1
|
Silva CJ, Erickson-Beltran ML, Cassmann ED, Greenlee JJ. Quantifying the Molecular Properties of the Elk Chronic Wasting Disease Agent with Mass Spectrometry. Pathogens 2024; 13:1008. [PMID: 39599561 PMCID: PMC11597226 DOI: 10.3390/pathogens13111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic wasting disease (CWD) is a prion disease afflicting wild and farmed elk. CWD prions (PrPSc) are infectious protein conformations that replicate by inducing a natively expressed prion protein (PrPC) to refold into the prion conformation. Mass spectrometry was used to study the prions resulting from a previously described experimental inoculation of MM132, ML132, and LL132 elk with a common CWD inoculum. Chymotryptic digestion times and instrument parameters were optimized to yield a set of six peptides, TNMK, MLGSAMSRPL, LLGSAMSRPL, ENMYR, MMER, and VVEQMCITQYQR. These peptides were used to quantify the amount, the M132 and L132 polymorphic composition, and the extent of methionine oxidation of elk PrPSc. The amount (ng/g brain tissue) of PrPSc present in each sample was determined to be: MM132 (5.4 × 102 ± 7 × 101), ML132 (3.3 × 102 ± 6 × 101 and 3.6 × 102 ± 3 × 101) and LL132 (0.7 × 102 ± 1 × 101, 0.2 × 102 ± 0.2 × 101, and 0.2 × 102 ± 0.5 × 101). The proportion of L132 polymorphism in ML132 (heterozygous) PrPSc from CWD-infected elk was determined to be 43% ± 2% or 36% ± 3%. Methionine oxidation was detected and quantified for the M132 and L132 polymorphisms in the samples. In this way, mass spectrometry can be used to characterize prion strains at a molecular level.
Collapse
Affiliation(s)
- Christopher J. Silva
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
| | - Melissa L. Erickson-Beltran
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
| | - Eric D. Cassmann
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Patterson Hall, 1800 Christensen Drive, Ames, IA 50011, USA;
| | - Justin J. Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA;
| |
Collapse
|
2
|
Denkers ND, McNulty EE, Kraft CN, Nalls AV, Westrich JA, Hoover EA, Mathiason CK. Temporal Characterization of Prion Shedding in Secreta of White-Tailed Deer in Longitudinal Study of Chronic Wasting Disease, United States. Emerg Infect Dis 2024; 30:2118-2127. [PMID: 39320164 PMCID: PMC11431932 DOI: 10.3201/eid3010.240159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Chronic wasting disease (CWD) affects cervids in North America, Asia, and Scandinavia. CWD is unique in its efficient spread, partially because of contact with infectious prions shed in secreta. To assess temporal profiles of CWD prion shedding, we collected saliva, urine, and feces from white-tailed deer for 66 months after exposure to low oral doses of CWD-positive brain tissue or saliva. We analyzed prion seeding activity by using modified amyloid amplification assays incorporating iron oxide bead extraction, which improved CWD detection and reduced false positives. CWD prions were detected in feces, urine, and saliva as early as 6 months postinfection. More frequent and consistent shedding was observed in deer homozygous for glycine at prion protein gene codon 96 than in deer expressing alternate genotypes. Our findings demonstrate that improved amplification methods can be used to identify early antemortem CWD prion shedding, which might aid in disease surveillance of cervids.
Collapse
|
3
|
Ernst S, Piestrzyńska-Kajtoch A, Gethmann J, Natonek-Wiśniewska M, Sadeghi B, Polak MP, Keller M, Gavier-Widén D, Moazami-Goudarzi K, Houston F, Groschup MH, Fast C. Prion protein gene (PRNP) variation in German and Danish cervids. Vet Res 2024; 55:98. [PMID: 39095901 PMCID: PMC11297704 DOI: 10.1186/s13567-024-01340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 08/04/2024] Open
Abstract
The structure of cellular prion proteins encoded by the prion protein gene (PRNP) impacts susceptibility to transmissible spongiform encephalopathies, including chronic wasting disease (CWD) in deer. The recent emergence of CWD in Northern European reindeer (Rangifer tarandus), moose (Alces alces alces) and red deer (Cervus elaphus), in parallel with the outbreak in North America, gives reason to investigate PRNP variation in European deer, to implement risk assessments and adjust CWD management for deer populations under threat. We here report PRNP-sequence data from 911 samples of German red, roe (Capreolus capreolus), sika (Cervus nippon) and fallow deer (Dama dama) as well as additional data from 26 Danish red deer close to the German border and four zoo species not native to Germany. No PRNP sequence variation was observed in roe and fallow deer, as previously described for populations across Europe. In contrast, a broad PRNP variation was detected in red deer, with non-synonymous polymorphisms at codons 98, 226 and 247 as well as synonymous mutations at codons 21, 78, 136 and 185. Moreover, a novel 24 bp deletion within the octapeptide repeat was detected. In summary, 14 genotypes were seen in red deer with significant differences in their geographical distribution and frequencies, including geographical clustering of certain genotypes, suggesting "PRNP-linages" in this species. Based on data from North American CWD and the genotyping results of the European CWD cases, we would predict that large proportions of wild cervids in Europe might be susceptible to CWD once introduced to naive populations.
Collapse
Affiliation(s)
- Sonja Ernst
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | | | - Jörn Gethmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | | | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | - Miroslaw P Polak
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | | | | | - Fiona Houston
- Division of Immunology, The Roslin Institute, Royal Dick School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Isle of Riems, Germany.
| |
Collapse
|
4
|
Hoar BR, Ernest HB, Johnson LNL, LaCava MEF, Sandidge DJ, Gerow K, Mousel MR, Galloway NL, Swain W, Malmberg JL. Ecology and Chronic Wasting Disease Epidemiology Shape Prion Protein Gene Variation in Rocky Mountain Elk (Cervus elaphus nelsoni). J Wildl Dis 2024; 60:496-501. [PMID: 38287919 DOI: 10.7589/jwd-d-23-00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/06/2023] [Indexed: 01/31/2024]
Abstract
As chronic wasting disease (CWD) continues to spread across North America, the relationship between CWD and host genetics has become of interest. In Rocky Mountain elk (Cervus elaphus nelsoni), one or two copies of a leucine allele at codon 132 of the prion protein gene (132L*) has been shown to prolong the incubation period of CWD. Our study examined the relationship between CWD epidemiology and codon 132 evolution in elk from Wyoming, USA, from 2011 to 2018. Using PCR and Sanger sequencing, we genotyped 997 elk and assessed the relationship between genotype and CWD prevalence estimated from surveillance data. Using logistic regression, we showed that each 1% increase in CWD prevalence is associated with a 9.6% increase in the odds that an elk would have at least one copy of leucine at codon 132. In some regions, however, 132L* variants were found in the absence of CWD, indicating that evolutionary and epidemiologic patterns can be heterogeneous across space and time. We also provide evidence that naturally occurring CWD is not rare in 132L* elk, which merits the study of shedding kinetics in 132L* elk and the influence of genotype on CWD strain diversity. The management implications of cervid adaptations to CWD are difficult to predict. Studies that investigate the degree to which evolutionary outcomes are shaped by host spatial structure can provide useful epidemiologic insight, which can in turn aid management by informing scale and extent of mitigation actions.
Collapse
Affiliation(s)
| | | | - Laura N L Johnson
- Wyoming Game and Fish Department, 1212 South Adams Street, Laramie, Wyoming 82070, USA
| | - Melanie E F LaCava
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | - Ken Gerow
- Department of Mathematics and Statistics, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming 82071, USA
| | - Michelle R Mousel
- Animal Disease Research, Agricultural Research Service, US Department of Agriculture, 2020 Northeast Wilson Road, Pullman, Washington 99163, USA
- School for Global Health, Washington State University, 1155 Northeast College Avenue, Pullman, Washington 99164, USA
| | - Nathan L Galloway
- Biological Resources Division, National Park Service, 1201 Oakridge Drive #200, Fort Collins, Colorado 80525, USA
| | - William Swain
- One Health Institute, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, California 95616, USA
| | - Jennifer L Malmberg
- Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, Laramie, Wyoming 82070, USA
- Current affiliation: National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, US Department of Agriculture, 4101 LaPorte Avenue, Fort Collins, Colorado 80521, USA
| |
Collapse
|
5
|
Thackray AM, McNulty EE, Nalls AV, Cardova A, Tran L, Telling G, Benestad SL, Gilch S, Mathiason CK, Bujdoso R. Genetic modulation of CWD prion propagation in cervid PrP Drosophila. Biochem J 2023; 480:1485-1501. [PMID: 37747806 PMCID: PMC10586768 DOI: 10.1042/bcj20230247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Chronic wasting disease is a fatal prion condition of cervids such as deer, elk, moose and reindeer. Secretion and excretion of prion infectivity from North American cervids with this condition causes environmental contamination and subsequent efficient lateral transmission in free-ranging and farmed cervids. Variants of cervid PrP exist that affect host susceptibility to chronic wasting disease. Cervid breeding programmes aimed at increasing the frequency of PrP variants associated with resistance to chronic wasting disease may reduce the burden of this condition in animals and lower the risk of zoonotic disease. This strategy requires a relatively rapid and economically viable model system to characterise and support selection of prion disease-modifying cervid PrP variants. Here, we generated cervid PrP transgenic Drosophila to fulfil this purpose. We have generated Drosophila transgenic for S138 wild type cervid PrP, or the N138 variant associated with resistance to chronic wasting disease. We show that cervid PrP Drosophila accumulate bona fide prion infectivity after exposure to cervid prions. Furthermore, S138 and N138 PrP fly lines are susceptible to cervid prion isolates from either North America or Europe when assessed phenotypically by accelerated loss of locomotor ability or survival, or biochemically by accumulation of prion seeding activity. However, after exposure to European reindeer prions, N138 PrP Drosophila accumulated prion seeding activity with slower kinetics than the S138 fly line. These novel data show that prion susceptibility characteristics of cervid PrP variants are maintained when expressed in Drosophila, which highlights this novel invertebrate host in modelling chronic wasting disease.
Collapse
Affiliation(s)
- Alana M. Thackray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, U.K
| | - Erin E. McNulty
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Amy V. Nalls
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Alzbeta Cardova
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, U.K
| | - Linh Tran
- Department of Biohazard and Pathology, WOAH Reference Laboratory for CWD (SLB), National Veterinary Institute, Postboks 64, 1431 Ås, Norway
| | - Glenn Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Sylvie L. Benestad
- Department of Biohazard and Pathology, WOAH Reference Laboratory for CWD (SLB), National Veterinary Institute, Postboks 64, 1431 Ås, Norway
| | - Sabine Gilch
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Candace K. Mathiason
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, U.K
| |
Collapse
|
6
|
Mathiason CK. Large animal models for chronic wasting disease. Cell Tissue Res 2023; 392:21-31. [PMID: 35113219 PMCID: PMC8811588 DOI: 10.1007/s00441-022-03590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022]
Abstract
Chronic wasting disease (CWD) is a fatal neurodegenerative prion disease of cervid species including deer, elk, moose and reindeer. The disease has shown both geographic and species expansion since its discovery in the late 1960's and is now recognized in captive and free-ranging cervid populations in North America, Asia and Europe. The facile transmission of CWD is unique among prion diseases and has resulted in growing concern for cervid populations and human public health. The development of native cervid host models with longitudinal monitoring has revealed new insights about CWD pathogenesis and transmission dynamics. More than 20 years of experimental studies conducted in these models, using biologically relevant routes of infection, have led to better understanding of many aspect of CWD infections. This review addresses some of these insights, including: (i) the temporal intra-host trafficking of CWD prions in tissues and bodily fluids, (ii) the presence of infectivity shed in bodily excretions that may help explain the facile transmission of CWD, (iii) mother-to-offspring CWD transmission, (iv) the influence of some Prnp polymorphisms on CWD susceptibility, and (vi) continued development of vaccine strategies to mitigate CWD.
Collapse
Affiliation(s)
- C K Mathiason
- College of Veterinary Medicine and Biomedical Sciences, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States, 80523.
| |
Collapse
|
7
|
Cook M, Hensley-McBain T, Grindeland A. Mouse models of chronic wasting disease: A review. FRONTIERS IN VIROLOGY 2023. [DOI: 10.3389/fviro.2023.1055487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Animal models are essential tools for investigating and understanding complex prion diseases like chronic wasting disease (CWD), an infectious prion disease of cervids (elk, deer, moose, and reindeer). Over the past several decades, numerous mouse models have been generated to aid in the advancement of CWD knowledge and comprehension. These models have facilitated the investigation of pathogenesis, transmission, and potential therapies for CWD. Findings have impacted CWD management and disease outcomes, though much remains unknown, and a cure has yet to be discovered. Studying wildlife for CWD effects is singularly difficult due to the long incubation time, subtle clinical signs at early stages, lack of convenient in-the-field live testing methods, and lack of reproducibility of a controlled laboratory setting. Mouse models in many cases is the first step to understanding the mechanisms of disease in a shortened time frame. Here, we provide a comprehensive review of studies with mouse models in CWD research. We begin by reviewing studies that examined the use of mouse models for bioassays for tissues, bodily fluids, and excreta that spread disease, then address routes of infectivity and infectious load. Next, we delve into studies of genetic factors that influence protein structure. We then move on to immune factors, possible transmission through environmental contamination, and species barriers and differing prion strains. We conclude with studies that make use of cervidized mouse models in the search for therapies for CWD.
Collapse
|
8
|
Silva CJ, Erickson-Beltran ML. General Method of Quantifying the Extent of Methionine Oxidation in the Prion Protein. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:255-263. [PMID: 36608322 DOI: 10.1021/jasms.2c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The normal cellular prion protein (PrPC) and its infectious conformer, PrPSc, possess a disproportionately greater amount of methionines than would be expected for a typical mammalian protein. The thioether of methionine can be readily oxidized to the corresponding sulfoxide, which means that oxidation of methionine can be used to map the surface of the conformation of PrPC or PrPSc, as covalent changes are retained after denaturation. We identified a set of peptides (TNMK, MLGSAMSR, LLGSAMSR, PMIHFGNDWEDR, ENMNR, ENMYR, IMER, MMER, MIER, VVEQMCVTQYQK, and VVEQMCITQYQR) that contains every methionine in sheep, cervid, mouse, and bank vole PrP. Each is the product of a tryptic digestion and is suitable for a multiple reaction monitoring (MRM) based analysis. The peptides chromatograph well. The oxidized and unoxidized peptides containing one methionine readily separate. The unoxidized, two singly oxidized, and doubly oxidized forms of the MLGSAMSR and MMER peptides are also readily distinguishable. This approach can be used to determine the surface exposure of each methionine by measuring its oxidation after reaction with added hydrogen peroxide.
Collapse
Affiliation(s)
- Christopher J Silva
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, California 94710, United States
| | - Melissa L Erickson-Beltran
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, California 94710, United States
| |
Collapse
|
9
|
Fameli AF, Edson J, Banfield JE, Rosenberry CS, Walter WD. Variability in prion protein genotypes by spatial unit to inform susceptibility to chronic wasting disease. Prion 2022; 16:254-264. [PMID: 36104983 PMCID: PMC9481152 DOI: 10.1080/19336896.2022.2117535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal encephalopathy affecting North American cervids. Certain alleles in a host's prion protein gene are responsible for reduced susceptibility to CWD. We assessed for the first time variability in the prion protein gene of elk (Cervus canadensis) present in Pennsylvania, United States of America, a reintroduced population for which CWD cases have never been reported. We sequenced the prion protein gene (PRNP) of 565 elk samples collected over 7 years (2014-2020) and found two polymorphic sites (codon 21 and codon 132). The allele associated with reduced susceptibility to CWD is present in the population, and there was no evidence of deviations from Hardy-Weinberg equilibrium in any of our sampling years (p-values between 0.14 and 1), consistent with the lack of selective pressure on the PRNP. The less susceptible genotypes were found in a frequency similar to the ones reported for elk populations in the states of Wyoming and South Dakota before CWD was detected. We calculated the proportion of less susceptible genotypes in each hunt zone in Pennsylvania as a proxy for their vulnerability to the establishment of CWD, and interpolated these results to obtain a surface representing expected proportion of the less susceptible genotypes across the area. Based on this analysis, hunt zones located in the southern part of our study area have a low proportion of less susceptible genotypes, which is discouraging for elk persistence in Pennsylvania given that these hunt zones are adjacent to the deer Disease Management Area 3, where CWD has been present since 2014.
Collapse
Affiliation(s)
- Alberto F. Fameli
- Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA, USA,CONTACT Alberto F. Fameli Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA16802, USA
| | - Jessie Edson
- Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA, USA
| | - Jeremiah E. Banfield
- Pennsylvania Game Commission, Bureau of Wildlife Management, 2001 Elmerton Avenue,Harrisburg, PA, USA
| | - Christopher S. Rosenberry
- Pennsylvania Game Commission, Bureau of Wildlife Management, 2001 Elmerton Avenue,Harrisburg, PA, USA
| | - W. David Walter
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, 403 Forest Resources Building, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
10
|
Otaki H, Taguchi Y, Nishida N. Conformation-Dependent Influences of Hydrophobic Amino Acids in Two In-Register Parallel β-Sheet Amyloids, an α-Synuclein Amyloid and a Local Structural Model of PrP Sc. ACS OMEGA 2022; 7:31271-31288. [PMID: 36092583 PMCID: PMC9453792 DOI: 10.1021/acsomega.2c03523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Prions are unconventional pathogens that encode the pathogenic information in conformations of the constituent abnormal isoform of prion protein (PrPSc), independently of the nucleotide genome. Therefore, conformational diversity of PrPSc underlies the existence of many prion strains and species barriers of prions, although the conformational information is extremely limited. Interestingly, differences between polymorphic or species-specific residues responsible for the species/strain barriers are often caused by conservative replacements between hydrophobic amino acids. This implies that subtle differences among hydrophobic amino acids are significant for PrPSc structures. Here we analyzed the influence of different hydrophobic residues on the structures of an in-register parallel β-sheet amyloid of α-synuclein (αSyn) using molecular dynamics (MD) simulation and applied the knowledge from the αSyn amyloid to modeling a local structure of human PrPSc encompassing residues 107-143. We found that mutations equivalent to polymorphisms that cause transmission barriers substantially affect the stabilities of the local structures; for example, the G127V mutation, which makes the host resistant to various human prion diseases, greatly destabilized the local structure of the model amyloid. Our study indicates that subtle differences among hydrophobic side chains can considerably affect the interaction network, including hydrogen bonds, and demonstrates specifically how and in what structures hydrophobic residues can exert unique effects on in-register parallel β-sheet amyloids.
Collapse
Affiliation(s)
- Hiroki Otaki
- Center
for Bioinformatics and Molecular Medicine, Graduate School of Biomedical
Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yuzuru Taguchi
- Department
of Molecular Microbiology and Immunology, Graduate School of Biomedical
Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Noriyuki Nishida
- Department
of Molecular Microbiology and Immunology, Graduate School of Biomedical
Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
11
|
Silva CJ. Chronic Wasting Disease (CWD) in Cervids and the Consequences of a Mutable Protein Conformation. ACS OMEGA 2022; 7:12474-12492. [PMID: 35465121 PMCID: PMC9022204 DOI: 10.1021/acsomega.2c00155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/18/2022] [Indexed: 05/15/2023]
Abstract
Chronic wasting disease (CWD) is a prion disease of cervids (deer, elk, moose, etc.). It spreads readily from CWD-contaminated environments and among wild cervids. As of 2022, North American CWD has been found in 29 states, four Canadian provinces and South Korea. The Scandinavian form of CWD originated independently. Prions propagate their pathology by inducing a natively expressed prion protein (PrPC) to adopt the prion conformation (PrPSc). PrPC and PrPSc differ solely in their conformation. Like other prion diseases, transmissible CWD prions can arise spontaneously. The CWD prions can respond to selection pressures resulting in the emergence of new strain phenotypes. Annually, 11.5 million Americans hunt and harvest nearly 6 million deer, indicating that CWD is a potential threat to an important American food source. No tested CWD strain has been shown to be zoonotic. However, this may not be true for emerging strains. Should a zoonotic CWD strain emerge, it could adversely impact the hunting economy and game meat consumers.
Collapse
Affiliation(s)
- Christopher J. Silva
- Produce Safety & Microbiology
Research Unit, Western Regional Research Center, Agricultural Research
Service, United States Department of Agriculture, Albany, California 94710, United States of America
| |
Collapse
|
12
|
Gene-Edited Cell Models to Study Chronic Wasting Disease. Viruses 2022; 14:v14030609. [PMID: 35337016 PMCID: PMC8950194 DOI: 10.3390/v14030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Prion diseases are fatal infectious neurodegenerative disorders affecting both humans and animals. They are caused by the misfolded isoform of the cellular prion protein (PrPC), PrPSc, and currently no options exist to prevent or cure prion diseases. Chronic wasting disease (CWD) in deer, elk and other cervids is considered the most contagious prion disease, with extensive shedding of infectivity into the environment. Cell culture models provide a versatile platform for convenient quantification of prions, for studying the molecular and cellular biology of prions, and for performing high-throughput screening of potential therapeutic compounds. Unfortunately, only a very limited number of cell lines are available that facilitate robust and persistent propagation of CWD prions. Gene-editing using programmable nucleases (e.g., CRISPR-Cas9 (CC9)) has proven to be a valuable tool for high precision site-specific gene modification, including gene deletion, insertion, and replacement. CC9-based gene editing was used recently for replacing the PrP gene in mouse and cell culture models, as efficient prion propagation usually requires matching sequence homology between infecting prions and prion protein in the recipient host. As expected, such gene-editing proved to be useful for developing CWD models. Several transgenic mouse models were available that propagate CWD prions effectively, however, mostly fail to reproduce CWD pathogenesis as found in the cervid host, including CWD prion shedding. This is different for the few currently available knock-in mouse models that seem to do so. In this review, we discuss the available in vitro and in vivo models of CWD, and the impact of gene-editing strategies.
Collapse
|
13
|
Sargeant GA, Wild MA, Schroeder GM, Powers JG, Galloway NL. Spatial network clustering reveals elk population structure and local variation in prevalence of chronic wasting disease. Ecosphere 2021. [DOI: 10.1002/ecs2.3781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Glen A. Sargeant
- Northern Prairie Wildlife Research Center U.S. Geological Survey 8711 37th St. SE Jamestown North Dakota 58401 USA
| | - Margaret A. Wild
- College of Veterinary Medicine Washington State University P.O. Box 647040 Pullman Washington 99164 USA
| | - Gregory M. Schroeder
- Wind Cave National Park National Park Service 26611 U.S. Highway 385 Hot Springs South Dakota 57747 USA
| | - Jenny G. Powers
- Biological Resources Division National Park Service 1201 Oakridge Drive #200 Fort Collins Colorado 80525 USA
| | - Nathan L. Galloway
- Biological Resources Division National Park Service 1201 Oakridge Drive #200 Fort Collins Colorado 80525 USA
| |
Collapse
|
14
|
Moazami-Goudarzi K, Andréoletti O, Vilotte JL, Béringue V. Review on PRNP genetics and susceptibility to chronic wasting disease of Cervidae. Vet Res 2021; 52:128. [PMID: 34620247 PMCID: PMC8499490 DOI: 10.1186/s13567-021-00993-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
To date, chronic wasting disease (CWD) is the most infectious form of prion disease affecting several captive, free ranging and wild cervid species. Responsible for marked population declines in North America, its geographical spread is now becoming a major concern in Europe. Polymorphisms in the prion protein gene (PRNP) are an important factor influencing the susceptibility to prions and their rate of propagation. All reported cervid PRNP genotypes are affected by CWD. However, in each species, some polymorphisms are associated with lower attack rates and slower progression of the disease. This has potential consequences in terms of genetic selection, CWD diffusion and strain evolution. CWD also presents a zoonotic risk due to prions capacity to cross species barriers. This review summarizes our current understanding of CWD control, focusing on PRNP genetic, strain diversity and capacity to infect other animal species, including humans.
Collapse
Affiliation(s)
| | - Olivier Andréoletti
- UMR INRAE ENVT 1225 - IHAP, École Nationale Vétérinaire de Toulouse, 31076, Toulouse, France
| | - Jean-Luc Vilotte
- University Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Vincent Béringue
- University Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| |
Collapse
|
15
|
Otero A, Velásquez CD, Aiken J, McKenzie D. Chronic wasting disease: a cervid prion infection looming to spillover. Vet Res 2021; 52:115. [PMID: 34488900 PMCID: PMC8420063 DOI: 10.1186/s13567-021-00986-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
The spread of chronic wasting disease (CWD) during the last six decades has resulted in cervid populations of North America where CWD has become enzootic. This insidious disease has also been reported in wild and captive cervids from other continents, threatening ecosystems, livestock and public health. These CWD "hot zones" are particularly complex given the interplay between cervid PRNP genetics, the infection biology, the strain diversity of infectious prions and the long-term environmental persistence of infectivity, which hinder eradication efforts. Here, we review different aspects of CWD including transmission mechanisms, pathogenesis, epidemiology and assessment of interspecies infection. Further understanding of these aspects could help identify "control points" that could help reduce exposure for humans and livestock and decrease CWD spread between cervids.
Collapse
Affiliation(s)
- Alicia Otero
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Camilo Duque Velásquez
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. .,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
16
|
Kincheloe JM, Horn-Delzer AR, Makau DN, Wells SJ. Chronic Wasting Disease Transmission Risk Assessment for Farmed Cervids in Minnesota and Wisconsin. Viruses 2021; 13:v13081586. [PMID: 34452450 PMCID: PMC8402894 DOI: 10.3390/v13081586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
CWD (chronic wasting disease) has emerged as one of the most important diseases of cervids and continues to adversely affect farmed and wild cervid populations, despite control and preventive measures. This study aims to use the current scientific understanding of CWD transmission and knowledge of farmed cervid operations to conduct a qualitative risk assessment for CWD transmission to cervid farms and, applying this risk assessment, systematically describe the CWD transmission risks experienced by CWD-positive farmed cervid operations in Minnesota and Wisconsin. A systematic review of literature related to CWD transmission informed our criteria to stratify CWD transmission risks to cervid operations into high-risk low uncertainty, moderate-risk high uncertainty, and negligible-risk low uncertainty categories. Case data from 34 CWD-positive farmed cervid operations in Minnesota and Wisconsin from 2002 to January 2019 were categorized by transmission risks exposure and evaluated for trends. The majority of case farms recorded high transmission risks (56%), which were likely sources of CWD, but many (44%) had only moderate or negligible transmission risks, including most of the herds (62%) detected since 2012. The presence of CWD-positive cervid farms with only moderate or low CWD transmission risks necessitates further investigation of these risks to inform effective control measures.
Collapse
Affiliation(s)
- James M. Kincheloe
- Center for Science in the Public Interest, 1220 L St. N.W., Suite 300, Washington, DC 20005, USA
- Department of Veterinary Population Medicine, University of Minnesota, 225 Vet Med Ctr, 1365 Gortner Avenue, St. Paul, MN 55108, USA; (D.N.M.); (S.J.W.)
- Correspondence:
| | - Amy R. Horn-Delzer
- Wisconsin Department of Agriculture, Trade, and Consumer Protection, 2811 Agriculture Drive, Madison, WI 53708, USA;
| | - Dennis N. Makau
- Department of Veterinary Population Medicine, University of Minnesota, 225 Vet Med Ctr, 1365 Gortner Avenue, St. Paul, MN 55108, USA; (D.N.M.); (S.J.W.)
| | - Scott J. Wells
- Department of Veterinary Population Medicine, University of Minnesota, 225 Vet Med Ctr, 1365 Gortner Avenue, St. Paul, MN 55108, USA; (D.N.M.); (S.J.W.)
| |
Collapse
|
17
|
Bartz JC. Environmental and host factors that contribute to prion strain evolution. Acta Neuropathol 2021; 142:5-16. [PMID: 33899132 PMCID: PMC8932343 DOI: 10.1007/s00401-021-02310-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023]
Abstract
Prions are novel pathogens that are composed entirely of PrPSc, the self-templating conformation of the host prion protein, PrPC. Prion strains are operationally defined as a heritable phenotype of disease that are encoded by strain-specific conformations of PrPSc. The factors that influence the relative distribution of strains in a population are only beginning to be understood. For prions with an infectious etiology, environmental factors, such as strain-specific binding to surfaces and resistance to weathering, can influence which strains are available for transmission to a naïve host. Strain-specific differences in efficiency of infection by natural routes of infection can also select for prion strains. The host amino acid sequence of PrPC has the greatest effect on dictating the repertoire of prion strains. The relative abundance of PrPC, post-translational modifications of PrPC and cellular co-factors involved in prion conversion can also provide conditions that favor the prevalence of a subset of prion strains. Additionally, prion strains can interfere with each other, influencing the emergence of a dominant strain. Overall, both environmental and host factors may influence the repertoire and distribution of strains within a population.
Collapse
Affiliation(s)
- Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
18
|
Arifin MI, Hannaoui S, Chang SC, Thapa S, Schatzl HM, Gilch S. Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22052271. [PMID: 33668798 PMCID: PMC7956812 DOI: 10.3390/ijms22052271] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal's susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymorphisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. PrP polymorphisms are unique to one or two cervid species and most confer a certain degree of reduced susceptibility to CWD. However, to date, there are no reports of polymorphic cervid PrP alleles providing absolute resistance to CWD. Studies on polymorphisms have focused on those found in CWD-endemic areas, with the hope that understanding the role of an animal's genetics in CWD can help to predict, contain, or prevent transmission of CWD.
Collapse
Affiliation(s)
- Maria Immaculata Arifin
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Samia Hannaoui
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sheng Chun Chang
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Simrika Thapa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hermann M. Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
19
|
Nemani SK, Myskiw JL, Lamoureux L, Booth SA, Sim VL. Exposure Risk of Chronic Wasting Disease in Humans. Viruses 2020; 12:v12121454. [PMID: 33348562 PMCID: PMC7766630 DOI: 10.3390/v12121454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/02/2023] Open
Abstract
The majority of human prion diseases are sporadic, but acquired disease can occur, as seen with variant Creutzfeldt–Jakob disease (vCJD) following consumption of bovine spongiform encephalopathy (BSE). With increasing rates of cervid chronic wasting disease (CWD), there is concern that a new form of human prion disease may arise. Currently, there is no evidence of transmission of CWD to humans, suggesting the presence of a strong species barrier; however, in vitro and in vivo studies on the zoonotic potential of CWD have yielded mixed results. The emergence of different CWD strains is also concerning, as different strains can have different abilities to cross species barriers. Given that venison consumption is common in areas where CWD rates are on the rise, increased rates of human exposure are inevitable. If CWD was to infect humans, it is unclear how it would present clinically; in vCJD, it was strain-typing of vCJD prions that proved the causal link to BSE. Therefore, the best way to screen for CWD in humans is to have thorough strain-typing of harvested cervids and human CJD cases so that we will be in a position to detect atypical strains or strain shifts within the human CJD population.
Collapse
Affiliation(s)
- Satish K. Nemani
- Centre for Prions and Protein Folding Diseases, Edmonton, AB T6G 2R3, Canada;
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jennifer L. Myskiw
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (J.L.M.); (L.L.); (S.A.B.)
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3R2, Canada
| | - Lise Lamoureux
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (J.L.M.); (L.L.); (S.A.B.)
| | - Stephanie A. Booth
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (J.L.M.); (L.L.); (S.A.B.)
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3R2, Canada
| | - Valerie L. Sim
- Centre for Prions and Protein Folding Diseases, Edmonton, AB T6G 2R3, Canada;
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence:
| |
Collapse
|
20
|
Sohn HJ, Mitchell G, Lee YH, Kim HJ, Park KJ, Staskevicus A, Walther I, Soutyrine A, Balachandran A. Experimental oral transmission of chronic wasting disease to sika deer ( Cervus nippon). Prion 2020; 14:271-277. [PMID: 33300452 PMCID: PMC7734081 DOI: 10.1080/19336896.2020.1857038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chronic wasting disease (CWD) affects a broad array of cervid species and continues to be detected in an expanding geographic range. Initially introduced into the Republic of Korea through the importation of CWD-infected elk (Cervus canadensis), additional cases of CWD were subsequently detected in farmed Korean elk and sika deer (Cervus nippon). Wild and farmed sika deer are found in many regions of Asia, North America, and Europe, although natural transmission to this species has not been detected outside of the Republic of Korea. In this study, the oral transmission of CWD to sika deer was investigated using material from CWD-affected elk. Pathological prion (PrPCWD) immunoreactivity was detected in oropharyngeal lymphoid tissues of one sika deer at 3.9 months post-inoculation (mpi) and was more widely distributed in a second sika deer examined at 10.9 mpi. The remaining four sika deer progressed to clinical disease between 21 and 24 mpi. Analysis of PrPCWD tissue distribution in clinical sika deer revealed widespread deposition in central and peripheral nervous systems, lymphoreticular tissues, and the gastrointestinal tract. Prion protein gene (PRNP) sequences of these sika deer were identical and consistent with those reported in natural sika deer populations. These findings demonstrate the efficient oral transmission of CWD from elk to sika deer.
Collapse
Affiliation(s)
- Hyun-Joo Sohn
- Foreign Animal Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency , Gimcheon-si, Republic of Korea
| | - Gordon Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency , Ottawa, Canada
| | - Yoon Hee Lee
- Foreign Animal Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency , Gimcheon-si, Republic of Korea
| | - Hyo Jin Kim
- Foreign Animal Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency , Gimcheon-si, Republic of Korea
| | - Kyung-Je Park
- Foreign Animal Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency , Gimcheon-si, Republic of Korea
| | - Antanas Staskevicus
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency , Ottawa, Canada
| | - Ines Walther
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency , Ottawa, Canada
| | - Andrei Soutyrine
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency , Ottawa, Canada
| | - Aru Balachandran
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency , Ottawa, Canada
| |
Collapse
|
21
|
Moore J, Tatum T, Hwang S, Vrentas C, West Greenlee MH, Kong Q, Nicholson E, Greenlee J. Novel Strain of the Chronic Wasting Disease Agent Isolated From Experimentally Inoculated Elk With LL132 Prion Protein. Sci Rep 2020; 10:3148. [PMID: 32081886 PMCID: PMC7035384 DOI: 10.1038/s41598-020-59819-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/04/2020] [Indexed: 02/05/2023] Open
Abstract
Chronic wasting disease (CWD) is a fatal, progressive disease that affects cervid species, including Rocky mountain elk (Cervus elaphus nelsoni). There are 2 allelic variants in the elk prion protein gene: L132 (leucine) and M132 (methionine). Following experimental oral challenge with the CWD agent incubation periods are longest in LL132 elk, intermediate in ML132 elk, and shortest in MM132 elk. In order to ascertain whether such CWD-infected elk carry distinct prion strains, groups of Tg12 mice that express M132 elk prion protein were inoculated intracranially with brain homogenate from individual CWD-infected elk of various genotypes (LL132, LM132, or MM132). Brain samples were examined for microscopic changes and assessment of the biochemical properties of disease-associated prion protein (PrPSc). On first passage, mice challenged with LL132 elk inoculum had prolonged incubation periods and greater PrPSc fibril stability compared to mice challenged with MM132 or LM132 inoculum. On second passage, relative incubation periods, western blot profiles, and neuropathology were maintained. These results suggest that the CWD prion isolated from LL132 elk is a novel CWD strain and that M132 PrPC is able to propagate some biophysical properties of the L132 PrPSc conformation.
Collapse
Affiliation(s)
- Jo Moore
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, 50010, USA
| | - Trudy Tatum
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, 50010, USA
| | - Soyoun Hwang
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, 50010, USA
| | - Catherine Vrentas
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, 50010, USA
| | | | - Qingzhong Kong
- Case Western Reserve University, Departments of Pathology and Neurology, Cleveland, 44106, USA
| | - Eric Nicholson
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, 50010, USA
| | - Justin Greenlee
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, 50010, USA.
| |
Collapse
|
22
|
Hwang S, Greenlee JJ, Nicholson EM. Role of donor genotype in RT-QuIC seeding activity of chronic wasting disease prions using human and bank vole substrates. PLoS One 2020; 15:e0227487. [PMID: 31910440 PMCID: PMC6946595 DOI: 10.1371/journal.pone.0227487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/19/2019] [Indexed: 01/11/2023] Open
Abstract
Chronic wasting disease is a transmissible spongiform encephalopathy of cervids. This fatal neurodegenerative disease is caused by misfolding of the cellular prion protein (PrPC) to pathogenic conformers (PrPSc), and the pathogenic forms accumulate in the brain and other tissues. Real-time Quaking Induced Conversion (RT-QuIC) can be used for the detection of prions and for prion strain discrimination in a variety of biological tissues from humans and animals. In this study, we evaluated how either PrPSc from cervids of different genotypes or PrPSc from different sources of CWD influence the fibril formation of recombinant bank vole (BV) or human prion proteins using RT-QuIC. We found that reaction mixtures seeded with PrPSc from different genotypes of white-tailed deer or reindeer brains have similar conversion efficiency with both substrates. Also, we observed similar results when assays were seeded with different sources of CWD. Thus, we conclude that the genotypes of all sources of CWD used in this study do not influence the level of conversion of PrPC to PrPSc.
Collapse
Affiliation(s)
- Soyoun Hwang
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Justin J. Greenlee
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Eric M. Nicholson
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
23
|
Silva CJ, Erickson-Beltran ML, Duque Velásquez C, Aiken JM, McKenzie D. A General Mass Spectrometry-Based Method of Quantitating Prion Polymorphisms from Heterozygous Chronic Wasting Disease-Infected Cervids. Anal Chem 2019; 92:1276-1284. [PMID: 31815434 DOI: 10.1021/acs.analchem.9b04449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic wasting disease (CWD) is the only prion disease naturally transmitted among farmed and free-ranging cervids (deer, elk, moose, etc.). These diseases are always fatal and have long asymptomatic incubation periods. By 2019, CWD-infected cervids had been detected in 26 states, three Canadian provinces, South Korea, Norway, Finland, and Sweden. Prions (PrPSc) replicate by inducing a normal cellular prion protein (PrPC) to adopt the prion conformation. This prion templated conformational conversion is influenced by PrPC polymorphisms. Cervid PrPC contains at least 20 different polymorphic sites. By using chymotrypsin, trypsin, or trypsin followed by chymotrypsin to digest denatured cervid PrP, 19 peptides suitable for multiple reaction monitoring (MRM)-based analysis and spanning positions 30-51, 61-112, and 114-231 of cervid PrP were identified. Ten of these peptides span polymorphism-containing regions of cervid PrP. The other nine contain no polymorphisms, so they can be used as internal standards. Calibration curves relating the area ratios of MRM signals from polymorphism-containing peptides to appropriate internal standard peptides were linear and had excellent correlation coefficients. Samples from heterozygous (G96/S96) white-tailed deer orally dosed with CWD from homozygous (G96/G96) deer were analyzed. The G96 polymorphism comprised 75 ± 5% of the total PrP from the G96/S96 heterozygotes. Heterozygous animals facilitate conversion of different PrPC polymorphisms into PrPSc. This approach can be used to quantitate the relative amounts of the polymorphisms present in other animal species and even humans.
Collapse
Affiliation(s)
- Christopher J Silva
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture , Agricultural Research Service , 800 Buchanan Street , Albany , California 94710 , United States of America
| | - Melissa L Erickson-Beltran
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture , Agricultural Research Service , 800 Buchanan Street , Albany , California 94710 , United States of America
| | - Camilo Duque Velásquez
- University of Alberta , Centre for Prions and Protein Folding Diseases , 114 Brain and Aging Research Building , Edmonton , Alberta T6G 2M8 , Canada
| | - Judd M Aiken
- University of Alberta , Centre for Prions and Protein Folding Diseases , 114 Brain and Aging Research Building , Edmonton , Alberta T6G 2M8 , Canada
| | - Debbie McKenzie
- University of Alberta , Centre for Prions and Protein Folding Diseases , 114 Brain and Aging Research Building , Edmonton , Alberta T6G 2M8 , Canada
| |
Collapse
|
24
|
Koutsoumanis K, Allende A, Alvarez-Ordoňez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Skandamis P, Suffredini E, Andreoletti O, Benestad SL, Comoy E, Nonno R, da Silva Felicio T, Ortiz-Pelaez A, Simmons MM. Update on chronic wasting disease (CWD) III. EFSA J 2019; 17:e05863. [PMID: 32626163 PMCID: PMC7008890 DOI: 10.2903/j.efsa.2019.5863] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The European Commission asked EFSA for a Scientific Opinion: to revise the state of knowledge about the differences between the chronic wasting disease (CWD) strains found in North America (NA) and Europe and within Europe; to review new scientific evidence on the zoonotic potential of CWD and to provide recommendations to address the potential risks and to identify risk factors for the spread of CWD in the European Union. Full characterisation of European isolates is being pursued, whereas most NA CWD isolates have not been characterised in this way. The differing surveillance programmes in these continents result in biases in the types of cases that can be detected. Preliminary data support the contention that the CWD strains identified in Europe and NA are different and suggest the presence of strain diversity in European cervids. Current data do not allow any conclusion on the implications of strain diversity on transmissibility, pathogenesis or prevalence. Available data do not allow any conclusion on the zoonotic potential of NA or European CWD isolates. The risk of CWD to humans through consumption of meat cannot be directly assessed. At individual level, consumers of meat, meat products and offal derived from CWD-infected cervids will be exposed to the CWD agent(s). Measures to reduce human dietary exposure could be applied, but exclusion from the food chain of whole carcasses of infected animals would be required to eliminate exposure. Based on NA experiences, all the risk factors identified for the spread of CWD may be associated with animals accumulating infectivity in both the peripheral tissues and the central nervous system. A subset of risk factors is relevant for infected animals without involvement of peripheral tissues. All the risk factors should be taken into account due to the potential co-localisation of animals presenting with different disease phenotypes.
Collapse
|
25
|
Abstract
Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene (PRNP) and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of PRNP, whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non-PRNP factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.
Collapse
Affiliation(s)
- Simon Mead
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| | - Sarah Lloyd
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| | - John Collinge
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| |
Collapse
|
26
|
Robinson AL, Williamson H, Güere ME, Tharaldsen H, Baker K, Smith SL, Pérez-Espona S, Krojerová-Prokešová J, Pemberton JM, Goldmann W, Houston F. Variation in the prion protein gene (PRNP) sequence of wild deer in Great Britain and mainland Europe. Vet Res 2019; 50:59. [PMID: 31366372 PMCID: PMC6668158 DOI: 10.1186/s13567-019-0675-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/05/2019] [Indexed: 01/01/2023] Open
Abstract
Susceptibility to prion diseases is largely determined by the sequence of the prion protein gene (PRNP), which encodes the prion protein (PrP). The recent emergence of chronic wasting disease (CWD) in Europe has highlighted the need to investigate PRNP gene diversity in European deer species, to better predict their susceptibility to CWD. Here we report a large genetic survey of six British deer species, including red (Cervus elaphus), sika (Cervus nippon), roe (Capreolus capreolus), fallow (Dama dama), muntjac (Muntiacus reevesii), and Chinese water deer (Hydropotes inermis), which establishes PRNP haplotype and genotype frequencies. Two smaller data sets from red deer in Norway and the Czech Republic are also included for comparison. Overall red deer show the most PRNP variation, with non-synonymous/coding polymorphisms at codons 98, 168, 226 and 247, which vary markedly in frequency between different regions. Polymorphisms P168S and I247L were only found in Scottish and Czech populations, respectively. T98A was found in all populations except Norway and the south of England. Significant regional differences in genotype frequencies were observed within both British and European red deer populations. Other deer species showed less variation, particularly roe and fallow deer, in which identical PRNP gene sequences were found in all individuals analysed. Based on comparison with PRNP sequences of North American cervids affected by CWD and limited experimental challenge data, these results suggest that a high proportion of wild deer in Great Britain may be susceptible to CWD.
Collapse
Affiliation(s)
- Amy L Robinson
- Division of Infection and Immunity, The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK.
| | - Helen Williamson
- Division of Infection and Immunity, The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK
| | - Mariella E Güere
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Oslo, Norway
| | - Helene Tharaldsen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Oslo, Norway
| | - Karis Baker
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Stephanie L Smith
- The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK
| | - Sílvia Pérez-Espona
- Division of Infection and Immunity, The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK.,The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK
| | - Jarmila Krojerová-Prokešová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic.,Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Wilfred Goldmann
- Division of Infection and Immunity, The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK
| | - Fiona Houston
- Division of Infection and Immunity, The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK
| |
Collapse
|
27
|
Miller WL, Walter WD. Spatial heterogeneity of prion gene polymorphisms in an area recently infected by chronic wasting disease. Prion 2019; 13:65-76. [PMID: 30777498 PMCID: PMC7000142 DOI: 10.1080/19336896.2019.1583042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genetic variability in the prion protein (Prnp) gene influences host susceptibility to many pathogenic prion diseases. Understanding the distribution of susceptible Prnp variants and determining factors influencing spatial genetic patterns are important components of many chronic wasting disease mitigation strategies. Here, we describe Prnp variability in white-tailed deer (Odocoileus virginianus) from the Mid-Atlantic region of the United States of America, an area with a recent history of infection and low disease incidence. This population is characterized by lower rates of polymorphism and significantly higher frequencies of the more susceptible 96GG genotype compared to previously surveyed populations. The prevalence of the most susceptible genotypes at disease-associated loci did vary among subregions, indicating that populations have innate differences in genotype-dictated susceptibility.
Collapse
Affiliation(s)
- William L Miller
- a Pennsylvania Cooperative Fish and Wildlife Research Unit, Department of Ecosystem Science and Management, Intercollege Graduate Degree Program in Ecology , The Pennsylvania State University , University Park , PA , USA
| | - W David Walter
- b U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit , The Pennsylvania State University , University Park , PA , USA
| |
Collapse
|
28
|
Barria MA, Libori A, Mitchell G, Head MW. Susceptibility of Human Prion Protein to Conversion by Chronic Wasting Disease Prions. Emerg Infect Dis 2019; 24:1482-1489. [PMID: 30014840 PMCID: PMC6056132 DOI: 10.3201/eid2408.161888] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic wasting disease (CWD) is a contagious and fatal neurodegenerative disease and a serious animal health issue for deer and elk in North America. The identification of the first cases of CWD among free-ranging reindeer and moose in Europe brings back into focus the unresolved issue of whether CWD can be zoonotic like bovine spongiform encephalopathy. We used a cell-free seeded protein misfolding assay to determine whether CWD prions from elk, white-tailed deer, and reindeer in North America can convert the human prion protein to the disease-associated form. We found that prions can convert, but the efficiency of conversion is affected by polymorphic variation in the cervid and human prion protein genes. In view of the similarity of reindeer, elk, and white-tailed deer in North America to reindeer, red deer, and roe deer, respectively, in Europe, a more comprehensive and thorough assessment of the zoonotic potential of CWD might be warranted.
Collapse
|
29
|
Hwang S, Greenlee JJ, Vance NM, Nicholson EM. Source genotype influence on cross species transmission of transmissible spongiform encephalopathies evaluated by RT-QuIC. PLoS One 2018; 13:e0209106. [PMID: 30571737 PMCID: PMC6301698 DOI: 10.1371/journal.pone.0209106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/29/2018] [Indexed: 11/19/2022] Open
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy of sheep and goats. This fatal neurodegenerative disease is caused by misfolding of the cellular prion protein to pathogenic β-rich conformers (PrPSc) that accumulate in higher order structures of the brain and other tissues. This conversion has been used for in vitro assays including serial protein misfolding amplification and real-time quaking induced conversion (RT-QuIC). RT-QuIC can be used for the detection of prions and for strain discrimination in a variety of biological tissues from humans and animals. In this study, we evaluated how PrPSc isolated from sheep of different genotypes after inoculation with the scrapie agent influence the fibril formation in vitro using RT-QuIC. We found that reaction mixtures seeded with PrPSc from genotype VRQ/VRQ sheep brains have better conversion efficiency with 132M elk substrate compared to reactions seeded with PrPSc from the brains of sheep with the ARQ/ARQ genotype no matter which strain of scrapie was used to seed the reactions. We also inoculated transgenic mice expressing 132M elk PRNP (Tg12) with the scrapie agent from different genotypes of sheep to compare with our RT-QuIC results. The bioassays support the data showing a significantly shorter incubation period for inoculum from VRQ/VRQ sheep when compared to inoculum from ARQ/ARQ sheep. Thus, we conclude that the genotype of both source and recipient can strongly influence transmission.
Collapse
Affiliation(s)
- Soyoun Hwang
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Justin J. Greenlee
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Natalie M. Vance
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Eric M. Nicholson
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
30
|
Wood ME, Griebel P, Huizenga ML, Lockwood S, Hansen C, Potter A, Cashman N, Mapletoft JW, Napper S. Accelerated onset of chronic wasting disease in elk (Cervus canadensis) vaccinated with a PrP Sc-specific vaccine and housed in a prion contaminated environment. Vaccine 2018; 36:7737-7743. [PMID: 30414779 DOI: 10.1016/j.vaccine.2018.10.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/07/2018] [Accepted: 10/14/2018] [Indexed: 10/27/2022]
Abstract
Chronic wasting disease (CWD) is a fatal prion disease affecting multiple cervid species. Effective management tools for this disease, particularly in free-ranging populations, are currently limited. We evaluated a novel CWD vaccine in elk (Cervus canadensis) naturally exposed to CWD through a prion-contaminated environment. The vaccine targets a YYR disease-specific epitope to induce antibody responses specific to the misfolded (PrPSc) conformation. Female elk calves (n = 41) were captured from western Wyoming and transported to the Thorne-Williams Wildlife Research Center where CWD has been documented since 1979. Elk were held in contaminated pens for 14 to 20 days before being alternately assigned to either a vaccine (n = 21) or control group (n = 20). Vaccinated animals initially received two vaccinations approximately 42 days apart and annual vaccinations thereafter. Vaccination induced elevated YYR-specific antibody titers in all animals. Elk were genotyped for the prion protein gene at codon 132, monitored for clinical signs of CWD through daily observation, for disease status through periodic biopsy of rrectoanal mucosa-associated lympoid tissue (RAMALT), and monitored for YYR-specific serum antibody titres. Mean survival of vaccinated elk with the 132MM genotype (n = 15) was significantly shorter (800 days) than unvaccinated elk (n = 13) of the same genotype (1062 days; p = 0.003). Mean days until positive RAMALT biopsy for 132MM vaccinated elk (6 7 8) were significantly shorter than unvaccinated 132MM elk (990; p = 0.012). There was, however, no significant difference in survival between vaccinated (n = 4) and control (n = 5) elk with the 132ML genotype (p = 0.35) or in timing of positive RAMALT biopsies of 132ML elk (p = 0.66). There was no strong (p = 0.17) correlation between YYR-specific antibody titers and survival time. Determining the mechanism by which this vaccine accelerates onset of CWD will be important to direct further CWD vaccine research.
Collapse
Affiliation(s)
- Mary E Wood
- Wyoming Game and Fish Department, 1212 South Adams St, Laramie, WY, USA; Wyoming Game and Fish Department, Thorne-Williams Wildlife Research Center, 2362 HWY 34 Wheatland, WY, USA.
| | - Philip Griebel
- Vaccine and Infectious Disease Organization-International Vaccine Research Center, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada; School of Public Health, University of Saskatchewan, 104 Clinic Place, S7N 2Z4 Saskatoon, Saskatchewan, Canada
| | - Matthew L Huizenga
- Wyoming Game and Fish Department, Thorne-Williams Wildlife Research Center, 2362 HWY 34 Wheatland, WY, USA
| | - Samuel Lockwood
- Wyoming Game and Fish Department, Thorne-Williams Wildlife Research Center, 2362 HWY 34 Wheatland, WY, USA
| | - Cole Hansen
- Wyoming Game and Fish Department, Thorne-Williams Wildlife Research Center, 2362 HWY 34 Wheatland, WY, USA
| | - Andrew Potter
- Vaccine and Infectious Disease Organization-International Vaccine Research Center, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Neil Cashman
- Department of Neurology, University of British Columbia, S192 - 2211 Wesbrook Mall, V6T 2B5 Vancouver, BC, Canada
| | - John W Mapletoft
- Pan-Provincial Vaccine Enterprise Inc. University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization-International Vaccine Research Center, University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada; Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, S7N 5E5 Saskatoon, Saskatchewan, Canada
| |
Collapse
|
31
|
Benestad SL, Telling GC. Chronic wasting disease: an evolving prion disease of cervids. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:135-151. [PMID: 29887133 DOI: 10.1016/b978-0-444-63945-5.00008-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic wasting disease (CWD) is a relatively new and burgeoning prion epidemic of deer, elk, reindeer, and moose, which are members of the cervid family. While the disease was first described in captive deer, its subsequent discovery in various species of free-ranging animals makes it the only currently recognized prion disorder of both wild and farmed animals. In addition to its expanding range of host species, CWD continues to spread from North America to new geographic areas, including South Korea, and most recently Norway, marking the first time this disease was detected in Europe. Its unparalleled efficiency of contagious transmission, combined with high densities of deer in certain areas, complicates strategies for controlling CWD, raising concerns about its potential for spread to new species. Because there is a high prevalence of CWD in deer and elk, which are commonly hunted and consumed by humans, and since prions from cattle with bovine spongiform encephalopathy have been transmitted to humans causing variant Creutzfeldt-Jakob disease, the possibility of zoonotic transmission of CWD is particularly concerning. Here we review the clinical and pathologic features of CWD and its disturbing epidemiology, and discuss features that affect its transmission, including genetic susceptibility, pathogenesis, and agent strain variability. Finally, we discuss evidence that speaks to the potential for zoonotic transmission of this emerging disease.
Collapse
Affiliation(s)
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
32
|
Moreno JA, Telling GC. Molecular Mechanisms of Chronic Wasting Disease Prion Propagation. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a024448. [PMID: 28193766 DOI: 10.1101/cshperspect.a024448] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prion disease epidemics, which have been unpredictable recurrences, are of significant concern for animal and human health. Examples include kuru, once the leading cause of death among the Fore people in Papua New Guinea and caused by mortuary feasting; bovine spongiform encephalopathy (BSE) and its subsequent transmission to humans in the form of variant Creutzfeldt-Jakob disease (vCJD), and repeated examples of large-scale prion disease epidemics in animals caused by contaminated vaccines. The etiology of chronic wasting disease (CWD), a relatively new and burgeoning prion epidemic in deer, elk, and moose (members of the cervid family), is more enigmatic. The disease was first described in captive and later in wild mule deer and subsequently in free-ranging as well as captive Rocky Mountain elk, white-tailed deer, and most recently moose. It is therefore the only recognized prion disorder of both wild and captive animals. In addition to its expanding range of hosts, CWD continues to spread to new geographical areas, including recent cases in Norway. The unparalleled efficiency of the contagious transmission of the disease combined with high densities of deer in certain areas of North America complicates strategies for controlling CWD and raises concerns about its potential spread to new species. Because there is a high prevalence of CWD in deer and elk, which are commonly hunted and consumed by humans, the possibility of zoonotic transmission is particularly concerning. Here, we review the current status of naturally occurring CWD and describe advances in our understanding of its molecular pathogenesis, as shown by studies of CWD prions in novel in vivo and in vitro systems.
Collapse
Affiliation(s)
- Julie A Moreno
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80525
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80525
| |
Collapse
|
33
|
Pitarch JL, Raksa HC, Arnal MC, Revilla M, Martínez D, Fernández de Luco D, Badiola JJ, Goldmann W, Acín C. Low sequence diversity of the prion protein gene (PRNP) in wild deer and goat species from Spain. Vet Res 2018; 49:33. [PMID: 29631620 PMCID: PMC5892000 DOI: 10.1186/s13567-018-0528-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 11/10/2022] Open
Abstract
The first European cases of chronic wasting disease (CWD) in free-ranging reindeer and wild elk were confirmed in Norway in 2016 highlighting the urgent need to understand transmissible spongiform encephalopathies (TSEs) in the context of European deer species and the many individual populations throughout the European continent. The genetics of the prion protein gene (PRNP) are crucial in determining the relative susceptibility to TSEs. To establish PRNP gene sequence diversity for free-ranging ruminants in the Northeast of Spain, the open reading frame was sequenced in over 350 samples from five species: Iberian red deer (Cervus elaphus hispanicus), roe deer (Capreolus capreolus), fallow deer (Dama dama), Iberian wild goat (Capra pyrenaica hispanica) and Pyrenean chamois (Rupicapra p. pyrenaica). Three single nucleotide polymorphisms (SNPs) were found in red deer: a silent mutation at codon 136, and amino acid changes T98A and Q226E. Pyrenean chamois revealed a silent SNP at codon 38 and an allele with a single octapeptide-repeat deletion. No polymorphisms were found in roe deer, fallow deer and Iberian wild goat. This apparently low variability of the PRNP coding region sequences of four major species in Spain resembles previous findings for wild mammals, but implies that larger surveys will be necessary to find novel, low frequency PRNP gene alleles that may be utilized in CWD risk control.
Collapse
Affiliation(s)
- José Luis Pitarch
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Helen Caroline Raksa
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - María Cruz Arnal
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Miguel Revilla
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - David Martínez
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Daniel Fernández de Luco
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Wilfred Goldmann
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Cristina Acín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
34
|
Moore SJ, Vrentas CE, Hwang S, West Greenlee MH, Nicholson EM, Greenlee JJ. Pathologic and biochemical characterization of PrP Sc from elk with PRNP polymorphisms at codon 132 after experimental infection with the chronic wasting disease agent. BMC Vet Res 2018. [PMID: 29523205 PMCID: PMC5845354 DOI: 10.1186/s12917-018-1400-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Rocky Mountain elk (Cervus elaphus nelsoni) prion protein gene (PRNP) is polymorphic at codon 132, with leucine (L132) and methionine (M132) allelic variants present in the population. In elk experimentally inoculated with the chronic wasting disease (CWD) agent, different incubation periods are associated with PRNP genotype: LL132 elk survive the longest, LM132 elk are intermediate, and MM132 elk the shortest. The purpose of this study was to investigate potential mechanisms underlying variations in incubation period in elk of different prion protein genotypes. Elk calves of three PRNP genotypes (n = 2 MM132, n = 2 LM132, n = 4 LL132) were orally inoculated with brain homogenate from elk clinically affected with CWD. RESULTS Elk with longer incubation periods accumulated relatively less PrPSc in the brain than elk with shorter incubation periods. PrPSc accumulation in LM132 and MM132 elk was primarily neuropil-associated while glial-associated immunoreactivity was prominent in LL132 elk. The fibril stability of PrPSc from MM132 and LM132 elk were similar to each other and less stable than that from LL132 elk. Real-time quaking induced conversion assays (RT-QuIC) revealed differences in the ability of PrPSc seed from elk of different genotypes to convert recombinant 132 M or 132 L substrate. CONCLUSIONS This study provides further evidence of the importance of PRNP genotype in the pathogenesis of CWD of elk. The longer incubation periods observed in LL132 elk are associated with PrPSc that is more stable and relatively less abundant at the time of clinical disease. The biochemical properties of PrPSc from MM132 and LM132 elk are similar to each other and different to PrPSc from LL132 elk. The shorter incubation periods in MM132 compared to LM132 elk may be the result of genotype-dependent differences in the efficiency of propagation of PrPSc moieties present in the inoculum. A better understanding of the mechanisms by which the polymorphisms at codon 132 in elk PRNP influence disease pathogenesis will help to improve control of CWD in captive and free-ranging elk populations.
Collapse
Affiliation(s)
- S Jo Moore
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, USA
| | - Catherine E Vrentas
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, USA
| | - Soyoun Hwang
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, USA
| | - M Heather West Greenlee
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Eric M Nicholson
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, USA
| | - Justin J Greenlee
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, USA.
| |
Collapse
|
35
|
Samorodnitsky D, Nicholson EM. Differential effects of divalent cations on elk prion protein fibril formation and stability. Prion 2018; 12:63-71. [PMID: 29310497 PMCID: PMC5871030 DOI: 10.1080/19336896.2017.1423187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Misfolding of the normally folded prion protein of mammals (PrPC) into infectious fibrils causes a variety of diseases, from scrapie in sheep to chronic wasting disease (CWD) in cervids. The misfolded form of PrPC, termed PrPSc, or in this case PrPCWD, interacts with PrPC to create more PrPCWD. This process is not clearly defined but is affected by the presence and interactions of biotic and abiotic cofactors. These include nucleic acids, lipids, glycosylation, pH, and ionic character. PrPC has been shown to act as a copper-binding protein in vivo, though it also binds to other divalents as well. The significance of this action has not been conclusively elucidated. Previous reports have shown that metal binding sites occur throughout the N-terminal region of PrPC. Other cations like manganese have also been shown to affect PrPC abundance in a transcript-independent fashion. Here, we examined the ability of different divalent cations to influence the stability and in vitro conversion of two variants of PrP from elk (L/M132, 26-234). We find that copper and zinc de-stabilize PrP. We also find that PrP M132 exhibits a greater degree of divalent cation induced destabilization than L132. This supports findings that leucine at position 132 confers resistance to CWD, while M132 is susceptible. However, in vitro conversion of PrP is equally suppressed by either copper or zinc, in both L132 and M132 backgrounds. This report demonstrates the complex importance of ionic character on the PrPC folding pathway selection on the route to PrPSc formation.
Collapse
Affiliation(s)
- Daniel Samorodnitsky
- a Oak Ridge Institute for Science and Education , U.S. Dept. of Energy , Oak Ridge , TN , USA.,b United States Department of Agriculture , Agricultural Research Service, National Animal Disease Center , Ames , IA , USA
| | - Eric M Nicholson
- b United States Department of Agriculture , Agricultural Research Service, National Animal Disease Center , Ames , IA , USA
| |
Collapse
|
36
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Skandamis P, Snary E, Speybroeck N, Kuile BT, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Telling GC, Tryland M, Latronico F, Ortiz-Pelaez A, Stella P, Simmons M. Scientific opinion on chronic wasting disease (II). EFSA J 2018; 16:e05132. [PMID: 32625679 PMCID: PMC7328883 DOI: 10.2903/j.efsa.2018.5132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The European Commission asked EFSA for a scientific opinion on chronic wasting disease in two parts. Part one, on surveillance, animal health risk-based measures and public health risks, was published in January 2017. This opinion (part two) addresses the remaining Terms of Reference, namely, 'are the conclusions and recommendations in the EFSA opinion of June 2004 on diagnostic methods for chronic wasting disease still valid? If not, an update should be provided', and 'update the conclusions of the 2010 EFSA opinion on the results of the European Union survey on chronic wasting disease in cervids, as regards its occurrence in the cervid population in the European Union'. Data on the performance of authorised rapid tests in North America are not comprehensive, and are more limited than those available for the tests approved for statutory transmissible spongiform encephalopathies surveillance applications in cattle and sheep. There are no data directly comparing available rapid test performances in cervids. The experience in Norway shows that the Bio-Rad TeSeE™ SAP test, immunohistochemistry and western blotting have detected reindeer, moose and red deer cases. It was shown that testing both brainstem and lymphoid tissue from each animal increases the surveillance sensitivity. Shortcomings in the previous EU survey limited the reliability of inferences that could be made about the potential disease occurrence in Europe. Subsequently, testing activity in Europe was low, until the detection of the disease in Norway, triggering substantial testing efforts in that country. Available data neither support nor refute the conclusion that chronic wasting disease does not occur widely in the EU and do not preclude the possibility that the disease was present in Europe before the survey was conducted. It appears plausible that chronic wasting disease could have become established in Norway more than a decade ago.
Collapse
|
37
|
Manne S, Kondru N, Nichols T, Lehmkuhl A, Thomsen B, Main R, Halbur P, Dutta S, Kanthasamy AG. Ante-mortem detection of chronic wasting disease in recto-anal mucosa-associated lymphoid tissues from elk (Cervus elaphus nelsoni) using real-time quaking-induced conversion (RT-QuIC) assay: A blinded collaborative study. Prion 2017; 11:415-430. [PMID: 29098931 DOI: 10.1080/19336896.2017.1368936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs) characterized by fatal, progressive neurologic diseases with prolonged incubation periods and an accumulation of infectious misfolded prion proteins. Antemortem diagnosis is often difficult due to a long asymptomatic incubation period, differences in the pathogenesis of different prions, and the presence of very low levels of infectious prion in easily accessible samples. Chronic wasting disease (CWD) is a TSE affecting both wild and captive populations of cervids, including mule deer, white-tailed deer, elk, moose, muntjac, and most recently, wild reindeer. This study represents a well-controlled evaluation of a newly developed real-time quaking-induced conversion (RT-QuIC) assay as a potential CWD diagnostic screening test using rectal biopsy sections from a depopulated elk herd. We evaluated 69 blinded samples of recto-anal mucosa-associated lymphoid tissue (RAMALT) obtained from USDA Veterinary Services. The results were later un-blinded and statistically compared to immunohistochemical (IHC) results from the USDA National Veterinary Services Laboratories (NVSL) for RAMALT, obex, and medial retropharyngeal lymph node (MRPLN). Comparison of RAMALT RT-QuIC assay results with the IHC results of RAMALT revealed 92% relative sensitivity (95% confidence limits: 61.52-99.8%) and 95% relative specificity (95% confidence limits: 85.13-99%). Collectively, our results show a potential utility of the RT-QuIC assay to advance the development of a rapid, sensitive, and specific prion diagnostic assay for CWD prions.
Collapse
Affiliation(s)
- Sireesha Manne
- a Department of Biomedical Sciences , College of Veterinary Medicine, Iowa State University , Ames , IA , USA
| | - Naveen Kondru
- a Department of Biomedical Sciences , College of Veterinary Medicine, Iowa State University , Ames , IA , USA
| | - Tracy Nichols
- b United States Department of Agriculture (USDA) , National Wildlife Research Center, Wildlife Services , Fort Collins , CO , USA
| | - Aaron Lehmkuhl
- c USDA, National Veterinary Services Laboratories (NVSL), Veterinary Services , Ames , IA , USA
| | - Bruce Thomsen
- c USDA, National Veterinary Services Laboratories (NVSL), Veterinary Services , Ames , IA , USA
| | - Rodger Main
- d Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine , Iowa State University , Ames , IA , USA
| | - Patrick Halbur
- d Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine , Iowa State University , Ames , IA , USA
| | - Somak Dutta
- e Department of Statistics , Iowa State University , Ames , IA , USA
| | - Anumantha G Kanthasamy
- a Department of Biomedical Sciences , College of Veterinary Medicine, Iowa State University , Ames , IA , USA
| |
Collapse
|
38
|
Pathogen-mediated selection in free-ranging elk populations infected by chronic wasting disease. Proc Natl Acad Sci U S A 2017; 114:12208-12212. [PMID: 29087314 DOI: 10.1073/pnas.1707807114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogens can exert a large influence on the evolution of hosts via selection for alleles or genotypes that moderate pathogen virulence. Inconsistent interactions between parasites and the host genome, such as those resulting from genetic linkages and environmental stochasticity, have largely prevented observation of this process in wildlife species. We examined the prion protein gene (PRNP) in North American elk (Cervus elaphus nelsoni) populations that have been infected with chronic wasting disease (CWD), a contagious, fatal prion disease, and compared allele frequency to populations with no history of exposure to CWD. The PRNP in elk is highly conserved and a single polymorphism at codon 132 can markedly extend CWD latency when the minor leucine allele (132L) is present. We determined population exposure to CWD, genotyped 1,018 elk from five populations, and developed a hierarchical Bayesian model to examine the relationship between CWD prevalence and PRNP 132L allele frequency. Populations infected with CWD for at least 30-50 y exhibited 132L allele frequencies that were on average twice as great (range = 0.23-0.29) as those from uninfected populations (range = 0.04-0.17). Despite numerous differences between the elk populations in this study, the consistency of increase in 132L allele frequency suggests pathogen-mediated selection has occurred due to CWD. Although prior modeling work predicted that selection will continue, the potential for fitness costs of the 132L allele or new prion protein strains to arise suggest that it is prudent to assume balancing selection may prevent fixation of the 132L allele in populations with CWD.
Collapse
|
39
|
Hannaoui S, Amidian S, Cheng YC, Duque Velásquez C, Dorosh L, Law S, Telling G, Stepanova M, McKenzie D, Wille H, Gilch S. Destabilizing polymorphism in cervid prion protein hydrophobic core determines prion conformation and conversion efficiency. PLoS Pathog 2017; 13:e1006553. [PMID: 28800624 PMCID: PMC5568445 DOI: 10.1371/journal.ppat.1006553] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/23/2017] [Accepted: 07/26/2017] [Indexed: 11/27/2022] Open
Abstract
Prion diseases are infectious neurodegenerative disorders of humans and animals caused by misfolded forms of the cellular prion protein PrPC. Prions cause disease by converting PrPC into aggregation-prone PrPSc. Chronic wasting disease (CWD) is the most contagious prion disease with substantial lateral transmission, affecting free-ranging and farmed cervids. Although the PrP primary structure is highly conserved among cervids, the disease phenotype can be modulated by species-specific polymorphisms in the prion protein gene. How the resulting amino-acid substitutions impact PrPC and PrPSc structure and propagation is poorly understood. We investigated the effects of the cervid 116A>G substitution, located in the most conserved PrP domain, on PrPC structure and conversion and on 116AG-prion conformation and infectivity. Molecular dynamics simulations revealed structural de-stabilization of 116G-PrP, which enhanced its in vitro conversion efficiency when used as recombinant PrP substrate in real-time quaking-induced conversion (RT-QuIC). We demonstrate that 116AG-prions are conformationally less stable, show lower activity as a seed in RT-QuIC and exhibit reduced infectivity in vitro and in vivo. Infectivity of 116AG-prions was significantly enhanced upon secondary passage in mice, yet conformational features were retained. These findings indicate that structurally de-stabilized PrPC is readily convertible by cervid prions of different genetic background and results in a prion conformation adaptable to cervid wild-type PrP. Conformation is an important criterion when assessing transmission barrier, and conformational variants can target a different host range. Therefore, a thorough analysis of CWD isolates and re-assessment of species-barriers is important in order to fully exclude a zoonotic potential of CWD. Chronic wasting disease (CWD) is a prion disease which affects wild and captive cervids. Prion diseases are infectious neurodegenerative disorders, and the causative agent consists of abnormally folded prion protein termed PrPSc. Prions replicate without genetic information, and their three-dimensional structure is thought to encode heritable information necessary to propagate using the cellular prion protein PrPC as a substrate for conversion. In this study, we use in vitro and in vivo techniques to analyze the effect of a polymorphism at codon 116 (A>G) of the white-tailed deer prion protein on CWD prion conformation, propagation and pathogenesis. We observed differences in conformation, infectivity and seeding activity in vitro between CWD prions isolated from white-tailed deer encoding wild-type (116AA) PrPC or 116AG-PrPC. In mouse bioassays conformational differences are retained, however, 116AG CWD prions resulted in significantly shortened incubation times upon passages. Molecular dynamics simulations suggest that the structure of 116G-PrPC is more flexible, which is supported by an improved convertibility in an in vitro conversion assay. Altogether these data indicate the importance of a variation in the most conserved PrP domain, and highlight the relationship between PrPC structural flexibility, prion conformation and conversion, and pathogenesis of prion disease in vivo.
Collapse
Affiliation(s)
- Samia Hannaoui
- Department of Ecosystem and Public Health, Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sara Amidian
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yo Ching Cheng
- Department of Ecosystem and Public Health, Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Camilo Duque Velásquez
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Lyudmyla Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Sampson Law
- Department of Ecosystem and Public Health, Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Glenn Telling
- Prion Research Center, Colorado State University, Fort Collins, Colorado, United States of America
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Debbie McKenzie
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Holger Wille
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sabine Gilch
- Department of Ecosystem and Public Health, Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
40
|
Mathiason CK. Scrapie, CWD, and Transmissible Mink Encephalopathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:267-292. [PMID: 28838664 DOI: 10.1016/bs.pmbts.2017.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), or prions, are neurodegenerative diseases that affect a variety of animal species, including humans. Cruetzfeldt-Jakob disease (CJD) in humans, sheep and goat scrapie, chronic wasting disease (CWD) of cervids, and transmissible mink encephalopathy (TME) of mink are classified as TSEs. According to the "protein-only" hypothesis (Prusiner, 1982),1 prions are devoid of nucleic acids and consist of assemblies of misfolded host-encoded normal protein, the prion protein (PrPC). Prion propagation is thought to occur by a templating mechanism during which PrPC is recruited, converted to a disease-associated isoform (PrPD), and assembled onto the growing amyloid fibril. This fibular assembly is infectious, with ability to initiate disease processes similar to other pathogenic agents. Evidence indicates that scrapie, CWD, and TME disease processes follow this rule.
Collapse
|
41
|
Plummer IH, Wright SD, Johnson CJ, Pedersen JA, Samuel MD. Temporal patterns of chronic wasting disease prion excretion in three cervid species. J Gen Virol 2017; 98:1932-1942. [PMID: 28708047 DOI: 10.1099/jgv.0.000845] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic wasting disease (CWD) is the only naturally occurring transmissible spongiform encephalopathy affecting free-ranging wildlife populations. Transmission of CWD occurs by direct contact or through contaminated environments; however, little is known about the temporal patterns of CWD prion excretion and shedding in wild cervids. We tested the urine and faeces of three species of captive cervids (elk, mule and white-tailed deer) at 6, 12, 18 and 24 months after oral inoculation to evaluate the temporal, species- and genotype-specific factors affecting the excretion of CWD prions. Although none of the animals exhibited clinical signs of CWD during the study, we determined that all three cervid species were excreting CWD prions by 6 months post-inoculation. Faecal samples were consistently positive for CWD prions for all three cervid species (88 %), and were more likely to be positive than urine samples (28 %). Cervids with genotypes encoding for the prion protein (PRNP) that were considered to be more susceptible to CWD were more likely to excrete CWD prions (94 %) than cervids with genotypes considered to be less susceptible (64 %). All cervids with CWD prions in their urine also had positive faeces (n=5), but the converse was not true. Our study is the first to demonstrate CWD prion excretion in urine by asymptomatic elk and mule deer. Our results indicate that the excretion of CWD prions in faeces and, to a lesser extent, urine may provide an important avenue for depositing prions in the environment.
Collapse
Affiliation(s)
- Ian H Plummer
- Department of Forest and Wildlife Ecology, University of Wisconsin - Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | - Scott D Wright
- US Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, Wisconsin 53711, USA.,Present address: 4730 Toepfer Road, Middleton, Wisconsin 53562, USA
| | - Chad J Johnson
- Departments of Soil Science, Civil and Environmental Engineering, and Chemistry, University of Wisconsin - Madison, 1525 Observatory Drive, Madison, Wisconsin 53706, USA
| | - Joel A Pedersen
- Departments of Soil Science, Civil and Environmental Engineering, and Chemistry, University of Wisconsin - Madison, 1525 Observatory Drive, Madison, Wisconsin 53706, USA
| | - Michael D Samuel
- Retired, US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, University of Wisconsin - Madison, 204 Russell Labs, 1630 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
42
|
Abstract
Prions cause fatal neurodegenerative diseases in humans and animals and can be transmitted zoonotically. Chronic wasting disease (CWD) is a highly transmissible prion disease of wild deer and elk that affects cervids over extensive regions of the United States and Canada. The risk of cross-species CWD transmission has been experimentally evaluated in a wide array of mammals, including non-human primates and mouse models expressing human cellular prion protein. Here we review the determinants of cross-species CWD transmission, and propose a model that may explain a structural barrier for CWD transmission to humans.
Collapse
Affiliation(s)
- Timothy D Kurt
- a Departments of Pathology and Medicine , UC San Diego , La Jolla , CA , USA
| | - Christina J Sigurdson
- a Departments of Pathology and Medicine , UC San Diego , La Jolla , CA , USA.,b Department of Pathology, Immunology, and Microbiology , UC Davis , Davis , CA , USA
| |
Collapse
|
43
|
Falcão CBR, Lima ILDMNF, Duarte JMB, de Oliveira JRM, Torres RA, Wanderley AM, Gomes da Cunha JE, Garcia JE. Are Brazilian cervids at risk of prion diseases? Prion 2017; 11:65-70. [PMID: 28281927 PMCID: PMC5360121 DOI: 10.1080/19336896.2016.1274000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022] Open
Abstract
Prion diseases are neurodegenerative fatal disorders that affect human and non-human mammals. Chronic Wasting Disease (CWD) is a prion disease of cervids regarded as a public health problem in North America, and polymorphisms at specific codons in the PRNP gene are associated with this disease. To assess the potential CWD susceptibility of South American free-ranging deer, the presence of these polymorphisms was examined in Mazama gouazoubira, Ozotoceros bezoarticus and Blastocerus dichotomus. Despite the lack of CWD reports in Brazil, the examined codons (95, 96, 116, 132, 225, and 226) of the PRNP gene showed potential CWD susceptibility in Brazilian deer. Low abundancy of deer in Brazil possibly difficult both CWD proliferation and detection, however, CWD surveillance may not be neglected.
Collapse
Affiliation(s)
- Caio Bruno Ribeiro Falcão
- Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, PE, Brazil;
| | | | | | | | | | - Artur Maia Wanderley
- Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, PE, Brazil;
| | | | - José Eduardo Garcia
- Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, PE, Brazil;
| |
Collapse
|
44
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Sanaa M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Ru G, Telling GC, Tryland M, Ortiz Pelaez A, Simmons M. Chronic wasting disease (CWD) in cervids. EFSA J 2017; 15:e04667. [PMID: 32625260 PMCID: PMC7010154 DOI: 10.2903/j.efsa.2017.4667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In April and May of 2016, Norway confirmed two cases of chronic wasting disease (CWD) in a wild reindeer and a wild moose, respectively. In the light of this emerging issue, the European Commission requested EFSA to recommend surveillance activities and, if necessary, additional animal health risk-based measures to prevent the introduction of the disease and the spread into/within the EU, specifically Estonia, Finland, Iceland, Latvia, Lithuania, Norway, Poland and Sweden, and considering seven wild, semidomesticated and farmed cervid species (Eurasian tundra reindeer, Finnish (Eurasian) forest reindeer, moose, roe deer, white-tailed deer, red deer and fallow deer). It was also asked to assess any new evidence on possible public health risks related to CWD. A 3-year surveillance system is proposed, differing for farmed and wild or semidomesticated cervids, with a two-stage sampling programme at the farm/geographically based population unit level (random sampling) and individual level (convenience sampling targeting high-risk animals). The current derogations of Commission Implementing Decision (EU) 2016/1918 present a risk of introduction of CWD into the EU. Measures to prevent the spread of CWD within the EU are dependent upon the assumption that the disease is already present; this is currently unknown. The measures listed are intended to contain (limit the geographic extent of a focus) and/or to control (actively stabilise/reduce infection rates in an affected herd or population) the disease where it occurs. With regard to the zoonotic potential, the human species barrier for CWD prions does not appear to be absolute. These prions are present in the skeletal muscle and other edible tissues, so humans may consume infected material in enzootic areas. Epidemiological investigations carried out to date make no association between the occurrence of sporadic Creutzfeldt-Jakob disease in humans and exposure to CWD prions.
Collapse
|
45
|
Moreno JA, Telling GC. Insights into Mechanisms of Transmission and Pathogenesis from Transgenic Mouse Models of Prion Diseases. Methods Mol Biol 2017; 1658:219-252. [PMID: 28861793 DOI: 10.1007/978-1-4939-7244-9_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prions represent a new paradigm of protein-mediated information transfer. In the case of mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, sometimes referred to as transmissible spongiform encephalopathies (TSEs), which frequently occur as epidemics. An increasing body of evidence indicates that the canonical mechanism of conformational corruption of cellular prion protein (PrPC) by the pathogenic isoform (PrPSc) that is the basis of prion formation in TSEs is common to a spectrum of proteins associated with various additional human neurodegenerative disorders, including the more common Alzheimer's and Parkinson's diseases. The peerless infectious properties of TSE prions, and the unparalleled tools for their study, therefore enable elucidation of mechanisms of template-mediated conformational propagation that are generally applicable to these related disease states. Many unresolved issues remain including the exact molecular nature of the prion, the detailed cellular and molecular mechanisms of prion propagation, and the means by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological role of the normal form of the prion protein remains unclear and it is uncertain whether or not loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect interspecies prion transmission. Despite all these unknowns, advances in our understanding of prions have occurred because of their transmissibility to experimental animals, and the development of transgenic (Tg) mouse models has done much to further our understanding about various aspects of prion biology. In this review, we will focus on advances in our understanding of prion biology that occurred in the past 8 years since our last review of this topic.
Collapse
Affiliation(s)
- Julie A Moreno
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Glenn C Telling
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
46
|
Cheng YC, Hannaoui S, John TR, Dudas S, Czub S, Gilch S. Early and Non-Invasive Detection of Chronic Wasting Disease Prions in Elk Feces by Real-Time Quaking Induced Conversion. PLoS One 2016; 11:e0166187. [PMID: 27829062 PMCID: PMC5102397 DOI: 10.1371/journal.pone.0166187] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023] Open
Abstract
Chronic wasting disease (CWD) is a fatal prion disease of wild and captive cervids in North America. Prions are infectious agents composed of a misfolded version of a host-encoded protein, termed PrPSc. Infected cervids excrete and secrete prions, contributing to lateral transmission. Geographical distribution is expanding and case numbers in wild cervids are increasing. Recently, the first European cases of CWD have been reported in a wild reindeer and two moose from Norway. Therefore, methods to detect the infection early in the incubation time using easily available samples are desirable to facilitate effective disease management. We have adapted the real-time quaking induced conversion (RT-QuIC) assay, a sensitive in vitro prion amplification method, for pre-clinical detection of prion seeding activity in elk feces. Testing fecal samples from orally inoculated elk taken at various time points post infection revealed early shedding and detectable prion seeding activity throughout the disease course. Early shedding was also found in two elk encoding a PrP genotype associated with reduced susceptibility for CWD. In summary, we suggest that detection of CWD prions in feces by RT-QuIC may become a useful tool to support CWD surveillance in wild and captive cervids. The finding of early shedding independent of the elk’s prion protein genotype raises the question whether prolonged survival is beneficial, considering accumulation of environmental prions and its contribution to CWD transmission upon extended duration of shedding.
Collapse
Affiliation(s)
- Yo Ching Cheng
- Dept. of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Samia Hannaoui
- Dept. of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Theodore R. John
- Dept. of Molecular Biology, University of Wyoming, Laramie, United States of America
| | - Sandor Dudas
- Canadian Food Inspection Agency, Lethbridge Laboratories, Lethbridge, Canada
| | - Stefanie Czub
- Canadian Food Inspection Agency, Lethbridge Laboratories, Lethbridge, Canada
| | - Sabine Gilch
- Dept. of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
47
|
Vermette M, Schleining J, Greenlee J, Smith J. Genetic variation of the prion protein gene (PRNP) in alpaca (Vicugna pacos). GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Tyshenko MG, Oraby T, Darshan S, Westphal M, Croteau MC, Aspinall W, Elsaadany S, Krewski D, Cashman N. Expert elicitation on the uncertainties associated with chronic wasting disease. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:729-45. [PMID: 27556566 DOI: 10.1080/15287394.2016.1174007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A high degree of uncertainty exists for chronic wasting disease (CWD) transmission factors in farmed and wild cervids. Evaluating the factors is important as it helps to inform future risk management strategies. Expert opinion is often used to assist decision making in a number of health, science, and technology domains where data may be sparse or missing. Using the "Classical Model" of elicitation, a group of experts was asked to estimate the most likely values for several risk factors affecting CWD transmission. The formalized expert elicitation helped structure the issues and hence provide a rational basis for estimating some transmission risk factors for which evidence is lacking. Considered judgments regarding environmental transmission, latency of CWD transmission, management, and species barrier were provided by the experts. Uncertainties for many items were determined to be large, highlighting areas requiring more research. The elicited values may be used as surrogate values until research evidence becomes available.
Collapse
Affiliation(s)
- Michael G Tyshenko
- a McLaughlin Centre for Population Health Risk Assessment , Institute of Population Health, University of Ottawa , Ottawa , Ontario , Canada
| | - Tamer Oraby
- b Department of Mathematics , University of Texas-Pan American , Edinburg , Texas , USA
| | - Shalu Darshan
- a McLaughlin Centre for Population Health Risk Assessment , Institute of Population Health, University of Ottawa , Ottawa , Ontario , Canada
| | - Margit Westphal
- a McLaughlin Centre for Population Health Risk Assessment , Institute of Population Health, University of Ottawa , Ottawa , Ontario , Canada
| | - Maxine C Croteau
- a McLaughlin Centre for Population Health Risk Assessment , Institute of Population Health, University of Ottawa , Ottawa , Ontario , Canada
| | - Willy Aspinall
- c Aspinall and Associates , Tisbury , United Kingdom
- d School of Earth Sciences and Cabot Institute , University of Bristol , Bristol , United Kingdom
| | - Susie Elsaadany
- e Professional Guidelines and Public Health Practice Division, Centre for Infectious Disease Prevention and Control , Public Health Agency of Canada , Ottawa , Ontario , Canada
| | - Daniel Krewski
- a McLaughlin Centre for Population Health Risk Assessment , Institute of Population Health, University of Ottawa , Ottawa , Ontario , Canada
- f Department of Epidemiology and Community Medicine , University of Ottawa , Ottawa , Ontario , Canada
| | - Neil Cashman
- g Brain Research Centre , University of British Columbia , Vancouver , British Columbia , Canada
| |
Collapse
|
49
|
Spraker TR, Gidlewski T, Powers JG, Nichols T, Balachandran A, Cummings B, Wild MA, VerCauteren K, O'Rourke KI. Progressive accumulation of the abnormal conformer of the prion protein and spongiform encephalopathy in the obex of nonsymptomatic and symptomatic Rocky Mountain elk (Cervus elaphus nelsoni) with chronic wasting disease. J Vet Diagn Invest 2015; 27:431-41. [PMID: 26185123 DOI: 10.1177/1040638715593368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The purpose of our study was to describe the progressive accumulation of the abnormal conformer of the prion protein (PrP(CWD)) and spongiform degeneration in a single section of brain stem in Rocky Mountain elk (Cervus elaphus nelsoni) with chronic wasting disease (CWD). A section of obex from 85 CWD-positive elk was scored using the presence and abundance of PrP(CWD) immunoreactivity and spongiform degeneration in 10 nuclear regions and the presence and abundance of PrP(CWD) in 10 axonal tracts, the subependymal area of the fourth ventricle, and the thin subpial astrocytic layer (glial limitans). Data was placed in a formula to generate an overall obex score. Data suggests that PrP(CWD) immunoreactivity and spongiform degeneration has a unique and relatively consistent pattern of progression throughout a section of obex. This scoring technique utilizing a single section of obex may prove useful in future work for estimating the presence and abundance of PrP(CWD) in peripheral tissues and the nervous system in elk with CWD.
Collapse
Affiliation(s)
- Terry R Spraker
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| | - Thomas Gidlewski
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| | - Jenny G Powers
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| | - Tracy Nichols
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| | - Aru Balachandran
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| | - Bruce Cummings
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| | - Margaret A Wild
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| | - Kurt VerCauteren
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| | - Katherine I O'Rourke
- Colorado State University Diagnostic Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO (Spraker, Cummings)National Wildlife Research Center, U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO (Gidlewski, Nichols, VerCauteren)National Park Service, Biological Resources Management Division, Fort Collins, CO (Powers, Wild)Canadian Food Inspection Services, Ottawa, Ontario, Canada (Balachandran)USDA, Agricultural Research Service, Pullman, WA (O'Rourke)
| |
Collapse
|
50
|
|