1
|
Viswanathan V, Rupp KM, Hect JL, Harford EE, Holt LL, Abel TJ. Intracranial Mapping of Response Latencies and Task Effects for Spoken Syllable Processing in the Human Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588349. [PMID: 38617227 PMCID: PMC11014624 DOI: 10.1101/2024.04.05.588349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Prior lesion, noninvasive-imaging, and intracranial-electroencephalography (iEEG) studies have documented hierarchical, parallel, and distributed characteristics of human speech processing. Yet, there have not been direct, intracranial observations of the latency with which regions outside the temporal lobe respond to speech, or how these responses are impacted by task demands. We leveraged human intracranial recordings via stereo-EEG to measure responses from diverse forebrain sites during (i) passive listening to /bi/ and /pi/ syllables, and (ii) active listening requiring /bi/-versus-/pi/ categorization. We find that neural response latency increases from a few tens of ms in Heschl's gyrus (HG) to several tens of ms in superior temporal gyrus (STG), superior temporal sulcus (STS), and early parietal areas, and hundreds of ms in later parietal areas, insula, frontal cortex, hippocampus, and amygdala. These data also suggest parallel flow of speech information dorsally and ventrally, from HG to parietal areas and from HG to STG and STS, respectively. Latency data also reveal areas in parietal cortex, frontal cortex, hippocampus, and amygdala that are not responsive to the stimuli during passive listening but are responsive during categorization. Furthermore, multiple regions-spanning auditory, parietal, frontal, and insular cortices, and hippocampus and amygdala-show greater neural response amplitudes during active versus passive listening (a task-related effect). Overall, these results are consistent with hierarchical processing of speech at a macro level and parallel streams of information flow in temporal and parietal regions. These data also reveal regions where the speech code is stimulus-faithful and those that encode task-relevant representations.
Collapse
Affiliation(s)
- Vibha Viswanathan
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260
| | - Kyle M. Rupp
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260
| | - Jasmine L. Hect
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260
| | - Emily E. Harford
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260
| | - Lori L. Holt
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712
| | - Taylor J. Abel
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15238
| |
Collapse
|
2
|
Harford EE, Holt LL, Abel TJ. Unveiling the development of human voice perception: Neurobiological mechanisms and pathophysiology. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 6:100127. [PMID: 38511174 PMCID: PMC10950757 DOI: 10.1016/j.crneur.2024.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The human voice is a critical stimulus for the auditory system that promotes social connection, informs the listener about identity and emotion, and acts as the carrier for spoken language. Research on voice processing in adults has informed our understanding of the unique status of the human voice in the mature auditory cortex and provided potential explanations for mechanisms that underly voice selectivity and identity processing. There is evidence that voice perception undergoes developmental change starting in infancy and extending through early adolescence. While even young infants recognize the voice of their mother, there is an apparent protracted course of development to reach adult-like selectivity for human voice over other sound categories and recognition of other talkers by voice. Gaps in the literature do not allow for an exact mapping of this trajectory or an adequate description of how voice processing and its neural underpinnings abilities evolve. This review provides a comprehensive account of developmental voice processing research published to date and discusses how this evidence fits with and contributes to current theoretical models proposed in the adult literature. We discuss how factors such as cognitive development, neural plasticity, perceptual narrowing, and language acquisition may contribute to the development of voice processing and its investigation in children. We also review evidence of voice processing abilities in premature birth, autism spectrum disorder, and phonagnosia to examine where and how deviations from the typical trajectory of development may manifest.
Collapse
Affiliation(s)
- Emily E. Harford
- Department of Neurological Surgery, University of Pittsburgh, USA
| | - Lori L. Holt
- Department of Psychology, The University of Texas at Austin, USA
| | - Taylor J. Abel
- Department of Neurological Surgery, University of Pittsburgh, USA
- Department of Bioengineering, University of Pittsburgh, USA
| |
Collapse
|
3
|
Wikman P, Salmela V, Sjöblom E, Leminen M, Laine M, Alho K. Attention to audiovisual speech shapes neural processing through feedback-feedforward loops between different nodes of the speech network. PLoS Biol 2024; 22:e3002534. [PMID: 38466713 PMCID: PMC10957087 DOI: 10.1371/journal.pbio.3002534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/21/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Selective attention-related top-down modulation plays a significant role in separating relevant speech from irrelevant background speech when vocal attributes separating concurrent speakers are small and continuously evolving. Electrophysiological studies have shown that such top-down modulation enhances neural tracking of attended speech. Yet, the specific cortical regions involved remain unclear due to the limited spatial resolution of most electrophysiological techniques. To overcome such limitations, we collected both electroencephalography (EEG) (high temporal resolution) and functional magnetic resonance imaging (fMRI) (high spatial resolution), while human participants selectively attended to speakers in audiovisual scenes containing overlapping cocktail party speech. To utilise the advantages of the respective techniques, we analysed neural tracking of speech using the EEG data and performed representational dissimilarity-based EEG-fMRI fusion. We observed that attention enhanced neural tracking and modulated EEG correlates throughout the latencies studied. Further, attention-related enhancement of neural tracking fluctuated in predictable temporal profiles. We discuss how such temporal dynamics could arise from a combination of interactions between attention and prediction as well as plastic properties of the auditory cortex. EEG-fMRI fusion revealed attention-related iterative feedforward-feedback loops between hierarchically organised nodes of the ventral auditory object related processing stream. Our findings support models where attention facilitates dynamic neural changes in the auditory cortex, ultimately aiding discrimination of relevant sounds from irrelevant ones while conserving neural resources.
Collapse
Affiliation(s)
- Patrik Wikman
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Viljami Salmela
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Eetu Sjöblom
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Miika Leminen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- AI and Analytics Unit, Helsinki University Hospital, Helsinki, Finland
| | - Matti Laine
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Kimmo Alho
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University, Espoo, Finland
| |
Collapse
|
4
|
Schelinski S, Tabas A, von Kriegstein K. Altered processing of communication signals in the subcortical auditory sensory pathway in autism. Hum Brain Mapp 2022; 43:1955-1972. [PMID: 35037743 PMCID: PMC8933247 DOI: 10.1002/hbm.25766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterised by social communication difficulties. These difficulties have been mainly explained by cognitive, motivational, and emotional alterations in ASD. The communication difficulties could, however, also be associated with altered sensory processing of communication signals. Here, we assessed the functional integrity of auditory sensory pathway nuclei in ASD in three independent functional magnetic resonance imaging experiments. We focused on two aspects of auditory communication that are impaired in ASD: voice identity perception, and recognising speech-in-noise. We found reduced processing in adults with ASD as compared to typically developed control groups (pairwise matched on sex, age, and full-scale IQ) in the central midbrain structure of the auditory pathway (inferior colliculus [IC]). The right IC responded less in the ASD as compared to the control group for voice identity, in contrast to speech recognition. The right IC also responded less in the ASD as compared to the control group when passively listening to vocal in contrast to non-vocal sounds. Within the control group, the left and right IC responded more when recognising speech-in-noise as compared to when recognising speech without additional noise. In the ASD group, this was only the case in the left, but not the right IC. The results show that communication signal processing in ASD is associated with reduced subcortical sensory functioning in the midbrain. The results highlight the importance of considering sensory processing alterations in explaining communication difficulties, which are at the core of ASD.
Collapse
Affiliation(s)
- Stefanie Schelinski
- Faculty of Psychology, Chair of Cognitive and Clinical NeuroscienceTechnische Universität DresdenDresdenGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Alejandro Tabas
- Faculty of Psychology, Chair of Cognitive and Clinical NeuroscienceTechnische Universität DresdenDresdenGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Katharina von Kriegstein
- Faculty of Psychology, Chair of Cognitive and Clinical NeuroscienceTechnische Universität DresdenDresdenGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
5
|
Ruthig P, Schönwiesner M. Common principles in the lateralisation of auditory cortex structure and function for vocal communication in primates and rodents. Eur J Neurosci 2022; 55:827-845. [PMID: 34984748 DOI: 10.1111/ejn.15590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022]
Abstract
This review summarises recent findings on the lateralisation of communicative sound processing in the auditory cortex (AC) of humans, non-human primates, and rodents. Functional imaging in humans has demonstrated a left hemispheric preference for some acoustic features of speech, but it is unclear to which degree this is caused by bottom-up acoustic feature selectivity or top-down modulation from language areas. Although non-human primates show a less pronounced functional lateralisation in AC, the properties of AC fields and behavioral asymmetries are qualitatively similar. Rodent studies demonstrate microstructural circuits that might underlie bottom-up acoustic feature selectivity in both hemispheres. Functionally, the left AC in the mouse appears to be specifically tuned to communication calls, whereas the right AC may have a more 'generalist' role. Rodents also show anatomical AC lateralisation, such as differences in size and connectivity. Several of these functional and anatomical characteristics are also lateralized in human AC. Thus, complex vocal communication processing shares common features among rodents and primates. We argue that a synthesis of results from humans, non-human primates, and rodents is necessary to identify the neural circuitry of vocal communication processing. However, data from different species and methods are often difficult to compare. Recent advances may enable better integration of methods across species. Efforts to standardise data formats and analysis tools would benefit comparative research and enable synergies between psychological and biological research in the area of vocal communication processing.
Collapse
Affiliation(s)
- Philip Ruthig
- Faculty of Life Sciences, Leipzig University, Leipzig, Sachsen.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig
| | | |
Collapse
|
6
|
Hamilton LS, Oganian Y, Hall J, Chang EF. Parallel and distributed encoding of speech across human auditory cortex. Cell 2021; 184:4626-4639.e13. [PMID: 34411517 PMCID: PMC8456481 DOI: 10.1016/j.cell.2021.07.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/11/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022]
Abstract
Speech perception is thought to rely on a cortical feedforward serial transformation of acoustic into linguistic representations. Using intracranial recordings across the entire human auditory cortex, electrocortical stimulation, and surgical ablation, we show that cortical processing across areas is not consistent with a serial hierarchical organization. Instead, response latency and receptive field analyses demonstrate parallel and distinct information processing in the primary and nonprimary auditory cortices. This functional dissociation was also observed where stimulation of the primary auditory cortex evokes auditory hallucination but does not distort or interfere with speech perception. Opposite effects were observed during stimulation of nonprimary cortex in superior temporal gyrus. Ablation of the primary auditory cortex does not affect speech perception. These results establish a distributed functional organization of parallel information processing throughout the human auditory cortex and demonstrate an essential independent role for nonprimary auditory cortex in speech processing.
Collapse
Affiliation(s)
- Liberty S Hamilton
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Yulia Oganian
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Jeffery Hall
- Department of Neurology and Neurosurgery, McGill University Montreal Neurological Institute, Montreal, QC, H3A 2B4, Canada
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA.
| |
Collapse
|
7
|
Braunsdorf M, Blazquez Freches G, Roumazeilles L, Eichert N, Schurz M, Uithol S, Bryant KL, Mars RB. Does the temporal cortex make us human? A review of structural and functional diversity of the primate temporal lobe. Neurosci Biobehav Rev 2021; 131:400-410. [PMID: 34480913 DOI: 10.1016/j.neubiorev.2021.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Temporal cortex is a primate specialization that shows considerable variation in size, morphology, and connectivity across species. Human temporal cortex is involved in many behaviors that are considered especially well developed in humans, including semantic processing, language, and theory of mind. Here, we ask whether the involvement of temporal cortex in these behaviors can be explained in the context of the 'general' primate organization of the temporal lobe or whether the human temporal lobe contains unique specializations indicative of a 'step change' in the lineage leading to modern humans. We propose that many human behaviors can be explained as elaborations of temporal cortex functions observed in other primates. However, changes in temporal lobe white matter suggest increased integration of information within temporal cortex and between posterior temporal cortex and other association areas, which likely enable behaviors not possible in other species.
Collapse
Affiliation(s)
- Marius Braunsdorf
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Guilherme Blazquez Freches
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Matthias Schurz
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands; Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Sebo Uithol
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Katherine L Bryant
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Rogier B Mars
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands; Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Gábor A, Andics A, Miklósi Á, Czeibert K, Carreiro C, Gácsi M. Social relationship-dependent neural response to speech in dogs. Neuroimage 2021; 243:118480. [PMID: 34411741 DOI: 10.1016/j.neuroimage.2021.118480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/13/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
In humans, social relationship with the speaker affects neural processing of speech, as exemplified by children's auditory and reward responses to their mother's utterances. Family dogs show human analogue attachment behavior towards the owner, and neuroimaging revealed auditory cortex and reward center sensitivity to verbal praises in dog brains. Combining behavioral and non-invasive fMRI data, we investigated the effect of dogs' social relationship with the speaker on speech processing. Dogs listened to praising and neutral speech from their owners and a control person. We found positive correlation between dogs' behaviorally measured attachment scores towards their owners and neural activity increase for the owner's voice in the caudate nucleus; and activity increase in the secondary auditory caudal ectosylvian gyrus and the caudate nucleus for the owner's praise. Through identifying social relationship-dependent neural reward responses, our study reveals similarities in neural mechanisms modulated by infant-mother and dog-owner attachment.
Collapse
Affiliation(s)
- Anna Gábor
- MTA-ELTE 'Lendület' Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary.
| | - Attila Andics
- MTA-ELTE 'Lendület' Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary; Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - Ádám Miklósi
- Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary; MTA-ELTE Comparative Ethology Research Group, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - Kálmán Czeibert
- Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - Cecília Carreiro
- Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - Márta Gácsi
- Department of Ethology, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary; MTA-ELTE Comparative Ethology Research Group, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| |
Collapse
|
9
|
Sliwa J, Takahashi D, Shepherd S. Mécanismes neuronaux pour la communication chez les primates. REVUE DE PRIMATOLOGIE 2018. [DOI: 10.4000/primatologie.2950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Flinker A, Knight RT. Broca’s area in comprehension and production, insights from intracranial studies in humans. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2018.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Kato M, Yokoyama C, Kawasaki A, Takeda C, Koike T, Onoe H, Iriki A. Individual identity and affective valence in marmoset calls: in vivo brain imaging with vocal sound playback. Anim Cogn 2018; 21:331-343. [PMID: 29488110 PMCID: PMC5908821 DOI: 10.1007/s10071-018-1169-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/29/2022]
Abstract
As with humans, vocal communication is an important social tool for nonhuman primates. Common marmosets (Callithrix jacchus) often produce whistle-like 'phee' calls when they are visually separated from conspecifics. The neural processes specific to phee call perception, however, are largely unknown, despite the possibility that these processes involve social information. Here, we examined behavioral and whole-brain mapping evidence regarding the detection of individual conspecific phee calls using an audio playback procedure. Phee calls evoked sound exploratory responses when the caller changed, indicating that marmosets can discriminate between caller identities. Positron emission tomography with [18F] fluorodeoxyglucose revealed that perception of phee calls from a single subject was associated with activity in the dorsolateral prefrontal, medial prefrontal, orbitofrontal cortices, and the amygdala. These findings suggest that these regions are implicated in cognitive and affective processing of salient social information. However, phee calls from multiple subjects induced brain activation in only some of these regions, such as the dorsolateral prefrontal cortex. We also found distinctive brain deactivation and functional connectivity associated with phee call perception depending on the caller change. According to changes in pupillary size, phee calls from a single subject induced a higher arousal level compared with those from multiple subjects. These results suggest that marmoset phee calls convey information about individual identity and affective valence depending on the consistency or variability of the caller. Based on the flexible perception of the call based on individual recognition, humans and marmosets may share some neural mechanisms underlying conspecific vocal perception.
Collapse
Affiliation(s)
- Masaki Kato
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan
- Research Development Section, Research Promotion Hub, Office for Enhancing Institutional Capacity, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chihiro Yokoyama
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan.
| | - Akihiro Kawasaki
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Chiho Takeda
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Taku Koike
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Hirotaka Onoe
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan.
- RIKEN-NTU Research Centre for Human Biology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
12
|
Roswandowitz C, Kappes C, Obrig H, von Kriegstein K. Obligatory and facultative brain regions for voice-identity recognition. Brain 2018; 141:234-247. [PMID: 29228111 PMCID: PMC5837691 DOI: 10.1093/brain/awx313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/31/2017] [Accepted: 10/11/2017] [Indexed: 11/26/2022] Open
Abstract
Recognizing the identity of others by their voice is an important skill for social interactions. To date, it remains controversial which parts of the brain are critical structures for this skill. Based on neuroimaging findings, standard models of person-identity recognition suggest that the right temporal lobe is the hub for voice-identity recognition. Neuropsychological case studies, however, reported selective deficits of voice-identity recognition in patients predominantly with right inferior parietal lobe lesions. Here, our aim was to work towards resolving the discrepancy between neuroimaging studies and neuropsychological case studies to find out which brain structures are critical for voice-identity recognition in humans. We performed a voxel-based lesion-behaviour mapping study in a cohort of patients (n = 58) with unilateral focal brain lesions. The study included a comprehensive behavioural test battery on voice-identity recognition of newly learned (voice-name, voice-face association learning) and familiar voices (famous voice recognition) as well as visual (face-identity recognition) and acoustic control tests (vocal-pitch and vocal-timbre discrimination). The study also comprised clinically established tests (neuropsychological assessment, audiometry) and high-resolution structural brain images. The three key findings were: (i) a strong association between voice-identity recognition performance and right posterior/mid temporal and right inferior parietal lobe lesions; (ii) a selective association between right posterior/mid temporal lobe lesions and voice-identity recognition performance when face-identity recognition performance was factored out; and (iii) an association of right inferior parietal lobe lesions with tasks requiring the association between voices and faces but not voices and names. The results imply that the right posterior/mid temporal lobe is an obligatory structure for voice-identity recognition, while the inferior parietal lobe is only a facultative component of voice-identity recognition in situations where additional face-identity processing is required.
Collapse
Affiliation(s)
- Claudia Roswandowitz
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Claudia Kappes
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Hellmuth Obrig
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
- Clinic for Cognitive Neurology, University Hospital Leipzig, Germany
| | - Katharina von Kriegstein
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
- Humboldt University zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany
- Technische Universität Dresden, Faculty of Psychology, Bamberger Str. 7, 01187 Dresden, Germany
| |
Collapse
|
13
|
Schelinski S, Borowiak K, von Kriegstein K. Temporal voice areas exist in autism spectrum disorder but are dysfunctional for voice identity recognition. Soc Cogn Affect Neurosci 2016; 11:1812-1822. [PMID: 27369067 PMCID: PMC5091681 DOI: 10.1093/scan/nsw089] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/05/2016] [Accepted: 06/20/2016] [Indexed: 11/24/2022] Open
Abstract
The ability to recognise the identity of others is a key requirement for successful communication. Brain regions that respond selectively to voices exist in humans from early infancy on. Currently, it is unclear whether dysfunction of these voice-sensitive regions can explain voice identity recognition impairments. Here, we used two independent functional magnetic resonance imaging studies to investigate voice processing in a population that has been reported to have no voice-sensitive regions: autism spectrum disorder (ASD). Our results refute the earlier report that individuals with ASD have no responses in voice-sensitive regions: Passive listening to vocal, compared to non-vocal, sounds elicited typical responses in voice-sensitive regions in the high-functioning ASD group and controls. In contrast, the ASD group had a dysfunction in voice-sensitive regions during voice identity but not speech recognition in the right posterior superior temporal sulcus/gyrus (STS/STG)-a region implicated in processing complex spectrotemporal voice features and unfamiliar voices. The right anterior STS/STG correlated with voice identity recognition performance in controls but not in the ASD group. The findings suggest that right STS/STG dysfunction is critical for explaining voice recognition impairments in high-functioning ASD and show that ASD is not characterised by a general lack of voice-sensitive responses.
Collapse
Affiliation(s)
- Stefanie Schelinski
- Max Planck Institute for Human Cognitive and Brain Sciences, Max Planck Research Group, Neural mechanisms of human communication, Leipzig, 04103, Germany
| | - Kamila Borowiak
- Max Planck Institute for Human Cognitive and Brain Sciences, Max Planck Research Group, Neural mechanisms of human communication, Leipzig, 04103, Germany
- Berlin School of Mind and Brain, Humboldt University of Berlin, Berlin, 10117
| | - Katharina von Kriegstein
- Max Planck Institute for Human Cognitive and Brain Sciences, Max Planck Research Group, Neural mechanisms of human communication, Leipzig, 04103, Germany
- Department of Psychology, Humboldt University of Berlin, Berlin, 12489, Germany
| |
Collapse
|
14
|
Striem-Amit E, Almeida J, Belledonne M, Chen Q, Fang Y, Han Z, Caramazza A, Bi Y. Topographical functional connectivity patterns exist in the congenitally, prelingually deaf. Sci Rep 2016; 6:29375. [PMID: 27427158 PMCID: PMC4947901 DOI: 10.1038/srep29375] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/10/2016] [Indexed: 12/26/2022] Open
Abstract
Congenital deafness causes large changes in the auditory cortex structure and function, such that without early childhood cochlear-implant, profoundly deaf children do not develop intact, high-level, auditory functions. But how is auditory cortex organization affected by congenital, prelingual, and long standing deafness? Does the large-scale topographical organization of the auditory cortex develop in people deaf from birth? And is it retained despite cross-modal plasticity? We identified, using fMRI, topographic tonotopy-based functional connectivity (FC) structure in humans in the core auditory cortex, its extending tonotopic gradients in the belt and even beyond that. These regions show similar FC structure in the congenitally deaf throughout the auditory cortex, including in the language areas. The topographic FC pattern can be identified reliably in the vast majority of the deaf, at the single subject level, despite the absence of hearing-aid use and poor oral language skills. These findings suggest that large-scale tonotopic-based FC does not require sensory experience to develop, and is retained despite life-long auditory deprivation and cross-modal plasticity. Furthermore, as the topographic FC is retained to varying degrees among the deaf subjects, it may serve to predict the potential for auditory rehabilitation using cochlear implants in individual subjects.
Collapse
Affiliation(s)
- Ella Striem-Amit
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
| | - Jorge Almeida
- Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra 3001-802, Portugal.,Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra 3001-802, Portugal
| | - Mario Belledonne
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
| | - Quanjing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yuxing Fang
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Alfonso Caramazza
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA.,Center for Mind/Brain Sciences, University of Trento, 38068, Rovereto, Italy
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
15
|
Abstract
Functional magnetic resonance imaging (fMRI) provides a powerful way to visualize brain functions and observe brain activity in response to tasks or thoughts. It allows displaying brain damages that can be quantified and linked to neurobehavioral deficits. fMRI can potentially draw a new cartography of brain functional areas, allow us to understand aspects of brain function evolution or even breach the wall into cognition and consciousness. However, fMRI is not deprived of pitfalls, such as limitation in spatial resolution, poor reproducibility, different time scales of fMRI measurements and neuron action potentials, low statistical values. Thus, caution is needed in the assessment of fMRI results and conclusions. Additional diagnostic techniques based on MRI such as arterial spin labeling (ASL) and the measurement of diffusion tensor imaging (DTI) provide new tools to assess normal brain development or disruption of anatomical networks in diseases. A cutting edge of recent research uses fMRI techniques to establish a "map" of neural connections in the brain, or "connectome". It will help to develop a map of neural connections and thus understand the operation of the network. New applications combining fMRI and real time visualization of one's own brain activity (rtfMRI) could empower individuals to modify brain response and thus could enable researchers or institutions to intervene in the modification of an individual behavior. The latter in particular, as well as the concern about the confidentiality and storage of sensitive information or fMRI and lie detectors forensic use, raises new ethical questions.
Collapse
Affiliation(s)
- Umberto di Porzio
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR)Naples, Italy
| |
Collapse
|
16
|
Sammler D, Grosbras MH, Anwander A, Bestelmeyer P, Belin P. Dorsal and Ventral Pathways for Prosody. Curr Biol 2015; 25:3079-85. [DOI: 10.1016/j.cub.2015.10.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 09/02/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
|
17
|
Fukushima M, Doyle AM, Mullarkey MP, Mishkin M, Averbeck BB. Distributed acoustic cues for caller identity in macaque vocalization. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150432. [PMID: 27019727 PMCID: PMC4806230 DOI: 10.1098/rsos.150432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
Individual primates can be identified by the sound of their voice. Macaques have demonstrated an ability to discern conspecific identity from a harmonically structured 'coo' call. Voice recognition presumably requires the integrated perception of multiple acoustic features. However, it is unclear how this is achieved, given considerable variability across utterances. Specifically, the extent to which information about caller identity is distributed across multiple features remains elusive. We examined these issues by recording and analysing a large sample of calls from eight macaques. Single acoustic features, including fundamental frequency, duration and Weiner entropy, were informative but unreliable for the statistical classification of caller identity. A combination of multiple features, however, allowed for highly accurate caller identification. A regularized classifier that learned to identify callers from the modulation power spectrum of calls found that specific regions of spectral-temporal modulation were informative for caller identification. These ranges are related to acoustic features such as the call's fundamental frequency and FM sweep direction. We further found that the low-frequency spectrotemporal modulation component contained an indexical cue of the caller body size. Thus, cues for caller identity are distributed across identifiable spectrotemporal components corresponding to laryngeal and supralaryngeal components of vocalizations, and the integration of those cues can enable highly reliable caller identification. Our results demonstrate a clear acoustic basis by which individual macaque vocalizations can be recognized.
Collapse
|
18
|
Hartzell JF, Davis B, Melcher D, Miceli G, Jovicich J, Nath T, Singh NC, Hasson U. Brains of verbal memory specialists show anatomical differences in language, memory and visual systems. Neuroimage 2015; 131:181-92. [PMID: 26188261 DOI: 10.1016/j.neuroimage.2015.07.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 12/14/2022] Open
Abstract
We studied a group of verbal memory specialists to determine whether intensive oral text memory is associated with structural features of hippocampal and lateral-temporal regions implicated in language processing. Professional Vedic Sanskrit Pandits in India train from childhood for around 10years in an ancient, formalized tradition of oral Sanskrit text memorization and recitation, mastering the exact pronunciation and invariant content of multiple 40,000-100,000 word oral texts. We conducted structural analysis of gray matter density, cortical thickness, local gyrification, and white matter structure, relative to matched controls. We found massive gray matter density and cortical thickness increases in Pandit brains in language, memory and visual systems, including i) bilateral lateral temporal cortices and ii) the anterior cingulate cortex and the hippocampus, regions associated with long and short-term memory. Differences in hippocampal morphometry matched those previously documented for expert spatial navigators and individuals with good verbal working memory. The findings provide unique insight into the brain organization implementing formalized oral knowledge systems.
Collapse
Affiliation(s)
- James F Hartzell
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38060, Italy.
| | - Ben Davis
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38060, Italy
| | - David Melcher
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38060, Italy
| | - Gabriele Miceli
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38060, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38060, Italy
| | - Tanmay Nath
- National Brain Research Centre, Manesar, Gurgaon Dist., Haryana 122 050, India
| | | | - Uri Hasson
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38060, Italy
| |
Collapse
|
19
|
High-field functional magnetic resonance imaging of vocalization processing in marmosets. Sci Rep 2015; 5:10950. [PMID: 26091254 PMCID: PMC4473644 DOI: 10.1038/srep10950] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/29/2015] [Indexed: 11/17/2022] Open
Abstract
Vocalizations are behaviorally critical sounds, and this behavioral importance is reflected in the ascending auditory system, where conspecific vocalizations are increasingly over-represented at higher processing stages. Recent evidence suggests that, in macaques, this increasing selectivity for vocalizations might culminate in a cortical region that is densely populated by vocalization-preferring neurons. Such a region might be a critical node in the representation of vocal communication sounds, underlying the recognition of vocalization type, caller and social context. These results raise the questions of whether cortical specializations for vocalization processing exist in other species, their cortical location, and their relationship to the auditory processing hierarchy. To explore cortical specializations for vocalizations in another species, we performed high-field fMRI of the auditory cortex of a vocal New World primate, the common marmoset (Callithrix jacchus). Using a sparse imaging paradigm, we discovered a caudal-rostral gradient for the processing of conspecific vocalizations in marmoset auditory cortex, with regions of the anterior temporal lobe close to the temporal pole exhibiting the highest preference for vocalizations. These results demonstrate similar cortical specializations for vocalization processing in macaques and marmosets, suggesting that cortical specializations for vocal processing might have evolved before the lineages of these species diverged.
Collapse
|
20
|
Overath T, McDermott JH, Zarate JM, Poeppel D. The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts. Nat Neurosci 2015; 18:903-11. [PMID: 25984889 PMCID: PMC4769593 DOI: 10.1038/nn.4021] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/20/2015] [Indexed: 11/08/2022]
Abstract
Speech contains temporal structure that the brain must analyze to enable linguistic processing. To investigate the neural basis of this analysis, we used sound quilts, stimuli constructed by shuffling segments of a natural sound, approximately preserving its properties on short timescales while disrupting them on longer scales. We generated quilts from foreign speech to eliminate language cues and manipulated the extent of natural acoustic structure by varying the segment length. Using functional magnetic resonance imaging, we identified bilateral regions of the superior temporal sulcus (STS) whose responses varied with segment length. This effect was absent in primary auditory cortex and did not occur for quilts made from other natural sounds or acoustically matched synthetic sounds, suggesting tuning to speech-specific spectrotemporal structure. When examined parametrically, the STS response increased with segment length up to ∼500 ms. Our results identify a locus of speech analysis in human auditory cortex that is distinct from lexical, semantic or syntactic processes.
Collapse
Affiliation(s)
- Tobias Overath
- 1] Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, USA. [2] Department of Psychology, New York University, New York, New York, USA
| | - Josh H McDermott
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, USA
| | - Jean Mary Zarate
- Department of Psychology, New York University, New York, New York, USA
| | - David Poeppel
- 1] Department of Psychology, New York University, New York, New York, USA. [2] Center for Neural Science, New York University, New York, New York, USA. [3] Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| |
Collapse
|
21
|
Different forms of effective connectivity in primate frontotemporal pathways. Nat Commun 2015; 6:6000. [PMID: 25613079 PMCID: PMC4306228 DOI: 10.1038/ncomms7000] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/28/2014] [Indexed: 01/03/2023] Open
Abstract
It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex. Neural pathways to frontal cortex areas of the brain enable communication, but their connectivity is unclear. Petkov et al. use electrical microstimulation and brain imaging to describe different forms of hierarchical effective connectivity that exist between the primate frontal and temporal cortex.
Collapse
|
22
|
Raschle NM, Smith SA, Zuk J, Dauvermann MR, Figuccio MJ, Gaab N. Investigating the neural correlates of voice versus speech-sound directed information in pre-school children. PLoS One 2014; 9:e115549. [PMID: 25532132 PMCID: PMC4274095 DOI: 10.1371/journal.pone.0115549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023] Open
Abstract
Studies in sleeping newborns and infants propose that the superior temporal sulcus is involved in speech processing soon after birth. Speech processing also implicitly requires the analysis of the human voice, which conveys both linguistic and extra-linguistic information. However, due to technical and practical challenges when neuroimaging young children, evidence of neural correlates of speech and/or voice processing in toddlers and young children remains scarce. In the current study, we used functional magnetic resonance imaging (fMRI) in 20 typically developing preschool children (average age = 5.8 y; range 5.2-6.8 y) to investigate brain activation during judgments about vocal identity versus the initial speech sound of spoken object words. FMRI results reveal common brain regions responsible for voice-specific and speech-sound specific processing of spoken object words including bilateral primary and secondary language areas of the brain. Contrasting voice-specific with speech-sound specific processing predominantly activates the anterior part of the right-hemispheric superior temporal sulcus. Furthermore, the right STS is functionally correlated with left-hemispheric temporal and right-hemispheric prefrontal regions. This finding underlines the importance of the right superior temporal sulcus as a temporal voice area and indicates that this brain region is specialized, and functions similarly to adults by the age of five. We thus extend previous knowledge of voice-specific regions and their functional connections to the young brain which may further our understanding of the neuronal mechanism of speech-specific processing in children with developmental disorders, such as autism or specific language impairments.
Collapse
Affiliation(s)
- Nora Maria Raschle
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Psychiatric University Clinics Basel, Department of Child and Adolescent Psychiatry, Basel, Switzerland
| | - Sara Ashley Smith
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Jennifer Zuk
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maria Regina Dauvermann
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Joseph Figuccio
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Graduate School of Education, Cambridge, Massachusetts, United States of America
| |
Collapse
|
23
|
Ghazanfar AA, Eliades SJ. The neurobiology of primate vocal communication. Curr Opin Neurobiol 2014; 28:128-35. [PMID: 25062473 PMCID: PMC4177356 DOI: 10.1016/j.conb.2014.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/20/2022]
Abstract
Recent investigations of non-human primate communication revealed vocal behaviors far more complex than previously appreciated. Understanding the neural basis of these communicative behaviors is important as it has the potential to reveal the basic underpinnings of the still more complex human speech. The latest work revealed vocalization-sensitive regions both within and beyond the traditional boundaries of the central auditory system. The importance and mechanisms of multi-sensory face-voice integration in vocal communication are also increasingly apparent. Finally, studies on the mechanisms of vocal production demonstrated auditory-motor interactions that may allow for self-monitoring and vocal control. We review the current work in these areas of primate communication research.
Collapse
Affiliation(s)
- Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA; Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Steven J Eliades
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Alho K, Rinne T, Herron TJ, Woods DL. Stimulus-dependent activations and attention-related modulations in the auditory cortex: a meta-analysis of fMRI studies. Hear Res 2013; 307:29-41. [PMID: 23938208 DOI: 10.1016/j.heares.2013.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/22/2013] [Accepted: 08/01/2013] [Indexed: 11/28/2022]
Abstract
We meta-analyzed 115 functional magnetic resonance imaging (fMRI) studies reporting auditory-cortex (AC) coordinates for activations related to active and passive processing of pitch and spatial location of non-speech sounds, as well as to the active and passive speech and voice processing. We aimed at revealing any systematic differences between AC surface locations of these activations by statistically analyzing the activation loci using the open-source Matlab toolbox VAMCA (Visualization and Meta-analysis on Cortical Anatomy). AC activations associated with pitch processing (e.g., active or passive listening to tones with a varying vs. fixed pitch) had median loci in the middle superior temporal gyrus (STG), lateral to Heschl's gyrus. However, median loci of activations due to the processing of infrequent pitch changes in a tone stream were centered in the STG or planum temporale (PT), significantly posterior to the median loci for other types of pitch processing. Median loci of attention-related modulations due to focused attention to pitch (e.g., attending selectively to low or high tones delivered in concurrent sequences) were, in turn, centered in the STG or superior temporal sulcus (STS), posterior to median loci for passive pitch processing. Activations due to spatial processing were centered in the posterior STG or PT, significantly posterior to pitch processing loci (processing of infrequent pitch changes excluded). In the right-hemisphere AC, the median locus of spatial attention-related modulations was in the STS, significantly inferior to the median locus for passive spatial processing. Activations associated with speech processing and those associated with voice processing had indistinguishable median loci at the border of mid-STG and mid-STS. Median loci of attention-related modulations due to attention to speech were in the same mid-STG/STS region. Thus, while attention to the pitch or location of non-speech sounds seems to recruit AC areas less involved in passive pitch or location processing, focused attention to speech predominantly enhances activations in regions that already respond to human vocalizations during passive listening. This suggests that distinct attention mechanisms might be engaged by attention to speech and attention to more elemental auditory features such as tone pitch or location. This article is part of a Special Issue entitled Human Auditory Neuroimaging.
Collapse
Affiliation(s)
- Kimmo Alho
- Helsinki Collegium for Advanced Studies, University of Helsinki, PO Box 4, FI 00014 Helsinki, Finland; Institute of Behavioural Sciences, University of Helsinki, PO Box 9, FI 00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
25
|
Poremba A, Bigelow J, Rossi B. Processing of communication sounds: contributions of learning, memory, and experience. Hear Res 2013; 305:31-44. [PMID: 23792078 DOI: 10.1016/j.heares.2013.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/09/2013] [Accepted: 06/10/2013] [Indexed: 11/17/2022]
Abstract
Abundant evidence from both field and lab studies has established that conspecific vocalizations (CVs) are of critical ecological significance for a wide variety of species, including humans, non-human primates, rodents, and other mammals and birds. Correspondingly, a number of experiments have demonstrated behavioral processing advantages for CVs, such as in discrimination and memory tasks. Further, a wide range of experiments have described brain regions in many species that appear to be specialized for processing CVs. For example, several neural regions have been described in both mammals and birds wherein greater neural responses are elicited by CVs than by comparison stimuli such as heterospecific vocalizations, nonvocal complex sounds, and artificial stimuli. These observations raise the question of whether these regions reflect domain-specific neural mechanisms dedicated to processing CVs, or alternatively, if these regions reflect domain-general neural mechanisms for representing complex sounds of learned significance. Inasmuch as CVs can be viewed as complex combinations of basic spectrotemporal features, the plausibility of the latter position is supported by a large body of literature describing modulated cortical and subcortical representation of a variety of acoustic features that have been experimentally associated with stimuli of natural behavioral significance (such as food rewards). Herein, we review a relatively small body of existing literature describing the roles of experience, learning, and memory in the emergence of species-typical neural representations of CVs and auditory system plasticity. In both songbirds and mammals, manipulations of auditory experience as well as specific learning paradigms are shown to modulate neural responses evoked by CVs, either in terms of overall firing rate or temporal firing patterns. In some cases, CV-sensitive neural regions gradually acquire representation of non-CV stimuli with which subjects have training and experience. These results parallel literature in humans describing modulation of responses in face-sensitive neural regions through learning and experience. Thus, although many questions remain, the available evidence is consistent with the notion that CVs may acquire distinct neural representation through domain-general mechanisms for representing complex auditory objects that are of learned importance to the animal. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
Affiliation(s)
- Amy Poremba
- University of Iowa, Dept. of Psychology, Div. Behavioral & Cognitive Neuroscience, E11 SSH, Iowa City, IA 52242, USA; University of Iowa, Neuroscience Program, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
26
|
Jayet Bray LC, Ferneyhough GB, Barker ER, Thibeault CM, Harris FC. Reward-based learning for virtual neurorobotics through emotional speech processing. Front Neurorobot 2013; 7:8. [PMID: 23641213 PMCID: PMC3638126 DOI: 10.3389/fnbot.2013.00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/02/2013] [Indexed: 11/24/2022] Open
Abstract
Reward-based learning can easily be applied to real life with a prevalence in children teaching methods. It also allows machines and software agents to automatically determine the ideal behavior from a simple reward feedback (e.g., encouragement) to maximize their performance. Advancements in affective computing, especially emotional speech processing (ESP) have allowed for more natural interaction between humans and robots. Our research focuses on integrating a novel ESP system in a relevant virtual neurorobotic (VNR) application. We created an emotional speech classifier that successfully distinguished happy and utterances. The accuracy of the system was 95.3 and 98.7% during the offline mode (using an emotional speech database) and the live mode (using live recordings), respectively. It was then integrated in a neurorobotic scenario, where a virtual neurorobot had to learn a simple exercise through reward-based learning. If the correct decision was made the robot received a spoken reward, which in turn stimulated synapses (in our simulated model) undergoing spike-timing dependent plasticity (STDP) and reinforced the corresponding neural pathways. Both our ESP and neurorobotic systems allowed our neurorobot to successfully and consistently learn the exercise. The integration of ESP in real-time computational neuroscience architecture is a first step toward the combination of human emotions and virtual neurorobotics.
Collapse
Affiliation(s)
- Laurence C. Jayet Bray
- Department of Computer Science and Engineering, University of NevadaReno, NV, USA
- Department of Bioengineering, George Mason UniversityFairfax, VA, USA
| | | | - Emily R. Barker
- Department of Computer Science and Engineering, University of NevadaReno, NV, USA
| | | | - Frederick C. Harris
- Department of Computer Science and Engineering, University of NevadaReno, NV, USA
| |
Collapse
|
27
|
Processing of natural sounds in human auditory cortex: tonotopy, spectral tuning, and relation to voice sensitivity. J Neurosci 2013; 32:14205-16. [PMID: 23055490 DOI: 10.1523/jneurosci.1388-12.2012] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Auditory cortical processing of complex meaningful sounds entails the transformation of sensory (tonotopic) representations of incoming acoustic waveforms into higher-level sound representations (e.g., their category). However, the precise neural mechanisms enabling such transformations remain largely unknown. In the present study, we use functional magnetic resonance imaging (fMRI) and natural sounds stimulation to examine these two levels of sound representation (and their relation) in the human auditory cortex. In a first experiment, we derive cortical maps of frequency preference (tonotopy) and selectivity (tuning width) by mathematical modeling of fMRI responses to natural sounds. The tuning width maps highlight a region of narrow tuning that follows the main axis of Heschl's gyrus and is flanked by regions of broader tuning. The narrowly tuned portion on Heschl's gyrus contains two mirror-symmetric frequency gradients, presumably defining two distinct primary auditory areas. In addition, our analysis indicates that spectral preference and selectivity (and their topographical organization) extend well beyond the primary regions and also cover higher-order and category-selective auditory regions. In particular, regions with preferential responses to human voice and speech occupy the low-frequency portions of the tonotopic map. We confirm this observation in a second experiment, where we find that speech/voice selective regions exhibit a response bias toward the low frequencies characteristic of human voice and speech, even when responding to simple tones. We propose that this frequency bias reflects the selective amplification of relevant and category-characteristic spectral bands, a useful processing step for transforming a sensory (tonotopic) sound image into higher level neural representations.
Collapse
|
28
|
Tremblay P, Baroni M, Hasson U. Processing of speech and non-speech sounds in the supratemporal plane: auditory input preference does not predict sensitivity to statistical structure. Neuroimage 2012; 66:318-32. [PMID: 23116815 DOI: 10.1016/j.neuroimage.2012.10.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 08/27/2012] [Accepted: 10/15/2012] [Indexed: 11/17/2022] Open
Abstract
The supratemporal plane contains several functionally heterogeneous subregions that respond strongly to speech. Much of the prior work on the issue of speech processing in the supratemporal plane has focused on neural responses to single speech vs. non-speech sounds rather than focusing on higher-level computations that are required to process more complex auditory sequences. Here we examined how information is integrated over time for speech and non-speech sounds by quantifying the BOLD fMRI response to stochastic (non-deterministic) sequences of speech and non-speech naturalistic sounds that varied in their statistical structure (from random to highly structured sequences) during passive listening. Behaviorally, the participants were accurate in segmenting speech and non-speech sequences, though they were more accurate for speech. Several supratemporal regions showed increased activation magnitude for speech sequences (preference), but, importantly, this did not predict sensitivity to statistical structure: (i) several areas showing a speech preference were sensitive to statistical structure in both speech and non-speech sequences, and (ii) several regions that responded to both speech and non-speech sounds showed distinct responses to statistical structure in speech and non-speech sequences. While the behavioral findings highlight the tight relation between statistical structure and segmentation processes, the neuroimaging results suggest that the supratemporal plane mediates complex statistical processing for both speech and non-speech sequences and emphasize the importance of studying the neurocomputations associated with auditory sequence processing. These findings identify new partitions of functionally distinct areas in the supratemporal plane that cannot be evoked by single stimuli. The findings demonstrate the importance of going beyond input preference to examine the neural computations implemented in the superior temporal plane.
Collapse
Affiliation(s)
- P Tremblay
- Université Laval, Rehabilitation Department, Québec City, Qc., Canada; Centre de Recherche de l'Institut Universitaire en santé mentale de Québec (CRIUSMQ), Québec City, Qc., Canada.
| | - M Baroni
- Center for Mind/Brain Sciences (CIMeC), University of Trento, via delle Regole, 1010, 38060, Mattarello (TN), Italy; Department of Information Science, University of Trento, via delle Regole, 1010, 38060, Mattarello (TN), Italy
| | - U Hasson
- Center for Mind/Brain Sciences (CIMeC), University of Trento, via delle Regole, 1010, 38060, Mattarello (TN), Italy; Department of Psychology and Cognitive Sciences, University of Trento, via delle Regole, 1010, 38060, Mattarello (TN), Italy
| |
Collapse
|
29
|
Dick AS, Tremblay P. Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain 2012; 135:3529-50. [PMID: 23107648 DOI: 10.1093/brain/aws222] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The growing consensus that language is distributed into large-scale cortical and subcortical networks has brought with it an increasing focus on the connectional anatomy of language, or how particular fibre pathways connect regions within the language network. Understanding connectivity of the language network could provide critical insights into function, but recent investigations using a variety of methodologies in both humans and non-human primates have provided conflicting accounts of pathways central to language. Some of the pathways classically considered language pathways, such as the arcuate fasciculus, are now argued to be domain-general rather than specialized, which represents a radical shift in perspective. Other pathways described in the non-human primate remain to be verified in humans. In this review, we examine the consensus and controversy in the study of fibre pathway connectivity for language. We focus on seven fibre pathways-the superior longitudinal fasciculus and arcuate fasciculus, the uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, inferior longitudinal fasciculus and inferior fronto-occipital fasciculus-that have been proposed to support language in the human. We examine the methods in humans and non-human primate used to investigate the connectivity of these pathways, the historical context leading to the most current understanding of their anatomy, and the functional and clinical correlates of each pathway with reference to language. We conclude with a challenge for researchers and clinicians to establish a coherent framework within which fibre pathway connectivity can be systematically incorporated to the study of language.
Collapse
Affiliation(s)
- Anthony Steven Dick
- Department of Psychology, Florida International University, Modesto A. Maidique Campus, Deuxieme Maison 296B, 11200 S. W. 8th Street, Miami, FL 33199, USA.
| | | |
Collapse
|
30
|
Petkov CI, Wilson B. On the pursuit of the brain network for proto-syntactic learning in non-human primates: conceptual issues and neurobiological hypotheses. Philos Trans R Soc Lond B Biol Sci 2012; 367:2077-88. [PMID: 22688642 PMCID: PMC3367685 DOI: 10.1098/rstb.2012.0073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Songbirds have become impressive neurobiological models for aspects of human verbal communication because they learn to sequence their song elements, analogous, in some ways, to how humans learn to produce spoken sequences with syntactic structure. However, mammals such as non-human primates are considered to be at best limited-vocal learners and not able to sequence their vocalizations, although some of these animals can learn certain 'artificial grammar' sequences. Thus, conceptual issues have slowed the progress in exploring potential neurobiological homologues to language-related processes in species that are taxonomically closely related to humans. We consider some of the conceptual issues impeding a pursuit of, as we define them, 'proto-syntactic' capabilities and their neuronal substrates in non-human animals. We also discuss ways to better bridge comparative behavioural and neurobiological data between humans and other animals. Finally, we propose guiding neurobiological hypotheses with which we aim to facilitate the future testing of the level of correspondence between the human brain network for syntactic-learning and related neurobiological networks present in other primates. Insights from the study of non-human primates and other mammals are likely to complement those being obtained in birds to further our knowledge of the human language-related network at the cellular level.
Collapse
Affiliation(s)
- Christopher I Petkov
- Institute of Neuroscience, Newcastle University Medical School, Henry Wellcome Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | | |
Collapse
|
31
|
Petkov CI, Jarvis ED. Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. FRONTIERS IN EVOLUTIONARY NEUROSCIENCE 2012; 4:12. [PMID: 22912615 PMCID: PMC3419981 DOI: 10.3389/fnevo.2012.00012] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 07/20/2012] [Indexed: 11/18/2022]
Abstract
Vocal learners such as humans and songbirds can learn to produce elaborate patterns of structurally organized vocalizations, whereas many other vertebrates such as non-human primates and most other bird groups either cannot or do so to a very limited degree. To explain the similarities among humans and vocal-learning birds and the differences with other species, various theories have been proposed. One set of theories are motor theories, which underscore the role of the motor system as an evolutionary substrate for vocal production learning. For instance, the motor theory of speech and song perception proposes enhanced auditory perceptual learning of speech in humans and song in birds, which suggests a considerable level of neurobiological specialization. Another, a motor theory of vocal learning origin, proposes that the brain pathways that control the learning and production of song and speech were derived from adjacent motor brain pathways. Another set of theories are cognitive theories, which address the interface between cognition and the auditory-vocal domains to support language learning in humans. Here we critically review the behavioral and neurobiological evidence for parallels and differences between the so-called vocal learners and vocal non-learners in the context of motor and cognitive theories. In doing so, we note that behaviorally vocal-production learning abilities are more distributed than categorical, as are the auditory-learning abilities of animals. We propose testable hypotheses on the extent of the specializations and cross-species correspondences suggested by motor and cognitive theories. We believe that determining how spoken language evolved is likely to become clearer with concerted efforts in testing comparative data from many non-human animal species.
Collapse
Affiliation(s)
- Christopher I. Petkov
- Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK
- Centre for Behavior and Evolution, Newcastle UniversityNewcastle upon Tyne, UK
| | - Erich D. Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute, Duke UniversityDurham, NC, USA
| |
Collapse
|
32
|
Schirmer A, Fox PM, Grandjean D. On the spatial organization of sound processing in the human temporal lobe: a meta-analysis. Neuroimage 2012; 63:137-47. [PMID: 22732561 DOI: 10.1016/j.neuroimage.2012.06.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 12/19/2022] Open
Abstract
In analogy to visual object recognition, proposals have been made that auditory object recognition is organized by sound class (e.g., vocal/non-vocal, linguistic/non-linguistic) and linked to several pathways or processing streams with specific functions. To test these proposals, we analyzed temporal lobe activations from 297 neuroimaging studies on vocal, musical and environmental sound processing. We found that all sound classes elicited activations anteriorly, posteriorly and ventrally of primary auditory cortex. However, rather than being sound class (e.g., voice) or attribute (e.g., complexity) specific, these processing streams correlated with sound knowledge or experience. Specifically, an anterior stream seemed to support general, sound class independent sound recognition and discourse-level semantic processing. A posterior stream could be best explained as supporting the embodiment of sound associated actions and a ventral stream as supporting multimodal conceptual representations. Vocalizations and music engaged these streams evenly in the left and right hemispheres, whereas environmental sounds produced a left-lateralized pattern. Together, these results both challenge and confirm existing proposal of temporal lobe specialization. Moreover, they suggest that the temporal lobe maintains the neuroanatomical building blocks for an all-purpose sound comprehension system that, instead of being preset for a particular sound class, is shaped in interaction with an individual's sonic environment.
Collapse
Affiliation(s)
- Annett Schirmer
- National University of Singapore, Department of Psychology, Singapore.
| | | | | |
Collapse
|
33
|
Cheng Y, Lee SY, Chen HY, Wang PY, Decety J. Voice and Emotion Processing in the Human Neonatal Brain. J Cogn Neurosci 2012; 24:1411-9. [DOI: 10.1162/jocn_a_00214] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Although the voice-sensitive neural system emerges very early in development, it has yet to be demonstrated whether the neonatal brain is sensitive to voice perception. We measured the EEG mismatch response (MMR) elicited by emotionally spoken syllables “dada” along with correspondingly synthesized nonvocal sounds, whose fundamental frequency contours were matched, in 98 full-term newborns aged 1–5 days. In Experiment 1, happy syllables relative to nonvocal sounds elicited an MMR lateralized to the right hemisphere. In Experiment 2, fearful syllables elicited stronger amplitudes than happy or neutral syllables, and this response had no sex differences. In Experiment 3, angry versus happy syllables elicited an MMR, although their corresponding nonvocal sounds did not. Here, we show that affective discrimination is selectively driven by voice processing per se rather than low-level acoustical features and that the cerebral specialization for human voice and emotion processing emerges over the right hemisphere during the first days of life.
Collapse
Affiliation(s)
- Yawei Cheng
- 1Institute of Neuroscience and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- 2National Yang-Ming University Hospital, Yilan, Taiwan
| | - Shin-Yi Lee
- 1Institute of Neuroscience and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Yu Chen
- 1Institute of Neuroscience and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ping-Yao Wang
- 2National Yang-Ming University Hospital, Yilan, Taiwan
| | | |
Collapse
|
34
|
Abstract
In the previous issue of Social Neuroscience, Lloyd-Fox and colleagues ( 2012 ) provide evidence that voice-sensitivity in temporal cortex emerges between 4 and 7 months of age. We discuss the implications of these findings and the overall progress that has been made in understanding the development of voice processing in infancy. In this commentary, we also examine important methodological and theoretical issues raised by this new work in the emerging field of developmental social neuroscience.
Collapse
Affiliation(s)
- Tobias Grossmann
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | | |
Collapse
|
35
|
Physical and perceptual factors shape the neural mechanisms that integrate audiovisual signals in speech comprehension. J Neurosci 2011; 31:11338-50. [PMID: 21813693 DOI: 10.1523/jneurosci.6510-10.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Face-to-face communication challenges the human brain to integrate information from auditory and visual senses with linguistic representations. Yet the role of bottom-up physical (spectrotemporal structure) input and top-down linguistic constraints in shaping the neural mechanisms specialized for integrating audiovisual speech signals are currently unknown. Participants were presented with speech and sinewave speech analogs in visual, auditory, and audiovisual modalities. Before the fMRI study, they were trained to perceive physically identical sinewave speech analogs as speech (SWS-S) or nonspeech (SWS-N). Comparing audiovisual integration (interactions) of speech, SWS-S, and SWS-N revealed a posterior-anterior processing gradient within the left superior temporal sulcus/gyrus (STS/STG): Bilateral posterior STS/STG integrated audiovisual inputs regardless of spectrotemporal structure or speech percept; in left mid-STS, the integration profile was primarily determined by the spectrotemporal structure of the signals; more anterior STS regions discarded spectrotemporal structure and integrated audiovisual signals constrained by stimulus intelligibility and the availability of linguistic representations. In addition to this "ventral" processing stream, a "dorsal" circuitry encompassing posterior STS/STG and left inferior frontal gyrus differentially integrated audiovisual speech and SWS signals. Indeed, dynamic causal modeling and Bayesian model comparison provided strong evidence for a parallel processing structure encompassing a ventral and a dorsal stream with speech intelligibility training enhancing the connectivity between posterior and anterior STS/STG. In conclusion, audiovisual speech comprehension emerges in an interactive process with the integration of auditory and visual signals being progressively constrained by stimulus intelligibility along the STS and spectrotemporal structure in a dorsal fronto-temporal circuitry.
Collapse
|
36
|
Lloyd-Fox S, Blasi A, Mercure E, Elwell CE, Johnson MH. The emergence of cerebral specialization for the human voice over the first months of life. Soc Neurosci 2011; 7:317-30. [PMID: 21950945 DOI: 10.1080/17470919.2011.614696] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
How specialized is the infant brain for processing voice within our environment? Research in adults suggests that portions of the temporal lobe play an important role in differentiating vocalizations from other environmental sounds; however, very little is known about this process in infancy. Recent research in infants has revealed discrepancies in the cortical location of voice-selective activation, as well as the age of onset of this response. The current study used functional near-infrared spectroscopy (fNIRS) to further investigate voice processing in awake 4-7-month-old infants. In listening to voice and non-voice sounds, there was robust and widespread activation in bilateral temporal cortex. Further, voice-selective regions of the bilateral anterior temporal cortex evidenced a steady increase in voice selective activation (voice > non-voice activation) over 4-7 months of age. These findings support a growing body of evidence that the emergence of cerebral specialization for human voice sounds evolves over the first 6 months of age.
Collapse
Affiliation(s)
- S Lloyd-Fox
- a Centre for Brain and Cognitive Development, Birkbeck, University of London , London , UK
| | | | | | | | | |
Collapse
|
37
|
Perrodin C, Kayser C, Logothetis NK, Petkov CI. Voice cells in the primate temporal lobe. Curr Biol 2011; 21:1408-15. [PMID: 21835625 PMCID: PMC3398143 DOI: 10.1016/j.cub.2011.07.028] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/20/2011] [Accepted: 07/20/2011] [Indexed: 11/28/2022]
Abstract
Communication signals are important for social interactions and survival and are thought to receive specialized processing in the visual and auditory systems. Whereas the neural processing of faces by face clusters and face cells has been repeatedly studied [1-5], less is known about the neural representation of voice content. Recent functional magnetic resonance imaging (fMRI) studies have localized voice-preferring regions in the primate temporal lobe [6, 7], but the hemodynamic response cannot directly assess neurophysiological properties. We investigated the responses of neurons in an fMRI-identified voice cluster in awake monkeys, and here we provide the first systematic evidence for voice cells. "Voice cells" were identified, in analogy to "face cells," as neurons responding at least 2-fold stronger to conspecific voices than to "nonvoice" sounds or heterospecific voices. Importantly, whereas face clusters are thought to contain high proportions of face cells [4] responding broadly to many faces [1, 2, 4, 5, 8-10], we found that voice clusters contain moderate proportions of voice cells. Furthermore, individual voice cells exhibit high stimulus selectivity. The results reveal the neurophysiological bases for fMRI-defined voice clusters in the primate brain and highlight potential differences in how the auditory and visual systems generate selective representations of communication signals.
Collapse
Affiliation(s)
- Catherine Perrodin
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
38
|
Korzeniewska A, Franaszczuk PJ, Crainiceanu CM, Kuś R, Crone NE. Dynamics of large-scale cortical interactions at high gamma frequencies during word production: event related causality (ERC) analysis of human electrocorticography (ECoG). Neuroimage 2011; 56:2218-37. [PMID: 21419227 PMCID: PMC3105123 DOI: 10.1016/j.neuroimage.2011.03.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 11/16/2022] Open
Abstract
Intracranial EEG studies in humans have shown that functional brain activation in a variety of functional-anatomic domains of human cortex is associated with an increase in power at a broad range of high gamma (>60Hz) frequencies. Although these electrophysiological responses are highly specific for the location and timing of cortical processing and in animal recordings are highly correlated with increased population firing rates, there has been little direct empirical evidence for causal interactions between different recording sites at high gamma frequencies. Such causal interactions are hypothesized to occur during cognitive tasks that activate multiple brain regions. To determine whether such causal interactions occur at high gamma frequencies and to investigate their functional significance, we used event-related causality (ERC) analysis to estimate the dynamics, directionality, and magnitude of event-related causal interactions using subdural electrocorticography (ECoG) recorded during two word production tasks: picture naming and auditory word repetition. A clinical subject who had normal hearing but was skilled in American Signed Language (ASL) provided a unique opportunity to test our hypothesis with reference to a predictable pattern of causal interactions, i.e. that language cortex interacts with different areas of sensorimotor cortex during spoken vs. signed responses. Our ERC analyses confirmed this prediction. During word production with spoken responses, perisylvian language sites had prominent causal interactions with mouth/tongue areas of motor cortex, and when responses were gestured in sign language, the most prominent interactions involved hand and arm areas of motor cortex. Furthermore, we found that the sites from which the most numerous and prominent causal interactions originated, i.e. sites with a pattern of ERC "divergence", were also sites where high gamma power increases were most prominent and where electrocortical stimulation mapping interfered with word production. These findings suggest that the number, strength and directionality of event-related causal interactions may help identify network nodes that are not only activated by a task but are critical to its performance.
Collapse
Affiliation(s)
- Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 2-147, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
39
|
Wilson B, Petkov CI. Communication and the primate brain: insights from neuroimaging studies in humans, chimpanzees and macaques. Hum Biol 2011; 83:175-89. [PMID: 21615285 PMCID: PMC3398142 DOI: 10.3378/027.083.0203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Considerable knowledge is available on the neural substrates for speech and language from brain-imaging studies in humans, but until recently there was a lack of data for comparison from other animal species on the evolutionarily conserved brain regions that process species-specific communication signals. To obtain new insights into the relationship of the substrates for communication in primates, we compared the results from several neuroimaging studies in humans with those that have recently been obtained from macaque monkeys and chimpanzees. The recent work in humans challenges the longstanding notion of highly localized speech areas. As a result, the brain regions that have been identified in humans for speech and nonlinguistic voice processing show a striking general correspondence to how the brains of other primates analyze species-specific vocalizations or information in the voice, such as voice identity. The comparative neuroimaging work has begun to clarify evolutionary relationships in brain function, supporting the notion that the brain regions that process communication signals in the human brain arose from a precursor network of regions that is present in nonhuman primates and is used for processing species-specific vocalizations. We conclude by considering how the stage now seems to be set for comparative neurobiology to characterize the ancestral state of the network that evolved in humans to support language.
Collapse
Affiliation(s)
- Benjamin Wilson
- Laboratory of Comparative Neuropsychology, Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | |
Collapse
|
40
|
Obleser J, Leaver AM, Vanmeter J, Rauschecker JP. Segregation of vowels and consonants in human auditory cortex: evidence for distributed hierarchical organization. Front Psychol 2010; 1:232. [PMID: 21738513 PMCID: PMC3125530 DOI: 10.3389/fpsyg.2010.00232] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/08/2010] [Indexed: 11/24/2022] Open
Abstract
The speech signal consists of a continuous stream of consonants and vowels, which must be de- and encoded in human auditory cortex to ensure the robust recognition and categorization of speech sounds. We used small-voxel functional magnetic resonance imaging to study information encoded in local brain activation patterns elicited by consonant-vowel syllables, and by a control set of noise bursts. First, activation of anterior–lateral superior temporal cortex was seen when controlling for unspecific acoustic processing (syllables versus band-passed noises, in a “classic” subtraction-based design). Second, a classifier algorithm, which was trained and tested iteratively on data from all subjects to discriminate local brain activation patterns, yielded separations of cortical patches discriminative of vowel category versus patches discriminative of stop-consonant category across the entire superior temporal cortex, yet with regional differences in average classification accuracy. Overlap (voxels correctly classifying both speech sound categories) was surprisingly sparse. Third, lending further plausibility to the results, classification of speech–noise differences was generally superior to speech–speech classifications, with the no\ exception of a left anterior region, where speech–speech classification accuracies were significantly better. These data demonstrate that acoustic–phonetic features are encoded in complex yet sparsely overlapping local patterns of neural activity distributed hierarchically across different regions of the auditory cortex. The redundancy apparent in these multiple patterns may partly explain the robustness of phonemic representations.
Collapse
Affiliation(s)
- Jonas Obleser
- Laboratory of Integrative Neuroscience and Cognition, Department of Physiology and Biophysics, Georgetown University Medical Center Washington, DC, USA
| | | | | | | |
Collapse
|
41
|
Woods DL, Herron TJ, Cate AD, Yund EW, Stecker GC, Rinne T, Kang X. Functional properties of human auditory cortical fields. Front Syst Neurosci 2010; 4:155. [PMID: 21160558 PMCID: PMC3001989 DOI: 10.3389/fnsys.2010.00155] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 11/05/2010] [Indexed: 11/23/2022] Open
Abstract
While auditory cortex in non-human primates has been subdivided into multiple functionally specialized auditory cortical fields (ACFs), the boundaries and functional specialization of human ACFs have not been defined. In the current study, we evaluated whether a widely accepted primate model of auditory cortex could explain regional tuning properties of fMRI activations on the cortical surface to attended and non-attended tones of different frequency, location, and intensity. The limits of auditory cortex were defined by voxels that showed significant activations to non-attended sounds. Three centrally located fields with mirror-symmetric tonotopic organization were identified and assigned to the three core fields of the primate model while surrounding activations were assigned to belt fields following procedures similar to those used in macaque fMRI studies. The functional properties of core, medial belt, and lateral belt field groups were then analyzed. Field groups were distinguished by tonotopic organization, frequency selectivity, intensity sensitivity, contralaterality, binaural enhancement, attentional modulation, and hemispheric asymmetry. In general, core fields showed greater sensitivity to sound properties than did belt fields, while belt fields showed greater attentional modulation than core fields. Significant distinctions in intensity sensitivity and contralaterality were seen between adjacent core fields A1 and R, while multiple differences in tuning properties were evident at boundaries between adjacent core and belt fields. The reliable differences in functional properties between fields and field groups suggest that the basic primate pattern of auditory cortex organization is preserved in humans. A comparison of the sizes of functionally defined ACFs in humans and macaques reveals a significant relative expansion in human lateral belt fields implicated in the processing of speech.
Collapse
Affiliation(s)
- David L Woods
- Human Cognitive Neurophysiology Laboratory, VANCHCS Martinez, CA, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Hierarchical auditory processing directed rostrally along the monkey's supratemporal plane. J Neurosci 2010; 30:13021-30. [PMID: 20881120 DOI: 10.1523/jneurosci.2267-10.2010] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Connectional anatomical evidence suggests that the auditory core, containing the tonotopic areas A1, R, and RT, constitutes the first stage of auditory cortical processing, with feedforward projections from core outward, first to the surrounding auditory belt and then to the parabelt. Connectional evidence also raises the possibility that the core itself is serially organized, with feedforward projections from A1 to R and with additional projections, although of unknown feed direction, from R to RT. We hypothesized that area RT together with more rostral parts of the supratemporal plane (rSTP) form the anterior extension of a rostrally directed stimulus quality processing stream originating in the auditory core area A1. Here, we analyzed auditory responses of single neurons in three different sectors distributed caudorostrally along the supratemporal plane (STP): sector I, mainly area A1; sector II, mainly area RT; and sector III, principally RTp (the rostrotemporal polar area), including cortex located 3 mm from the temporal tip. Mean onset latency of excitation responses and stimulus selectivity to monkey calls and other sounds, both simple and complex, increased progressively from sector I to III. Also, whereas cells in sector I responded with significantly higher firing rates to the "other" sounds than to monkey calls, those in sectors II and III responded at the same rate to both stimulus types. The pattern of results supports the proposal that the STP contains a rostrally directed, hierarchically organized auditory processing stream, with gradually increasing stimulus selectivity, and that this stream extends from the primary auditory area to the temporal pole.
Collapse
|
43
|
Brauer J, Anwander A, Friederici AD. Neuroanatomical Prerequisites for Language Functions in the Maturing Brain. Cereb Cortex 2010; 21:459-66. [PMID: 20566580 DOI: 10.1093/cercor/bhq108] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jens Brauer
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
44
|
Abstract
In this review of 100 fMRI studies of speech comprehension and production, published in 2009, activation is reported for: prelexical speech perception in bilateral superior temporal gyri; meaningful speech in middle and inferior temporal cortex; semantic retrieval in the left angular gyrus and pars orbitalis; and sentence comprehension in bilateral superior temporal sulci. For incomprehensible sentences, activation increases in four inferior frontal regions, posterior planum temporale, and ventral supramarginal gyrus. These effects are associated with the use of prior knowledge of semantic associations, word sequences, and articulation that predict the content of the sentence. Speech production activates the same set of regions as speech comprehension but in addition, activation is reported for: word retrieval in left middle frontal cortex; articulatory planning in the left anterior insula; the initiation and execution of speech in left putamen, pre-SMA, SMA, and motor cortex; and for suppressing unintended responses in the anterior cingulate and bilateral head of caudate nuclei. Anatomical and functional connectivity studies are now required to identify the processing pathways that integrate these areas to support language.
Collapse
Affiliation(s)
- Cathy J Price
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, London, UK.
| |
Collapse
|
45
|
Abstract
In this issue of Neuron, Grossmann et al. provide the first evidence of voice-sensitive regions in the brain of 7-month-old, but not 4-month-old, infants. We discuss the implications of these findings for our understanding of cerebral voice processing in the first months of life.
Collapse
Affiliation(s)
- Pascal Belin
- Department of Psychology & Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, Lanarkshire G12 8QQ, Scotland, UK.
| | | |
Collapse
|
46
|
Grossmann T, Oberecker R, Koch SP, Friederici AD. The developmental origins of voice processing in the human brain. Neuron 2010; 65:852-8. [PMID: 20346760 PMCID: PMC2852650 DOI: 10.1016/j.neuron.2010.03.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2010] [Indexed: 11/24/2022]
Abstract
In human adults, voices are processed in specialized brain regions in superior temporal cortices. We examined the development of this cortical organization during infancy by using near-infrared spectroscopy. In experiment 1, 7-month-olds but not 4-month-olds showed increased responses in left and right superior temporal cortex to the human voice when compared to nonvocal sounds, suggesting that voice-sensitive brain systems emerge between 4 and 7 months of age. In experiment 2, 7-month-old infants listened to words spoken with neutral, happy, or angry prosody. Hearing emotional prosody resulted in increased responses in a voice-sensitive region in the right hemisphere. Moreover, a region in right inferior frontal cortex taken to serve evaluative functions in the adult brain showed particular sensitivity to happy prosody. The pattern of findings suggests that temporal regions specialize in processing voices very early in development and that, already in infancy, emotions differentially modulate voice processing in the right hemisphere.
Collapse
Affiliation(s)
- Tobias Grossmann
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK.
| | | | | | | |
Collapse
|
47
|
Monkey drumming reveals common networks for perceiving vocal and nonvocal communication sounds. Proc Natl Acad Sci U S A 2009; 106:18010-5. [PMID: 19805199 DOI: 10.1073/pnas.0909756106] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salient sounds such as those created by drumming can serve as means of nonvocal acoustic communication in addition to vocal sounds. Despite the ubiquity of drumming across human cultures, its origins and the brain regions specialized in processing such signals remain unexplored. Here, we report that an important animal model for vocal communication, the macaque monkey, also displays drumming behavior, and we exploit this finding to show that vocal and nonvocal communication sounds are represented by overlapping networks in the brain's temporal lobe. Observing social macaque groups, we found that these animals use artificial objects to produce salient periodic sounds, similar to acoustic gestures. Behavioral tests confirmed that these drumming sounds attract the attention of listening monkeys similarly as conspecific vocalizations. Furthermore, in a preferential looking experiment, drumming sounds influenced the way monkeys viewed their conspecifics, suggesting that drumming serves as a multimodal signal of social dominance. Finally, by using high-resolution functional imaging we identified those brain regions preferentially activated by drumming sounds or by vocalizations and found that the representations of both these communication sounds overlap in caudal auditory cortex and the amygdala. The similar behavioral responses to drumming and vocal sounds, and their shared neural representation, suggest a common origin of primate vocal and nonvocal communication systems and support the notion of a gestural origin of speech and music.
Collapse
|