1
|
Zhang G, Guan Q, Zhao Y, Wang S, Li H. miR-1-3p Inhibits Osteosarcoma Cell Proliferation and Cell Cycle Progression While Promoting Cell Apoptosis by Targeting CDK14 to Inactivate Wnt/Beta-Catenin Signaling. Mol Biotechnol 2024; 66:1704-1717. [PMID: 37420040 DOI: 10.1007/s12033-023-00811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Osteosarcoma (OS) is a common bone malignancy and is diagnosed frequently in children and young adults. According to previous RNA sequencing, miR-1-3p is downregulated in OS clinical samples. Nevertheless, the functions of miR-1-3p in OS cell process and the related mechanism have not been revealed yet. In the current study, miR-1-3p expression in OS tissues and cells were evaluated using quantitative polymerase chain reaction. CCK-8 assays were conducted to measure OS cell viability in response to miR-1-3p overexpression. Colony forming assays and EdU staining were conducted for measurement of cell proliferation, and flow cytometry analysis was performed to determine cell apoptosis and cell cycle progression. Protein levels of apoptotic markers, beta-catenin, and Wnt downstream targets were quantified using western blotting. The binding relation between miR-1-3p and cyclin dependent kinase 14 (CDK14) was validated utilizing luciferase reporter assays. Experimental results revealed that miR-1-3p expression was decreased in OS tissues and cells. Additionally, miR-1-3p inhibited cell proliferation and cell cycle progression while enhancing OS cell apoptosis. Moreover, miR-1-3p directly targeted CDK14 and inversely regulated CDK14 expression in OS cells. Furthermore, miR-1-3p inactivated the Wnt/beta-catenin signaling. CDK14 overexpression partially rescued the inhibitory impact of miR-1-3p on OS cell growth. Overall, miR-1-3p inhibits OS cell proliferation and cell cycle progression while promoting cell apoptosis by targeting CDK14 and inactivating the Wnt/beta-catenin signaling.
Collapse
Affiliation(s)
- Guangheng Zhang
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China
| | - Qingyu Guan
- Medical School, Jianghan University, Wuhan, 430056, Hubei, China
| | - Yingsong Zhao
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China
| | - Siyuan Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Hewei Li
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.39 Yanhu Road East Lake Scenic Area, Wuhan, 430077, Hubei, China.
| |
Collapse
|
2
|
Li R, Liu Y, Liu J, Chen B, Ji Z, Xu A, Zhang T. CCL2 regulated by the CTBP1-AS2/miR-335-5p axis promotes hemangioma progression and angiogenesis. Immunopharmacol Immunotoxicol 2024; 46:385-394. [PMID: 38622049 DOI: 10.1080/08923973.2024.2330651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/09/2024] [Indexed: 04/17/2024]
Abstract
CONTEXT Hemangioma (HA) is a benign vascular neoplasm that can lead to permanent scarring. C-C motif chemokine ligand 2 (CCL2) plays a crucial role in facilitating growth and angiogenesis during HA progression. However, the mechanism regulating CCL2 in HA remains poorly elucidated. OBJECTIVE To elucidate the mechanism regulating CCL2 in HA. METHODS Quantitative real-time polymerase chain reaction (RT-qPCR) was employed to determine the expression levels of CCL2, long noncoding RNA (lncRNA) CTBP1 divergent transcript (CTBP1-AS2), and microRNAs (miRNAs). Proliferation, migration, invasion, and angiogenic abilities of human HA endothelial cells (HemECs) were assessed using cell counting kit-8 (CCK-8), colony formation, flow cytometry, transwell, and tube formation assays. Bioinformatics analysis, RNA pull-down, and luciferase reporter assays were conducted to investigate whether CCL2 targets miR-335-5p. Additionally, rescue experiments were performed in this study. RESULTS CCL2 expression was markedly upregulated in HemECs. CCL2 promoted HA cell proliferation, migration, invasion, and angiogenesis while inhibiting apoptosis. CCL2 was directly targeted by miR-335-5p. Additionally, we found that CTBP1-AS2 could function as a competing endogenous RNA (ceRNA) to sponge miR-335-5p, thereby upregulating CCL2. CONCLUSION Our findings suggest that targeting the CTBP1-AS2/miR-335-5p/CCL2 axis may hold promise as a therapeutic strategy for HA.
Collapse
Affiliation(s)
- Ruixuan Li
- Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Ying Liu
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Jianfeng Liu
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Bo Chen
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Zhongjie Ji
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Aixia Xu
- Department of Endocrinology, Changsha Central Hospital, Changsha, PR China
| | - Tianhua Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| |
Collapse
|
3
|
Mehmandar-Oskuie A, Tohidfar M, Hajikhani B, Karimi F. Anticancer effects of cell-free culture supernatant of Escherichia coli in bladder cancer cell line: New insight into the regulation of inflammation. Gene 2023; 889:147795. [PMID: 37708921 DOI: 10.1016/j.gene.2023.147795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Bladder cancer (BC) is the 10th most common malignancy in worldwide, with substantial mortality and morbidity if not treated effectively. According to various research, inflammatory circumstances majorly impact the microenvironment of bladder cancer, and the chronic presence of cytokines and chemokines promotes tumor progression. In this investigation, we explored the impact of cell-free culture supernatant ofEscherichia colistrain 536 on inflammatory cytokines and chemokines in bladder cancer model microarray data (GSE162251). Then we examined in silico outcomes on human bladder cancer cell line 5637 to verify and extrapolate findings. This investigation revealed for the first time that this compound has potent suppressor effects on interleukin 1 beta (IL-1β), C-C motif chemokine ligand 2 (CCL2), and C-X3-C motif chemokine ligand 1 (CX3CL1) gene expression as well as increased NAD(P)H quinone dehydrogenase 1 (NQO1), as an anti-oxidant agent, gene expression in 4, 8, and 24 h. Moreover, we confirmed that c-MYC, a member of the MYC proto-oncogene family, gene expression reduced in 5637 cells in 4 h and then followed up its expression in 8 and 24 h. In addition, our investigation demonstrated that the supernatant raised the BCL2-Associated X Protein/B-cell lymphoma 2 (BAX/BCL2) ratio, and subsequent flow cytometry analysis demonstrated that the supernatant induction apoptosis and necrosis. In conclusion, our findings demonstrate that this compound is a potential candidate for the suppression of bladder cancer progression.
Collapse
Affiliation(s)
- Amirreza Mehmandar-Oskuie
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Tohidfar
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forouzan Karimi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Dai S, Li F, Xu S, Hu J, Gao L. The important role of miR-1-3p in cancers. J Transl Med 2023; 21:769. [PMID: 37907984 PMCID: PMC10617136 DOI: 10.1186/s12967-023-04649-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer is a malignant tumor that seriously threatens human life and health. At present, the main treatment methods include surgical resection, chemotherapy, radiotherapy, and immunotherapy. However, the mechanism of tumor occurrence and development is complex, and it produces resistance to some traditional treatment methods, leading to treatment failure and a high mortality rate for patients. Therefore, exploring the molecular mechanisms of tumor occurrence, development, and drug resistance is a very important task. MiRNAs are a type of non-coding small RNA that regulate a series of biological effects by binding to the 3'-UTR of the target mRNA, degrading the mRNA, or inhibiting its translation. MiR-1-3p is an important member of them, which is abnormally expressed in various tumors and closely related to the occurrence and development of tumors. This article introduces miR-1-3p from multiple aspects, including its production and regulation, role in tumor occurrence and development, clinical significance, role in drug resistance, and approaches for targeting miR-1-3p. Intended to provide readers with a comprehensive understanding of the important role of miR-1-3p in tumors.
Collapse
Affiliation(s)
- Shangming Dai
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Fengjiao Li
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuoguo Xu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Jinda Hu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Lichen Gao
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China.
| |
Collapse
|
5
|
Martins-Lima C, Chianese U, Benedetti R, Altucci L, Jerónimo C, Correia MP. Tumor microenvironment and epithelial-mesenchymal transition in bladder cancer: Cytokines in the game? Front Mol Biosci 2023; 9:1070383. [PMID: 36699696 PMCID: PMC9868260 DOI: 10.3389/fmolb.2022.1070383] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Bladder cancer (BlCa) is a highly immunogenic cancer. Bacillus Calmette-Guérin (BCG) is the standard treatment for non-muscle invasive bladder cancer (NMIBC) patients and, recently, second-line immunotherapies have arisen to treat metastatic BlCa patients. Understanding the interactions between tumor cells, immune cells and soluble factors in bladder tumor microenvironment (TME) is crucial. Cytokines and chemokines released in the TME have a dual role, since they can exhibit both a pro-inflammatory and anti-inflammatory potential, driving infiltration and inflammation, and also promoting evasion of immune system and pro-tumoral effects. In BlCa disease, 70-80% are non-muscle invasive bladder cancer, while 20-30% are muscle-invasive bladder cancer (MIBC) at the time of diagnosis. However, during the follow up, about half of treated NMIBC patients recur once or more, with 5-25% progressing to muscle-invasive bladder cancer, which represents a significant concern to the clinic. Epithelial-mesenchymal transition (EMT) is one biological process associated with tumor progression. Specific cytokines present in bladder TME have been related with signaling pathways activation and EMT-related molecules regulation. In this review, we summarized the immune landscape in BlCa TME, along with the most relevant cytokines and their putative role in driving EMT processes, tumor progression, invasion, migration and metastasis formation.
Collapse
Affiliation(s)
- Cláudia Martins-Lima
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy,BIOGEM, Molecular Biology and Genetics Research Institute, Avellino, Italy,IEOS, Institute of Endocrinology and Oncology, Naples, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal,*Correspondence: Carmen Jerónimo, , ; Margareta P. Correia,
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal,*Correspondence: Carmen Jerónimo, , ; Margareta P. Correia,
| |
Collapse
|
6
|
Song F, Kotolloshi R, Gajda M, Hölzer M, Grimm MO, Steinbach D. Reduced IQGAP2 Promotes Bladder Cancer through Regulation of MAPK/ERK Pathway and Cytokines. Int J Mol Sci 2022; 23:ijms232113508. [PMID: 36362301 PMCID: PMC9655856 DOI: 10.3390/ijms232113508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
The progression of non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) is a major challenge in urologic oncology. However, understanding of the molecular processes remains limited. The dysregulation of IQGAP2 is becoming increasingly evident in most tumor entities, and it plays a role in multiple oncogenic pathways, so we evaluated the role of IQGAP2 in bladder cancer. IQGAP2 was downregulated in tumors compared with normal urothelium tissues and cells. IQGAP2 effectively attenuated bladder cancer cell growth independently from apoptosis. Reduced IQGAP2 promoted EMT in bladder cancer cells via activation of the MAPK/ERK pathway. In addition, IQGAP2 might influence key cellular processes, such as proliferation and metastasis, through the regulation of cytokines. In conclusion, we suggest that IQGAP2 plays a tumor-suppressing role in bladder cancer, possibly via inhibiting the MAPK/ERK pathway and reducing cytokines.
Collapse
Affiliation(s)
- Fei Song
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Roland Kotolloshi
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Mieczyslaw Gajda
- Section of Pathology, Department of Forensic Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Marc-Oliver Grimm
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Daniel Steinbach
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
- Correspondence:
| |
Collapse
|
7
|
Nguyen HD, Kim MS. Exposure to a mixture of heavy metals induces cognitive impairment: Genes and microRNAs involved. Toxicology 2022; 471:153164. [PMID: 35346790 DOI: 10.1016/j.tox.2022.153164] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Converging evidence demonstrates that microRNAs (miRNAs) play an important role in the etiology of cognitive impairment. Thus, we aim to: (i) identify the molecular mechanisms of heavy metals, particularly miRNAs involved in the development of cognitive impairment; and (ii) generate miRNA sponges to prevent them from binding with their target messenger RNAs. The Comparative Toxicogenomics Database (CTD; http://ctd.mdibl.org), MicroRNA ENrichment TURned NETwork (MIENTURNET, http://userver.bio.uniroma1.it/apps/mienturnet/) and the microRNA sponge generator and tester (miRNAsong, http://www.med.muni.cz/histology/miRNAsong) were used as the core data-mining approaches in the current study. We observed that lead acetate, arsenic, gold, copper, iron, and aluminum, as well as their mixtures, had significant effects on the development of cognitive impairment. Although prevalent genes obtained from investigated heavy metals of cognitive impairment were different, the "PI3K-Akt signaling pathway", "pathways of neurodegeneration-multiple diseases", "apoptosis", "apoptosis-multiple species", "p53 signaling pathway", "NF-kappa B signaling pathway", and "Alzheimer's disease pathway" were highlighted. The mixed heavy metals altered the genes BAX, CASP3, BCL2, TNF, and IL-1B, indicating the significance of apoptosis and pro-inflammatory cytokines in the pathogenesis of cognitive impairment and the possibility of targeting these genes in future neuroprotective therapy. In addition, we used a network-based approach to identify key genes, miRNAs, pathways, and diseases related to the development of cognitive impairment. We also found 16 significant miRNAs related to cognitive impairment (hsa-miR-1-3p, hsa-let-7a-5p, hsa-miR-9-5p, hsa-miR-16-5p, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-26a-5p, hsa-miR-26b-5p, hsa-miR-34a-5p, hsa-miR-101-3p, hsa-miR-106a-5p, hsa-miR-128-3p, hsa-miR-144-3p, hsa-miR-199a-3p, hsa-miR-204-5p, and hsa-miR-335-5p). Finally, we created and evaluated miRNA sponge sequences for these miRNAs in silico. Further studies, including in vivo and in vitro, are needed to assess the link between these genes, miRNAs, pathways, and cognitive impairment.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
8
|
Baradaran A, Asadzadeh Z, Hemmat N, Baghbanzadeh A, Shadbad MA, Khosravi N, Derakhshani A, Alemohammad H, Afrashteh Nour M, Safarpour H, Silvestris N, Brunetti O, Baradaran B. The cross-talk between tumor-associated macrophages and tumor endothelium: Recent advances in macrophage-based cancer immunotherapy. Biomed Pharmacother 2022; 146:112588. [PMID: 35062062 DOI: 10.1016/j.biopha.2021.112588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/02/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are among the abundant cell populations of the tumor microenvironment (TME), which have pivotal roles in tumor development, chemoresistance, immune evasion, and metastasis. Growing evidence indicates that TAMs and the cross-talk between TAMs and tumoral endothelial cells can substantially contribute to tumor angiogenesis, which is considered a vital process for cancer development. Besides, tumoral endothelial cells can regulate the leukocyte infiltration to the TME in solid cancers and contribute to immune evasion. Therefore, targeting the immunosuppressive TAMs and the cross-talk between them can be a promising strategy for improving anti-tumoral immune responses. This review aims to summarize the biology of TAMs, their recently identified roles in tumor development/angiogenesis, and recent advances in macrophage-based cancer immunotherapy approaches for treating cancers.
Collapse
Affiliation(s)
- Ali Baradaran
- Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia; Research & Development, BSD Robotics, Queensland, Australia
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Khosravi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Hajar Alemohammad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nicola Silvestris
- Medical Oncology Unit-IRCCS IstitutoTumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology DIMO-University of Bari, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit-IRCCS IstitutoTumori "Giovanni Paolo II" of Bari, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Li Y, Chen X, Li D, Yang Z, Bai Y, Hu S, Liu Z, Gu J, Zhang X. Identification of prognostic and therapeutic value of CC chemokines in Urothelial bladder cancer: evidence from comprehensive bioinformatic analysis. BMC Urol 2021; 21:173. [PMID: 34893045 PMCID: PMC8665633 DOI: 10.1186/s12894-021-00938-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/30/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Urothelial bladder cancer (BC) is one of the most prevalent malignancies with high mortality and high recurrence rate. Angiogenesis, tumor growth and metastasis of multiple cancers are partly modulated by CC chemokines. However, we know little about the function of distinct CC chemokines in BC. METHODS ONCOMINE, Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, cBioPortal, GeneMANIA, and TIMER were used for analyzing differential expression, prognostic value, protein-protein interaction, genetic alteration and immune cell infiltration of CC chemokines in BC patients based on bioinformatics. RESULTS The results showed that transcriptional levels of CCL2/3/4/5/14/19/21/23 in BC patients were significantly reduced. A significant relation was observed between the expression of CCL2/11/14/18/19/21/23/24/26 and the pathological stage of BC patients. BC patients with high expression levels of CCL1, CCL2, CCL3, CCL4, CCL5, CCL8, CCL13, CCL15, CCL17, CCL18, CCL19, CCL22, CCL25, CCL27 were associated with a significantly better prognosis. Moreover, we found that differentially expressed CC chemokines are primarily correlated with cytokine activity, chemokines receptor binding, chemotaxis, immune cell migration. Further, there were significant correlations among the expression of CC chemokines and the infiltration of several types of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells). CONCLUSIONS This study is an analysis to the potential role of CC chemokines in the therapeutic targets and prognostic biomarkers of BC, which gives a novel insight into the relationship between CC chemokines and BC.
Collapse
Affiliation(s)
- Yuxin Li
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xiong Chen
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Dongjie Li
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Zhiming Yang
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yao Bai
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Sheng Hu
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Zhenyu Liu
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Jie Gu
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | - XiaoBo Zhang
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,Urolithiasis Institute of Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
10
|
MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer. Processes (Basel) 2021. [DOI: 10.3390/pr9122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The incidence of urologic cancers, including kidney, upper tract urothelial, and bladder malignancies, is increasing globally, with a high percentage of cases showing metastasis upon diagnosis and low five-year survival rates. MicroRNA (miRNA), a small non-coding RNA, was found to regulate the expression of oncogenes and tumor suppressor genes in several tumors, including cancers of the urinary system. In the current review, we comprehensively discuss the recently reported up-or down-regulated miRNAs as well as their possible targets and regulated pathways involved in the development, progression, and metastasis of urinary tract cancers. These miRNAs represent potential therapeutic targets and diagnostic/prognostic biomarkers that may help in efficient and early diagnosis in addition to better treatment outcomes.
Collapse
|
11
|
Khan P, Ebenezer NS, Siddiqui JA, Maurya SK, Lakshmanan I, Salgia R, Batra SK, Nasser MW. MicroRNA-1: Diverse role of a small player in multiple cancers. Semin Cell Dev Biol 2021; 124:114-126. [PMID: 34034986 DOI: 10.1016/j.semcdb.2021.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022]
Abstract
The process of cancer initiation and development is a dynamic and complex mechanism involving multiple genetic and non-genetic variations. With the development of high throughput techniques like next-generation sequencing, the field of cancer biology extended beyond the protein-coding genes. It brought the functional role of noncoding RNAs into cancer-associated pathways. MicroRNAs (miRNAs) are one such class of noncoding RNAs regulating different cancer development aspects, including progression and metastasis. MicroRNA-1 (miR-1) is a highly conserved miRNA with a functional role in developing skeletal muscle precursor cells and cardiomyocytes and acts as a consistent tumor suppressor gene. In humans, two discrete genes, MIR-1-1 located on 20q13.333 and MIR-1-2 located on 18q11.2 loci encode for a single mature miR-1. Downregulation of miR-1 has been demonstrated in multiple cancers, including lung, breast, liver, prostate, colorectal, pancreatic, medulloblastoma, and gastric cancer. A vast number of studies have shown that miR-1 affects the hallmarks of cancer like proliferation, invasion and metastasis, apoptosis, angiogenesis, chemosensitization, and immune modulation. The potential therapeutic applications of miR-1 in multiple cancer pathways provide a novel platform for developing anticancer therapies. This review focuses on the different antitumorigenic and therapeutic aspects of miR-1, including how it regulates tumor development and associated immunomodulatory functions.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nivetha Sarah Ebenezer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
12
|
Yao LC, Jiang XH, Yan SS, Wang W, Wu L, Zhai LL, Xiang F, Ji T, Ye L, Tang ZG. Four potential microRNAs affect the progression of pancreatic ductal adenocarcinoma by targeting MET via the PI3K/AKT signaling pathway. Oncol Lett 2021; 21:326. [PMID: 33692858 PMCID: PMC7933770 DOI: 10.3892/ol.2021.12588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common tumor subtype of pancreatic cancer, which exhibits poor patient prognosis due to the lack of effective biomarkers in the diagnosis and treatment. The present study aimed to identify the potential biomarkers of PDAC carcinogenesis and progression using three microarray datasets, GSE15471, GSE16515 and GSE28735, which were downloaded from the Gene Expression Omnibus database. The datasets were analyzed to screen out differentially expressed genes (DEGs) in PDAC tissues and adjacent normal tissues. A total of 143 DEGs were identified, including 132 upregulated genes and 11 downregulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional and signaling pathway enrichment analyses were performed on the DEGs, and the Search Tool for the Retrieval of Interacting Genes/Proteins database was used to construct a protein-protein interaction network. The main functions of DEGs include extracellular matrix degradation, and regulation of matrix metalloproteinase activity and the PI3K-Akt signaling pathway. The five hub genes were subsequently screened using Cytoscape software, and survival analysis demonstrated that abnormal expression levels of the hub genes was associated with poor disease-free survival and overall survival. Biological experiments were performed to confirm whether mesenchymal-to-epithelial transition (MET) factors promote the proliferation, migration and invasion of PDAC cells via the PI3K/AKT signaling pathway. In addition, six MET-targeted microRNAs (miRNAs) were identified, four of which had conserved binding sites with MET. Based on the signaling pathway enrichment analysis of these miRNAs, it is suggested that they can affect the progression of PDAC by targeting MET via the PI3K/AKT signaling pathway. In conclusion, the hub genes and miRNAs that were identified in the present study contribute to the molecular mechanisms of PDAC carcinogenesis and progression. They also provide candidate biomarkers for early diagnosis and treatment of patients with PDAC.
Collapse
Affiliation(s)
- Li-Chao Yao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiu-Hua Jiang
- Department of Geriatrics, General Hospital of Central Theater Command, Wuhan, Hubei 430071, P.R. China
| | - Si-Si Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lun Wu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lu-Lu Zhai
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Xiang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tao Ji
- Department of Cardiothoracic Surgery, General Hospital of Central Theater Command, Wuhan, Hubei 430071, P.R. China
| | - Lin Ye
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Gang Tang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
13
|
Zangouei AS, Hamidi AA, Rahimi HR, Saburi E, Mojarrad M, Moghbeli M. Chemokines as the critical factors during bladder cancer progression: an overview. Int Rev Immunol 2021; 40:344-358. [PMID: 33591855 DOI: 10.1080/08830185.2021.1877287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bladder cancer (BCa) is one of the most frequent urogenital malignancies which is mainly observed among men. There are various genetic and environmental risk factors associated with BCa progression. Transurethral endoscopic resection and open ablative surgery are the main treatment options for muscle invasive BCa. BCG therapy is also employed following the endoscopic resection to prevent tumor relapse. The tumor microenvironment is the main interaction site of tumor cells and immune system in which the immune cells are recruited via chemokines and chemokine receptors. In present review we summarized the main chemokines and chemokine receptors which have been associated with histopathological features of BCa patients in the world. This review highlights the chemokines and chemokine receptors as critical markers in early detection and therapeutic purposes among BCa patients and clarifies their molecular functions during BCa progression and metastasis.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Huang ZM, Wang H, Ji ZG. CircRNA-100284 activates aurora kinase B by inducing methylation of HSP70 via microRNA-217 to promote proliferation of bladder cancer cells. J Cancer Res Clin Oncol 2021; 147:703-712. [PMID: 33386469 DOI: 10.1007/s00432-020-03468-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The malignant transformation of normal bladder cells (SV-HUC-1) was induced by arsenite to explore the possible mechanism of circRNA-100284 influencing bladder cancer cell proliferation. METHODS Normal bladder SV-HUC-1 cells were cultured with 2 μM arsenite to induce malignant transformation. After 0, 3, 6, 12, and 24 h of culture, the expression level of circRNA-100284 in cells was detected by quantitative real-time PCR. Western blotting assays were used to detect the expression levels of EZH2 and cyclin-D1 proteins in cells treated with different media. Cell cycle was analyzed by flow cytometry. In addition, through cell transfection and CCK-8 experiments, the effect and mechanism of circRNA-100284 targeting microRNA-217 on proliferation was determined. The interaction between HSP70 methylation and Aurora-B was determined by Western blotting and immunoprecipitation experiments. RESULTS With prolonged contact time with arsenite, the expression level of circRNA-100284 in cells increased continuously (P < 0.05). Western blotting assays showed that the expression levels of EZH2 and cyclin-D1 proteins in arsenite-transformed cells increased. Flow cytometry and CCK-8 showed that circRNA-100284 accelerated cell cycle transition and cell proliferation through miR-217. Finally, after culturing human bladder cancer T24 cells, combined with immunoprecipitation and in vitro kinase experiments, it was found that K561- dimethyl HSP70 activated Aurora-B, thus promoting the proliferation of bladder cancer cells. CONCLUSION CircRNA-100284 activates aurora kinase B by inducing methylation of HSP70 via microRNA-217 to promote the proliferation of bladder cancer cells.
Collapse
Affiliation(s)
- Zhong-Ming Huang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, China
| | - Hai Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, China
| | - Zhi-Gang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, China.
| |
Collapse
|
15
|
Safa A, Bahroudi Z, Shoorei H, Majidpoor J, Abak A, Taheri M, Ghafouri-Fard S. miR-1: A comprehensive review of its role in normal development and diverse disorders. Biomed Pharmacother 2020; 132:110903. [PMID: 33096351 DOI: 10.1016/j.biopha.2020.110903] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNA-1 (miR-1) is a conserved miRNA with high expression in the muscle tissues. In humans, two discrete genes, MIRN1-1 and MIRN1-2 residing on a genomic region on 18q11.2 produce a single mature miRNA which has 21 nucleotides. miR-1 has a regulatory role on a number of genes including heat shock protein 60 (HSP60), Kruppel-like factor 4 (KLF4) and Heart And Neural Crest Derivatives Expressed 2 (HAND2). miR-1 has critical roles in the physiological processes in the smooth and skeletal muscles as well as other tissues, thus being involved in the pathogenesis of a wide range of disorders. Moreover, dysregulation of miR-1 has been noted in diverse types of cancers including gastric, colorectal, breast, prostate and lung cancer. In the current review, we provide the summary of the data regarding the role of this miRNA in the normal development and the pathogenic processes.
Collapse
Affiliation(s)
- Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciecnes, Tehran, Iran.
| |
Collapse
|
16
|
Gu H, Shi S, Xiao F, Huang Z, Xu J, Chen G, Zhou K, Lu L, Yin X. MiR-1-3p regulates the differentiation of mesenchymal stem cells to prevent osteoporosis by targeting secreted frizzled-related protein 1. Bone 2020; 137:115444. [PMID: 32447074 DOI: 10.1016/j.bone.2020.115444] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/11/2023]
Abstract
Osteoporosis (OP) is a systemic skeletal disorder with the characteristics of bone mass reduction and microarchitecture deterioration, resulting in bone fragility and increased fracture risk. A reduction in the osteoblast-differentiation of bone marrow mesenchymal stem cells (BMSCs) is considered as a basic pathogenesis of osteoporosis. miRNAs play a substantial role in the development and differentiation of BMSCs. In the present study, we found that miR-1-3p was significantly downregulated in the bones of Chinese osteoporotic patients (n = 29). Secreted frizzled-related protein 1 (SFRP1) was predicted as a target gene of miR-1-3p via the TargetScan and PicTar softwares and validated by dual-luciferase reporter assays. The findings revealed that the expression of SFRP1 was inversely correlated with miR-1-3p in osteoporotic patients. We induced mouse MSCs (mMSCs) to osteogenesis or adipogenesis and found that miR-1-3p was upregulated during osteogenesis but downregulated during adipogenesis. The overexpression of miR-1-3p stimulated osteogenesis and inhibited adipogenesis of mMSCs. In addition, ovariectomized (OVX) mice were tested and the function of miR-1-3p in vivo was explored. Immunohistochemistry and histomorphometric assays showed that in vivo inhibition of miR-1-3p increased the expression level of SFRP1 and reduced bone formation and bone mass. Furthermore, tartrate-resistant acid phosphatase (TRAP) staining indicated that the in vivo suppression of miR-1-3p promoted osteoclast activity, suggesting that miR-1-3p may influence bone mass by regulating bone resorption. It can be concluded that miR-1-3p plays a pivotal role in the pathogenesis of osteoporosis via targeting SFRP1 and may be a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, 170 Xin Song Road, Shanghai 201199, PR China
| | - Si Shi
- Department of Biochemistry and Molecular Biology, School of medicine, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Fangzhu Xiao
- Department of Orthopedics, The Fifth Hospital of Xiamen, 101 Min 'an Road, Maxiang Town, Xiang 'an District, Xiamen, Fujian Province, 361101, PR China
| | - Zhongyue Huang
- Department of Orthopedics, Minhang Hospital, Fudan University, 170 Xin Song Road, Shanghai 201199, PR China
| | - Jun Xu
- Department of Orthopedics, Minhang Hospital, Fudan University, 170 Xin Song Road, Shanghai 201199, PR China
| | - Guangnan Chen
- Department of Orthopedics, Minhang Hospital, Fudan University, 170 Xin Song Road, Shanghai 201199, PR China
| | - Kaifeng Zhou
- Department of Orthopedics, Minhang Hospital, Fudan University, 170 Xin Song Road, Shanghai 201199, PR China
| | - Lixia Lu
- Department of Biochemistry and Molecular Biology, School of medicine, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Xiaofan Yin
- Department of Orthopedics, Minhang Hospital, Fudan University, 170 Xin Song Road, Shanghai 201199, PR China.
| |
Collapse
|
17
|
The LncRNA H19/miR-1-3p/CCL2 axis modulates lipopolysaccharide (LPS) stimulation-induced normal human astrocyte proliferation and activation. Cytokine 2020; 131:155106. [DOI: 10.1016/j.cyto.2020.155106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 11/21/2022]
|
18
|
Chen Z, Yin S, Zheng L, Tang W, Kang M, Wei W, Sui K. Relationship between the Monocyte Chemo-attractant Protein-1 gene rs1024611 A>G Polymorphism and Cancer Susceptibility: A Meta-analysis Involving 14,617 Subjects. Immunol Invest 2020; 50:461-477. [PMID: 32552226 DOI: 10.1080/08820139.2020.1776726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammatory and inducible chemokines are the hallmarks of malignancy. Monocyte chemo-attractant protein-1 (MCP-1) is a crucial chemokine implicated in infection and inflammation. Methods: We performed an updated meta-analysis of thirty independent case-control studies with 6,777 cancer cases and 7,840 controls to determine if the MCP-1 gene rs1024611 A > G variant is associated with the risk of cancer. Results: The G allele carriers of rs1024611 in the MCP-1 gene might have a null association with cancer risk in overall comparison. In a subgroup analysis by ethnicity, we identified a marked association between the MCP-1 G allele rs1024611 polymorphism and cancer risk in the Caucasian populations (GG vs. AA: OR = 1.72, 95% CI, 1.12-2.64, P = .013, and GG vs. AG/AA: OR = 1.82, 95% CI, 1.19-2.78, P = .006). The potential bias in literature selection was witnessed in this meta-analysis (G vs. A: P Begg's = 0.187, PEgger's = 0.049; and GG/GA vs. AA: P Begg's = 0.069, PEgger's = 0.024). The adjusted ORs and CIs of the nonparametric "trim-and-fill" method demonstrated the reliability of these findings. The outcome of heterogeneity analysis indicated that heterogeneity might be due to small sample sizes (<1000 subjects), cancer types (bladder cancer, other cancers), ethnicity (Asians), and population-based studies. However, the sensitivity analysis validated the reliability of the findings. Conclusion: In conclusion, this updated meta-analysis showed that the G carrier of the MCP-1 gene rs1024611 is associated with susceptibility to cancer in Caucasian.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Cardiothoracic Surgery, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Shiping Yin
- Physical Examination Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Liang Zheng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Weifeng Tang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian Province, China.,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Wei Wei
- Department of Cardiothoracic Surgery, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Kang Sui
- Department of Cardiothoracic Surgery, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
19
|
Zhang D, Zhang H, Wang X, Hu B, Zhang F, Wei H, Li L. LINC01518 knockdown inhibits tumorigenicity by suppression of PIK3CA/Akt pathway in oesophageal squamous cell carcinoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4284-4292. [PMID: 31810385 DOI: 10.1080/21691401.2019.1699815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
LncRNA LINC01518 was previously reported to be upregulated in oesophageal squamous cell carcinoma (ESCC) tissues compared with normal tissues. However, there are no previous studies concerning the specific function and molecular mechanism of LINC01518 in ESCC. LINC01518 and miR-1-3p expression levels in ESCC cells were detected by qRT-PCR. Cell proliferation and apoptosis were evaluated by CCK-8 and flow cytometry analysis, respectively. The relationships between LINC01518, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA) and miR-1-3p were explored by luciferase reporter assay. The alteration of the PIK3CA/protein kinase B (Akt) pathway was examined by Western blot. We found that LINC01518 expression was upregulated and miR-1-3p expression was downregulated in ESCC cells. LINC01518 knockdown inhibited cell proliferation and promoted apoptosis in ESCC cells. In addition, LINC01518 functioned as a competing endogenous RNA (ceRNA) for miR-1-3p in ESCC cells and miR-1-3p downregulation blocked the effects of LINC01518 knockdown on cell proliferation and apoptosis in ESCC cells. Moreover, PIK3CA was identified as a target of miR-1-3p and LINC01518 knockdown inhibited the PIK3CA/Akt pathway by upregulating miR-1-3p in ESCC cells. In conclusion, LINC01518 knockdown inhibited tumorigenicity in ESCC cells by suppression of PIK3CA/Akt pathway through upregulating miR-1-3p.
Collapse
Affiliation(s)
- Donghong Zhang
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, P. R. China
| | - Haifeng Zhang
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, P. R. China
| | - Xiaolong Wang
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, P. R. China
| | - Baoli Hu
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, P. R. China
| | - Feng Zhang
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, P. R. China
| | - Haitao Wei
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, P. R. China
| | - Li Li
- School of Nursing and Health, Henan University, Kaifeng, P. R. China
| |
Collapse
|
20
|
Mao Y, Wang Y, Dong L, Zhang Y, Zhang Y, Wang C, Zhang Q, Yang S, Cao L, Zhang X, Li X, Fu Z. Hypoxic exosomes facilitate angiogenesis and metastasis in esophageal squamous cell carcinoma through altering the phenotype and transcriptome of endothelial cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:389. [PMID: 31488217 PMCID: PMC6727585 DOI: 10.1186/s13046-019-1384-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
Background In cancer progression, hypoxia, or low oxygen tension, is a major regulator of tumor aggressiveness and metastasis. However, how cancer cells adapt to the hypoxia and communicate with other mesenchymal cells in microenvironment during tumor development remains to be elucidated. Here, we investigated the involvement of exosomes in modulating angiogenesis and enhancing metastasis in esophageal squamous cell carcinoma (ESCC). Methods Differential centrifugation, transmission electron microscopy and nanoparticle tracking analysis were used to isolate and characterize exosomes. Colony formation and transwell assay were performed to assess the proliferation, migration and invasion of human umbilical vein endothelial cells (HUVECs). The tube formation assay and matrigel plug assay were used to evaluate the vascular formation ability of HUVECs in vitro and in vivo respectively. An in vivo nude mice model was established to detect the regulatory role of exosomes in ESCC progression. Microarray analysis was performed to analyze the transcriptome profiles in HUVECs. Results Exosomes derived from ESCC cells cultured under hypoxia played a better role in promoting proliferation, migration, invasion and tube formation of HUVECs in vitro and in vivo than exosomes from ESCC cells cultured under normoxia. Moreover, hypoxic exosomes significantly enhanced the tumor growth and lung metastasis compared with normoxic exosomes in nude mice models. Interestingly, endothelial cells were programmed by hypoxic and normoxic exosomes from ESCC cells which altered the transcriptome profile of HUVECs. Conclusions Taken together, our data identified an angiogenic role of exosomes from ESCC cells which shed light on the further application of exosomes as valuable therapeutic target for ESCC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1384-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Mao
- Department of Oncology, First Hospital of Qinhuangdao, Wenhua Road No. 258, Haigang District, Qinhuangdao, 066000, Hebei, China.
| | - Yimin Wang
- Department of General Surgery, First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Lixin Dong
- Department of Oncology, First Hospital of Qinhuangdao, Wenhua Road No. 258, Haigang District, Qinhuangdao, 066000, Hebei, China
| | - Yunjie Zhang
- Department of Oncology, First Hospital of Qinhuangdao, Wenhua Road No. 258, Haigang District, Qinhuangdao, 066000, Hebei, China
| | - Yanqiu Zhang
- Department of Oncology, First Hospital of Qinhuangdao, Wenhua Road No. 258, Haigang District, Qinhuangdao, 066000, Hebei, China
| | - Chao Wang
- Department of Thoracic Surgery, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Qiang Zhang
- Department of Oncology, First Hospital of Qinhuangdao, Wenhua Road No. 258, Haigang District, Qinhuangdao, 066000, Hebei, China
| | - Sen Yang
- Department of Oncology, First Hospital of Qinhuangdao, Wenhua Road No. 258, Haigang District, Qinhuangdao, 066000, Hebei, China
| | - Liyan Cao
- Department of Oncology, First Hospital of Qinhuangdao, Wenhua Road No. 258, Haigang District, Qinhuangdao, 066000, Hebei, China
| | - Xinyuan Zhang
- Department of Oncology, First Hospital of Qinhuangdao, Wenhua Road No. 258, Haigang District, Qinhuangdao, 066000, Hebei, China
| | - Xin Li
- Department of Oncology, First Hospital of Qinhuangdao, Wenhua Road No. 258, Haigang District, Qinhuangdao, 066000, Hebei, China
| | - Zhanzhao Fu
- Department of Oncology, First Hospital of Qinhuangdao, Wenhua Road No. 258, Haigang District, Qinhuangdao, 066000, Hebei, China.
| |
Collapse
|
21
|
Liu J, Huang Y, Cheng Q, Wang J, Zuo J, Liang Y, Yuan G. miR-1-3p suppresses the epithelial-mesenchymal transition property in renal cell cancer by downregulating Fibronectin 1. Cancer Manag Res 2019; 11:5573-5587. [PMID: 31417307 PMCID: PMC6594013 DOI: 10.2147/cmar.s200707] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/14/2019] [Indexed: 12/23/2022] Open
Abstract
Purpose Renal cell cancer (RCC) is one of the primary causes of malignancy deaths all over the world. The most important cause of RCC-related mortality is metastasis. Epithelial-mesenchymal transition (EMT) plays an important role in metastasis of malignant tumors including RCC. miR-1-3p is confirmed to be decreased in many types of cancer. Nevertheless, the function of miR-1-3p in RCC metastasis and EMT process was still unclear. Materials and methods In this study, information from clinical investigation, in vitro study, and in vivo study discovered miR-1-3p expression character and its status in RCC. The character of miR-1-3p in invasive and metastatic properties in vitro and in vivo was also inspected in RCC cells and xenograft tumor model, and expression levels of EMT markers were evaluated in RCC cells and tissues. Results miR-1-3p was proved to be decreased in RCC cell lines and tissues compared with normal renal cells and tissues. miR-1-3p expression level in RCC tissues was closely related with capsulation, lymph node metastasis, and vascular invasion. miR-1-3p was found to be able to block the EMT process in A498 and CAKI-1 RCC cells and tumors. Luciferase reporter assay and expression level rescue assays were employed to reveal that miR-1-3p inhibited the invasion and migration property of RCC cells by directly targeting Fibronectin 1. Upregulation of Fibronectin 1 partially reversed the suppressive effect of miR-1-3p on EMT process. Conclusion In brief, this study has verified that miR-1-3p blocked the EMT process of RCC cells by reducing Fibronectin 1 expression. miR-1-3p/Fibronectin 1 axis may be considered as a new target for drug development of RCC.
Collapse
Affiliation(s)
- Jianghui Liu
- Department of Emergency and Internal Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Yingxiong Huang
- Department of Emergency and Internal Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Quanyong Cheng
- Department of Emergency and Internal Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Jifei Wang
- Department of Emergency and Internal Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Jidong Zuo
- Department of Emergency and Internal Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Ying Liang
- Department of Nephrology, The Eighth People's Hospital of Guangzhou, Guangdong 510060, People's Republic of China
| | - Gang Yuan
- Department of Emergency and Internal Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| |
Collapse
|
22
|
Li X, Qin M, Huang J, Ma J, Hu X. Clinical significance of miRNA‑1 and its potential target gene network in lung squamous cell carcinoma. Mol Med Rep 2019; 19:5063-5078. [PMID: 31059033 PMCID: PMC6522896 DOI: 10.3892/mmr.2019.10171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 09/21/2019] [Indexed: 11/25/2022] Open
Abstract
Previous studies demonstrated that miRNA-1 (miR-1) is downregulated in certain human cancer and serves a crucial role in the progression of cancer. However, there are only a few previous studies examining the association between miR-1 and lung squamous cell carcinoma (LUSC) and the regulatory mechanism of miR-1 in LUSC remains unclear. Therefore, the present study investigated the clinical significance and determined the potential molecular mechanism of miR-1 in LUSC. The expression of miR-1 and its clinical significance in LUSC was examined by conducting a meta-analysis of 12 studies using Stata 14, MetaDiSc1.4 and SPSS version 23. In addition, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the potential target genes of miR-1 gathered from Gene Expression Omnibus and ArrayExpress. Meta-analysis demonstrated that miR-1 was significantly downregulated in LUSC [standardized mean difference: −1.44; 95% confidence interval (CI): −2.08, −0.81], and the area under the curve was 0.9096 (Q*=0.8416) with sensitivity of 0.71 (95% CI: 0.66, 0.76) and specificity of 0.88 (95% CI: 0.86, 0.90). The pooled positive likelihood ratio and negative likelihood ratio were 4.93 (95% CI: 2.54, 9.55) and 0.24 (95% CI: 0.10, 0.54), respectively. Bioinformatics analysis demonstrated that miR-1 may be involved in the progression of LUSC via the ‘cell cycle’, ‘p53 signaling pathway’, ‘Fanconi anemia pathway’, ‘homologous recombination’, ‘glycine, serine and threonine metabolism’ and ‘oocyte meiosis’. In summary, miR-1 was significantly downregulated in LUSC, suggesting a novel and promising non-invasive biomarker for diagnosing LUSC, and miR-1 was involved in LUSC progression via a number of significant pathways.
Collapse
Affiliation(s)
- Xiaojiao Li
- Department of Positron Emission Tomography‑Computed Tomography, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Meijiao Qin
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jiacheng Huang
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaohua Hu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
23
|
Arcà B, Colantoni A, Fiorillo C, Severini F, Benes V, Di Luca M, Calogero RA, Lombardo F. MicroRNAs from saliva of anopheline mosquitoes mimic human endogenous miRNAs and may contribute to vector-host-pathogen interactions. Sci Rep 2019; 9:2955. [PMID: 30814633 PMCID: PMC6393464 DOI: 10.1038/s41598-019-39880-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
During blood feeding haematophagous arthropods inject into their hosts a cocktail of salivary proteins whose main role is to counteract host haemostasis, inflammation and immunity. However, animal body fluids are known to also carry miRNAs. To get insights into saliva and salivary gland miRNA repertoires of the African malaria vector Anopheles coluzzii we used small RNA-Seq and identified 214 miRNAs, including tissue-enriched, sex-biased and putative novel anopheline miRNAs. Noteworthy, miRNAs were asymmetrically distributed between saliva and salivary glands, suggesting that selected miRNAs may be preferentially directed toward mosquito saliva. The evolutionary conservation of a subset of saliva miRNAs in Anopheles and Aedes mosquitoes, and in the tick Ixodes ricinus, supports the idea of a non-random occurrence pointing to their possible physiological role in blood feeding by arthropods. Strikingly, eleven of the most abundant An. coluzzi saliva miRNAs mimicked human miRNAs. Prediction analysis and search for experimentally validated targets indicated that miRNAs from An. coluzzii saliva may act on host mRNAs involved in immune and inflammatory responses. Overall, this study raises the intriguing hypothesis that miRNAs injected into vertebrates with vector saliva may contribute to host manipulation with possible implication for vector-host interaction and pathogen transmission.
Collapse
Affiliation(s)
- Bruno Arcà
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Alessio Colantoni
- Department of Biology and Biotechnology, "Sapienza University", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmine Fiorillo
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Severini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Marco Di Luca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
24
|
Giulietti M, Occhipinti G, Righetti A, Bracci M, Conti A, Ruzzo A, Cerigioni E, Cacciamani T, Principato G, Piva F. Emerging Biomarkers in Bladder Cancer Identified by Network Analysis of Transcriptomic Data. Front Oncol 2018; 8:450. [PMID: 30370253 PMCID: PMC6194189 DOI: 10.3389/fonc.2018.00450] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/25/2018] [Indexed: 01/03/2023] Open
Abstract
Bladder cancer is a very common malignancy. Although new treatment strategies have been developed, the identification of new therapeutic targets and reliable diagnostic/prognostic biomarkers for bladder cancer remains a priority. Generally, they are found among differentially expressed genes between patients and healthy subjects or among patients with different tumor stages. However, the classical approach includes processing these data taking into consideration only the expression of each single gene regardless of the expression of other genes. These complex gene interaction networks can be revealed by a recently developed systems biology approach called Weighted Gene Co-expression Network Analysis (WGCNA). It takes into account the expression of all genes assessed in an experiment in order to reveal the clusters of co-expressed genes (modules) that, very probably, are also co-regulated. If some genes are co-expressed in controls but not in pathological samples, it can be hypothesized that a regulatory mechanism was altered and that it could be the cause or the effect of the disease. Therefore, genes within these modules could play a role in cancer and thus be considered as potential therapeutic targets or diagnostic/prognostic biomarkers. Here, we have reviewed all the studies where WGCNA has been applied to gene expression data from bladder cancer patients. We have shown the importance of this new approach in identifying candidate biomarkers and therapeutic targets. They include both genes and miRNAs and some of them have already been identified in the literature to have a role in bladder cancer initiation, progression, metastasis, and patient survival.
Collapse
Affiliation(s)
- Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Giulia Occhipinti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Alessandra Righetti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Alessandro Conti
- Department of Urology, Bressanone/Brixen Hospital, Bressanone, Italy
| | - Annamaria Ruzzo
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Fano, Italy
| | - Elisabetta Cerigioni
- Unit of Pediatric and Specialistic Surgery, United Hospitals, "G.Salesi", Ancona, Italy
| | - Tiziana Cacciamani
- Department of Life and Environmental Science, Polytechnic University of Marche, Ancona, Italy
| | - Giovanni Principato
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
25
|
Phinney BB, Ray AL, Peretti AS, Jerman SJ, Grim C, Pinchuk IV, Beswick EJ. MK2 Regulates Macrophage Chemokine Activity and Recruitment to Promote Colon Tumor Growth. Front Immunol 2018; 9:1857. [PMID: 30298062 PMCID: PMC6160543 DOI: 10.3389/fimmu.2018.01857] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
A major risk factor for colon cancer growth and progression is chronic inflammation. We have shown that the MAPK-activated protein kinase 2 (MK2) pathway is critical for colon tumor growth in colitis-associated and spontaneous colon cancer models. This pathway is known to regulate expression of the tumor-promoting cytokines, IL-1, IL-6, and TNF-α. However, little is known about the ability of MK2 to regulate chemokine production. This is the first study to demonstrate this pathway also regulates the chemokines, MCP-1, Mip-1α, and Mip-2α (MMM). We show that these chemokines induce tumor cell growth and invasion in vitro and that MK2 inhibition suppresses tumor cell production of chemokines and reverses the resulting pro-tumorigenic effects. Addition of MMM to colon tumors in vivo significantly enhances tumor growth in control tumors and restores tumor growth in the presence of MK2 inhibition. We also demonstrate that MK2 signaling is critical for chemokine expression and macrophage influx to the colon tumor microenvironment. MK2 signaling in macrophages was essential for inflammatory cytokine/chemokine production, whereas MK2−/− macrophages or MK2 inhibition suppressed cytokine expression. We show that addition of bone marrow-derived macrophages to the tumor microenvironment enhances tumor growth in control tumors and restores tumor growth in tumors treated with MK2 inhibitors, while addition of MK2−/− macrophages had no effect. This is the first study to demonstrate the critical role of the MK2 pathway in chemokine production, macrophage influx, macrophage function, and tumor growth.
Collapse
Affiliation(s)
- Brandon B Phinney
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Anita L Ray
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Amanda S Peretti
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Stephanie J Jerman
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Carl Grim
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston, TX, United States
| | - Irina V Pinchuk
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ellen J Beswick
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|