated protein C in the treatment of septic patients must continue to be evaluated.
Collapse
Affiliation(s)
- Michael Haley
- Critical Care Medicine Department, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|