1
|
Lasnon C, Morel A, Aide N, Silva AD, Emile G. Baseline and early 18F-FDG PET/CT evaluations as predictors of progression-free survival in metastatic breast cancer patients treated with targeted anti-CDK therapy. Cancer Imaging 2024; 24:90. [PMID: 38982546 PMCID: PMC11232230 DOI: 10.1186/s40644-024-00727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Exploring the value of baseline and early 18F-FDG PET/CT evaluations in prediction PFS in ER+/HER2- metastatic breast cancer patients treated with a cyclin-dependent kinase inhibitor in combination with an endocrine therapy. METHODS Sixty-six consecutive breast cancer patients who underwent a pre-therapeutic 18F-FDG PET/CT and a second PET/CT within the first 6 months of treatment were retrospectively included. Metabolic tumour volume (MTV) and total lesion glycolysis (TLG) and Dmax, which represents tumour dissemination and is defined as the distance between the two most distant lesions, were computed. The variation in these parameters between baseline and early evaluation PET as well as therapeutic evaluation using PERCIST were assessed as prognosticators of PFS at 18 months. RESULTS The median follow-up was equal to 22.5 months. Thirty progressions occurred (45.4%). The average time to event was 17.8 ± 10.4 months. At baseline, Dmax was the only predictive metabolic parameter. Patients with a baseline Dmax ≤ 18.10 cm had a significantly better 18 m-PFS survival than the others: 69.2% (7.7%) versus 36.7% (8.8%), p = 0.017. There was no association between PERCIST evaluation and 18 m-PFS status (p = 0.149) and there was no difference in 18 m-PFS status between patients classified as complete, partial metabolic responders or having stable metabolic disease. CONCLUSION Disease spread at baseline PET, as assessed by Dmax, is predictive of an event occurring within 18 months. In the absence of early metabolic progression, which occurs in 15% of patients, treatment should be continued regardless of the quality of the initial response to treatment.
Collapse
Affiliation(s)
- Charline Lasnon
- Nuclear Medicine Department, François Baclesse Comprehensive Cancer Center, UNICANCER, 3 Avenue du General Harris, BP 45026, Caen Cedex 5, 14076, France.
- UNICAEN, INSERM 1086 ANTICIPE, Normandy University, Caen, France.
| | - Adeline Morel
- Medical Oncology Department, François Baclesse Comprehensive Cancer Center, UNICANCER, Caen, France
| | - Nicolas Aide
- UNICAEN, INSERM 1086 ANTICIPE, Normandy University, Caen, France
| | - Angélique Da Silva
- Medical Oncology Department, François Baclesse Comprehensive Cancer Center, UNICANCER, Caen, France
| | - George Emile
- Medical Oncology Department, François Baclesse Comprehensive Cancer Center, UNICANCER, Caen, France
| |
Collapse
|
2
|
Talia M, Cirillo F, Scordamaglia D, Di Dio M, Zicarelli A, De Rosis S, Miglietta AM, Capalbo C, De Francesco EM, Belfiore A, Grande F, Rizzuti B, Occhiuzzi MA, Fortino G, Guzzo A, Greco G, Maggiolini M, Lappano R. The G Protein Estrogen Receptor (GPER) is involved in the resistance to the CDK4/6 inhibitor palbociclib in breast cancer. J Exp Clin Cancer Res 2024; 43:171. [PMID: 38886784 PMCID: PMC11184778 DOI: 10.1186/s13046-024-03096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The cyclin D1-cyclin dependent kinases (CDK)4/6 inhibitor palbociclib in combination with endocrine therapy shows remarkable efficacy in the management of estrogen receptor (ER)-positive and HER2-negative advanced breast cancer (BC). Nevertheless, resistance to palbociclib frequently arises, highlighting the need to identify new targets toward more comprehensive therapeutic strategies in BC patients. METHODS BC cell lines resistant to palbociclib were generated and used as a model system. Gene silencing techniques and overexpression experiments, real-time PCR, immunoblotting and chromatin immunoprecipitation studies as well as cell viability, colony and 3D spheroid formation assays served to evaluate the involvement of the G protein-coupled estrogen receptor (GPER) in the resistance to palbociclib in BC cells. Molecular docking simulations were also performed to investigate the potential interaction of palbociclib with GPER. Furthermore, BC cells co-cultured with cancer-associated fibroblasts (CAFs) isolated from mammary carcinoma, were used to investigate whether GPER signaling may contribute to functional cell interactions within the tumor microenvironment toward palbociclib resistance. Finally, by bioinformatics analyses and k-means clustering on clinical and expression data of large cohorts of BC patients, the clinical significance of novel mediators of palbociclib resistance was explored. RESULTS Dissecting the molecular events that characterize ER-positive BC cells resistant to palbociclib, the down-regulation of ERα along with the up-regulation of GPER were found. To evaluate the molecular events involved in the up-regulation of GPER, we determined that the epidermal growth factor receptor (EGFR) interacts with the promoter region of GPER and stimulates its expression toward BC cells resistance to palbociclib treatment. Adding further cues to these data, we ascertained that palbociclib does induce pro-inflammatory transcriptional events via GPER signaling in CAFs. Of note, by performing co-culture assays we demonstrated that GPER contributes to the reduced sensitivity to palbociclib also facilitating the functional interaction between BC cells and main components of the tumor microenvironment named CAFs. CONCLUSIONS Overall, our results provide novel insights on the molecular events through which GPER may contribute to palbociclib resistance in BC cells. Additional investigations are warranted in order to assess whether targeting the GPER-mediated interactions between BC cells and CAFs may be useful in more comprehensive therapeutic approaches of BC resistant to palbociclib.
Collapse
Affiliation(s)
- Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Marika Di Dio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Salvatore De Rosis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Regional Hospital Cosenza, Cosenza, 87100, Italy
| | - Carlo Capalbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
- Complex Operative Oncology Unit, Regional Hospital Cosenza, Cosenza, 87100, Italy
| | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, 95122, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Bruno Rizzuti
- Department of Physics, CNR-NANOTEC, SS Rende (CS), University of Calabria, Rende, CS, 87036, Italy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, Zaragoza, 50018, Spain
| | | | - Giancarlo Fortino
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende, 87036, Italy
| | - Antonella Guzzo
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende, 87036, Italy
| | - Gianluigi Greco
- Department of Mathematics and Computer Science, University of Calabria, Cosenza, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
3
|
Cavalu S, Abdelhamid AM, Saber S, Elmorsy EA, Hamad RS, Abdel-Reheim MA, Yahya G, Salama MM. Cell cycle machinery in oncology: A comprehensive review of therapeutic targets. FASEB J 2024; 38:e23734. [PMID: 38847486 DOI: 10.1096/fj.202400769r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
The cell cycle is tightly regulated to ensure controlled cell proliferation. Dysregulation of the cell cycle machinery is a hallmark of cancer that leads to unchecked growth. This review comprehensively analyzes key molecular regulators of the cell cycle and how they contribute to carcinogenesis when mutated or overexpressed. It focuses on cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors, checkpoint kinases, and mitotic regulators as therapeutic targets. Promising strategies include CDK4/6 inhibitors like palbociclib, ribociclib, and abemaciclib for breast cancer treatment. Other possible targets include the anaphase-promoting complex/cyclosome (APC/C), Skp2, p21, and aurora kinase inhibitors. However, challenges with resistance have limited clinical successes so far. Future efforts should focus on combinatorial therapies, next-generation inhibitors, and biomarkers for patient selection. Targeting the cell cycle holds promise but further optimization is necessary to fully exploit it as an anti-cancer strategy across diverse malignancies.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia, Egypt
| | - Mohamed M Salama
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
4
|
Hu J, Zhu BY, Niu ZX. Catalysts of Healing: A Symphony of Synthesis and Clinical Artistry in Small-Molecule Agents for Breast Cancer Alleviation. Molecules 2024; 29:1166. [PMID: 38474678 DOI: 10.3390/molecules29051166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer, characterized by its molecular intricacy, has witnessed a surge in targeted therapeutics owing to the rise of small-molecule drugs. These entities, derived from cutting-edge synthetic routes, often encompassing multistage reactions and chiral synthesis, target a spectrum of oncogenic pathways. Their mechanisms of action range from modulating hormone receptor signaling and inhibiting kinase activity, to impeding DNA damage repair mechanisms. Clinical applications of these drugs have resulted in enhanced patient survival rates, reduction in disease recurrence, and improved overall therapeutic indices. Notably, certain molecules have showcased efficacy in drug-resistant breast cancer phenotypes, highlighting their potential in addressing treatment challenges. The evolution and approval of small-molecule drugs have ushered in a new era for breast cancer therapeutics. Their tailored synthetic pathways and defined mechanisms of action have augmented the precision and efficacy of treatment regimens, paving the way for improved patient outcomes in the face of this pervasive malignancy. The present review embarks on a detailed exploration of small-molecule drugs that have secured regulatory approval for breast cancer treatment, emphasizing their clinical applications, synthetic pathways, and distinct mechanisms of action.
Collapse
Affiliation(s)
- Jing Hu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Bi-Yue Zhu
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Department of Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Zhen-Xi Niu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| |
Collapse
|
5
|
Cayo A, Venturini W, Rebolledo-Mira D, Moore-Carrasco R, Herrada AA, Nova-Lamperti E, Valenzuela C, Brown NE. Palbociclib-Induced Cellular Senescence Is Modulated by the mTOR Complex 1 and Autophagy. Int J Mol Sci 2023; 24:ijms24119284. [PMID: 37298236 DOI: 10.3390/ijms24119284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Despite not dividing, senescent cells acquire the ability to synthesize and secrete a plethora of bioactive molecules, a feature known as the senescence-associated secretory phenotype (SASP). In addition, senescent cells often upregulate autophagy, a catalytic process that improves cell viability in stress-challenged cells. Notably, this "senescence-related autophagy" can provide free amino acids for the activation of mTORC1 and the synthesis of SASP components. However, little is known about the functional status of mTORC1 in models of senescence induced by CDK4/6 inhibitors (e.g., Palbociclib), or the effects that the inhibition of mTORC1 or the combined inhibition of mTORC1 and autophagy have on senescence and the SASP. Herein, we examined the effects of mTORC1 inhibition, with or without concomitant autophagy inhibition, on Palbociclib-driven senescent AGS and MCF-7 cells. We also assessed the pro-tumorigenic effects of conditioned media from Palbociclib-driven senescent cells with the inhibition of mTORC1, or with the combined inhibition of mTORC1 and autophagy. We found that Palbociclib-driven senescent cells display a partially reduced activity of mTORC1 accompanied by increased levels of autophagy. Interestingly, further mTORC1 inhibition exacerbated the senescent phenotype, a phenomenon that was reversed upon autophagy inhibition. Finally, the SASP varied upon inhibiting mTORC1, or upon the combined inhibition of mTORC1 and autophagy, generating diverse responses in cell proliferation, invasion, and migration of non-senescent tumorigenic cells. Overall, variations in the SASP of Palbociclib-driven senescent cells with the concomitant inhibition of mTORC1 seem to depend on autophagy.
Collapse
Affiliation(s)
- Angel Cayo
- Center for Medical Research, School of Medicine, University of Talca, Talca 3460000, Chile
- Institute for Interdisciplinary Research, Academic Vice Rectory, University of Talca, Talca 3460000, Chile
| | - Whitney Venturini
- Center for Medical Research, School of Medicine, University of Talca, Talca 3460000, Chile
- Institute for Interdisciplinary Research, Academic Vice Rectory, University of Talca, Talca 3460000, Chile
| | - Danitza Rebolledo-Mira
- Center for Medical Research, School of Medicine, University of Talca, Talca 3460000, Chile
| | - Rodrigo Moore-Carrasco
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile
| | - Andrés A Herrada
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca 3467987, Chile
| | - Estefanía Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, Universidad de Concepción, Concepción 4070386, Chile
| | - Claudio Valenzuela
- Center for Medical Research, School of Medicine, University of Talca, Talca 3460000, Chile
| | - Nelson E Brown
- Center for Medical Research, School of Medicine, University of Talca, Talca 3460000, Chile
| |
Collapse
|
6
|
Huang CY, Wei PL, Prince GMSH, Batzorig U, Lee CC, Chang YJ, Hung CS. The Role of Thrombomodulin in Estrogen-Receptor-Positive Breast Cancer Progression, Metastasis, and Curcumin Sensitivity. Biomedicines 2023; 11:biomedicines11051384. [PMID: 37239055 DOI: 10.3390/biomedicines11051384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Estrogen and estrogen receptors (ER) play a key role in breast cancer progression, which can be treated with endocrine therapy. Nevertheless, resistance to endocrine therapies is developed over time. The tumor expression of thrombomodulin (TM) is correlated with favorable prognosis in several types of cancer. However, this correlation has not yet been confirmed in ER-positive (ER+) breast cancer. This study aims to evaluate the role of TM in ER+ breast cancer. Firstly, we found that lower TM expression correlates to poor overall survival (OS) and relapse-free survival (RFS) rates in ER+ breast cancer patients through Kaplan-Meier survival analysis (p < 0.05). Silencing TM in MCF7 cells (TM-KD) increased cell proliferation, migration, and invasion ability. Additionally, TM-KD MCF7 cells showed higher sensitivity (IC50 15 μM) to the anti-cancer agent curcumin than the scrambled control cells. Conversely, overexpression of TM (TM-over) in T47D cells leads to decreased cell proliferation, migration, and invasion ability. Furthermore, TM-over T47D cells showed more resistance (IC50 > 40 μM) to the curcumin treatment. The PI staining, DAPI, and tunnel assay also confirmed that the curcumin-induced apoptosis in TM-KD MCF7 cells was higher (90.34%) than in the scrambled control cells (48.54%). Finally, the expressions of drug-resistant genes (ABCC1, LRP1, MRP5, and MDR1) were determined by qPCR. We found that the relative mRNA expression levels of ABCC1, LRP1, and MDR1 genes after curcumin treatment were higher in scrambled control cells than in TM-KD cells. In conclusion, our results demonstrated that TM plays a suppressive role in the progression and metastasis of ER+ breast cancer, and it regulates curcumin sensitivity by interfering with ABCC1, LRP1, and MDR1 gene expression.
Collapse
Affiliation(s)
- Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - G M Shazzad Hossain Prince
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Uyanga Batzorig
- Department of Dermatology, University of California, La Jolla, San Diego, CA 92093, USA
| | - Cheng-Chin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Jia Chang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Chin-Sheng Hung
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
7
|
Dabbs DJ, Huang RS, Ross JS. Novel markers in breast pathology. Histopathology 2023; 82:119-139. [PMID: 36468266 DOI: 10.1111/his.14770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022]
Abstract
Breast pathology is an ever-expanding database of information which includes markers, or biomarkers, that detect or help treat the disease as prognostic or predictive information. This review focuses on these aspects of biomarkers which are grounded in immunohistochemistry, liquid biopsies and next-generation sequencing.
Collapse
Affiliation(s)
- David J Dabbs
- PreludeDx, Laguna Hills, CA, USA.,Department of Pathology, University of Pittsburgh, Board Member, CASI (Consortium for Analytical Standardization in Immunohistochemistry), Pittsburgh, PA, USA
| | - Richard S Huang
- Clinical Development, Foundation Medicine, Cambridge, MA, USA
| | | |
Collapse
|
8
|
Calucică DM, Manda CV, Găman AM, Răileanu Ș, Stanca L, Popescu MDE, Mateescu OG, Biță A, Croitoru O, Neamțu SD. Development of a SPE-LC-MS Method for the Quantitation of Palbociclib and Abemaciclib in Human Plasma. Molecules 2022; 27:molecules27238604. [PMID: 36500697 PMCID: PMC9736392 DOI: 10.3390/molecules27238604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Palbociclib and abemaciclib are two cyclin-dependent kinases 4 and 6 used for breast cancer treatment. Levels of these medicines present a significant interindividual variability, so monitoring those concentrations might be necessary in therapy. Most of the methods presented so far in the literature use simple protein precipitation of plasma proteins as sample preparation method followed by direct injection of the supernatant into the LC instrument, preceded or not by a simple filtration step. Within that approach, the probability of injecting proteins in the chromatographic system is increased. With the purpose of obtaining a cleaner extract of the drugs, we developed and validated a simple and accurate LC-MS method for determining palbociclib and abemaciclib in human plasma. Solid phase extraction (SPE) using Oasis PRiME HLB® cartridges was used for plasma sample preparation. The method provided clean extracts with a recovery extraction higher than 85% for both compounds. Separation was achieved by high-performance liquid chromatography (HPLC), using a C18 (4.6 × 50 mm) column, with a gradient elution of ammonium acetate/acetic acid-acetonitrile as the mobile phase. Detection was performed by mass spectrometry (MS) in single ion recording (SIR) mode. Intra-day and inter-day precision data for both analytes were 3.8-7.2% and 3.6-7.4%, respectively. Calibration curves were both linear between 2 and 400 ng/mL with a correlation coefficient higher than 0.998. The LC-MS method can be used to quantify the drugs in human plasma in routine analysis. The method proved to be useful in determining real plasma levels in patients involved in cancer therapy. Drug concentrations were determined in a 10 min run-time, including re-equilibration of the column.
Collapse
Affiliation(s)
- Daniela Maria Calucică
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Costel-Valentin Manda
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Correspondence:
| | - Amelia Maria Găman
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Ștefan Răileanu
- Clinic Oncology Municipal Hospital “Filantropia”, Filantropiei Street No. 1, 200638 Craiova, Romania
| | - Liliana Stanca
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | | | | | - Andrei Biță
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Octavian Croitoru
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Simona-Daniela Neamțu
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| |
Collapse
|
9
|
Thiel JT, Daigeler A, Kolbenschlag J, Rachunek K, Hoffmann S. The Role of CDK Pathway Dysregulation and Its Therapeutic Potential in Soft Tissue Sarcoma. Cancers (Basel) 2022; 14:3380. [PMID: 35884441 PMCID: PMC9323700 DOI: 10.3390/cancers14143380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
Soft tissue sarcomas (STSs) are tumors that are challenging to treat due to their pathologic and molecular heterogeneity and their tumor biology that is not yet fully understood. Recent research indicates that dysregulation of cyclin-dependent kinase (CDK) signaling pathways can be a strong driver of sarcogenesis. CDKs are enzyme forms that play a crucial role in cell-cycle control and transcription. They belong to the protein kinases group and to the serine/threonine kinases subgroup. Recently identified CDK/cyclin complexes and established CDK/cyclin complexes that regulate the cell cycle are involved in the regulation of gene expression through phosphorylation of critical components of transcription and pre-mRNA processing mechanisms. The current and continually growing body of data shows that CDKs play a decisive role in tumor development and are involved in the proliferation and growth of sarcoma cells. Since the abnormal expression or activation of large numbers of CDKs is considered to be characteristic of cancer development and progression, dysregulation of the CDK signaling pathways occurs in many subtypes of STSs. This review discusses how reversal and regulation can be achieved with new therapeutics and summarizes the current evidence from studies regarding CDK modulation for STS treatment.
Collapse
Affiliation(s)
- Johannes Tobias Thiel
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, 72076 Tuebingen, Germany; (A.D.); (J.K.); (K.R.); (S.H.)
| | | | | | | | | |
Collapse
|
10
|
Umfress A, Singh S, Ryan KJ, Chakraborti A, Plattner F, Sonawane Y, Mallareddy JR, Acosta EP, Natarajan A, Bibb JA. Systemic Administration of a Brain Permeable Cdk5 Inhibitor Alters Neurobehavior. Front Pharmacol 2022; 13:863762. [PMID: 35645825 PMCID: PMC9134315 DOI: 10.3389/fphar.2022.863762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a crucial regulator of neuronal signal transduction. Cdk5 activity is implicated in various neuropsychiatric and neurodegenerative conditions such as stress, anxiety, depression, addiction, Alzheimer's disease, and Parkinson's disease. While constitutive Cdk5 knockout is perinatally lethal, conditional knockout mice display resilience to stress-induction, enhanced cognition, neuroprotection from stroke and head trauma, and ameliorated neurodegeneration. Thus, Cdk5 represents a prime target for treatment in a spectrum of neurological and neuropsychiatric conditions. While intracranial infusions or treatment of acutely dissected brain tissue with compounds that inhibit Cdk5 have allowed the study of kinase function and corroborated conditional knockout findings, potent brain-penetrant systemically deliverable Cdk5 inhibitors are extremely limited, and no Cdk5 inhibitor has been approved to treat any neuropsychiatric or degenerative diseases to date. Here, we screened aminopyrazole-based analogs as potential Cdk5 inhibitors and identified a novel analog, 25-106, as a uniquely brain-penetrant anti-Cdk5 drug. We characterize the pharmacokinetic and dynamic responses of 25-106 in mice and functionally validate the effects of Cdk5 inhibition on open field and tail-suspension behaviors. Altogether, 25-106 represents a promising preclinical Cdk5 inhibitor that can be systemically administered with significant potential as a neurological/neuropsychiatric therapeutic.
Collapse
Affiliation(s)
- Alan Umfress
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kevin J. Ryan
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ayanabha Chakraborti
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Yogesh Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jayapal Reddy Mallareddy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Edward P. Acosta
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - James A. Bibb
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Neurobiology and Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Pharmacokinetic/Pharmacodynamic Model of Neutropenia in Real-Life Palbociclib-Treated Patients. Pharmaceutics 2021; 13:pharmaceutics13101708. [PMID: 34684001 PMCID: PMC8537267 DOI: 10.3390/pharmaceutics13101708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Palbociclib is an oral CDK4/6 inhibitor indicated in HR+/HER2- advanced or metastatic breast cancer in combination with hormonotherapy. Its main toxicity is neutropenia. The aim of our study was to describe the kinetics of circulating neutrophils from real-life palbociclib-treated patients. A population pharmacokinetic (popPK) model was first constructed to describe palbociclib pharmacokinetic (PK). Individual PK parameters obtained were then used in the pharmacokinetic/pharmacodynamic (PK/PD) model to depict the relation between palbociclib concentrations and absolute neutrophil counts (ANC). The models were built with a population of 143 patients. Palbociclib samples were routinely collected during therapeutic drug monitoring, whereas ANC were retrospectively retrieved from the patient files. The optimal popPK model was a mono-compartmental model with a first-order absorption constant of 0.187 h-1 and an apparent clearance Cl/F of 57.09 L (32.8% of inter individuality variability (IIV)). The apparent volume of distribution (1580 L) and the lag-time (Tlag: 0.658 h) were fixed to values from the literature. An increase in creatinine clearance and a decrease in alkaline phosphatase led to an increase in palbociclib Cl/F. To describe ANC kinetics during treatment, Friberg's PK/PD model, with linear drug effect, was used. Parameters estimated were Base (2.92 G/L; 29.6% IIV), Slope (0.0011 L/µg; 28.8% IIV), Mean Transit Time (MTT; 5.29 days; 17.9% IIV) and γ (0.102). The only significant covariate was age on the initial ANC (Base), with lower ANC in younger patients. PK/PD model-based simulations show that the higher the estimated CressSS (trough concentration at steady state), the higher the risk of developing neutropenia. In order to present a risk lower than 20% to developing a grade 4 neutropenia, the patient should show an estimated CressSS lower than 100 µg/L.
Collapse
|
12
|
Mazzella Ebstein AM, Barton-Burke M, Anthony V, Smith A, Zhang Z, Robson M. Oral self-management of palbociclib (Ibrance®) using mobile technology protocol. J Adv Nurs 2021; 77:1556-1566. [PMID: 33245144 PMCID: PMC8454747 DOI: 10.1111/jan.14659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022]
Abstract
AIM This study will test the feasibility and effectiveness of mobile technology intervention on the patients' self-management of oral anticancer medication. Secondary objectives include acceptability, the usefulness of text messages, and satisfaction by participants and nurses. METHODS This prospective two-arm study will recruit patients (N = 220) with metastatic breast cancer and initiating treatment with palbociclib (Ibrance ®). Allowing for attrition, patients will be randomized into the control (N = 100) or intervention (N = 100) group. Unidirectional text message reminders will be sent during the treatment cycle through a secure web application using the patient's smartphone. Self-reported survey responses will be collected at three time points; at consent, end of treatment cycles, and the follow-up clinic visit and include a demographic questionnaire, the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire, Post study questionnaire and the R-15 Patient Satisfaction Questionnaire. Nurses providing care for study patients will complete the Adaptation of Stamps Nurse Workload questionnaire. Data will be analysed an intent-to-treat analysis comparing the two arms. Study approval was obtained in December 2019 and funded in January 2020. DISCUSSION Smartphones are globally available and have text messaging capability which is increasingly being used as an intervention in healthcare studies. This study will test a low-cost, nurse-led intervention that enhances the patient's experience with oral anti-cancer medications, improves access to care, reduces costs, and improves the satisfaction of nurses caring for oncology patients. IMPACT Despite the ease of administering oral anti-cancer medications, oncology patients maynot take them as prescribed and consequently, these factors affect patient outcomes and disease control. Given the importance of taking oral anti-cancer medications and the difficulties patients experience in achieving it, the effective use of mobile technology interventions can actively engage patients in their care and improve medication self-management of anticancer treatment regimens.
Collapse
Affiliation(s)
| | - Margaret Barton-Burke
- Office of Nursing Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Venice Anthony
- Breast and Imaging Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Smith
- Breast and Imaging Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhigang Zhang
- Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Robson
- Office of Nursing Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
13
|
Yao J, Jiang X, Liu Q, Yuan X, Feng T, Li K, Zhao L. An available strategy based on accurate mass by ultra high performance liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry technology to characterization of metabolic profile of palbociclib in rat urine, feces and bile. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:37-46. [PMID: 31176268 DOI: 10.1016/j.jchromb.2019.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/09/2019] [Accepted: 05/28/2019] [Indexed: 11/25/2022]
Abstract
Palbociclib (named PD 0332991) is a novel highly selective cyclin-dependent kinase 4 and 6 (CDK 4/6) inhibitor, which has been approved by the Food and Drug Administration (FDA) for the treatment of hormone-receptor-positive advanced breast cancer. This present study developed a comprehensive strategy to investigate the metabolic profile of palbociclib in rat urine, feces and bile samples based on an ultra high performance liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry (UHPLC-FT-ICR MS). A total of 29 metabolites, including 18 phase I metabolites and 11 phase II metabolites, were detected and identified. The metabolic pathways included hydroxylation, oxidation, dehydrogenation, N-dealkylation, carbonylation, oxidative deamination, acetylation, glucuronidation, sulphate conjugation as well as the crossover of multiple metabolic pathways in vivo, and 16 of these metabolites were proposed for the first time. This study showed an insight into the metabolism of palbociclib in vivo, which may provide relevant chemical information for subsequent studies in the future.
Collapse
Affiliation(s)
- Jiaxin Yao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xu Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiao Liu
- Chenzhou No.1 People's Hospital, Chenzhou 423000, China
| | - Xuemei Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tiantian Feng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kunjie Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; Post-doctoral Scientific Research Workstation, Shanghai Pharmaceutical Group, Shanghai 200020, China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
14
|
Watson GA, Deac O, Aslam R, O'Dwyer R, Tierney A, Sukor S, Kennedy J. Real-World Experience of Palbociclib-Induced Adverse Events and Compliance With Complete Blood Count Monitoring in Women With Hormone Receptor–Positive/HER2-Negative Metastatic Breast Cancer. Clin Breast Cancer 2019; 19:e186-e194. [DOI: 10.1016/j.clbc.2018.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 11/16/2022]
|
15
|
Taralli S, Lorusso M, Scolozzi V, Masiello V, Marazzi F, Calcagni ML. Response evaluation with 18F-FDG PET/CT in metastatic breast cancer patients treated with Palbociclib: first experience in clinical practice. Ann Nucl Med 2018; 33:193-200. [PMID: 30569442 DOI: 10.1007/s12149-018-01323-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/02/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Palbociclib is a cyclin-dependent kinase 4/6 inhibitor recently approved for treatment in advanced or metastatic breast cancer (BC) patients. The use of 18F-FDG PET/CT for chemo/endocrine therapy response assessment in BC patients is well reported in the literature, but no studies have evaluated its role for assessing Palbociclib efficacy in clinical practice. Our study aimed to evaluate the potential role of 18F-FDG PET/CT in this setting. METHODS In 12 metastatic BC patients (mean age = 62 ± 10 years) treated with Palbociclib plus endocrine therapy and who underwent a baseline and post-therapy 18F-FDG PET/CT, we retrospectively compared the Metabolic Response Evaluation (MRE, based on PET/CT) to the Standard Response Evaluation (SRE, based on clinico-laboratory and morphological data); we also assessed the influence of additional PET/CT information on the patients' management. RESULTS Compared to SRE, MRE increased the proportion of patients classified with progressive disease from 25 to 50% and differed from SRE in 8/12 patients: 3/8 shifted from stable disease or undetermined response to metabolic progression (more unfavorable category), 4/8 from stable disease to partial or complete metabolic response, and 1/8 from partial response to complete metabolic response (more favorable category). Additional PET/CT information led to a change in patients' management in 3/12 (25%) patients. CONCLUSION In BC patients treated with Palbociclib, additional 18F-FDG PET/CT information seems clinically useful, with respect to personalized management, to early intercept patients who should discontinue Palbociclib because of progressive disease and to select patients requiring a strict monitoring of additional metabolic findings. Further studies are needed to confirm these preliminary results.
Collapse
Affiliation(s)
- Silvia Taralli
- Nuclear Medicine Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.
| | - Margherita Lorusso
- Nuclear Medicine Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy
| | - Valentina Scolozzi
- Nuclear Medicine Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.,Nuclear Medicine Institute, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valeria Masiello
- Radiation Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Fabio Marazzi
- Radiation Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Lucia Calcagni
- Nuclear Medicine Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.,Nuclear Medicine Institute, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
16
|
Fernandes MT, Adashek JJ, Barreto CMN, Spinosa ACB, de Souza Gutierres B, Lopes G, Del Giglio A, Aguiar PN. A paradigm shift for the treatment of hormone receptor-positive, human epidermal growth factor receptor 2-negative (HR+/HER2-) advanced breast cancer: a review of CDK inhibitors. Drugs Context 2018; 7:212555. [PMID: 30416529 PMCID: PMC6220897 DOI: 10.7573/dic.212555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/24/2022] Open
Abstract
In the last 3 years, a novel class of targeted therapy has been approved for patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative (HR+/HER2-) breast cancer. There are currently three approved agents, which are oral cyclin-dependent kinase 4/6 (CDK4/6) inhibitors. All of the approved drugs exhibit progression-free survival benefit when compared to standard of care and generally have less adverse events compared to traditional chemotherapeutic options. The treatment of HR+/HER2- advanced breast cancer is a continuously evolving landscape, and the addition of CDK4/6 inhibitors is the newest mechanism for treatment. In this review, we summarize all available data, highlight the unanswered questions, and discuss pharmacological differences between each CDK4/6 inhibitor.
Collapse
Affiliation(s)
| | - Jacob J Adashek
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | | | | | | | - Gilberto Lopes
- Sylvester Comprehensive Cancer Center at the University of Miami, Miami, FL, USA
| | | | | |
Collapse
|
17
|
Synthesis of aminopyrazole analogs and their evaluation as CDK inhibitors for cancer therapy. Bioorg Med Chem Lett 2018; 28:3736-3740. [PMID: 30343954 DOI: 10.1016/j.bmcl.2018.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023]
Abstract
We synthesized a library of aminopyrazole analogs to systematically explore the hydrophobic pocket adjacent to the hinge region and the solvent exposed region of cyclin dependent kinases. Structure-activity relationship studies identified an optimal substitution for the hydrophobic pocket and analog 24 as a potent and selective CDK2/5 inhibitor.
Collapse
|
18
|
Wu X, Song M, Qiu P, Li F, Wang M, Zheng J, Wang Q, Xu F, Xiao H. A metabolite of nobiletin, 4'-demethylnobiletin and atorvastatin synergistically inhibits human colon cancer cell growth by inducing G0/G1 cell cycle arrest and apoptosis. Food Funct 2018; 9:87-95. [PMID: 29063088 DOI: 10.1039/c7fo01155e] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Combining different chemopreventive agents is a promising strategy to reduce cancer incidence and mortality due to potential synergistic interactions between these agents. Previously, we demonstrated that oral administration of nobiletin (NBT, a citrus flavonoid) at 0.05% (w/w, in diet) together with atorvastatin (ATST, a lipid-lowering drug) at 0.02% (w/w, in diet) produced much stronger inhibition against colon carcinogenesis in rats in comparison with that produced by NBT (at 0.1% w/w in diet) or ATST (at 0.04% w/w in diet) alone at higher doses. To further elucidate the mechanism of this promising synergy between NBT and ATST, herein, we measured the levels of NBT, its major metabolites and ATST in the colonic tissue of rats fed NBT (0.05% w/w, in diet) + ATST (0.02% w/w, in diet), and determined the mode of interaction between the major NBT metabolite and ATST in inhibiting colon cancer cell growth. HPLC-MS analysis showed that 4'-demethylnobiletin (4DN) is the most abundant metabolite of NBT with a level about 5-fold as high as that of NBT in the colonic tissue, which indicated the potential significance of 4DN in mediating the biological effects of NBT in the colon. We found that co-treatments of 4DN/ATST at 2 : 1 concentration ratio produced much stronger growth inhibitory effects on human colon cancer HT-29 cells than 4DN or ATST alone, and isobologram analysis confirmed that this enhanced inhibitory effect by the 4DN/ATST combination was highly synergistic. The co-treatment of 4DN/ATST led to G0/G1 cell cycle arrest and induced extensive apoptosis in HT-29 cells. Furthermore, the 4DN/ATST co-treatment profoundly modulated key signaling proteins related to the regulation of the cell cycle and apoptosis. Our results demonstrated a strong synergy produced by the 4DN/ATST co-treatment in inhibiting colon cancer cell growth, which provided a novel mechanism by which NBT/ATST in combination synergistically inhibit colon carcinogenesis.
Collapse
Affiliation(s)
- Xian Wu
- Department of Food Science, University of Massachusetts, Amherst, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chavan BB, Tiwari S, G S, Nimbalkar RD, Garg P, R S, Talluri MVNK. In vitro and in vivo metabolic investigation of the Palbociclib by UHPLC-Q-TOF/MS/MS and in silico toxicity studies of its metabolites. J Pharm Biomed Anal 2018; 157:59-74. [PMID: 29772457 DOI: 10.1016/j.jpba.2018.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
Palbociclib (PAB) is a CDK4/6 inhibitor and U. S Food and Drug Administration (FDA) granted regular approval for the treatment of hormone receptor (HR) positive, metastatic breast cancer in combination with an aromatase inhibitor in postmenopausal women. Metabolite identification is a crucial aspect during drug discovery and development as the drug metabolites may be pharmacologically active or possess toxicological activity. As there are no reports on the metabolism studies of the PAB, the present study focused on investigation of the in vitro and in vivo metabolic fate of the drug. The in vitro metabolism studies were carried out by using microsomes (HLM and RLM) and S9 fractions (Human and rat). The in vivo metabolism of the drug was studied by administration of the PAB orally to the Sprague-Dawley rats followed by analysis of urine, faeces and plasma samples. The sample preparation includes simple protein precipitation (PP) followed by solid phase extraction (SPE). The extracted samples were analyzed by ultrahigh-performance liquid chromatography-quadruple time-of-flight tandem mass spectrometry (UHPLC/Q-TOF/MS/MS). A total of 14 metabolites were detected in in vivo matrices. The PAB was metabolized via hydroxylation, oxidation, sulphation, N-dealkylation, acetylation and carbonylation pathways. A few of the metabolites were also detected in in vitro samples. Metabolite identification and characterization were performed by using UHPLC/Q-TOF/MS/MS in combination with HRMS data. To identify the toxicity potential of these metabolites, in silico toxicity assessment was carried out using TOPKAT and DEREK softwares.
Collapse
Affiliation(s)
- Balasaheb B Chavan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
| | - Shristy Tiwari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
| | - Shankar G
- National Center for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 607, India
| | - Rakesh D Nimbalkar
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Prabha Garg
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Srinivas R
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India; National Center for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 607, India
| | - M V N Kumar Talluri
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India.
| |
Collapse
|
20
|
Jing L, Tang Y, Xiao Z. Discovery of novel CDK inhibitors via scaffold hopping from CAN508. Bioorg Med Chem Lett 2018; 28:1386-1391. [DOI: 10.1016/j.bmcl.2018.02.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/17/2018] [Accepted: 02/27/2018] [Indexed: 12/21/2022]
|
21
|
Zheng P, Li J, Kros JM. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research-practice gaps, challenges, and insights. Med Res Rev 2018; 38:325-376. [PMID: 28862319 PMCID: PMC5763363 DOI: 10.1002/med.21463] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022]
Abstract
To date, five cancer treatment modalities have been defined. The three traditional modalities of cancer treatment are surgery, radiotherapy, and conventional chemotherapy, and the two modern modalities include molecularly targeted therapy (the fourth modality) and immunotherapy (the fifth modality). The cardiotoxicity associated with conventional chemotherapy and radiotherapy is well known. Similar adverse cardiac events are resurging with the fourth modality. Aside from the conventional and newer targeted agents, even the most newly developed, immune-based therapeutic modalities of anticancer treatment (the fifth modality), e.g., immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy, have unfortunately led to potentially lethal cardiotoxicity in patients. Cardiac complications represent unresolved and potentially life-threatening conditions in cancer survivors, while effective clinical management remains quite challenging. As a consequence, morbidity and mortality related to cardiac complications now threaten to offset some favorable benefits of modern cancer treatments in cancer-related survival, regardless of the oncologic prognosis. This review focuses on identifying critical research-practice gaps, addressing real-world challenges and pinpointing real-time insights in general terms under the context of clinical cardiotoxicity induced by the fourth and fifth modalities of cancer treatment. The information ranges from basic science to clinical management in the field of cardio-oncology and crosses the interface between oncology and onco-pharmacology. The complexity of the ongoing clinical problem is addressed at different levels. A better understanding of these research-practice gaps may advance research initiatives on the development of mechanism-based diagnoses and treatments for the effective clinical management of cardiotoxicity.
Collapse
Affiliation(s)
- Ping‐Pin Zheng
- Cardio‐Oncology Research GroupErasmus Medical CenterRotterdamthe Netherlands
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| | - Jin Li
- Department of OncologyShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Johan M Kros
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| |
Collapse
|
22
|
Flick AC, Ding HX, Leverett CA, Kyne RE, Liu KKC, Fink SJ, O’Donnell CJ. Synthetic Approaches to the New Drugs Approved During 2015. J Med Chem 2017; 60:6480-6515. [DOI: 10.1021/acs.jmedchem.7b00010] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew C. Flick
- Groton
Laboratories, Pfizer Worldwide Research and Development, 445
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Hong X. Ding
- Pharmacodia (Beijing) Co., Ltd., Beijing, 100085, China
| | - Carolyn A. Leverett
- Groton
Laboratories, Pfizer Worldwide Research and Development, 445
Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert E. Kyne
- Celgene Corporation, 200 Cambridge
Park Drive, Cambridge, Massachusetts 02140, United States
| | - Kevin K. -C. Liu
- China Novartis Institutes for BioMedical Research Co., Ltd., Shanghai, 201203, China
| | | | - Christopher J. O’Donnell
- Groton
Laboratories, Pfizer Worldwide Research and Development, 445
Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
23
|
Corona SP, Ravelli A, Cretella D, Cappelletti MR, Zanotti L, Dester M, Gobbi A, Petronini PG, Generali D. CDK4/6 inhibitors in HER2-positive breast cancer. Crit Rev Oncol Hematol 2017; 112:208-214. [PMID: 28325261 DOI: 10.1016/j.critrevonc.2017.02.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 10/20/2022] Open
Abstract
Notwithstanding the continuous progress made in cancer treatment in the last 20 years, and the availability of new targeted therapies, metastatic Breast Cancer (BC) is still incurable. Targeting the cell cycle machinery has emerged as an attractive strategy to tackle cancer progression, showing very promising results in the preclinical and clinical settings. The first selective inhibitors of CDK4/6 received breakthrough status and FDA approval in combination with letrozole (February 2015) and fulvestrant (February 2016) as first-line therapy in ER-positive advanced and metastatic BC. Considering the success of this family of compounds in hormone-positive BC, new possible applications are being investigated in other molecular subtypes. This review summarizes the latest findings on the use of CDK4/6 inhibitors in HER2 positive BC.
Collapse
Affiliation(s)
- Silvia Paola Corona
- Peter MacCallum Cancer Centre, Radiation Oncology Department, Moorabbin Campus, East Bentleigh Victoria 3165, Australia.
| | - Andrea Ravelli
- Universita degli Studi di Parma, Department of Clinical and Experimental Medicine, Experimental Oncology Unit, Via Gramsci, 14, Parma, Italy
| | - Daniele Cretella
- Universita degli Studi di Parma, Department of Clinical and Experimental Medicine, Experimental Oncology Unit, Via Gramsci, 14, Parma, Italy
| | - Maria Rosa Cappelletti
- Azienda Ospedaliera di Cremona, U.O. Multidisciplinare di Patologia Mammaria, U.S. Terapia Molecolare e Farmacogenomica, Cremona, Italy
| | - Laura Zanotti
- Azienda Ospedaliera di Cremona, U.O. Multidisciplinare di Patologia Mammaria, U.S. Terapia Molecolare e Farmacogenomica, Cremona, Italy
| | - Martina Dester
- Azienda Ospedaliera di Cremona, U.O. Multidisciplinare di Patologia Mammaria, U.S. Terapia Molecolare e Farmacogenomica, Cremona, Italy
| | - Angela Gobbi
- Azienda Ospedaliera di Cremona, U.O. Multidisciplinare di Patologia Mammaria, U.S. Terapia Molecolare e Farmacogenomica, Cremona, Italy
| | - Pier Giorgio Petronini
- Azienda Ospedaliera di Cremona, U.O. Multidisciplinare di Patologia Mammaria, U.S. Terapia Molecolare e Farmacogenomica, Cremona, Italy
| | - Daniele Generali
- Azienda Ospedaliera di Cremona, U.O. Multidisciplinare di Patologia Mammaria, U.S. Terapia Molecolare e Farmacogenomica, Cremona, Italy; Universita degli Studi di Trieste, Department of Medical, Surgery and Health Sciences, Trieste, Italy
| |
Collapse
|
24
|
Ross JS, Gay LM. Comprehensive genomic sequencing and the molecular profiles of clinically advanced breast cancer. Pathology 2017; 49:120-132. [DOI: 10.1016/j.pathol.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
|
25
|
Kruer TL, Dougherty SM, Reynolds L, Long E, de Silva T, Lockwood WW, Clem BF. Expression of the lncRNA Maternally Expressed Gene 3 (MEG3) Contributes to the Control of Lung Cancer Cell Proliferation by the Rb Pathway. PLoS One 2016; 11:e0166363. [PMID: 27832204 PMCID: PMC5104461 DOI: 10.1371/journal.pone.0166363] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022] Open
Abstract
Maternally expressed gene 3 (MEG3, mouse homolog Gtl2) encodes a long noncoding RNA (lncRNA) that is expressed in many normal tissues, but is suppressed in various cancer cell lines and tumors, suggesting it plays a functional role as a tumor suppressor. Hypermethylation has been shown to contribute to this loss of expression. We now demonstrate that MEG3 expression is regulated by the retinoblastoma protein (Rb) pathway and correlates with a change in cell proliferation. Microarray analysis of mouse embryonic fibroblasts (MEFs) isolated from mice with genetic deletion of all three Rb family members (TKO) revealed a significant silencing of Gtl2/MEG3 expression compared to WT MEFs, and re-expression of Gtl2/MEG3 caused decrease in cell proliferation and increased apoptosis. MEG3 levels also were suppressed in A549 lung cancer cells compared with normal human bronchial epithelial (NHBE) cells, and, similar to the TKO cells, re-constitution of MEG3 led to a decrease in cell proliferation and elevated apoptosis. Activation of pRb by treatment of A549 and SK-MES-1 cells with palbociclib, a CDK4/6 inhibitor, increased the expression of MEG3 in a dose-dependent manner, while knockdown of pRb/p107 attenuated this effect. In addition, expression of phosphorylation-deficient mutant of pRb increased MEG3 levels in both lung cancer cell types. Treatment of these cells with palbociclib also decreased the expression of pRb-regulated DNA methyltransferase 1 (DNMT1), while conversely, knockdown of DNMT1 resulted in increased expression of MEG3. As gene methylation has been suggested for MEG3 regulation, we found that palbociclib resulted in decreased methylation of the MEG3 locus similar to that observed with 5-aza-deoxycytidine. Anti-sense oligonucleotide silencing of drug-induced MEG3 expression in A549 and SK-MES-1 cells partially rescued the palbociclib-mediated decrease in cell proliferation, while analysis of the TCGA database revealed decreased MEG3 expression in human lung tumors harboring a disrupted RB pathway. Together, these data suggest that disruption of the pRb-DNMT1 pathway leads to a decrease in MEG3 expression, thereby contributing to the pro-proliferative state of certain cancer cells.
Collapse
Affiliation(s)
- Traci L. Kruer
- Department of Biochemistry and Molecular Genetics, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Susan M. Dougherty
- Department of Biochemistry and Molecular Genetics, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Lindsey Reynolds
- Department of Biochemistry and Molecular Genetics, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Elizabeth Long
- Department of Biochemistry and Molecular Genetics, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Tanya de Silva
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - William W. Lockwood
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Brian F. Clem
- Department of Biochemistry and Molecular Genetics, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
26
|
Zhou Y, Shen JK, Hornicek FJ, Kan Q, Duan Z. The emerging roles and therapeutic potential of cyclin-dependent kinase 11 (CDK11) in human cancer. Oncotarget 2016; 7:40846-40859. [PMID: 27049727 PMCID: PMC5130049 DOI: 10.18632/oncotarget.8519] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/28/2016] [Indexed: 12/17/2022] Open
Abstract
Overexpression and/or hyperactivation of cyclin-dependent kinases (CDKs) are common features of most cancer types. CDKs have been shown to play important roles in tumor cell proliferation and growth by controlling cell cycle, transcription, and RNA splicing. CDK4/6 inhibitor palbociclib has been recently approved by the FDA for the treatment of breast cancer. CDK11 is a serine/threonine protein kinase in the CDK family and recent studies have shown that CDK11 also plays critical roles in cancer cell growth and proliferation. A variety of genetic and epigenetic events may cause universal overexpression of CDK11 in human cancers. Inhibition of CDK11 has been shown to lead to cancer cell death and apoptosis. Significant evidence has suggested that CDK11 may be a novel and promising therapeutic target for the treatment of cancers. This review will focus on the emerging roles of CDK11 in human cancers, and provide a proof-of-principle for continued efforts toward targeting CDK11 for effective cancer treatment.
Collapse
Affiliation(s)
- Yubing Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jacson K. Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhenfeng Duan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| |
Collapse
|
27
|
Stein J, Mann J. Specialty pharmacy services for patients receiving oral medications for solid tumors. Am J Health Syst Pharm 2016; 73:775-96. [DOI: 10.2146/ajhp150863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jill Stein
- Department of Pharmaceutical Care, University of Iowa Health Care, Iowa City, IA
| | - Janelle Mann
- St. Louis College of Pharmacy, St. Louis, MO, and Department of Pharmacy Practice, Division of Specialty Care Pharmacy, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
28
|
Ehab M, Elbaz M. Profile of palbociclib in the treatment of metastatic breast cancer. BREAST CANCER-TARGETS AND THERAPY 2016; 8:83-91. [PMID: 27274308 PMCID: PMC4876680 DOI: 10.2147/bctt.s83146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common cancer diagnosed in women. Each year, thousands die either because of disease progression or failure of treatment. Breast cancer is classified into different subtypes based on the molecular expression of estrogen receptor (ER), progesterone receptor, and/or human epidermal growth factor receptor 2 (HER2). These receptors represent important therapeutic targets either through monoclonal antibodies or through small-molecule inhibitors directed toward them. However, up to 40% of patients develop either a primary or a secondary resistance to the current treatments. Therefore, there is an urgent need for investigating new targets in order to overcome the resistance and/or enhance the current therapies. Cell cycle is altered in many human cancers, especially in breast cancer. Cyclin-dependent kinases (CDKs), especially CDK4 and CDK6, play a pivotal role in cell cycle progression that makes them potential targets for new promising therapies. CDK inhibition has shown strong antitumor activities, ranging from cytostatic antiproliferative effects to synergistic effects in combination with other antitumor drugs. In order to overcome the drawbacks of the first-generation CDK inhibitors, recently, new CDK inhibitors have emerged that are more selective to CDK4 and CDK6 such as palbociclib, which is the most advanced CDK4/6 inhibitor in trials. In preclinical studies, palbociclib has shown a very promising antitumor activity, especially against ERα+ breast cancer subtype. Palbociclib has gained world attention, and US the Food and Drug Administration has accelerated its approval for first-line treatment in combination with letrozole for the first-line systematic treatment of postmenopausal women with ERα+/HER2− locally advanced or metastatic breast cancer. In this review, we discuss the potential role of CDK inhibition in breast cancer treatment, and focus on palbociclib progress from preclinical studies to clinical trials with mentioning the most recent ongoing as well as planned Phase II and Phase III trials of palbociclib in advanced breast cancer.
Collapse
Affiliation(s)
- Moataz Ehab
- Department of Pharmacy Practice, Helwan University, Egypt
| | - Mohamad Elbaz
- Department of Pharmacology, Pharmacy School, Helwan University, Egypt; Department of Pathology, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
29
|
Assi HI, Assi RE, El Saghir NS. Emerging Biomarkers of the Future: Changing Clinical Practice for 2020. CURRENT BREAST CANCER REPORTS 2016. [DOI: 10.1007/s12609-016-0214-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Yim CY, Sekula DJ, Hever-Jardine MP, Liu X, Warzecha JM, Tam J, Freemantle SJ, Dmitrovsky E, Spinella MJ. G0S2 Suppresses Oncogenic Transformation by Repressing a MYC-Regulated Transcriptional Program. Cancer Res 2016; 76:1204-13. [PMID: 26837760 DOI: 10.1158/0008-5472.can-15-2265] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/08/2015] [Indexed: 01/31/2023]
Abstract
Methylation-mediated silencing of G0-G1 switch gene 2 (G0S2) has been detected in a variety of solid tumors, whereas G0S2 induction is associated with remissions in patients with acute promyelocytic leukemia, implying that G0S2 may possess tumor suppressor activity. In this study, we clearly demonstrate that G0S2 opposes oncogene-induced transformation using G0s2-null immortalized mouse embryonic fibroblasts (MEF). G0s2-null MEFs were readily transformed with HRAS or EGFR treatment compared with wild-type MEFs. Importantly, restoration of G0S2 reversed HRAS-driven transformation. G0S2 is known to regulate fat metabolism by attenuating adipose triglyceride lipase (ATGL), but repression of oncogene-induced transformation by G0S2 was independent of ATGL inhibition. Gene expression analysis revealed an upregulation of gene signatures associated with transformation, proliferation, and MYC targets in G0s2-null MEFs. RNAi-mediated ablation and pharmacologic inhibition of MYC abrogated oncogene-induced transformation of G0s2-null MEFs. Furthermore, we found that G0S2 was highly expressed in normal breast tissues compared with malignant tissue. Intriguingly, high levels of G0S2 were also associated with a decrease in breast cancer recurrence rates, especially in estrogen receptor-positive subtypes, and overexpression of G0S2 repressed the proliferation of breast cancer cells in vitro. Taken together, these findings indicate that G0S2 functions as a tumor suppressor in part by opposing MYC activity, prompting further investigation of the mechanisms by which G0S2 silencing mediates MYC-induced oncogenesis in other malignancies.
Collapse
Affiliation(s)
- Christina Y Yim
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - David J Sekula
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mary P Hever-Jardine
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Xi Liu
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joshua M Warzecha
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Janice Tam
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Sarah J Freemantle
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Ethan Dmitrovsky
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J Spinella
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.
| |
Collapse
|