1
|
Hardin AM, Knigge RP, Duren DL, Williams-Blangero S, Subedi J, Mahaney MC, Sherwood RJ. Genetic influences on dentognathic morphology in the Jirel population of Nepal. Anat Rec (Hoboken) 2022; 305:2137-2157. [PMID: 34981668 PMCID: PMC9250551 DOI: 10.1002/ar.24857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Patterns of genetic variation and covariation impact the evolution of the craniofacial complex and contribute to clinically significant malocclusions in modern human populations. Previous quantitative genetic studies have estimated the heritabilities and genetic correlations of skeletal and dental traits in humans and nonhuman primates, but none have estimated these quantitative genetic parameters across the dentognathic complex. A large and powerful pedigree from the Jirel population of Nepal was leveraged to estimate heritabilities and genetic correlations in 62 maxillary and mandibular arch dimensions, incisor and canine lengths, and post-canine tooth crown areas (N ≥ 739). Quantitative genetic parameter estimation was performed using maximum likelihood-based variance decomposition. Residual heritability estimates were significant for all traits, ranging from 0.269 to 0.898. Genetic correlations were positive for all trait pairs. Principal components analyses of the phenotypic and genetic correlation matrices indicate an overall size effect across all measurements on the first principal component. Additional principal components demonstrate positive relationships between post-canine tooth crown areas and arch lengths and negative relationships between post-canine tooth crown areas and arch widths, and between arch lengths and arch widths. Based on these findings, morphological variation in the human dentognathic complex may be constrained by genetic relationships between dental dimensions and arch lengths, with weaker genetic correlations between these traits and arch widths allowing for variation in arch shape. The patterns identified are expected to have impacted the evolution of the dentognathic complex and its genetic architecture as well as the prevalence of dental crowding in modern human populations.
Collapse
Affiliation(s)
- Anna M. Hardin
- Biology Department, Western Oregon University
- Craniofacial Research Center, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine
- Department of Orthopaedic Surgery, University of Missouri School of Medicine
| | - Ryan P. Knigge
- Craniofacial Research Center, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine
- Department of Orthopaedic Surgery, University of Missouri School of Medicine
- Department of Integrative Biology and Physiology, University of Minnesota Medical School
| | - Dana L. Duren
- Craniofacial Research Center, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine
- Department of Orthopaedic Surgery, University of Missouri School of Medicine
| | - Sarah Williams-Blangero
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley
| | | | - Michael C. Mahaney
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley
| | - Richard J. Sherwood
- Craniofacial Research Center, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine
- Department of Orthopaedic Surgery, University of Missouri School of Medicine
| |
Collapse
|
2
|
Paul KS, Stojanowski CM, Hughes T, Brook AH, Townsend GC. Genetic Correlation, Pleiotropy, and Molar Morphology in a Longitudinal Sample of Australian Twins and Families. Genes (Basel) 2022; 13:genes13060996. [PMID: 35741762 PMCID: PMC9222655 DOI: 10.3390/genes13060996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/01/2023] Open
Abstract
This study aims to expand our understanding of the genetic architecture of crown morphology in the human diphyodont dentition. Here, we present bivariate genetic correlation estimates for deciduous and permanent molar traits and evaluate the patterns of pleiotropy within (e.g., m1–m2) and between (e.g., m2–M1) dentitions. Morphology was observed and scored from dental models representing participants of an Australian twin and family study (deciduous n = 290, permanent n = 339). Data collection followed Arizona State University Dental Anthropology System standards. Genetic correlation estimates were generated using maximum likelihood variance components analysis in SOLAR v.8.1.1. Approximately 23% of deciduous variance components models and 30% of permanent variance components models yielded significant genetic correlation estimates. By comparison, over half (56%) of deciduous–permanent homologues (e.g., m2 hypocone–M1 hypocone) were significantly genetically correlated. It is generally assumed that the deciduous and permanent molars represent members of a meristic molar field emerging from the primary dental lamina. However, stronger genetic integration among m2–M1/M2 homologues than among paired deciduous traits suggests the m2 represents the anterior-most member of a “true” molar field. The results indicate genetic factors act at distinct points throughout development to generate homologous molar form, starting with the m2, which is later replaced by a permanent premolariform crown.
Collapse
Affiliation(s)
- Kathleen S. Paul
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence: ; Tel.: +1-479-718-1352
| | - Christopher M. Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA;
| | - Toby Hughes
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; (T.H.); (A.H.B.)
| | - Alan H. Brook
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; (T.H.); (A.H.B.)
- Barts and the London Dental Institute, Queen Mary University of London, London EC1M 6AX, UK
| | - Grant C. Townsend
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; (T.H.); (A.H.B.)
| |
Collapse
|
3
|
Kataoka K, Fujita H, Isa M, Gotoh S, Arasaki A, Ishida H, Kimura R. The human EDAR 370V/A polymorphism affects tooth root morphology potentially through the modification of a reaction-diffusion system. Sci Rep 2021; 11:5143. [PMID: 33664401 PMCID: PMC7933414 DOI: 10.1038/s41598-021-84653-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/15/2021] [Indexed: 01/31/2023] Open
Abstract
Morphological variations in human teeth have long been recognized and, in particular, the spatial and temporal distribution of two patterns of dental features in Asia, i.e., Sinodonty and Sundadonty, have contributed to our understanding of the human migration history. However, the molecular mechanisms underlying such dental variations have not yet been completely elucidated. Recent studies have clarified that a nonsynonymous variant in the ectodysplasin A receptor gene (EDAR 370V/A; rs3827760) contributes to crown traits related to Sinodonty. In this study, we examined the association between the EDAR polymorphism and tooth root traits by using computed tomography images and identified that the effects of the EDAR variant on the number and shape of roots differed depending on the tooth type. In addition, to better understand tooth root morphogenesis, a computational analysis for patterns of tooth roots was performed, assuming a reaction-diffusion system. The computational study suggested that the complicated effects of the EDAR polymorphism could be explained when it is considered that EDAR modifies the syntheses of multiple related molecules working in the reaction-diffusion dynamics. In this study, we shed light on the molecular mechanisms of tooth root morphogenesis, which are less understood in comparison to those of tooth crown morphogenesis.
Collapse
Affiliation(s)
- Keiichi Kataoka
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hironori Fujita
- Astrobiology Center, National Institutes of Natural Sciences, Tokyo, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate School for Advanced Studies), Aichi, Japan
| | - Mutsumi Isa
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Shimpei Gotoh
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Akira Arasaki
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan.
| |
Collapse
|
4
|
Wakamatsu Y, Egawa S, Terashita Y, Kawasaki H, Tamura K, Suzuki K. Homeobox code model of heterodont tooth in mammals revised. Sci Rep 2019; 9:12865. [PMID: 31492950 PMCID: PMC6731288 DOI: 10.1038/s41598-019-49116-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/09/2019] [Indexed: 01/09/2023] Open
Abstract
Heterodonty is one of the hallmarks of mammals. It has been suggested that, homeobox genes, differentially expressed in the ectomesenchyme of the jaw primordium along the distal-proximal axis, would determine the tooth classes (homeobox code model) based on mouse studies. Because mouse has highly specialized tooth pattern lacking canine and premolars (dental formula: 1003/1003, for upper and lower jaws, respectively), it is unclear if the suggested model could be applied for mammals with all tooth classes, including human. We thus compared the homeobox code gene expressions in various mammals, such as opossum (5134/4134), ferret (3131/3132), as well as mouse. We found that Msx1 and BarX1 expression domains in the jaw primordium of the opossum and ferret embryos show a large overlap, but such overlap is small in mouse. Detailed analyses of gene expressions and subsequent morphogenesis of tooth germ in the opossum indicated that the Msx1/BarX1 double-positive domain will correspond to the premolar region, and Alx3-negative/Msx1-positive/BarX1-negative domain will correspond to canine. This study therefore provides a significant update of the homeobox code model in the mammalian heterodonty. We also show that the modulation of FGF-mediated Msx1 activation contributes to the variation in the proximal Msx1 expression among species.
Collapse
Affiliation(s)
- Yoshio Wakamatsu
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan.
| | - Shiro Egawa
- Department of Ecological Developmental Adaptability Life Sciences, Tohoku University Graduate School of Life Sciences, Sendai, 980-8578, Japan
| | - Yukari Terashita
- Department of Medical Neuroscience, Kanazawa University, Graduate School of Medicine, Kanazawa, 920-8640, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Kanazawa University, Graduate School of Medicine, Kanazawa, 920-8640, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Tohoku University Graduate School of Life Sciences, Sendai, 980-8578, Japan
| | - Kunihiro Suzuki
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| |
Collapse
|
5
|
Weiss KM. The tales genes tell (or not): A century of exploration. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:741-753. [PMID: 29574847 DOI: 10.1002/ajpa.23333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022]
|
6
|
Ramanathan A, Srijaya TC, Sukumaran P, Zain RB, Abu Kasim NH. Homeobox genes and tooth development: Understanding the biological pathways and applications in regenerative dental science. Arch Oral Biol 2017; 85:23-39. [PMID: 29031235 DOI: 10.1016/j.archoralbio.2017.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Homeobox genes are a group of conserved class of transcription factors that function as key regulators during the embryonic developmental processes. They act as master regulator for developmental genes, which involves coordinated actions of various auto and cross-regulatory mechanisms. In this review, we summarize the expression pattern of homeobox genes in relation to the tooth development and various signaling pathways or molecules contributing to the specific actions of these genes in the regulation of odontogenesis. MATERIALS AND METHODS An electronic search was undertaken using combination of keywords e.g. Homeobox genes, tooth development, dental diseases, stem cells, induced pluripotent stem cells, gene control region was used as search terms in PubMed and Web of Science and relevant full text articles and abstract were retrieved that were written in English. A manual hand search in text books were also carried out. Articles related to homeobox genes in dentistry and tissue engineering and regenerative medicine of odontogenesis were selected. RESULTS The possible perspective of stem cells technology in odontogenesis and subsequent analysis of gene correction pertaining to dental disorders through the possibility of induced pluripotent stem cells technology is also inferred. CONCLUSIONS We demonstrate the promising role of tissue engineering and regenerative medicine on odontogenesis, which can generate a new ray of hope in the field of dental science.
Collapse
Affiliation(s)
- Anand Ramanathan
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | | | - Prema Sukumaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia.
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Pantalacci S, Guéguen L, Petit C, Lambert A, Peterkovà R, Sémon M. Transcriptomic signatures shaped by cell proportions shed light on comparative developmental biology. Genome Biol 2017; 18:29. [PMID: 28202034 PMCID: PMC5312534 DOI: 10.1186/s13059-017-1157-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/19/2017] [Indexed: 11/10/2022] Open
Abstract
Background Comparative transcriptomics can answer many questions in developmental and evolutionary developmental biology. Most transcriptomic studies start by showing global patterns of variation in transcriptomes that differ between species or organs through developmental time. However, little is known about the kinds of expression differences that shape these patterns. Results We compared transcriptomes during the development of two morphologically distinct serial organs, the upper and lower first molars of the mouse. We found that these two types of teeth largely share the same gene expression dynamics but that three major transcriptomic signatures distinguish them, all of which are shaped by differences in the relative abundance of different cell types. First, lower/upper molar differences are maintained throughout morphogenesis and stem from differences in the relative abundance of mesenchyme and from constant differences in gene expression within tissues. Second, there are clear time-shift differences in the transcriptomes of the two molars related to cusp tissue abundance. Third, the transcriptomes differ most during early-mid crown morphogenesis, corresponding to exaggerated morphogenetic processes in the upper molar involving fewer mitotic cells but more migrating cells. From these findings, we formulate hypotheses about the mechanisms enabling the two molars to reach different phenotypes. We also successfully applied our approach to forelimb and hindlimb development. Conclusions Gene expression in a complex tissue reflects not only transcriptional regulation but also abundance of different cell types. This knowledge provides valuable insights into the cellular processes underpinning differences in organ development. Our approach should be applicable to most comparative developmental contexts. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1157-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie Pantalacci
- UnivLyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratoire de Biologie et Modélisation de la Cellule, 15 parvis Descartes, F-69007, Lyon, France.
| | - Laurent Guéguen
- Laboratoire de Biométrie et Biologie Évolutive (LBBE), Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Coraline Petit
- UnivLyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratoire de Biologie et Modélisation de la Cellule, 15 parvis Descartes, F-69007, Lyon, France
| | - Anne Lambert
- UnivLyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratoire de Biologie et Modélisation de la Cellule, 15 parvis Descartes, F-69007, Lyon, France
| | - Renata Peterkovà
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences AS CR, Videnska 1083, 142 20, Prague, Czech Republic
| | - Marie Sémon
- UnivLyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratoire de Biologie et Modélisation de la Cellule, 15 parvis Descartes, F-69007, Lyon, France.
| |
Collapse
|
8
|
Paul KS, Astorino CM, Bailey SE. The Patterning Cascade Model and Carabelli's trait expression in metameres of the mixed human dentition: exploring a morphogenetic model. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 162:3-18. [DOI: 10.1002/ajpa.23080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/08/2016] [Accepted: 08/13/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Kathleen S. Paul
- Center for Bioarchaeological Research, School of Human Evolution and Social ChangeArizona State UniversityTempe Arizona85287
| | - Claudia M. Astorino
- The Graduate School and University Center, The City University of New YorkNew York New York10016
- New York Consortium in Evolutionary PrimatologyNew York New York10028
| | - Shara E. Bailey
- New York Consortium in Evolutionary PrimatologyNew York New York10028
- Center for the Study of Human Origins, Department of AnthropologyNew York UniversityNew York New York10012
| |
Collapse
|
9
|
Polly PD. Gene networks, occlusal clocks, and functional patches: new understanding of pattern and process in the evolution of the dentition. Odontology 2015; 103:117-25. [PMID: 25986362 DOI: 10.1007/s10266-015-0208-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/26/2015] [Indexed: 12/21/2022]
Abstract
Our understanding of the evolution of the dentition has been transformed by advances in the developmental biology, genetics, and functional morphology of teeth, as well as the methods available for studying tooth form and function. The hierarchical complexity of dental developmental genetics combined with dynamic effects of cells and tissues during development allow for substantial, rapid, and potentially non-linear evolutionary changes. Studies of selection on tooth function in the wild and evolutionary functional comparisons both suggest that tooth function and adaptation to diets are the most important factors guiding the evolution of teeth, yet selection against random changes that produce malocclusions (selectional drift) may be an equally important factor in groups with tribosphenic dentitions. These advances are critically reviewed here.
Collapse
Affiliation(s)
- P David Polly
- Department of Geological Sciences, Indiana University, 1001 E. 10th Street, Bloomington, IN, 47401, USA,
| |
Collapse
|
10
|
Chandra B, Das M. Accessory Central Cusp in the Maxillary Second Primary Molars: A Rare Entity among the Rare. Int J Clin Pediatr Dent 2015; 7:202-5. [PMID: 25709302 PMCID: PMC4335113 DOI: 10.5005/jp-journals-10005-1265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/11/2014] [Indexed: 11/23/2022] Open
Abstract
Central accessory cusp in primary molars is an extremely rare condition which is due to abnormal proliferation and folding of inner enamel epithelium during morphodifferentiation stage of tooth development. The extension of the pulp in the cuspal area is often the reason for early involvement of pulp by the caries process. Therefore, early diagnosis and treatment planning is necessary to maintain the integrity of primary dental arch. This article reports such a case of central accessory cusps involving maxillary second primary molars. How to cite this article: Chandra B, Das M. Accessory Central Cusp in the Maxillary Second Primary Molars: A Rare Entity among the Rare. Int J Clin Pediatr Dent 2014;7(3):202-205.
Collapse
Affiliation(s)
- Biswaroop Chandra
- Senior Lecturer, Department of Pedodontics and Preventive Dentistry, Guru Nanak Institute of Dental Science and Research, Kolkata West Bengal, India
| | - Monalisa Das
- Postgraduate Trainee, Department of Pedodontics and Preventive Dentistry, Guru Nanak Institute of Dental Science and Research, Kolkata West Bengal, India
| |
Collapse
|
11
|
Monson TA, Hlusko LJ. Identification of a derived dental trait in the papionini relative to other old world monkeys. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 155:422-9. [PMID: 25100299 DOI: 10.1002/ajpa.22586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 07/15/2014] [Accepted: 07/21/2014] [Indexed: 11/07/2022]
Abstract
Variation in the shape of teeth provides an immense amount of information about the evolutionary history and adaptive strategy of a mammalian lineage. Here, we explore variation in the expression of a purported molar lingual remnant (the interconulus) across the Old World Monkeys (Primates: Cercopithecidae) with the aim of elucidating a component of the adaptive radiation of this family. This radiation is characterized by a wide geographic range (Asia and Africa) as well as diverse dietary niches. While all of the cercopithecids are distinguished by their derived bilophodont molars, the colobines have evolved taller and more pointed cusps compared with the cercopithecines. We investigate whether the interconulus also correlates with phylogenetic affinity and/or dietary adaptation. We assess the frequency and range of interconulus expression in 522 specimens representing seven species of Old World Monkeys (Cercopithecus mitis, n = 78; Macaca fascicularis, n = 85; Macaca mulatta, n = 70; Papio hamadryas, n = 55; Colobus guereza, n = 76; Presbytis melalophos, n = 82; Presbytis rubicunda, n = 76). Results show that the interconulus has a significantly higher frequency and degree of expression in Tribe Papionini and exhibits ordered metameric variation with greatest expression in the third molars. Given the rarity of the interconulus in other closely related taxa, and its morphological distinction from the purportedly homologous features in other primates, we interpret the high degree of expression of the interconulus to be a trait derived in papionins that originated in the Miocene baboon/macaque ancestor.
Collapse
Affiliation(s)
- Tesla A Monson
- Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg, Berkeley, CA, 94720
| | | |
Collapse
|
12
|
Labonne G, Navarro N, Laffont R, Chateau-Smith C, Montuire S. Developmental integration in a functional unit: deciphering processes from adult dental morphology. Evol Dev 2014; 16:224-32. [DOI: 10.1111/ede.12085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Gaëlle Labonne
- Laboratoire PALEVO; Ecole Pratique des Hautes Etudes; 6 bd Gabriel Dijon France
- UMR uB/CNRS 6282-Biogéosciences; Université de Bourgogne; 6 bd Gabriel Dijon France
| | - Nicolas Navarro
- Laboratoire PALEVO; Ecole Pratique des Hautes Etudes; 6 bd Gabriel Dijon France
- UMR uB/CNRS 6282-Biogéosciences; Université de Bourgogne; 6 bd Gabriel Dijon France
| | - Rémi Laffont
- UMR uB/CNRS 6282-Biogéosciences; Université de Bourgogne; 6 bd Gabriel Dijon France
| | | | - Sophie Montuire
- Laboratoire PALEVO; Ecole Pratique des Hautes Etudes; 6 bd Gabriel Dijon France
- UMR uB/CNRS 6282-Biogéosciences; Université de Bourgogne; 6 bd Gabriel Dijon France
| |
Collapse
|
13
|
Peterkova R, Hovorakova M, Peterka M, Lesot H. Three-dimensional analysis of the early development of the dentition. Aust Dent J 2014; 59 Suppl 1:55-80. [PMID: 24495023 PMCID: PMC4199315 DOI: 10.1111/adj.12130] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tooth development has attracted the attention of researchers since the 19th century. It became obvious even then that morphogenesis could not fully be appreciated from two-dimensional histological sections. Therefore, methods of three-dimensional (3D) reconstructions were employed to visualize the surface morphology of developing structures and to help appreciate the complexity of early tooth morphogenesis. The present review surveys the data provided by computer-aided 3D analyses to update classical knowledge of early odontogenesis in the laboratory mouse and in humans. 3D reconstructions have demonstrated that odontogenesis in the early stages is a complex process which also includes the development of rudimentary odontogenic structures with different fates. Their developmental, evolutionary, and pathological aspects are discussed. The combination of in situ hybridization and 3D reconstruction have demonstrated the temporo-spatial dynamics of the signalling centres that reflect transient existence of rudimentary tooth primordia at loci where teeth were present in ancestors. The rudiments can rescue their suppressed development and revitalize, and then their subsequent autonomous development can give rise to oral pathologies. This shows that tooth-forming potential in mammals can be greater than that observed from their functional dentitions. From this perspective, the mouse rudimentary tooth primordia represent a natural model to test possibilities of tooth regeneration.
Collapse
Affiliation(s)
- R Peterkova
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
14
|
Jussila M, Crespo Yanez X, Thesleff I. Initiation of teeth from the dental lamina in the ferret. Differentiation 2014; 87:32-43. [PMID: 24393477 DOI: 10.1016/j.diff.2013.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 11/18/2022]
Abstract
Mammalian tooth development is characterized by formation of primary teeth that belong to different tooth classes and are later replaced by a single set of permanent teeth. The first primary teeth are initiated from the primary dental lamina, and the replacement teeth from the successional dental lamina at the lingual side of the primary teeth. An interdental lamina connects the primary tooth germs together. Most mammalian tooth development research is done on mouse, which does not have teeth in all tooth classes, does not replace its teeth, and does not develop an interdental lamina. We have used the ferret (Mustela putorius furo) as a model animal to elucidate the morphological changes and gene expression during the development of the interdental lamina and the initiation of primary teeth. In addition we have analyzed cell-cell signaling taking place in the interdental lamina as well as in the successional lamina during tooth replacement. By 3D reconstructions of serial histological sections we observed that the morphogenesis of the interdental lamina and the primary teeth are intimately linked. Expression of Pitx2 and Foxi3 in the interdental lamina indicates that it has odontogenic identity, and there is active signaling taking place in the interdental lamina. Bmp4 is coexpressed with the stem cell factor Sox2 at its lingual aspect suggesting that the interdental lamina may retain competence for tooth initiation. We show that when tooth replacement is initiated there is Wnt pathway activity in the budding successional lamina and adjacent mesenchyme but no active Fgf or Eda signaling. Genes associated with human tooth replacement phenotypes, including Runx2 and Il11rα, are mostly expressed in the mesenchyme around the successional lamina in the ferret. Our results highlight the importance of the dental lamina in the mammalian tooth development during the initiation of both primary and replacement teeth.
Collapse
Affiliation(s)
- Maria Jussila
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Xenia Crespo Yanez
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Irma Thesleff
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
15
|
Riga A, Belcastro MG, Moggi-Cecchi J. Environmental stress increases variability in the expression of dental cusps. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 153:397-407. [DOI: 10.1002/ajpa.22438] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/08/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Alessandro Riga
- Department of Biological; Geological and Environmental Sciences, University of Bologna; 40126 Bologna Italy
| | - Maria Giovanna Belcastro
- Department of Biological; Geological and Environmental Sciences, University of Bologna; 40126 Bologna Italy
| | | |
Collapse
|
16
|
Reddy NA, Adusumilli G, Devanna R, Mayur RG, Pichai S, Arujnan S. Msx1 Gene Variant - its Association in Isolated Hypodontia: A Case Control Genetic study!!! INDIAN JOURNAL OF HUMAN GENETICS 2013; 19:459-64. [PMID: 24497713 PMCID: PMC3897143 DOI: 10.4103/0971-6866.124376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Non-syndromic tooth agenesis is a congenital anomaly with significant medical, psychological, and social ramifications. There is sufficient evidence to hypothesize that locus for this condition can be identified by candidate genes. AIM OF THE STUDY The aim of this study was to test whether MSX1 671 T > C gene variant was involved in etiology of non-syndromic tooth agenesis in Raichur patients. MATERIALS AND METHODS Blood samples were collected with informed consent from 50 subjects having non-syndromic tooth agenesis and 50 controls. Genomic deoxyribonucleic acid (DNA) was extracted from the blood samples, polymerase chain reaction (PCR) was performed, and restriction fragment length polymorphism (RFLP) was performed for digestion products that were evaluated. RESULTS The results showed positive correlation between MSX1671 T > C gene variant and non-syndromic tooth agenesis in Raichur patients. CONCLUSION MSX1 671 T > C gene variant may be a good screening marker for non-syndromic tooth agenesis in Raichur patients.
Collapse
Affiliation(s)
- Naveen Admala Reddy
- Department of Orthodontics, Academy of Medical Education's Dental College and Hospital, Raichur, Karnataka, India
| | - Gopinath Adusumilli
- Department of Orthodontics, Academy of Medical Education's Dental College and Hospital, Raichur, Karnataka, India
| | - Raghu Devanna
- Department of Orthodontics, Academy of Medical Education's Dental College and Hospital, Raichur, Karnataka, India
| | - Rohra G Mayur
- Department of Orthodontics, Academy of Medical Education's Dental College and Hospital, Raichur, Karnataka, India
| | - Saravanan Pichai
- Department of Orthodontics, Academy of Medical Education's Dental College and Hospital, Raichur, Karnataka, India
| | - Sharmila Arujnan
- Department of Orthodontics, Academy of Medical Education's Dental College and Hospital, Raichur, Karnataka, India
| |
Collapse
|
17
|
Dose to the developing dentition during therapeutic irradiation: organ at risk determination and clinical implications. Int J Radiat Oncol Biol Phys 2013; 86:108-13. [PMID: 23332385 DOI: 10.1016/j.ijrobp.2012.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/20/2022]
Abstract
PURPOSE Irradiation of pediatric facial structures can cause severe impairment of permanent teeth later in life. We therefore focused on primary and permanent teeth as organs at risk, investigating the ability to identify individual teeth in children and infants and to correlate dose distributions with subsequent dental toxicity. METHODS AND MATERIALS We retrospectively reviewed 14 pediatric patients who received a maximum dose >20 Gy(relative biological effectiveness, RBE) to 1 or more primary or permanent teeth between 2003 and 2009. The patients (aged 1-16 years) received spot-scanning proton therapy with 46 to 66 Gy(RBE) in 23 to 33 daily fractions for a variety of tumors, including rhabdomyosarcoma (n=10), sarcoma (n=2), teratoma (n=1), and carcinoma (n=1). Individual teeth were contoured on axial slices from planning computed tomography (CT) scans. Dose-volume histogram data were retrospectively obtained from total calculated delivered treatments. Dental follow-up information was obtained from external care providers. RESULTS All primary teeth and permanent incisors, canines, premolars, and first and second molars were identifiable on CT scans in all patients as early as 1 year of age. Dose-volume histogram analysis showed wide dose variability, with a median 37 Gy(RBE) per tooth dose range across all individuals, and a median 50 Gy(RBE) intraindividual dose range across all teeth. Dental follow-up revealed absence of significant toxicity in 7 of 10 patients but severe localized toxicity in teeth receiving >20 Gy(RBE) among 3 patients who were all treated at <4 years of age. CONCLUSIONS CT-based assessment of dose distribution to individual teeth is feasible, although delayed calcification may complicate tooth identification in the youngest patients. Patterns of dental dose exposure vary markedly within and among patients, corresponding to rapid dose falloff with protons. Severe localized dental toxicity was observed in a few patients receiving the largest doses of radiation at the youngest ages; however, multiple factors including concurrent chemotherapy confounded the dose-effect relationship. Further studies with larger cohorts and appropriate controls will be required.
Collapse
|
18
|
Chaudhary M, Dixit S, Singh A, Kunte S. Amelogenesis imperfecta: Report of a case and review of literature. J Oral Maxillofac Pathol 2011; 13:70-7. [PMID: 21887005 PMCID: PMC3162864 DOI: 10.4103/0973-029x.57673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a diverse collection of inherited diseases that exhibit quantitative or qualitative tooth enamel defects in the absence of systemic manifestations. Also known by varied names such as Hereditary enamel dysplasia, Hereditary brown enamel, Hereditary brown opalescent teeth, this defect is entirely ectodermal, since mesodermal components of the teeth are basically normal. The AI trait can be transmitted by either autosomal dominant, autosomal recessive, or X-linked modes of inheritance. Genes implicated in autosomal forms are genes encoding enamel matrix proteins, namely: enamelin and ameloblastin, tuftelin, MMP-20 and kallikrein - 4. This article presents a case reported to Dr. D. Y. Patil, Dental College and Hospital, Pune, India, along with a review of this often seen clinical entity.
Collapse
Affiliation(s)
- Mayur Chaudhary
- Department of Oral Pathology, New Horizon Dental College and Research Institute, Sakri, Bilaspur, India
| | | | | | | |
Collapse
|
19
|
Nirmala SVSG, Challa R, Velpula L, Nuvvula S. Unusual occurrence of accessory central cusp in the maxillary second primary molar. Contemp Clin Dent 2011; 2:127-30. [PMID: 21957391 PMCID: PMC3180834 DOI: 10.4103/0976-237x.83078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Accessory cusp present on the occlusal surface may seldom pose problems. While its presence may not be a cause for alarm in most instances, it can sometimes lead to serious consequences if it is damaged. This case presents a rare finding of unilateral central accessory cusp seen on the occlusal surface of the maxillary left second primary molar and discusses the need for continuous dental surveillance and preventive measures.
Collapse
Affiliation(s)
- S V S G Nirmala
- Department of Pedodontics and Preventive Dentistry, Narayana Dental College, Nellore, Andhra Pradesh, India
| | | | | | | |
Collapse
|
20
|
Choi SJ, Song IS, Feng JQ, Gao T, Haruyama N, Gautam P, Robey PG, Hart TC. Mutant DLX 3 disrupts odontoblast polarization and dentin formation. Dev Biol 2010; 344:682-92. [PMID: 20510228 DOI: 10.1016/j.ydbio.2010.05.499] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 05/17/2010] [Accepted: 05/19/2010] [Indexed: 11/30/2022]
Abstract
Tricho-dento-osseous (TDO) syndrome is an autosomal dominant disorder characterized by abnormalities in the thickness and density of bones and teeth. A 4-bp deletion mutation in the Distal-Less 3 (DLX3) gene is etiologic for most cases of TDO. To investigate the in vivo role of mutant DLX3 (MT-DLX3) on dentin development, we generated transgenic (TG) mice expressing MT-DLX3 driven by a mouse 2.3 Col1A1 promoter. Dentin defects were radiographically evident in all teeth and the size of the nonmineralized pulp was enlarged in TG mice, consistent with clinical characteristics in patients with TDO. High-resolution radiography, microcomputed tomography, and SEM revealed a reduced zone of mineralized dentin with anomalies in the number and organization of dentinal tubules in MT-DLX3 TG mice. Histological and immunohistochemical studies demonstrated that the decreased dentin was accompanied by altered odontoblast cytology that included disruption of odontoblast polarization and reduced numbers of odontoblasts. TUNEL assays indicated enhanced odontoblast apoptosis. Expression levels of the apoptotic marker caspase-3 were increased in odontoblasts in TG mice as well as in odontoblastic-like MDPC-23 cells transfected with MT-DLX3 cDNA. Expression of Runx2, Wnt 10A, and TBC1D19 colocalized with DLX3 expression in odontoblasts, and MT-DLX3 significantly reduced expression of all three genes. TBC1D19 functions in cell polarity and decreased TBC1D19 expression may contribute to the observed disruption of odontoblast polarity and apoptosis. These data indicate that MT-DLX3 acts to disrupt odontoblast cytodifferentiation leading to odontoblast apoptosis, and aberrations of dentin tubule formation and dentin matrix production, resulting in decreased dentin and taurodontism. In summary, this TG model demonstrates that MT-DLX3 has differential effects on matrix production and mineralization in dentin and bone and provides a novel tool for the investigation of odontoblast biology.
Collapse
Affiliation(s)
- S J Choi
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Nieminen P. Genetic basis of tooth agenesis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:320-42. [PMID: 19219933 DOI: 10.1002/jez.b.21277] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tooth agenesis or hypodontia, failure to develop all normally developing teeth, is one of the most common developmental anomalies in man. Common forms, including third molar agenesis and hypodontia of one or more of the incisors and premolars, constitute the great majority of cases. They typically affect those teeth that develop latest in each tooth class and these teeth are also most commonly affected in more severe and rare types of tooth agenesis. Specific vulnerability of the last developing teeth suggests that agenesis reflects quantitative defects during dental development. So far molecular genetics has revealed the genetic background of only rare forms of tooth agenesis. Mutations in MSX1, PAX9, AXIN2 and EDA have been identified in familial severe agenesis (oligodontia) and mutations in many other genes have been identified in syndromes in which tooth agenesis is a regular feature. Heterozygous loss of function mutations in many genes reduce the gene dose, whereas e.g. in hypohidrotic ectodermal dysplasia (EDA) the complete inactivation of the partially redundant signaling pathway reduces the signaling centers. Although these mechanisms involve quantitative disturbances, the phenotypes associated with mutations in different genes indicate that in addition to an overall reduction of odontogenic potential, tooth class-specific and more complex mechanisms are also involved. Although several of the genes so far identified in rare forms of tooth agenesis are being studied as candidate genes of common third molar agenesis and incisor and premolar hypodontia, it is plausible that novel genes that contribute to these phenotypes will also become identified.
Collapse
Affiliation(s)
- Pekka Nieminen
- Institute of Dentistry, Biomedicum, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
22
|
Peterkova R, Churava S, Lesot H, Rothova M, Prochazka J, Peterka M, Klein OD. Revitalization of a diastemal tooth primordium in Spry2 null mice results from increased proliferation and decreased apoptosis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:292-308. [PMID: 19127536 PMCID: PMC2880865 DOI: 10.1002/jez.b.21266] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An understanding of the factors that promote or inhibit tooth development is essential for designing biological tooth replacements. The embryonic mouse dentition provides an ideal system for studying such factors because it consists of two types of tooth primordia. One type of primordium will go on to form a functional tooth, whereas the other initiates development but arrests at or before the bud stage. This developmental arrest contributes to the formation of the toothless mouse diastema. It is accompanied by the apoptosis of the rudimentary diastemal buds, which presumably results from the insufficient activity of anti-apoptotic signals such as fibroblast growth factors (FGFs). We have previously shown that the arrest of a rudimentary tooth bud can be rescued by inactivating Spry2, an antagonist of FGF signaling. Here, we studied the role of the epithelial cell death and proliferation in this process by comparing the development of a rudimentary diastemal tooth bud (R(2)) and the first molar in the mandibles of Spry2(-/-) and wild-type (WT) embryos using histological sections, image analysis and 3D reconstructions. In the WT R(2) at embryonic day 13.5, significantly increased apoptosis and decreased proliferation were found compared with the first molar. In contrast, increased levels of FGF signaling in Spry2(-/-) embryos led to significantly decreased apoptosis and increased proliferation in the R(2) bud. Consequently, the R(2) was involved in the formation of a supernumerary tooth primordium. Studies of the revitalization of rudimentary tooth primordia in mutant mice can help to lay the foundation for tooth regeneration by enhancing our knowledge of mechanisms that regulate tooth formation.
Collapse
Affiliation(s)
- Renata Peterkova
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Svatava Churava
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Anthropology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Herve Lesot
- INSERM U595, Faculté de Médecine, Université Louis Pasteur, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université Louis Pasteur, Strasbourg, France
- International Collaborating Centre in Oro-Facial Genetics and Development, University of Liverpool, Liverpool, United Kingdom
| | - Michaela Rothova
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Developmental Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Prochazka
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Developmental Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Miroslav Peterka
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Anthropology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ophir D. Klein
- Department of Orofacial Sciences, University of California, San Francisco, California
- Department of Pediatrics, University of California, San Francisco, California
- Institutes of Human Genetics and Regeneration Medicine, University of California, San Francisco, California
| |
Collapse
|
23
|
Quantitative Genetics, Pleiotropy, and Morphological Integration in the Dentition of Papio hamadryas. Evol Biol 2009; 36:5-18. [PMID: 22919117 DOI: 10.1007/s11692-008-9048-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Variation in the mammalian dentition is highly informative of adaptations and evolutionary relationships, and consequently has been the focus of considerable research. Much of the current research exploring the genetic underpinnings of dental variation can trace its roots to Olson and Miller's 1958 book Morphological Integration. These authors explored patterns of correlation in the post-canine dentitions of the owl monkey and Hyopsodus, an extinct condylarth from the Eocene. Their results were difficult to interpret, as was even noted by the authors, due to a lack of genetic information through which to view the patterns of correlation. Following in the spirit of Olson and Miller's research, we present a quantitative genetic analysis of dental variation in a pedigreed population of baboons. We identify patterns of genetic correlations that provide insight to the genetic architecture of the baboon dentition. This genetic architecture indicates the presence of at least three modules: an incisor module that is genetically independent of the post-canine dentition, and a premolar module that demonstrates incomplete pleiotropy with the molar module. We then compare this matrix of genetic correlations to matrices of phenotypic correlations between the same measurements made on museum specimens of another baboon subspecies and the Southeast Asian colobine Presbytis. We observe moderate significant correlations between the matrices from these three primate taxa. From these observations we infer similarity in modularity and hypothesize a common pattern of genetic integration across the dental arcade in the Cercopithecoidea.
Collapse
|
24
|
Koussoulakou DS, Margaritis LH, Koussoulakos SL. A curriculum vitae of teeth: evolution, generation, regeneration. Int J Biol Sci 2009; 5:226-43. [PMID: 19266065 PMCID: PMC2651620 DOI: 10.7150/ijbs.5.226] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 02/21/2009] [Indexed: 12/28/2022] Open
Abstract
The ancestor of recent vertebrate teeth was a tooth-like structure on the outer body surface of jawless fishes. Over the course of 500,000,000 years of evolution, many of those structures migrated into the mouth cavity. In addition, the total number of teeth per dentition generally decreased and teeth morphological complexity increased. Teeth form mainly on the jaws within the mouth cavity through mutual, delicate interactions between dental epithelium and oral ectomesenchyme. These interactions involve spatially restricted expression of several, teeth-related genes and the secretion of various transcription and signaling factors. Congenital disturbances in tooth formation, acquired dental diseases and odontogenic tumors affect millions of people and rank human oral pathology as the second most frequent clinical problem. On the basis of substantial experimental evidence and advances in bioengineering, many scientists strongly believe that a deep knowledge of the evolutionary relationships and the cellular and molecular mechanisms regulating the morphogenesis of a given tooth in its natural position, in vivo, will be useful in the near future to prevent and treat teeth pathologies and malformations and for in vitro and in vivo teeth tissue regeneration.
Collapse
Affiliation(s)
- Despina S Koussoulakou
- University of Athens, Faculty of Biology, Department of Cell Biology and Biophysics, Athens, Greece
| | | | | |
Collapse
|
25
|
A model of growth restraints to explain the development and evolution of tooth shapes in mammals. J Theor Biol 2008; 255:338-43. [DOI: 10.1016/j.jtbi.2008.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 08/27/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
|
26
|
Harris EF, Dinh DP. Intercusp relationships of the permanent maxillary first and second molars in American whites. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2007; 130:514-28. [PMID: 16444734 DOI: 10.1002/ajpa.20389] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Much of a human molar's morphology is concentrated on its occlusal surface. In view of embryologists' recent attention on the determination of crown morphology by enamel knots that initiate cusp formation, we were interested in the arrangement of cusp apices in the definitive tooth. Computer-assisted image analysis was used to measure intercusp distances and angles on permanent maxillary M1 and M2 in a sample of 160 contemporary North American whites. The intent was to generate normative data and to compare the size and variability gradients from M1 to M2. There is little sexual dimorphism in intercusp distances or angles, even though the conventional mesiodistal (MD) and buccolingual (BL) crown size is 2.0% and 4.0% larger in males, respectively, in these same teeth. Dimensions decreased in size and increased in variability from M1 to M2, but differentially. Cusps of the trigon were more stable between teeth, especially the paracone-protocone relationship. Principal components analysis on the six M1 distances disclosed only one eigenvalue above 1.0, indicating that overall crown size itself is the paramount controlling factor in this tooth that almost invariably exhibits a hypocone. In contrast, four components were extracted from among the 12 angular cusp relationships in M1. These axes of variation may prove useful in studies of intergroup differences. A shape difference occurs in M2, depending on whether the hypocone is present; when absent, the metacone is moved lingually, creating more of an isosceles arrangement for the cusps of the trigon. Statistically, correlations are low between occlusal intercusp relationships and conventional crown diameters measured at the margins of the crowns that form later. Weak statistical dependence between cusp relationships and traditional MD and BL diameters suggest that separate stage- and location-specific molecular signals control these different parts (and different stages) of crown formation.
Collapse
Affiliation(s)
- Edward F Harris
- Department of Orthodontics, College of Dentistry, Health Science Center, University of Tennessee, Memphis, Tennessee 38163, USA.
| | | |
Collapse
|
27
|
Iida K, Nishimura I. Gene expression profiling by DNA microarray technology. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2007; 13:35-50. [PMID: 12097236 DOI: 10.1177/154411130201300105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Methods in molecular and genetic biology have provided important clues to elucidate the complex mechanisms of oral and craniofacial development and pathogenesis of diseases. It has become increasingly clear that a biological phenotype is a result of multiple factors involving a large number of regulatory genes, while a single nucleotide mutation can cause various degrees of oral and craniofacial abnormalities. These oral and craniofacial problems often present a challenge to the molecular screening process. Recent advances in microarray-based technologies allow for large-scale gene expression analysis in a single experiment, which have been applied to genome-wide assays, mutational analysis, drug discovery, developmental biology, and molecular analysis of various diseases. This review introduces the basic principle and some modifications of techniques and materials used in microarray technology, as well as currently available microarray data analysis strategies. Microarray technology can be applied to the soon-to-be-available human genome database and will be a powerful research tool for those inquiring into specific problems associated with oral and craniofacial biology.
Collapse
Affiliation(s)
- Keisuke Iida
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, California 90095-1668, USA
| | | |
Collapse
|
28
|
Hovorakova M, Lesot H, Vonesch JL, Peterka M, Peterkova R. Early development of the lower deciduous dentition and oral vestibule in human embryos. Eur J Oral Sci 2007; 115:280-7. [PMID: 17697167 DOI: 10.1111/j.1600-0722.2007.00464.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this work was to investigate the early development of the deciduous dentition and oral vestibule in the human embryonic lower jaw. Histological sections and three-dimensional reconstructions from prenatal weeks 6-9 were used. A continuous anlage for the oral vestibule did not exist in the mandible. In contrast to the upper jaw, where we previously observed that the dental and vestibular epithelia developed separately, two dento-vestibular bulges differentiated in the incisor region of the mandible. The lingual parts of each bulge were found to give rise to the respective central and lateral incisors, whereas the labial parts differentiated into the vestibular epithelium. In the canine and molar areas, the dental and vestibular epithelia originated separately. Later, the segments of the vestibular epithelium fused into the labial vestibular ridge, giving rise to the lower oral vestibule in the lip region. In the cheek region, the oral vestibule was found to originate in the mucosal inflection between the developing jaw and the cheek. A similar heterogeneous developmental base for the oral vestibule was also observed in the upper jaw. There is thus no general scheme for the early development of the dental and vestibular epithelia that applies to both the upper and lower jaws, and to both their anterior and posterior regions.
Collapse
Affiliation(s)
- Maria Hovorakova
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
29
|
Abstract
Many genes that interact in a complex and interdependent manner participate in the development of the craniofacial complex. One of them, the Msxl homeobox gene, a transcription factor, is expressed from early developmental stages to adulthood in accordance with specific spatio-temporal patterns. When it is suppressed, transgenic mice exhibit craniofacial abnormalities that demonstrate what is its function in normal growth, just as it has been shown that certain Msxl mutations in humans are commonly associated with tooth agenesis.
Collapse
Affiliation(s)
- Brigitte Vi-Fane
- Université Denis Diderot (Paris VII), Faculté de Chirurgie Dentaire, 5 rue Garancière, 75006 Paris, France.
| | | | | |
Collapse
|
30
|
|
31
|
Kondo S, Townsend GC. Associations between Carabelli trait and cusp areas in human permanent maxillary first molars. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2006; 129:196-203. [PMID: 16323183 DOI: 10.1002/ajpa.20271] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Few dental anthropological studies have investigated the associations between tooth crown size and crown traits in humans using quantitative methods. We tested several hypotheses about overall crown size, individual cusp areas, and expression of Carabelli cusps in human permanent first molars by obtaining data from standardized occlusal photographs of 308 Australians of European descent (171 males and 137 females). Specifically, we aimed to calculate the areas of the four main molar cusps, and also Carabelli cusp, and to compare the relative variability of cusp areas in relation to timing of development. We also aimed to compare cusp areas between males and females and to describe how Carabelli cusp interacted with other molar cusps. Measurements included maximum crown diameters (mesiodistal and buccolingual crown diameters), the areas of the four main cusps, and the area of Carabelli cusp. The pattern of relative variability in absolute areas of molar cusps corresponded with their order of formation, the first-forming paracone displaying the least variation, and the last-forming Carabelli cusp showing the greatest. Overall crown size and areas of individual cusps all showed sexual dimorphism, with values in males exceeding those in females. Sexual dimorphism was smallest for paracone area and greatest for Carabelli cusp area. Overall crown size and cusp areas were larger in individuals displaying a Carabelli cusp, especially the hypocone area. Although the combined area of the protocone and a Carabelli cusp was greater in cuspal forms than noncuspal forms, protocone area alone was significantly smaller in the former. Our findings lead us to propose that, in individuals with the genotype for Carabelli trait expression, larger molar crowns are more likely to display Carabelli cusps, whereas molars with smaller crowns are more likely to display reduced forms of expression of the trait. We suggest that the pattern of folding of the internal enamel epithelium in developing molar crowns, particularly in the protocone region, can be modified by a developing Carabelli cusp.
Collapse
Affiliation(s)
- Shintaro Kondo
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Tokyo 142-8555, Japan.
| | | |
Collapse
|
32
|
Salazar-Ciudad I, Jernvall J. Graduality and innovation in the evolution of complex phenotypes: insights from development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 304:619-31. [PMID: 16032700 DOI: 10.1002/jez.b.21058] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The neo-Darwinian paradigm benefits from the assumption that phenotypic variation is gradual and that phenotype and genotype have a relatively simple relationship. These assumptions are historically inherited from the times of the neo-Darwinian synthesis and, consequently, do not include present understanding about development. In this study, understanding about the dynamics of pattern formation is used to explore to that extent phenotypic variation can be expected to be gradual and simply related to molecular variation. Variation in simple phenotypes seems to fit neo-Darwinian assumptions but variation in complex phenotypes does not. Instead, variation in complex phenotypes would have a tendency to relatively less gradual evolution, even at microevolutionary time scales, that would make phylogenetic reconstructions more difficult. In addition, they will have a tendency to exhibit specific trends in innovation rates over group radiations with early accelerations and late decelerations. This work also explores further consequences of these results in our understanding of phenotypic evolution.
Collapse
Affiliation(s)
- Isaac Salazar-Ciudad
- Developmental Biology Program, Institute of Biotechnology, FIN-00014, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
33
|
Stephanopoulos G, Garefalaki ME, Lyroudia K. Genes and related proteins involved in amelogenesis imperfecta. J Dent Res 2006; 84:1117-26. [PMID: 16304440 DOI: 10.1177/154405910508401206] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dental enamel formation is a remarkable example of a biomineralization process. The exact mechanisms involved in this process remain partly obscure. Some of the genes encoding specific enamel proteins have been indicated as candidate genes for amelogenesis imperfecta. Mutational analyses within studied families have supported this hypothesis. Mutations in the amelogenin gene (AMELX) cause X-linked amelogenesis imperfecta, while mutations in the enamelin gene (ENAM) cause autosomal-inherited forms of amelogenesis imperfecta. Recent reports involve kallikrein-4 (KLK4), MMP-20, and DLX3 genes in the etiologies of some cases. This paper focuses mainly on the candidate genes involved in amelogenesis imperfecta and the proteins derived from them, and reviews current knowledge on their structure, localization within the tissue, and correlation with the various types of this disorder.
Collapse
Affiliation(s)
- G Stephanopoulos
- Diploma in Dental Science, Aristotle University of Thessaloniki, Greece
| | | | | |
Collapse
|
34
|
Levitan ME, Himel VT. Dens Evaginatus: Literature Review, Pathophysiology, and Comprehensive Treatment Regimen. J Endod 2006; 32:1-9. [PMID: 16410059 DOI: 10.1016/j.joen.2005.10.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dens evaginatus (DE) is an uncommon dental anomaly, having been well documented since 1925. It occurs primarily in people of Asian descent and is exhibited by protrusion of a tubercle from occlusal surfaces of posterior teeth, and lingual surfaces of anterior teeth. Tubercles have an enamel layer covering a dentin core containing a thin extension of pulp. These cusp-like protrusions are susceptible to pulp exposure from wear or fracture because of malocclusion, leading to pulpal complications soon after eruption. Endodontic intervention of permanent teeth with immature roots is unpredic for inflamed pulps, and leaves a tooth with compromised root structure when treating necrotic pulps. Efforts to ensure root maturity have involved preventive or prophylactic treatment with varying degrees of pulp invasiveness. Treatment options have changed as technology and materials have improved. The goal is to review the literature and pathophysiology regarding DE, and present a new comprehensive treatment regimen, including a truly prophylactic approach without pulpal invasiveness. A case study of a mestizo with DE is documented. Treatment of four affected mandibular premolars exhibiting three distinct diagnostic categories will illustrate various aspects of the treatment protocol presented, and tooth morphology of the anomaly is shown to aid clinical recognition.
Collapse
Affiliation(s)
- Marc E Levitan
- Department of Biologic and Diagnostic Sciences, University of Tennessee Health Science Center, College of Dentistry, 875 Union Avenue, Memphis, TN 38163, USA.
| | | |
Collapse
|
35
|
Abstract
For nearly a century we have understood that life works through genes, and so have had an elegant theory for general evolution. But this did not explain the kinds of traits that characterize organisms, nor how genes produce them. Advances in recent decades have opened the way for an understanding of the phenogenetic logic or relational principles of life, by which a few basic characteristics of genomes produce biological phenotypes through some basic developmental processes. This logic provides a general explanation of the nature and source of organismal design, and a powerful programme for research.
Collapse
Affiliation(s)
- Kenneth M Weiss
- Department of Anthropology, 409 Carpenter Building, University Park, Penn State University, Pennsylvania 16802, USA.
| |
Collapse
|
36
|
Calvi LM, Shin HI, Knight MC, Weber JM, Young MF, Giovannetti A, Schipani E. Constitutively active PTH/PTHrP receptor in odontoblasts alters odontoblast and ameloblast function and maturation. Mech Dev 2005; 121:397-408. [PMID: 15110049 DOI: 10.1016/j.mod.2004.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 01/28/2004] [Accepted: 02/02/2004] [Indexed: 11/15/2022]
Abstract
Parathyroid hormone (PTH)-related protein (PTH-rP) is an important autocrine/paracrine attenuator of programmed cell differentiation whose expression is restricted to the epithelial layer in tooth development. The PTH/PTHrP receptor (PPR) mRNA in contrast is detected in the dental papilla, suggesting that PTHrP and the PPR may modulate epithelial-mesenchymal interactions. To explore the possible interactions, we studied the previously described transgenic mice in which a constitutively active PPR is targeted to osteoblastic cells. These transgenic mice have a vivid postnatal bone and tooth phenotype, with normal tooth eruption but abnormal, widened crowns. Transgene mRNA expression was first detected at birth in the dental papilla and, at 1 week postnatally, in odontoblasts. There was no transgene expression in ameloblasts or in other epithelial structures. Prenatally, transgenic molars and incisors revealed no remarkable change. By the age of 1 week, the dental papilla was widened, with disorganization of the odontoblastic layer and decreased dentin matrix. In addition, the number of cusps was abnormally increased, the ameloblastic layer disorganized, and enamel matrix decreased. Odontoblastic and, surprisingly, ameloblastic cytodifferentiation was impaired, as shown by in situ hybridization and electron microscopy. Interestingly, ameloblastic expression of Sonic Hedgehog, a major determinant of ameloblastic cytodifferentiation, was dramatically altered in the transgenic molars. These data suggest that odontoblastic activation of the PPR may play an important role in terminal odontoblastic and, indirectly, ameloblastic cytodifferentiation, and describe a useful model to study how this novel action of the PPR may modulate mesenchymal/epithelial interactions at later stages of tooth morphogenesis and development.
Collapse
Affiliation(s)
- L M Calvi
- Endocrine Unit, Department of Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Witter K, Lesot H, Peterka M, Vonesch JL, Mísek I, Peterková R. Origin and developmental fate of vestigial tooth primordia in the upper diastema of the field vole (Microtus agrestis, Rodentia). Arch Oral Biol 2004; 50:401-9. [PMID: 15748693 DOI: 10.1016/j.archoralbio.2004.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 10/10/2004] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Odontogenesis in voles is a convenient model to test hypotheses on tooth development generated from investigations in the mouse. Similar to other rodents, the functional dentition of the vole includes a toothless diastema. At its mesial end, a vestigial tooth bud has been found in the upper jaw of vole embryos. The aim of this study was to analyse the developmental dynamics of vestigial tooth structures in the upper diastema of the field vole and to compare it with the situation in the mouse. DESIGN The development of odontogenic structures in the upper diastema of the field vole was investigated using serial histological sections and three-dimensional (3D) computer-aided reconstruction. RESULTS A transient continuous dental lamina in the upper diastema of the field vole extended mesially to the first molar primordium, but was not continuous with the dental lamina in the incisor region. At its mesial limit, a large vestigial tooth primordium was regularly present. A further distinct vestigial bud was located mesially to the first molar primordium. The segmentation of the dental lamina suggested a potential to give rise to further vestiges in the upper diastema of the vole. CONCLUSIONS In the prospective diastema of the vole exists as in the mouse a continuous dental lamina. Beside the prominent vestigial tooth bud in the mesial diastema, a further large bud was transiently located in front of the molars. The incorporation of dental epithelium into the first upper molar (M(1)) primordium in the vole differs from that in the mouse.
Collapse
Affiliation(s)
- Kirsti Witter
- Institute of Histology and Embryology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Wien, Austria.
| | | | | | | | | | | |
Collapse
|
38
|
Wu P, Hou L, Plikus M, Hughes M, Scehnet J, Suksaweang S, Widelitz RB, Jiang TX, Chuong CM. Evo-Devo of amniote integuments and appendages. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2004; 48:249-70. [PMID: 15272390 PMCID: PMC4386668 DOI: 10.1387/ijdb.041825pw] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Integuments form the boundary between an organism and the environment. The evolution of novel developmental mechanisms in integuments and appendages allows animals to live in diverse ecological environments. Here we focus on amniotes. The major achievement for reptile skin is an adaptation to the land with the formation of a successful barrier. The stratum corneum enables this barrier to prevent water loss from the skin and allowed amphibian / reptile ancestors to go onto the land. Overlapping scales and production of beta-keratins provide strong protection. Epidermal invagination led to the formation of avian feather and mammalian hair follicles in the dermis. Both adopted a proximal - distal growth mode which maintains endothermy. Feathers form hierarchical branches which produce the vane that makes flight possible. Recent discoveries of feathered dinosaurs in China inspire new thinking on the origin of feathers. In the laboratory, epithelial - mesenchymal recombinations and molecular mis-expressions were carried out to test the plasticity of epithelial organ formation. We review the work on the transformation of scales into feathers, conversion between barbs and rachis and the production of "chicken teeth". In mammals, tilting the balance of the BMP pathway in K14 noggin transgenic mice alters the number, size and phenotypes of different ectodermal organs, making investigators rethink the distinction between morpho-regulation and pathological changes. Models on the evolution of feathers and hairs from reptile integuments are discussed. A hypothetical Evo-Devo space where diverse integument appendages can be placed according to complex phenotypes and novel developmental mechanisms is presented.
Collapse
Affiliation(s)
- Ping Wu
- Department of Pathology, University of Southern California, Los Angeles
| | - Lianhai Hou
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing
| | - Maksim Plikus
- Department of Pathology, University of Southern California, Los Angeles
| | - Michael Hughes
- Department of Pathology, University of Southern California, Los Angeles
| | - Jeffrey Scehnet
- Department of Pathology, University of Southern California, Los Angeles
| | - Sanong Suksaweang
- Department of Pathology, University of Southern California, Los Angeles
| | | | - Ting-Xin Jiang
- Department of Pathology, University of Southern California, Los Angeles
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles
- Corresponding author: Cheng-Ming Chuong, HMR 315B, Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA USA 90033, Tel: 323 442-1296, Fax: 323 442-3049,
| |
Collapse
|
39
|
Kangas AT, Evans AR, Thesleff I, Jernvall J. Nonindependence of mammalian dental characters. Nature 2004; 432:211-4. [PMID: 15538367 DOI: 10.1038/nature02927] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Accepted: 08/12/2004] [Indexed: 11/08/2022]
Abstract
Studies of mammalian evolution frequently use data derived from the dentition. Dental characters are particularly central for inferring phylogenetic relationships of fossil taxa, of which teeth are often the only recovered part. The use of different aspects of dental morphology as phylogenetic signals implies the independence of dental characters from each other. Here we report, however, that, at least developmentally, most dental characters may be nonindependent. We investigated how three different levels of the cell signalling protein ectodysplasin (Eda) changed dental characters in mouse. We found that with increasing expression levels of this one gene, the number of cusps increases, cusp shapes and positions change, longitudinal crests form, and number of teeth increases. The consistent modification of characters related to lateral placement of cusps can be traced to a small difference in the formation of an early signalling centre at the onset of tooth crown formation. Our results suggest that most aspects of tooth shape have the developmental potential for correlated changes during evolution which may, if not taken into account, obscure phylogenetic history.
Collapse
Affiliation(s)
- Aapo T Kangas
- Developmental Biology Program, Institute of Biotechnology, PO Box 56, FIN-00014, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
40
|
Teaford MF. Back to the future. Evol Anthropol 2004. [DOI: 10.1002/evan.20016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Haldeman RJ, Cooper LF, Hart TC, Phillips C, Boyd C, Lester GE, Wright JT. Increased bone density associated with DLX3 mutation in the tricho-dento-osseous syndrome. Bone 2004; 35:988-97. [PMID: 15454107 DOI: 10.1016/j.bone.2004.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 06/04/2004] [Indexed: 11/18/2022]
Abstract
Tricho-dento-osseous syndrome (TDO) (OMIM #190320) is an autosomal dominant disorder characterized and named for the three most commonly affected tissues hair, teeth, and bones. Common to all individuals with TDO studied to date is a four base-pair deletion in the DLX3 gene on chromosome 17q21. This mutation is associated with a variable bone phenotype that includes alteration in intramembranous bone formation in the skull. The purpose of this study was to characterize and compare endochondral bone phenotypes and variability at central and peripheral locations of the skeleton by evaluating bone density in individuals having the same DLX3, 4 bp DEL,NT3198 mutation (OMIM 600525) and non-affected family members using dual-energy x-ray absorptiometry (DEXA). Thirty-four individuals (20 TDO-affected and 14 non-affected) participated in this prospective study. All participants were evaluated for the DLX3 mutation associated with TDO. All subjects received DEXA scans at common, literature-supported osteoporotic test regions including: (1) non-dominant distal radius/ulna, (2) femoral neck, and (3) lumbar spine L2-4. There was a significant increase (P < 0.05) in bone mineral density in TDO-affected individuals compared with control individuals at each test region. The markedly increased bone density in individuals having the DLX3, 4 bp DEL,NT3198 mutation shows that this alteration affects both endochondral and intramembranous bone formation and suggests that the DLX3 gene is important in bone formation and/or homeostasis of the appendicular skeleton.
Collapse
Affiliation(s)
- Ryan J Haldeman
- Department of Pediatric Dentistry, School of Dentistry Brauer Hall CB, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7450, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Trapani J. A morphometric analysis of polymorphism in the pharyngeal dentition of Cichlasoma minckleyi (Teleostei: Cichlidae). Arch Oral Biol 2004; 49:825-35. [PMID: 15308427 DOI: 10.1016/j.archoralbio.2004.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
Dental polymorphism in teleost fishes often involves production of a robust dentition, or "molarization", in one morph. The lower pharyngeals of a sample of wild-caught individuals of the polymorphic Cuatro Cienegas cichlid, Cichlasoma minckleyi (Kornfield and Taylor) (Proc. Biol. Soc. Wash. 96 (1983) 253), were measured to investigate morphological changes associated with molarization. Principal components analysis demonstrates that dental variability in this species increases in larger fish, and that only the molariform morph contributes to this increase. Reduced major axis regression analyses between pairs of variables indicate that the papilliform morph increases both tooth measures and numbers, whereas the molariform morph maintains a relatively constant number of teeth as it produces teeth of progressively larger size. In the papilliform morph, negative allometric scaling between tooth size and dentigerous area is compensated for by addition of teeth. Tooth size variables are isometric in the molariform morph, and tooth numbers are nearly static. These results are consistent with those reported for other polymorphic cichlid species. Further study is required to elucidate the mechanisms whereby tooth form in polyphyodont species may respond to environmental factors (like food hardness), but possibilities include direct mechanical influences or transmission of signals via nerves to developing replacement teeth.
Collapse
Affiliation(s)
- Josh Trapani
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder 80309-0334, USA.
| |
Collapse
|
43
|
Hlusko LJ, Maas ML, Mahaney MC. Statistical genetics of molar cusp patterning in pedigreed baboons: implications for primate dental development and evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2004; 302:268-83. [PMID: 15211686 DOI: 10.1002/jez.b.21] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene expression and knock-out studies provide considerable information about the genetic mechanisms required for tooth organogenesis. Quantitative genetic studies of normal phenotypic variation are complementary to these developmental studies and may help elucidate the genes and mechanisms that contribute to the normal population-level phenotypic variation upon which selection acts. Here we present the first quantitative genetic analysis of molar cusp positioning in mammals. We analyzed quantitative measures of molar cusp position in a captive pedigreed baboon breeding colony housed at the Southwest National Primate Research Center in San Antonio, Texas. Our results reveal complete pleiotropy between antimeric pairs of traits--i.e., they are influenced by the same gene or suite of genes. Mandibular morphological homologues in the molar series also exhibit complete pleiotropy. In contrast, morphological homologues in maxillary molar series appear to be influenced by partial, incomplete pleiotropic effects. Variation in the mandibular mesial and distal molar loph orientation on the same molar crown is estimated to be genetically independent, whereas the maxillary molar mesial and distal loph orientation is estimated to have partially overlapping genetic affects. The differences between the maxillary and mandibular molar patterning, and the degree of genetic independence found between lophs on the same molar crown, may be indicative of previously unrecognized levels of modularity in the primate dentition.
Collapse
Affiliation(s)
- Leslea J Hlusko
- Department of Anthropology, University of Illinois, Urbana, Illinois 61801,USA.
| | | | | |
Collapse
|
44
|
Peterková R, Peterka M, Lesot H. The developing mouse dentition: a new tool for apoptosis study. Ann N Y Acad Sci 2004; 1010:453-66. [PMID: 15033770 DOI: 10.1196/annals.1299.083] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Developing limb or differentiating neural and blood cells are traditional models used to study programmed cell death in mammals. The developing mouse dentition can also be an attractive model for studying apoptosis regulation. Apoptosis is most extant during early odontogenesis in mice. The embryonic tooth pattern is comprised not only of anlagen of functional teeth (incisor, molars), but also of vestiges of ancestral tooth primordia that must be suppressed. Apoptosis is involved in (a) the elimination of vestigial tooth primordia in the prospective toothless gap (diastema) between the incisor and molars and (b) the shaping of germs in functional teeth. This type of apoptosis occurs in the dental epithelium according to a characteristic temporo-spatial pattern. Where apoptosis concentrates, specific signaling is also found. We proposed a hypothesis to explain the stimulation of apoptosis in the dental epithelium by integrating two concepts: (1) The regulation of epithelial budding by positional information generated from interactions between growth-activating and growth-inhibiting signals, and (2) apoptosis stimulation by the failure of death-suppressing signals. During the budding of the dental epithelium, local excess in growth inhibitors (e.g., Bmps) might lead to the epithelial cells' failure to receive adequate growth-activating (apoptosis-suppressing) signals (e.g., Fgfs). The resulting signal imbalance leads to cell "suicide" by apoptosis. Understanding of apoptosis regulation in the vestigial tooth primordia can help to elucidate the mechanism of their suppression during evolution and to identify factors essential for tooth survival. The latter knowledge will be important for developing a technology of tooth engineering.
Collapse
Affiliation(s)
- Renata Peterková
- Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | | | |
Collapse
|
45
|
Weiss KM. Thomas Henry Huxley (1825-1895) puts us in our place. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2004; 302:196-206. [PMID: 15211682 DOI: 10.1002/jez.b.21000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Thomas Huxley was one of the 19th century's most active defenders of Darwin's idea that life has evolved through natural processes. An anatomist and paleontologist, he extended his energies to science and education policy, the democratization of science, and the broad societal implications of evolution. Since his time the fossil record has greatly improved and the genetic 'revolution' has occurred, deepening our understanding of primate and human evolution in ways that would please Huxley: improved systematics relies heavily on genetic data, and molecular technologies are opening our understanding of the genetic basis of complex traits of traditional anthropological interest-but in ways that are thoroughly dependent on the fact of evolution. A more unified biological synthesis is forming that unites genes, developmental process, structure, and inheritance. But the tempo and mode of evolution remain unresolved. Huxley was one of many who have had trouble accepting Darwin's gradual natural selection as the central evolutionary mechanism, and views spanning the antipodes of gradualism and saltation find advocates even in our genetic era.
Collapse
Affiliation(s)
- Kenneth M Weiss
- Department of Anthropology, Penn State University, University Park, Pennsylvania, 16802, USA.
| |
Collapse
|
46
|
Abstract
Recent advances in computed tomography (CT) and genetics provide new insights into the morphology and biology of anatomical traits, particularly in the dentition. As we move towards a fuller understanding of the genetic and developmental bases for dental traits, we need to reassess the taxonomic and evolutionary variation of established characters. Quantitative genetic analyses indicate that the degree of expression of upper and lower primate cingular remnants are genetically interdependent. This has serious evolutionary implications that need to be explored for fossil hominids. Studies of Carabelli's cusp, a cingular remnant on hominid upper molars, have been advanced through both genetic and CT analyses setting the stage for such an investigation. But its mandibular morphological homologue, the protostylid has not been similarly studied. This paper represents the first step towards a quantitative understanding of the variation and evolution of this trait in early hominids. Since the first discoveries of Australopithecus specimens in South Africa more than sixty years ago, cingular features on lower molars have played a significant role in the description and comparison of hominid taxa. This largely qualitative history is reviewed. Because the modern human classification system for protostylid variation does not adequately describe the variation seen in Australopithecus samples, a quantification scheme with six expression states is established. Using this new protocol, protostylid variation in six species of Australopithecus is assessed. Results from these analyses show that the distribution of the degree of protostylid expression in these species is highly varied. When first, second, and third molar samples are considered separately, the distribution of expression states is found to differ considerably within the same species. These results provide a foundation for further genetic and developmental research on the evolutionary history of the hominid dentition.
Collapse
Affiliation(s)
- Leslea J Hlusko
- Department of Anthropology, University of Illinois, 109 Davenport Hall, MC-148, 607 S. Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
47
|
Abstract
Primitive mammalian molar morphology is characterised in part by a ridge of enamel that encircles the entire base of the molar crown, the cingulum. Many higher primates have reduced the cingulum, but often retain remnant features on the lingual surface of maxillary molars and the labial surface of mandibular molars. Two of these remnants in cercopithecoid primates, the interconulus and interconulid, are morphologically similar though the interconulus is found on maxillary molars and the interconulid is located on mandibular molars. Here we present results from a quantitative genetic analysis of expression of these two traits in a sample of 479 modern savannah baboons from the Southwest Foundation for Biomedical Research (SFBR). We found that both traits are significantly heritable with little variance attributable to other factors, such as sex, age, and molar crown size. Bivariate analyses yielded point estimates for genetic correlations between left and right side expression that are either equal to or not significantly different from 1.0; meaning that 100% of their additive genetic variance is due to the effects of the same gene or suite of genes. By contrast, our estimates of the genetic correlations between maxillary and mandibular expression of this trait range from 0.52 to 0.72, suggesting that 28-52% of the additive genetic variance in the interconulus and interconulid is due to the effects of shared genes. These results demonstrate that intra-arch expression is characterised by complete pleiotropy whereas inter-arch expression is caused by incomplete pleiotropy. These results are relevant to dental developmental studies as well as paleontological analyses of the evolution of the primate dentition.
Collapse
Affiliation(s)
- Leslea J Hlusko
- Department of Anthropology, University of Illinois at Urbana-Champaign, 109 Davenport Hall, MC-148, Urbana, IL 61801, USA.
| | | |
Collapse
|
48
|
Abstract
New evidence shows that teeth evolved with a greater degree of independence from jaws than previously considered. Pharyngeal denticles occur in jawless fish and also in early gnathostomes and precede jaw teeth in phylogeny. Many of these denticles form joined polarized sets on each branchial arch; these resemble whorl-shaped tooth sets on the jaws of stem and crown gnathostomes and are proposed as homologous units. Therefore, the source of patterning of these pharyngeal denticle and tooth sets is conserved from jawless conditions. It is proposed that developmental regulatory systems, responsible for all such tooth patterns on the jaws, are co-opted from the pharyngeal region and not from the skin as classically understood. This strongly implicates embryonic endoderm as opposed to ectoderm in the genetic control of dentition patterning. New interpretations of ontogenetic data on patterning dentitions of extant sharks are proposed, together with those of osteichthyan fish. Two entirely fossil groups, placoderms and acanthodians, at the base of gnathostome phylogeny are reassessed on the basis of a new model. It is concluded that within stem group and crown group gnathostomes several different strategies, unique to each taxon, were adopted to produce different developmental models of dentition patterning from pharyngeal denticles. One shared developmental pattern is that of initiation from primordial tooth sites, independently in each dentate zone of the jaws. The new model is proposed as a framework for data on evolutionary developmental genetics.
Collapse
Affiliation(s)
- Moya Meredith Smith
- Department of Craniofacial Development, Dental Institute KCL, Guy's Tower, London Bridge, SE1 9RT, UK.
| |
Collapse
|
49
|
Peterková R, Peterka M, Viriot L, Lesot H. Development of the vestigial tooth primordia as part of mouse odontogenesis. Connect Tissue Res 2003; 43:120-8. [PMID: 12489147 DOI: 10.1080/03008200290000745] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mouse functional dentition comprises one incisor separated from three molars by a toothless diastema in each dental quadrant. Between the incisor and molars, the embryonic tooth pattern also includes vestigial dental primordia, which undergo regression involving apoptosis in their epithelium. Apoptosis appears to play an important role in achieving the specific tooth pattern in the mouse. We documented similarities in the folding mechanism allowing the formation of the dental lamina in mice as well as in reptiles. While further budding on this dental lamina gives rise to many individual simple tooth primordia in crocodiles and lizards, budding morphogenesis of several simple tooth primordia appears to be integrated in the mouse, giving rise to enamel organs of a complex nature. The differentiation of a mammalian tooth germ during both ontogeny and phylogeny might thus include the concrescence (connation) of more primordia, putatively corresponding to simple teeth in mammalian ancestors.
Collapse
Affiliation(s)
- R Peterková
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
50
|
Witter K, Matulová P, Mísek I. The lateral enamel lamina--component of tooth primordia in selected mammalian species. Connect Tissue Res 2003; 43:134-7. [PMID: 12494916 DOI: 10.1080/03008200290000646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The lateral enamel lamina (LEL) is a part of the enamel organ, which is probably not involved in tooth formation. It represents, besides the "stalk" of the tooth primordium, a second interconnection between enamel organ and oral epithelium or vestibular lamina. We detected the LEL in the sheep (Ovis aries), the dolphin (Stenella attenuata), and the vole (Microtus agrestis) by light microscopy and computer-aided three-dimensional reconstruction. The LEL could be found in cap to bell stage tooth primordia, most clearly in slowly developing tooth germs. LEL-like structures have been furthermore described or depicted in tooth germs of the mouse, the elk (Alces alces), the dugong (Dugong dugong), the elephant (Loxodonta africana), and the human. Probably it is a part of all mammalian tooth primordia that undergoes regression during morphogenesis of the enamel organ. As a reducing structure, it should be considered in studies of tooth development.
Collapse
Affiliation(s)
- K Witter
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Department of Anatomy, Histology and Embryology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| | | | | |
Collapse
|