1
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2024:10.1038/s41380-024-02656-9. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
2
|
Fukuyama K, Motomura E, Okada M. Age-Dependent Activation of Purinergic Transmission Contributes to the Development of Epileptogenesis in ADSHE Model Rats. Biomolecules 2024; 14:204. [PMID: 38397441 PMCID: PMC10886636 DOI: 10.3390/biom14020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
To explore the developmental processes of epileptogenesis/ictogenesis, this study determined age-dependent functional abnormalities associated with purinergic transmission in a genetic rat model (S286L-TG) of autosomal-dominant sleep-related hypermotor epilepsy (ADSHE). The age-dependent fluctuations in the release of ATP and L-glutamate in the orbitofrontal cortex (OFC) were determined using microdialysis and ultra-high-performance liquid chromatography with mass spectrometry (UHPLC-MS). ATP release from cultured astrocytes was also determined using UHPLC-MS. The expressions of P2X7 receptor (P2X7R), connexin 43, phosphorylated-Akt and phosphorylated-Erk were determined using capillary immunoblotting. No functional abnormalities associated with purinergic transmission could be detected in the OFC of 4-week-old S286L-TG and cultured S286L-TG astrocytes. However, P2X7R expression, as well as basal and P2X7R agonist-induced ATP releases, was enhanced in S286L-TG OFC in the critical ADSHE seizure onset period (7-week-old). Long-term exposure to a modest level of P2X7R agonist, which could not increase astroglial ATP release, for 14 d increased the expressions of P2X7R and connexin 43 and the signaling of Akt and Erk in astrocytes, and it enhanced the sensitivity of P2X7R to its agonists. Akt but not Erk increased P2X7R expression, whereas both Akt and Erk increased connexin 43 expression. Functional abnormalities, enhanced ATP release and P2X7R expression were already seen before the onset of ADSHE seizure in S286L-TG. Additionally, long-term exposure to the P2X7R agonist mimicked the functional abnormalities associated with purinergic transmission in astrocytes, similar to those in S286L-TG OFC. Therefore, these results suggest that long-term modestly enhanced purinergic transmission and/or activated P2X7R are, at least partially, involved in the development of the epileptogenesis of ADSHE, rather than that of ictogenesis.
Collapse
Affiliation(s)
| | | | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.F.); (E.M.)
| |
Collapse
|
3
|
Zheng H, Liu Q, Zhou S, Luo H, Zhang W. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases. Front Immunol 2024; 15:1345625. [PMID: 38370420 PMCID: PMC10869479 DOI: 10.3389/fimmu.2024.1345625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
The P2X7 receptor (P2X7R), a non-selective cation channel modulated by adenosine triphosphate (ATP), localizes to microglia, astrocytes, oligodendrocytes, and neurons in the central nervous system, with the most incredible abundance in microglia. P2X7R partake in various signaling pathways, engaging in the immune response, the release of neurotransmitters, oxidative stress, cell division, and programmed cell death. When neurodegenerative diseases result in neuronal apoptosis and necrosis, ATP activates the P2X7R. This activation induces the release of biologically active molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen species, and excitotoxic glutamate/ATP. Subsequently, this leads to neuroinflammation, which exacerbates neuronal involvement. The P2X7R is essential in the development of neurodegenerative diseases. This implies that it has potential as a drug target and could be treated using P2X7R antagonists that are able to cross the blood-brain barrier. This review will comprehensively and objectively discuss recent research breakthroughs on P2X7R genes, their structural features, functional properties, signaling pathways, and their roles in neurodegenerative diseases and possible therapies.
Collapse
Affiliation(s)
- Huiyong Zheng
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiang Liu
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siwei Zhou
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongliang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Sun W, Wang Q, Zhang R, Zhang N. Ketogenic diet attenuates neuroinflammation and induces conversion of M1 microglia to M2 in an EAE model of multiple sclerosis by regulating the NF-κB/NLRP3 pathway and inhibiting HDAC3 and P2X7R activation. Food Funct 2023; 14:7247-7269. [PMID: 37466915 DOI: 10.1039/d3fo00122a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder characterized by demyelination and neurodegeneration in the central nervous system (CNS); severe symptoms lead MS patients to use complementary treatments. Ketogenic diet (KD) shows wide neuroprotective effects, but the precise mechanisms underlying the therapeutic activity of KD in MS are unclear. The present study established a continuous 24 days experimental autoimmune encephalomyelitis (EAE) mouse model with or without KD. The changes in motor function, pathological hallmarks of EAE, the status of microglia, neuroinflammatory response and intracellular signaling pathways in mice were detected by the rotarod test, histological analysis, real-time PCR (RT-PCR) and western blotting. Our results showed that KD could prevent motor deficiency, reduce clinical scores, inhibit demyelination, improve pathological lesions and suppress microglial activation in the spinal cord of EAE mice. Meanwhile, KD shifted microglial polarization toward the protective M2 phenotype and modified the inflammatory milieu by downregulating the production of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6, as well as upregulating the release of anti-inflammatory cytokines such as TGF-β. Furthermore, KD decreased the expression levels of CCL2, CCR2, CCL3, CCR1, CCR5, CXCL10 and CXCR3 in the spinal cord and spleen with reduced monocyte/macrophage infiltration in the CNS. In addition, KD inhibits NLRP3 activation in the microglia, as revealed by the significantly decreased co-expression of NLRP3+ and Iba-1+ in the KD + EAE group. Further studies demonstrated that KD suppresses inflammatory response and M1 microglial polarization by inhibiting the TLR4/MyD88/NF-κB/NLRP3 pathway, the JAK1/STAT1 pathway, HDAC3 and P2X7R activation, as well as up-regulation of JAK3/STAT6.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
5
|
Ahn YH, Tang Y, Illes P. The neuroinflammatory astrocytic P2X7 receptor: Alzheimer's disease, ischemic brain injury, and epileptic state. Expert Opin Ther Targets 2023; 27:763-778. [PMID: 37712394 DOI: 10.1080/14728222.2023.2258281] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Astrocytes have previously been considered as cells supporting neuronal functions, but they are now recognized as active players in maintaining central nervous system (CNS) homeostasis. Astrocytes can communicate with other CNS cells, i.e. through the gliotransmitter ATP and P2X7 receptors (Rs). AREAS COVERED In this review, we will discuss how the P2X7R initiates the release of gliotransmitters and proinflammatory cytokines/chemokines, thereby establishing a dialog between astrocytes and neurons and, in addition, causing neuroinflammation. In astrocytes, dysregulation of P2X7Rs has been associated with neurodegenerative illnesses such as Alzheimer's disease (AD), as well as the consequences of cerebral ischemic injury and status epilepticus (SE). EXPERT OPINION Although all CNS cells are possible sources of ATP release, the targets of this ATP are primarily at microglial cells. However, astrocytes also contain ATP-sensitive P2X7Rs and have in addition the peculiar property over microglia to continuously interact with neurons via not only inflammatory mediators but also gliotransmitters, such as adenosine 5'-triphosphate (ATP), glutamate, γ-amino butyric acid (GABA), and D-serine. Cellular damage arising during AD, cerebral ischemia, and SE via P2X7R activation is superimposed upon the original disease, and their prevention by blood-brain barrier permeable pharmacological antagonists is a valid therapeutic option.
Collapse
Affiliation(s)
- Young Ha Ahn
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
| | - Yong Tang
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, China
| | - Peter Illes
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Lalo U, Pankratov Y. ATP-mediated signalling in the central synapses. Neuropharmacology 2023; 229:109477. [PMID: 36841527 DOI: 10.1016/j.neuropharm.2023.109477] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
ATP released from the synaptic terminals and astrocytes can activate neuronal P2 receptors at a variety of locations across the CNS. Although the postsynaptic ATP-mediated signalling does not bring a major contribution into the excitatory transmission, it is instrumental for slow and diffuse modulation of synaptic dynamics and neuronal firing in many CNS areas. Neuronal P2X and P2Y receptors can be activated by ATP released from the synaptic terminals, astrocytes and microglia and thereby can participate in the regulation of synaptic homeostasis and plasticity. There is growing evidence of importance of purinergic regulation of synaptic transmission in different physiological and pathological contexts. Here, we review the main mechanisms underlying the complexity and diversity of purinergic signalling and purinergic modulation in central neurons.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, University of Warwick, United Kingdom
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, United Kingdom.
| |
Collapse
|
7
|
Ren WJ, Zhao YF, Li J, Rubini P, Yuan ZQ, Tang Y, Illes P. P2X7 receptor-mediated depression-like reactions arising in the mouse medial prefrontal cortex. Cereb Cortex 2023:7161772. [PMID: 37183178 DOI: 10.1093/cercor/bhad166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Major depressive disorder is a frequent and debilitating psychiatric disease. We have shown in some of the acute animal models of major depressive disorder (tail suspension test and forced swim test) that depression-like behavior can be aggravated in mice by the microinjection into the medial prefrontal cortex of the P2X7R agonistic adenosine 5'-triphosphate or its structural analog dibenzoyl-ATP, and these effects can be reversed by the P2X7R antagonistic JNJ-47965567. When measuring tail suspension test, the prolongation of immobility time by the P2YR agonist adenosine 5'-[β-thio]diphosphate and the reduction of the adenosine 5'-(γ-thio)triphosphate effect by P2Y1R (MRS 2179) or P2Y12R (PSB 0739) antagonists, but not by JNJ-47965567, all suggest the involvement of P2YRs. In order to elucidate the localization of the modulatory P2X7Rs in the brain, we recorded current responses to dibenzoyl-ATP in layer V astrocytes and pyramidal neurons of medial prefrontal cortex brain slices by the whole-cell patch-clamp procedure; the current amplitudes were not altered in preparations taken from tail suspension test or foot shock-treated mice. The release of adenosine 5'-triphosphate was decreased by foot shock, although not by tail suspension test both in the hippocampus and PFC. In conclusion, we suggest, that in the medial prefrontal cortex, acute stressful stimuli cause supersensitivity of P2X7Rs facilitating the learned helplessness reaction.
Collapse
Affiliation(s)
- Wen-Jing Ren
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Ya-Fei Zhao
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Jie Li
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Patrizia Rubini
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
| | - Zeng-Qiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
- School of Medicine, University of South China, Hengyang 421000, Hunan, China
| | - Yong Tang
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
| | - Peter Illes
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu 610075, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu 610075, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig 04107, Germany
| |
Collapse
|
8
|
Torres-Rodríguez O, Rivera-Escobales Y, Castillo-Ocampo Y, Velazquez B, Colón M, Porter JT. Purinergic P2X7 receptor-mediated inflammation precedes PTSD-related behaviors in rats. Brain Behav Immun 2023; 110:107-118. [PMID: 36822379 PMCID: PMC10106407 DOI: 10.1016/j.bbi.2023.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/25/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Clinical evidence has linked increased peripheral pro-inflammatory cytokines with post-traumatic stress disorder (PTSD) symptoms. However, whether inflammation contributes to or is a consequence of PTSD is still unclear. Previous research shows that stress can activate purinergic P2X7 receptors (P2X7Rs) on microglia to induce inflammation and behavioral changes. In this investigation, we examined whether P2X7Rs contribute to the development of PTSD-like behaviors induced by single prolonged stress (SPS) exposure in rats. Consistent with the literature, exposing adult male and female rats to SPS produced a PTSD-like phenotype of impaired fear extinction and extinction of cue-induced center avoidance one week after exposure. Next, we examined if inflammation precedes the behavioral manifestations. Three days after SPS exposure, increased inflammatory cytokines were found in the blood and hippocampal microglia showed increased expression of the P2X7R, IL-1β, and TNF-α, suggesting increased peripheral and central inflammation before the onset of impaired fear extinction. In addition, SPS-exposed animals with impaired fear extinction recall also had more Iba1-positive microglia expressing the P2X7R in the ventral hippocampus. To determine whether P2X7Rs contribute to the PTSD-related behaviors induced by SPS exposure, we gave ICV infusions of the P2X7R antagonist, A-438079, for one week starting the day of SPS exposure. Blocking P2X7Rs prevented the SPS-induced impaired fear extinction and extinction of cue-induced center avoidance in male and female rats, suggesting that SPS activates P2X7Rs which increase inflammation to produce a PTSD-like phenotype.
Collapse
Affiliation(s)
- Orlando Torres-Rodríguez
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732
| | - Yesenia Rivera-Escobales
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732
| | - Yesenia Castillo-Ocampo
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732
| | - Bethzaly Velazquez
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732
| | - María Colón
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732
| | - James T Porter
- Dept of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico, 00732.
| |
Collapse
|
9
|
Ribeiro DE, Petiz LL, Glaser T, Oliveira-Giacomelli Á, Andrejew R, Saab FDAR, Milanis MDS, Campos HC, Sampaio VFA, La Banca S, Longo BM, Lameu C, Tang Y, Resende RR, Ferreira ST, Ulrich H. Purinergic signaling in cognitive impairment and neuropsychiatric symptoms of Alzheimer's disease. Neuropharmacology 2023; 226:109371. [PMID: 36502867 DOI: 10.1016/j.neuropharm.2022.109371] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
About 10 million new cases of dementia develop worldwide each year, of which up to 70% are attributable to Alzheimer's disease (AD). In addition to the widely known symptoms of memory loss and cognitive impairment, AD patients frequently develop non-cognitive symptoms, referred to as behavioral and psychological symptoms of dementia (BPSDs). Sleep disorders are often associated with AD, but mood alterations, notably depression and apathy, comprise the most frequent class of BPSDs. BPSDs negatively affect the lives of AD patients and their caregivers, and have a significant impact on public health systems and the economy. Because treatments currently available for AD are not disease-modifying and mainly aim to ameliorate some of the cognitive symptoms, elucidating the mechanisms underlying mood alterations and other BPSDs in AD may reveal novel avenues for progress in AD therapy. Purinergic signaling is implicated in the pathophysiology of several central nervous system (CNS) disorders, such as AD, depression and sleep disorders. Here, we review recent findings indicating that purinergic receptors, mainly the A1, A2A, and P2X7 subtypes, are associated with the development/progression of AD. Current evidence suggests that targeting purinergic signaling may represent a promising therapeutic approach in AD and related conditions. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Deidiane Elisa Ribeiro
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil.
| | - Lyvia Lintzmaier Petiz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Talita Glaser
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | | | - Roberta Andrejew
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | | | - Milena da Silva Milanis
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Henrique Correia Campos
- Laboratory of Neurophysiology, Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Sophia La Banca
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Beatriz Monteiro Longo
- Laboratory of Neurophysiology, Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Claudiana Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais Belo Horizonte, MG, Brazil
| | - Sergio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
10
|
Beltran-Lobo P, Reid MJ, Jimenez-Sanchez M, Verkhratsky A, Perez-Nievas BG, Noble W. Astrocyte adaptation in Alzheimer's disease: a focus on astrocytic P2X7R. Essays Biochem 2023; 67:119-130. [PMID: 36449279 PMCID: PMC10011405 DOI: 10.1042/ebc20220079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022]
Abstract
Astrocytes are key homeostatic and defensive cells of the central nervous system (CNS). They undertake numerous functions during development and in adulthood to support and protect the brain through finely regulated communication with other cellular elements of the nervous tissue. In Alzheimer's disease (AD), astrocytes undergo heterogeneous morphological, molecular and functional alterations represented by reactive remodelling, asthenia and loss of function. Reactive astrocytes closely associate with amyloid β (Aβ) plaques and neurofibrillary tangles in advanced AD. The specific contribution of astrocytes to AD could potentially evolve along the disease process and includes alterations in their signalling, interactions with pathological protein aggregates, metabolic and synaptic impairments. In this review, we focus on the purinergic receptor, P2X7R, and discuss the evidence that P2X7R activation contributes to altered astrocyte functions in AD. Expression of P2X7R is increased in AD brain relative to non-demented controls, and animal studies have shown that P2X7R antagonism improves cognitive and synaptic impairments in models of amyloidosis and tauopathy. While P2X7R activation can induce inflammatory signalling pathways, particularly in microglia, we focus here specifically on the contributions of astrocytic P2X7R to synaptic changes and protein aggregate clearance in AD, highlighting cell-specific roles of this purinoceptor activation that could be targeted to slow disease progression.
Collapse
Affiliation(s)
- Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Matthew J Reid
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Maria Jimenez-Sanchez
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
- Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| | - Beatriz G Perez-Nievas
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| |
Collapse
|
11
|
Wang Y, Zhu Y, Wang J, Dong L, Liu S, Li S, Wu Q. Purinergic signaling: A gatekeeper of blood-brain barrier permeation. Front Pharmacol 2023; 14:1112758. [PMID: 36825149 PMCID: PMC9941648 DOI: 10.3389/fphar.2023.1112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
This review outlined evidence that purinergic signaling is involved in the modulation of blood-brain barrier (BBB) permeability. The functional and structural integrity of the BBB is critical for maintaining the homeostasis of the brain microenvironment. BBB integrity is maintained primarily by endothelial cells and basement membrane but also be regulated by pericytes, neurons, astrocytes, microglia and oligodendrocytes. In this review, we summarized the purinergic receptors and nucleotidases expressed on BBB cells and focused on the regulation of BBB permeability by purinergic signaling. The permeability of BBB is regulated by a series of purinergic receptors classified as P2Y1, P2Y4, P2Y12, P2X4, P2X7, A1, A2A, A2B, and A3, which serve as targets for endogenous ATP, ADP, or adenosine. P2Y1 and P2Y4 antagonists could attenuate BBB damage. In contrast, P2Y12-mediated chemotaxis of microglial cell processes is necessary for rapid closure of the BBB after BBB breakdown. Antagonists of P2X4 and P2X7 inhibit the activation of these receptors, reduce the release of interleukin-1 beta (IL-1β), and promote the function of BBB closure. In addition, the CD39/CD73 nucleotidase axis participates in extracellular adenosine metabolism and promotes BBB permeability through A1 and A2A on BBB cells. Furthermore, A2B and A3 receptor agonists protect BBB integrity. Thus, the regulation of the BBB by purinergic signaling is complex and affects the opening and closing of the BBB through different pathways. Appropriate selective agonists/antagonists of purinergic receptors and corresponding enzyme inhibitors could modulate the permeability of the BBB, effectively delivering therapeutic drugs/cells to the central nervous system (CNS) or limiting the entry of inflammatory immune cells into the brain and re-establishing CNS homeostasis.
Collapse
Affiliation(s)
| | | | - Junmeng Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Longcong Dong
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuqing Liu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | |
Collapse
|
12
|
Spotlight on P2X7 Receptor PET Imaging: A Bright Target or a Failing Star? Int J Mol Sci 2023; 24:ijms24021374. [PMID: 36674884 PMCID: PMC9861945 DOI: 10.3390/ijms24021374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
The homotrimeric P2X7 receptor (P2X7R) is expressed by virtually all cells of the innate and adaptive immune system and plays a crucial role in various pathophysiological processes such as autoimmune and neurodegenerative diseases, inflammation, neuropathic pain and cancer. Consequently, the P2X7R is considered a promising target for therapy and diagnosis. As the development of tracers comes hand-in-hand with the development of potent and selective receptor ligands, there is a rising number of PET tracers available in preclinical and clinical studies. This review analyzes the development of P2X7R positron emission tomography (PET) tracers and their potential in various PET imaging applications.
Collapse
|
13
|
Zhao YF, Verkhratsky A, Tang Y, Illes P. Astrocytes and major depression: The purinergic avenue. Neuropharmacology 2022; 220:109252. [PMID: 36122663 DOI: 10.1016/j.neuropharm.2022.109252] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/19/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent psychiatric illnesses worldwide which impairs the social functioning of the afflicted patients. Astrocytes promote homeostasis of the CNS and provide defense against various types of harmful influences. Increasing evidence suggests that the number, morphology and function of astrocytes are deteriorated in the depressed brain and the malfunction of the astrocytic purinergic system appears to participate in the pathophysiology of MDD. Adenosine 5'-triphosphate (ATP) released from astrocytes modulates depressive-like behavior in animal models and probably also clinical depression in patients. Astrocytes possess purinergic receptors, such as adenosine A2A receptors (Rs), and P2X7, P2Y1, and P2Y11Rs, which mediate neuroinflammation, neuro(glio)transmission, and synaptic plasticity in depression-relevant areas of the brain (e.g. medial prefrontal cortex, hippocampus, amygdala nuclei). By contrast, astrocytic A1Rs are neuroprotective and immunosuppressive. In the present review, we shall discuss the release of purines from astrocytes, and the expression/function of astrocytic purinergic receptors. Subsequently, we shall review in more detail novel evidence indicating that the dysregulation of astrocytic purinergic signaling actively contributes to the pathophysiology of depression and shall discuss possible therapeutic options based on knowledge recently acquired in this field.
Collapse
Affiliation(s)
- Y F Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - A Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PL, UK; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT, 01102, Vilnius, Lithuania
| | - Y Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - P Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
14
|
Zhang WJ, Hu DX, Lin SJ, Fang XQ, Ye ZF. Contribution of P2X purinergic receptor in cerebral ischemia injury. Brain Res Bull 2022; 190:42-49. [PMID: 36113681 DOI: 10.1016/j.brainresbull.2022.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
The development of cerebral ischemia involves brain damage and abnormal changes in brain function, which can cause neurosensory and motor dysfunction, and bring serious consequences to patients. P2X purinergic receptors are expressed in nerve cells and immune cells, and are mainly expressed in microglia. The P2X4 and P2X7 receptors in the P2X purinergic receptors play a significant role in regulating the activity of microglia. Moreover, ATP-P2X purine information transmission is involved in the progression of neurological diseases, including the release of pro-inflammatory factors, driving factors and cytokines after cerebral ischemia injury, inducing inflammation, and aggravating cerebral ischemia injury. P2X receptors activation can mediate the information exchange between microglia and neurons, induce neuronal apoptosis, and aggravate neurological dysfunction after cerebral ischemia. However, inhibiting the activation of P2X receptors, reducing their expression, inhibiting the activation of microglia, and has the effect of protecting nerve function. In this paper, we discussed the relationship between P2X receptors and nervous system function and the role of microglia activation inducing cerebral ischemia injury. Additionally, we explored the potential role of P2X receptors in the progression of cerebral ischemic injury and their potential pharmacological targets for the treatment of cerebral ischemic injury.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Si-Jian Lin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Xiao-Qun Fang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Zhen-Feng Ye
- Department of Urology, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
15
|
Peng P, Zhang Y, Ju Y, Wang K, Li G, Calhoun VD, Wang YP. Group Sparse Joint Non-Negative Matrix Factorization on Orthogonal Subspace for Multi-Modal Imaging Genetics Data Analysis. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:479-490. [PMID: 32750856 PMCID: PMC7758677 DOI: 10.1109/tcbb.2020.2999397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
With the development of multi-model neuroimaging technology and gene detection technology, the efforts of integrating multi-model imaging genetics data to explore the virulence factors of schizophrenia (SZ) are still limited. To address this issue, we propose a novel algorithm called group sparse of joint non-negative matrix factorization on orthogonal subspace (GJNMFO). Our algorithm fuses single nucleotide polymorphism (SNP) data, function magnetic resonance imaging (fMRI) data and epigenetic factors (DNA methylation) by projecting three-model data into a common basis matrix and three different coefficient matrices to identify risk genes, epigenetic factors and abnormal brain regions associated with SZ. Specifically, we introduce orthogonal constraints on the basis matrix to discard unimportant features in the row of coefficient matrices. Since imaging genetics data have rich group information, we draw into group sparse on three coefficient matrices to make the extracted features more accurate. Both the simulated and real Mind Clinical Imaging Consortium (MCIC) datasets are performed to validate our approach. Simulation results show that our algorithm works better than other competing methods. Through the experiments of MCIC datasets, GJNMFO reveals a set of risk genes, epigenetic factors and abnormal brain functional regions, which have been verified to be both statistically and biologically significant.
Collapse
|
16
|
Verkhratsky A, Parpura V, Li B, Scuderi C. Astrocytes: The Housekeepers and Guardians of the CNS. ADVANCES IN NEUROBIOLOGY 2021; 26:21-53. [PMID: 34888829 DOI: 10.1007/978-3-030-77375-5_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Astroglia are a diverse group of cells in the central nervous system. They are of the ectodermal, neuroepithelial origin and vary in morphology and function, yet, they can be collectively defined as cells having principle function to maintain homeostasis of the central nervous system at all levels of organisation, including homeostasis of ions, pH and neurotransmitters; supplying neurones with metabolic substrates; supporting oligodendrocytes and axons; regulating synaptogenesis, neurogenesis, and formation and maintenance of the blood-brain barrier; contributing to operation of the glymphatic system; and regulation of systemic homeostasis being central chemosensors for oxygen, CO2 and Na+. Their basic physiological features show a lack of electrical excitability (inapt to produce action potentials), but display instead a rather active excitability based on variations in cytosolic concentrations of Ca2+ and Na+. It is expression of neurotransmitter receptors, pumps and transporters at their plasmalemma, along with transports on the endoplasmic reticulum and mitochondria that exquisitely regulate the cytosolic levels of these ions, the fluctuation of which underlies most, if not all, astroglial homeostatic functions.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| |
Collapse
|
17
|
Ren WJ, Illes P. Involvement of P2X7 receptors in chronic pain disorders. Purinergic Signal 2021; 18:83-92. [PMID: 34799827 PMCID: PMC8850523 DOI: 10.1007/s11302-021-09796-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic pain is caused by cellular damage with an obligatory inflammatory component. In response to noxious stimuli, high levels of ATP leave according to their concentration gradient, the intracellular space through discontinuities generated in the plasma membrane or diffusion through pannexin-1 hemichannels, and activate P2X7Rs localized at peripheral and central immune cells. Because of the involvement of P2X7Rs in immune functions and especially the initiation of macrophage/microglial and astrocytic secretion of cytokines, chemokines, prostaglandins, proteases, reactive oxygen, and nitrogen species as well as the excitotoxic glutamate/ATP, this receptor type has a key role in chronic pain processes. Microglia are equipped with a battery of pattern recognition receptors that detect pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) from bacterial infections or danger associated molecular patterns (DAMPs) such as ATP. The co-stimulation of these receptors leads to the activation of the NLRP3 inflammasome and interleukin-1β (IL-1β) release. In the present review, we invite you to a journey through inflammatory and neuropathic pain, primary headache, and regulation of morphine analgesic tolerance, in the pathophysiology of which P2X7Rs are centrally involved. P2X7R bearing microglia and astrocyte-like cells playing eminent roles in chronic pain will be also discussed.
Collapse
Affiliation(s)
- Wen-Jing Ren
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany.
| |
Collapse
|
18
|
Lim D, Semyanov A, Genazzani A, Verkhratsky A. Calcium signaling in neuroglia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:1-53. [PMID: 34253292 DOI: 10.1016/bs.ircmb.2021.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glial cells exploit calcium (Ca2+) signals to perceive the information about the activity of the nervous tissue and the tissue environment to translate this information into an array of homeostatic, signaling and defensive reactions. Astrocytes, the best studied glial cells, use several Ca2+ signaling generation pathways that include Ca2+ entry through plasma membrane, release from endoplasmic reticulum (ER) and from mitochondria. Activation of metabotropic receptors on the plasma membrane of glial cells is coupled to an enzymatic cascade in which a second messenger, InsP3 is generated thus activating intracellular Ca2+ release channels in the ER endomembrane. Astrocytes also possess store-operated Ca2+ entry and express several ligand-gated Ca2+ channels. In vivo astrocytes generate heterogeneous Ca2+ signals, which are short and frequent in distal processes, but large and relatively rare in soma. In response to neuronal activity intracellular and inter-cellular astrocytic Ca2+ waves can be produced. Astrocytic Ca2+ signals are involved in secretion, they regulate ion transport across cell membranes, and are contributing to cell morphological plasticity. Therefore, astrocytic Ca2+ signals are linked to fundamental functions of the central nervous system ranging from synaptic transmission to behavior. In oligodendrocytes, Ca2+ signals are generated by plasmalemmal Ca2+ influx, or by release from intracellular stores, or by combination of both. Microglial cells exploit Ca2+ permeable ionotropic purinergic receptors and transient receptor potential channels as well as ER Ca2+ release. In this contribution, basic morphology of glial cells, glial Ca2+ signaling toolkit, intracellular Ca2+ signals and Ca2+-regulated functions are discussed with focus on astrocytes.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Moscow State University, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia
| | - Armando Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Alexei Verkhratsky
- Sechenov First Moscow State Medical University, Moscow, Russia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
19
|
Zhao YF, Tang Y, Illes P. Astrocytic and Oligodendrocytic P2X7 Receptors Determine Neuronal Functions in the CNS. Front Mol Neurosci 2021; 14:641570. [PMID: 33642994 PMCID: PMC7906075 DOI: 10.3389/fnmol.2021.641570] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
P2X7 receptors are members of the ATP-gated cationic channel family with a preferential localization at the microglial cells, the resident macrophages of the brain. However, these receptors are also present at neuroglia (astrocytes, oligodendrocytes) although at a considerably lower density. They mediate necrosis/apoptosis by the release of pro-inflammatory cytokines/chemokines, reactive oxygen species (ROS) as well as the excitotoxic (glio)transmitters glutamate and ATP. Besides mediating cell damage i.e., superimposed upon chronic neurodegenerative processes in Alzheimer’s Disease, Parkinson’s Disease, multiple sclerosis, and amyotrophic lateral sclerosis, they may also participate in neuroglial signaling to neurons under conditions of high ATP concentrations during any other form of neuroinflammation/neurodegeneration. It is a pertinent open question whether P2X7Rs are localized on neurons, or whether only neuroglia/microglia possess this receptor-type causing indirect effects by releasing the above-mentioned signaling molecules. We suggest as based on molecular biology and functional evidence that neurons are devoid of P2X7Rs although the existence of neuronal P2X7Rs cannot be excluded with absolute certainty.
Collapse
Affiliation(s)
- Ya-Fei Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
20
|
Purinergic signaling orchestrating neuron-glia communication. Pharmacol Res 2020; 162:105253. [PMID: 33080321 DOI: 10.1016/j.phrs.2020.105253] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
This review discusses the evidence supporting a role for ATP signaling (operated by P2X and P2Y receptors) and adenosine signaling (mainly operated by A1 and A2A receptors) in the crosstalk between neurons, astrocytes, microglia and oligodendrocytes. An initial emphasis will be given to the cooperation between adenosine receptors to sharpen information salience encoding across synapses. The interplay between ATP and adenosine signaling in the communication between astrocytes and neurons will then be presented in context of the integrative properties of the astrocytic syncytium, allowing to implement heterosynaptic depression processes in neuronal networks. The process of microglia 'activation' and its control by astrocytes and neurons will then be analyzed under the perspective of an interplay between different P2 receptors and adenosine A2A receptors. In spite of these indications of a prominent role of purinergic signaling in the bidirectional communication between neurons and glia, its therapeutical exploitation still awaits obtaining an integrated view of the spatio-temporal action of ATP signaling and adenosine signaling, clearly distinguishing the involvement of both purinergic signaling systems in the regulation of physiological processes and in the control of pathogenic-like responses upon brain dysfunction or damage.
Collapse
|
21
|
Verkhratsky A. Early evolutionary history (from bacteria to hemichordata) of the omnipresent purinergic signalling: A tribute to Geoff Burnstock inquisitive mind. Biochem Pharmacol 2020; 187:114261. [PMID: 33011161 DOI: 10.1016/j.bcp.2020.114261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Purines and pyrimidines are indispensable molecules of life; they are fundamental for genetic code and bioenergetics. From the very early evolution of life purines have acquired the meaning of damage-associated extracellular signaller and purinergic receptors emerged in unicellular organisms. Ancestral purinoceptors are P2X-like ionotropic ligand-gated cationic channels showing 20-40% of homology with vertebrate P2X receptors; genes encoding ancestral P2X receptors have been detected in Protozoa, Algae, Fungi and Sponges; they are also present in some invertebrates, but are absent from the genome of insects, nematodes, and higher plants. Plants nevertheless evolved a sophisticated and widespread purinergic signalling system relying on the idiosyncratic purinoceptor P2K1/DORN1 linked to intracellular Ca2+ signalling. The advance of metabotropic purinoceptors starts later in evolution with adenosine receptors preceding the emergence of P2Y nucleotide and P0 adenine receptors. In vertebrates and mammals the purinergic signalling system reaches the summit and operates throughout all tissues and systems without anatomical or functional segregation.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain.
| |
Collapse
|
22
|
Fan X, Ma W, Zhang Y, Zhang L. P2X7 Receptor (P2X7R) of Microglia Mediates Neuroinflammation by Regulating (NOD)-Like Receptor Protein 3 (NLRP3) Inflammasome-Dependent Inflammation After Spinal Cord Injury. Med Sci Monit 2020; 26:e925491. [PMID: 32952148 PMCID: PMC7518010 DOI: 10.12659/msm.925491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Microglia participate in mediating neuroinflammation in which P2X7R triggered by adenosine triphosphate has a critical effect after spinal cord injury. However, how the P2X7R of microglia regulate neuroinflammation after spinal cord injury is still unclear. The aim of this study was to explore the mechanism by which the P2X7 receptor of microglia regulates neuroinflammation after spinal cord injury in NLRP3 inflammasome-dependent inflammation. Material/Methods Sixt rats were divided into 5 groups: a sham group, a model group, a BzATP group, an A-438079 group, and a BzATP+CY-09 group. Rats in the sham group were only subjected to laminectomy and rats in the other groups were subjected to spinal cord injury followed by treatment with physiological saline, BzATP, A-438079, and BzATP following CY-09, separately. Real-time polymerase chain reaction, Western blot, immunofluorescence staining, and enzyme-linked immunosorbent assay were used to analyze the scientific hypothesis. Results (i) P2X7R of microglia was upregulated and downregulated by BzATP, and A-438079 was upregulated after spinal cord injury. (ii) Upregulation of P2X7R on microglia is coincident with increase of neuroinflammation after spinal cord injury. (iii) P2X7R of microglia participates in spinal cord-mediated neuroinflammation via regulating NLRP3 inflammasome-dependent inflammation. Conclusions P2X7R of microglia in spinal cord mediates neuroinflammation by regulating NLRP3 inflammasome-dependent inflammation after spinal cord injury.
Collapse
Affiliation(s)
- Xiao Fan
- Qingdao Municipal Hospital, Qingdao, Shandong, China (mainland).,Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen, Fujian, China (mainland)
| | - Wei Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Yingyu Zhang
- Qingdao Municipal Hospital, Qingdao, Shandong, China (mainland)
| | - Li Zhang
- Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen, Fujian, China (mainland).,Xiamen Medical College, Xiamen, Fujian, China (mainland)
| |
Collapse
|
23
|
P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21175996. [PMID: 32825423 PMCID: PMC7504621 DOI: 10.3390/ijms21175996] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
ATP is a (co)transmitter and signaling molecule in the CNS. It acts at a multitude of ligand-gated cationic channels termed P2X to induce rapid depolarization of the cell membrane. Within this receptor-channel family, the P2X7 receptor (R) allows the transmembrane fluxes of Na+, Ca2+, and K+, but also allows the slow permeation of larger organic molecules. This is supposed to cause necrosis by excessive Ca2+ influx, as well as depletion of intracellular ions and metabolites. Cell death may also occur by apoptosis due to the activation of the caspase enzymatic cascade. Because P2X7Rs are localized in the CNS preferentially on microglia, but also at a lower density on neuroglia (astrocytes, oligodendrocytes) the stimulation of this receptor leads to the release of neurodegeneration-inducing bioactive molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen and nitrogen molecules, and the excitotoxic glutamate/ATP. Various neurodegenerative reactions of the brain/spinal cord following acute harmful events (mechanical CNS damage, ischemia, status epilepticus) or chronic neurodegenerative diseases (neuropathic pain, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis) lead to a massive release of ATP via the leaky plasma membrane of neural tissue. This causes cellular damage superimposed on the original consequences of neurodegeneration. Hence, blood-brain-barrier permeable pharmacological antagonists of P2X7Rs with excellent bioavailability are possible therapeutic agents for these diseases. The aim of this review article is to summarize our present state of knowledge on the involvement of P2X7R-mediated events in neurodegenerative illnesses endangering especially the life quality and duration of the aged human population.
Collapse
|
24
|
Xia M, Li Z, Li S, Liang S, Li X, Chen B, Zhang M, Dong C, Verkhratsky A, Guan D, Li B. Sleep Deprivation Selectively Down-Regulates Astrocytic 5-HT 2B Receptors and Triggers Depressive-Like Behaviors via Stimulating P2X 7 Receptors in Mice. Neurosci Bull 2020; 36:1259-1270. [PMID: 32506374 DOI: 10.1007/s12264-020-00524-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 10/24/2022] Open
Abstract
Chronic loss of sleep damages health and disturbs the quality of life. Long-lasting sleep deprivation (SD) as well as sleep abnormalities are substantial risk factors for major depressive disorder, although the underlying mechanisms are not clear. Here, we showed that chronic SD in mice promotes a gradual elevation of extracellular ATP, which activates astroglial P2X7 receptors (P2X7Rs). Activated P2X7Rs, in turn, selectively down-regulated the expression of 5-HT2B receptors (5-HT2BRs) in astrocytes. Stimulation of P2X7Rs induced by SD selectively suppressed the phosphorylation of AKT and FoxO3a in astrocytes, but not in neurons. The over-expression of FoxO3a in astrocytes inhibited the expression of 5-HT2BRs. Down-regulation of 5-HT2BsRs instigated by SD suppressed the activation of STAT3 and relieved the inhibition of Ca2+-dependent phospholipase A2. This latter cascade promoted the release of arachidonic acid and prostaglandin E2. The depression-like behaviors induced by SD were alleviated in P2X7R-KO mice. Our study reveals the mechanism underlying chronic SD-induced depression-like behaviors and suggests 5-HT2BRs as a key target for exploring therapeutic strategies aimed at the depression evoked by sleep disorders.
Collapse
Affiliation(s)
- Maosheng Xia
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.,Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Zexiong Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Shuai Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Shanshan Liang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Xiaowei Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Beina Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Manman Zhang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Chengyi Dong
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Alexei Verkhratsky
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China. .,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M139PL, UK.
| | - Dawei Guan
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, 110122, China. .,Department of Poison Analysis, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
25
|
Doǧan E, Aygün H, Arslan G, Rzayev E, Avcı B, Ayyıldız M, Ağar E. The Role of NMDA Receptors in the Effect of Purinergic P2X7 Receptor on Spontaneous Seizure Activity in WAG/Rij Rats With Genetic Absence Epilepsy. Front Neurosci 2020; 14:414. [PMID: 32435183 PMCID: PMC7218146 DOI: 10.3389/fnins.2020.00414] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
P2X7 receptors (P2X7Rs) are ATP sensitive cation channels and have been shown to be effective in various epilepsy models. Absence epilepsy is a type of idiopathic, generalized, non-convulsive epilepsy. Limited data exist on the role of P2X7Rs and no data has been reported regarding the interaction between P2X7Rs and glutamate receptor NMDA in absence epilepsy. Thus, this study was designed to investigate the role of P2X7 and NMDA receptors and their possible interaction in WAG/Rij rats with absence epilepsy. Permanent cannula and electrodes were placed on the skulls of the animals. After the healing period of the electrode and cannula implantation, ECoG recordings were obtained during 180 min before and after drug injections. P2X7R agonist BzATP, at doses of 50 μg and 100 μg (intracerebroventricular; i.c.v.) and antagonist A-438079, at doses of 20 μg and 40 μg (i.c.v.) were administered alone or prior to memantine (5 mg/kg, intraperitoneal; i.p.) injection. The total number (in every 20 min), the mean duration, and the amplitude of spike-wave discharges (SWDs) were calculated and compared. Rats were decapitated and the right and left hemisphere, cerebellum, and brainstem were separated for the measurements of the advanced oxidation protein product (AOPP), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), glutathione peroxide (GPx), and glutathione reductase (GR). BzATP and A-438079 did not alter measured SWDs parameters, whereas memantine reduced them, which is considered anticonvulsant. BzATP did not alter the anticonvulsant effect of memantine, while A-438079 decreased the effect of memantine. Administration of BzATP increased the levels of SOD and GR in cerebrum hemispheres. A-438079 did not alter any of the biochemical parameters. Memantine reduced the levels of MDA, GSH, and GR while increased the level of CAT in the cerebrum. Administration of BzATP before memantine abolished the effect of memantine on MDA levels. The evidence from this study suggests that P2X7Rs does not directly play a role in the formation of absence seizures. P2X7Rs agonist, reduced the antioxidant activity of memantine whereas agonist of P2X7Rs reduced the anticonvulsant action of memantine, suggesting a partial interaction between P2X7 and NMDA receptors in absence epilepsy model.
Collapse
Affiliation(s)
- Elif Doǧan
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Hatice Aygün
- Department of Physiology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Emil Rzayev
- Department of Clinical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Bahattin Avcı
- Department of Clinical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Mustafa Ayyıldız
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Erdal Ağar
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
26
|
Regulation of Microglial Functions by Purinergic Mechanisms in the Healthy and Diseased CNS. Cells 2020; 9:cells9051108. [PMID: 32365642 PMCID: PMC7290360 DOI: 10.3390/cells9051108] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Microglial cells, the resident macrophages of the central nervous system (CNS), exist in a process-bearing, ramified/surveying phenotype under resting conditions. Upon activation by cell-damaging factors, they get transformed into an amoeboid phenotype releasing various cell products including pro-inflammatory cytokines, chemokines, proteases, reactive oxygen/nitrogen species, and the excytotoxic ATP and glutamate. In addition, they engulf pathogenic bacteria or cell debris and phagocytose them. However, already resting/surveying microglia have a number of important physiological functions in the CNS; for example, they shield small disruptions of the blood–brain barrier by their processes, dynamically interact with synaptic structures, and clear surplus synapses during development. In neurodegenerative illnesses, they aggravate the original disease by a microglia-based compulsory neuroinflammatory reaction. Therefore, the blockade of this reaction improves the outcome of Alzheimer’s Disease, Parkinson’s Disease, multiple sclerosis, amyotrophic lateral sclerosis, etc. The function of microglia is regulated by a whole array of purinergic receptors classified as P2Y12, P2Y6, P2Y4, P2X4, P2X7, A2A, and A3, as targets of endogenous ATP, ADP, or adenosine. ATP is sequentially degraded by the ecto-nucleotidases and 5′-nucleotidase enzymes to the almost inactive inosine as an end product. The appropriate selective agonists/antagonists for purinergic receptors as well as the respective enzyme inhibitors may profoundly interfere with microglial functions and reconstitute the homeostasis of the CNS disturbed by neuroinflammation.
Collapse
|
27
|
Gong M, Ye S, Li WX, Zhang J, Liu Y, Zhu J, Lv W, Zhang H, Wang J, Lu A, He K. Regulatory function of praja ring finger ubiquitin ligase 2 mediated by the P2rx3/P2rx7 axis in mouse hippocampal neuronal cells. Am J Physiol Cell Physiol 2020; 318:C1123-C1135. [PMID: 32267716 DOI: 10.1152/ajpcell.00070.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Praja2 (Pja2), a member of the growing family of mammalian RING E3 ubiquitin ligases, is reportedly involved in not only several types of cancer but also neurological diseases and disorders, but the genetic mechanism underlying the regulation of Pja2 in the nervous system remains unclear. To study the cellular and molecular functions of Pja2 in mouse hippocampal neuronal cells (MHNCs), we used gain- and loss-of-function manipulations of Pja2 in HT-22 cells and tested their regulatory effects on three Alzheimer's disease (AD) genes and cell proliferation. The results revealed that the expression of AD markers, including amyloid beta precursor protein (App), microtubule-associated protein tau (Mapt), and gamma-secretase activating protein (Gsap), could be inhibited by Pja2 overexpression and activated by Pja2 knockdown. In addition, HT-22 cell proliferation was enhanced by Pja2 upregulation and suppressed by its downregulation. We also evaluated and quantified the targets that responded to the enforced expression of Pja2 by RNA-Seq, and the results showed that purinergic receptor P2X, ligand-gated ion channel 3 and 7 (P2rx3 and P2rx7), which show different expression patterns in the critical calcium signaling pathway, mediated the regulatory effect of Pja2 in HT-22 cells. Functional studies indicated that Pja2 regulated HT-22 cells development and AD marker genes by inhibiting P2rx3 but promoting P2rx7, a gene downstream of P2rx3. In conclusion, our results provide new insights into the regulatory function of the Pja2 gene in MHNCs and thus underscore the potential relevance of this molecule to the pathophysiology of AD.
Collapse
Affiliation(s)
- Mengting Gong
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Shoudong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China.,Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Wen-Xing Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jian Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yanjun Liu
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Jie Zhu
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Wenwen Lv
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Jing Wang
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China.,Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China.,School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
28
|
Munoz FM, Patel PA, Gao X, Mei Y, Xia J, Gilels S, Hu H. Reactive oxygen species play a role in P2X7 receptor-mediated IL-6 production in spinal astrocytes. Purinergic Signal 2020; 16:97-107. [PMID: 32146607 DOI: 10.1007/s11302-020-09691-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/11/2020] [Indexed: 01/29/2023] Open
Abstract
Astrocytes mediate a remarkable variety of cellular functions, including gliotransmitter release. Under pathological conditions, high concentrations of the purinergic receptor agonist adenosine triphosphate (ATP) are released into the extracellular space leading to the activation of the purinergic P2X7 receptor, which in turn can initiate signaling cascades. It is well-established that reactive oxygen species (ROS) increase in macrophages and microglia following P2X7 receptor activation. However, direct evidence that activation of P2X7 receptor leads to ROS production in astrocytes is lacking to date. While it is known that P2X7R activation induces cytokine production, the mechanism involved in this process is unclear. In the present study, we demonstrated that P2X7 receptor activation induced ROS production in spinal astrocytes in a concentration-dependent manner. We also found that P2X7R-mediated ROS production is at least partially through NADPH oxidase. In addition, our ELISA data show that P2X7R-induced IL-6 release was dependent on NADPH oxidase-mediated production of ROS. Collectively, these results reveal that activation of the P2X7 receptor on spinal astrocytes increases ROS production through NADPH oxidase, subsequently leading to IL-6 release. Our results reveal a role of ROS in the P2X7 signaling pathway in mouse spinal cord astrocytes and may indicate a potential mechanism for the astrocytic P2X7 receptor in chronic pain.
Collapse
Affiliation(s)
- Frances M Munoz
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Priya A Patel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Xinghua Gao
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Yixiao Mei
- Department of Anesthesiology, Rutgers New Jersey Medical School, 185 S. Orange Ave., Newark, NJ, 07103, USA
| | - Jingsheng Xia
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sofia Gilels
- Department of Anesthesiology, Rutgers New Jersey Medical School, 185 S. Orange Ave., Newark, NJ, 07103, USA
| | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA. .,Department of Anesthesiology, Rutgers New Jersey Medical School, 185 S. Orange Ave., Newark, NJ, 07103, USA.
| |
Collapse
|
29
|
Wypych D, Pomorski P. Calcium Signaling in Glioma Cells: The Role of Nucleotide Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:67-86. [PMID: 32034709 DOI: 10.1007/978-3-030-30651-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Calcium signaling is probably one of the evolutionary oldest and the most common way by which the signal can be transmitted from the cell environment to the cytoplasmic calcium binding effectors. Calcium signal is fast and due to diversity of calcium binding proteins it may have a very broad effect on cell behavior. Being a crucial player in neuronal transmission it is also very important for glia physiology. It is responsible for the cross-talk between neurons and astrocytes, for microglia activation and motility. Changes in calcium signaling are also crucial for the behavior of transformed glioma cells. The present chapter summarizes molecular mechanisms of calcium signal formation present in glial cells with a strong emphasis on extracellular nucleotide-evoked signaling pathways. Some aspects of glioma C6 signaling such as the cross-talk between P2Y1 and P2Y12 nucleotide receptors in calcium signal generation will be discussed in-depth, to show complexity of machinery engaged in formation of this signal. Moreover, possible mechanisms of modulation of the calcium signal in diverse environments there will be presented herein. Finally, the possible role of calcium signal in glioma motility is also discussed. This is a very important issue, since glioma cells, contrary to the vast majority of neoplastic cells, cannot spread in the body with the bloodstream and, at least in early stages of tumor development, may expand only by means of sheer motility.
Collapse
Affiliation(s)
- Dorota Wypych
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Pomorski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
30
|
Illes P, Verkhratsky A, Tang Y. Pathological ATPergic Signaling in Major Depression and Bipolar Disorder. Front Mol Neurosci 2020; 12:331. [PMID: 32076399 PMCID: PMC7006450 DOI: 10.3389/fnmol.2019.00331] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022] Open
Abstract
The mood disorders, major depression (MD) and bipolar disorder (BD), have a high lifetime prevalence in the human population and accordingly generate huge costs for health care. Efficient, rapidly acting, and side-effect-free pharmaceuticals are hitherto not available, and therefore, the identification of new therapeutic targets is an imperative task for (pre)clinical research. Such a target may be the purinergic P2X7 receptor (P2X7R), which is localized in the central nervous system (CNS) at microglial and neuroglial cells mediating neuroinflammation. MD and BD are due to neuroinflammation caused in the first line by the release of the pro-inflammatory cytokine interleukin-1β (IL-1β) from the microglia. IL-1β in turn induces the secretion of corticotropin-releasing hormone (CRH) and in consequence the secretion of adrenocorticotropic hormone (ACTH) and cortisol, which together with a plethora of further cytokines/chemokines lead to mood disorders. A number of biochemical/molecular biological measurements including the use of P2X7R- or IL-1β-deficient mice confirmed this chain of events. More recent studies showed that a decrease in the astrocytic release of ATP in the prefrontal cortex and hippocampus is a major cause of mood disorders. It is an attractive hypothesis that compensatory increases in P2X7Rs in these areas of the brain are the immediate actuators of MD and BD. Hence, blood-brain barrier-permeable P2X7R antagonists may be promising therapeutic tools to improve depressive disorders in humans.
Collapse
Affiliation(s)
- Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany.,Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom.,Achucarro Centre for Neuroscience, Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
31
|
Illes P, Burnstock G, Tang Y. Astroglia-Derived ATP Modulates CNS Neuronal Circuits. Trends Neurosci 2019; 42:885-898. [PMID: 31704181 DOI: 10.1016/j.tins.2019.09.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 02/08/2023]
Abstract
It is broadly recognized that ATP not only supports energy storage within cells but is also a transmitter/signaling molecule that serves intercellular communication. Whereas the fast (co)transmitter function of ATP in the peripheral nervous system has been convincingly documented, in the central nervous system (CNS) ATP appears to be primarily a slow transmitter/modulator. Data discussed in the present review suggest that the slow modulatory effects of ATP arise as a result of its vesicular/nonvesicular release from astrocytes. ATP acts together with other glial signaling molecules such as cytokines, chemokines, and free radicals to modulate neuronal circuits. Hence, astrocytes are positioned at the crossroads of the neuron-glia-neuron communication pathway.
Collapse
Affiliation(s)
- Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany; Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine (TCM), 610075 Chengdu, China.
| | - Geoffrey Burnstock
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine (TCM), 610075 Chengdu, China
| |
Collapse
|
32
|
Piotrowicz Z, Chalimoniuk M, Płoszczyca K K, Czuba M, Langfort J. Acute normobaric hypoxia does not affect the simultaneous exercise-induced increase in circulating BDNF and GDNF in young healthy men: A feasibility study. PLoS One 2019; 14:e0224207. [PMID: 31644554 PMCID: PMC6808427 DOI: 10.1371/journal.pone.0224207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/08/2019] [Indexed: 01/25/2023] Open
Abstract
Physical exercise has a neuromodulatory effect on the central nervous system (CNS) partially by modifying expression of neuropeptides produced and secreted by neurons and glial cells, among which the best examined are brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Because both neurotrophins can cross the brain-blood barrier (BBB), their blood levels indirectly reflect their production in the CNS. Moreover, both neuropeptides are involved in modulation of dopaminergic and serotoninergic system function. Because limited information is available on the effects of exercise to volition exhaustion and acute hypoxia on CNS, BDNF and GDNF formation, the aims of the present study were to verify whether 1) acute exercise to exhaustion in addition to neurons also activates glial cells and 2) additional exposure to acute normobaric moderate hypoxia affects their function. In this feasibility study we measured blood concentrations of BDNF, GDNF, and neuropeptides considered as biomarkers of brain damage (bFGF, NGF, S100B, GFAP) in seven sedentary healthy young men who performed a graded exercise test to volitional exhaustion on a cycle ergometer under normoxic (N) and hypoxic conditions: 2,000 m (H2; FiO2 = 16.6%) and 3,000 m altitude (H3; FiO2 = 14.7%). In all conditions serum concentrations of both BDNF and GDNF increased immediately after cessation of exercise (p<0.01). There was no effect of condition or interaction (condition x time of measurement) and exercise on any of the brain damage biomarkers: bFGF, NGF, S100B, GFAP. Moreover, in N (0<0.01) and H3 (p<0.05) exercise caused elevated serum 5-HT concentration. The results suggest that a graded effort to volitional exhaustion in normoxia, as well as hypoxia, simultaneously activates both neurons and astrocytes. Considering that s100B, GFAP, bFGF, and NGF (produced mainly by astrocytes) are markers of brain damage, it can be assumed that a maximum effort in both conditions is safe for the CNS.
Collapse
Affiliation(s)
- Zofia Piotrowicz
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Małgorzata Chalimoniuk
- Department of Tourism and Health in Biała Podlaska, The Józef Piłsudski University of Physical Education, Warsaw, Poland
| | | | - Miłosz Czuba
- Department of Kinesiology, Institute of Sport, Warsaw, Poland
- Department of Sports Theory, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Józef Langfort
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
33
|
Illes P, Rubini P, Huang L, Tang Y. The P2X7 receptor: a new therapeutic target in Alzheimer’s disease. Expert Opin Ther Targets 2019; 23:165-176. [DOI: 10.1080/14728222.2019.1575811] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Patrizia Rubini
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Lumei Huang
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| |
Collapse
|
34
|
Wang S, Wang Z, Li L, Zou L, Gong Y, Jia T, Zhao S, Yuan H, Shi L, Liu S, Wu B, Yi Z, Liu H, Gao Y, Li G, Deussing JM, Li M, Zhang C, Liang S. P2Y12 shRNA treatment decreases SGC activation to relieve diabetic neuropathic pain in type 2 diabetes mellitus rats. J Cell Physiol 2018; 233:9620-9628. [DOI: 10.1002/jcp.26867] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/23/2018] [Indexed: 08/30/2023]
Abstract
Diabetic neuropathic pain is a common complication of type 2 diabetes mellitus (DM). Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in neuropathic pain through the release of proinflammatory cytokines. The P2Y12 receptor is expressed in SGCs of the DRG. In this study, our aim was to investigate the role of the P2Y12 receptor on the pathological changes in diabetic neuropathic pain. The present study showed that diabetic neuropathic pain increased mechanical and thermal hyperalgesia in type 2 DM model rats. The results showed that the expression levels of P2Y12 messenger RNA (mRNA) and protein in DRG SGCs were increased in DM model rats compared with control rats. Glial fibrillary acidic protein (GFAP) and interleukin‐1β (IL‐1β) expression levels in the DRG were increased in DM rats. Upregulation of GFAP is a marker of SGC activation. Targeting the P2Y12 receptor by short hairpin RNA (shRNA) decreased the upregulated expression of P2Y12 mRNA and protein, coexpression of P2Y12 and GFAP, the expression of GFAP, IL‐1β, and tumor necrosis factor‐receptor 1 in the DRG of DM rats, and relieved mechanical and thermal hyperalgesia in DM rats. After treatment with the P2Y12 receptor shRNA, the enhancing integrated OPTICAL density (IOD) ratios of p‐P38 MAPK to P38 mitogen activated protein kinase (MAPK) in the DM rats treated with P2Y12 shRNA were significantly lower than that in the untreated DM rats. Therefore, P2Y12 shRNA treatment decreased SGC activation to relieve mechanical and thermal hyperalgesia in DM rats.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Physiology Medical School of Nanchang University Nanchang Jiangxi China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease Nanchang University Nanchang Jiangxi China
| | - Zilin Wang
- Queen Mary School Medical School of Nanchang University Nanchang Jiangxi China
| | - Lin Li
- Department of Physiology Medical School of Nanchang University Nanchang Jiangxi China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease Nanchang University Nanchang Jiangxi China
| | - Lifang Zou
- Department of Physiology Medical School of Nanchang University Nanchang Jiangxi China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease Nanchang University Nanchang Jiangxi China
| | - Yingxin Gong
- The Clinical Department Medical School of Nanchang University Nanchang Jiangxi China
| | - Tianyu Jia
- Department of Physiology Medical School of Nanchang University Nanchang Jiangxi China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease Nanchang University Nanchang Jiangxi China
| | - Shanhong Zhao
- Department of Physiology Medical School of Nanchang University Nanchang Jiangxi China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease Nanchang University Nanchang Jiangxi China
| | - Huilong Yuan
- Department of Physiology Medical School of Nanchang University Nanchang Jiangxi China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease Nanchang University Nanchang Jiangxi China
| | - Liran Shi
- Department of Physiology Medical School of Nanchang University Nanchang Jiangxi China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease Nanchang University Nanchang Jiangxi China
| | - Shuangmei Liu
- Department of Physiology Medical School of Nanchang University Nanchang Jiangxi China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease Nanchang University Nanchang Jiangxi China
| | - Bing Wu
- Department of Physiology Medical School of Nanchang University Nanchang Jiangxi China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease Nanchang University Nanchang Jiangxi China
| | - Zhihua Yi
- Department of Physiology Medical School of Nanchang University Nanchang Jiangxi China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease Nanchang University Nanchang Jiangxi China
| | - Hui Liu
- Department of Physiology Medical School of Nanchang University Nanchang Jiangxi China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease Nanchang University Nanchang Jiangxi China
| | - Yun Gao
- Department of Physiology Medical School of Nanchang University Nanchang Jiangxi China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease Nanchang University Nanchang Jiangxi China
| | - Guilin Li
- Department of Physiology Medical School of Nanchang University Nanchang Jiangxi China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease Nanchang University Nanchang Jiangxi China
| | | | - Man Li
- Department of Neurobiology Tongji Medical College of Huazhong University of Science and Technology Wuhan China
| | - Chunping Zhang
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease Nanchang University Nanchang Jiangxi China
- Department of Cell Biology Medical School of Nanchang University Nanchang Jiangxi China
| | - Shangdong Liang
- Department of Physiology Medical School of Nanchang University Nanchang Jiangxi China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease Nanchang University Nanchang Jiangxi China
| |
Collapse
|
35
|
Su WF, Wu F, Jin ZH, Gu Y, Chen YT, Fei Y, Chen H, Wang YX, Xing LY, Zhao YY, Yuan Y, Tang X, Chen G. Overexpression of P2X4 receptor in Schwann cells promotes motor and sensory functional recovery and remyelination via BDNF secretion after nerve injury. Glia 2018; 67:78-90. [DOI: 10.1002/glia.23527] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Wen-Feng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Fan Wu
- Medical School of Nantong University; Nantong China
| | - Zi-Han Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ying-Ting Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ying Fei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Hui Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ya-Xian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ling-Yan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Ying Yuan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
- Affiliated Hospital of Nantong University; Nantong China
| | - Xin Tang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration; Nantong University; Nantong China
- Department of Anesthesiology; Affiliated Hospital of Nantong University; Nantong China
| |
Collapse
|
36
|
Khan MT, Deussing J, Tang Y, Illes P. Astrocytic rather than neuronal P2X7 receptors modulate the function of the tri-synaptic network in the rodent hippocampus. Brain Res Bull 2018; 151:164-173. [PMID: 30098388 DOI: 10.1016/j.brainresbull.2018.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/21/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
Whole-cell patch clamp recordings demonstrated that in the dentate gyrus (DG) as well as in the CA3 area of mouse hippocampal slices the prototypic P2X7 receptor (R) agonist dibenzoyl-ATP (Bz-ATP) induced inward current responses both in neurons and astrocytes. Whereas the selective P2X7R antagonist A438079 strongly inhibited both neuronal and astrocytic currents, a combination of ionotropic glutamate receptor (CNQX, AP-5) and GABAA-R (gabazine) antagonists depressed the Bz-ATP-induced current responses in the DG (granule cells) and CA3 neurons only. It was concluded that Bz-ATP activated astrocytic P2X7Rs and thereby released glutamate and GABA to stimulate nearby neurons. The residual A438079-resistant current response of astrocytes was suggested to be due to the stimulation of P2XRs of the non-P2X7-type. Further, we searched for presynaptic P2X7Rs at the axon terminals of DG and CA3 pyramidal neurons innervating CA3 and CA1 cells, respectively. Bz-ATP potentiated the frequency of spontaneous postsynaptic currents (sPSCs) in CA1 but not CA3 pyramidal cells. However, the Bz-ATP effect in CA1 cells was inhibited by gabazine or the astrocytic toxin fluorocitrate suggesting stimulation of P2X7Rs at stratum radiatum astrocytes located near to interneurons and synapsing onto CA1 neurons. Our data suggest that functional P2X7Rs are missing at neurons in the tri-synaptic network of the rodent hippocampus, but are present at nearby astrocytes indirectly regulating network activity.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Rudolf-Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Jan Deussing
- Department of Molecular Neurogenetics, Max-Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Peter Illes
- Rudolf-Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany; Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
37
|
Khan MT, Liu J, Nerlich J, Tang Y, Franke H, Illes P. Regulation of P2X7 receptor function of neural progenitor cells in the hippocampal subgranular zone by neuronal activity in the dentate gyrus. Neuropharmacology 2018; 140:139-149. [PMID: 30092245 DOI: 10.1016/j.neuropharm.2018.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022]
Abstract
P2X7 receptors (Rs) mediate apoptosis/necrosis in neuronal and non-neuronal systems. Patch-clamp recordings from dentate gyrus (DG) granule cells in acutely prepared hippocampal slices of mice showed that incubation with 4-aminopyridine (4-AP) causes an excitability increase. This led to an enhanced sensitivity of P2X7Rs of the underlying subgranular zone neural progenitor cells (NPCs) towards dibenzoyl-ATP (Bz-ATP). The glutamatergic agonists NMDA and AMPA, as well as the purinergic agonist ATP also increased the Bz-ATP-induced current amplitudes (IBzATP). Tetrodotoxin as well as the standard antiepileptic drugs phenytoin, valproic acid and gabapentin counteracted the effect of 4-AP, most likely by decreasing the firing rate and/or action potential duration of DG granule cells and in consequence the release of ATP/glutamate onto NPCs. Experiments with organotypic hippocampal slice cultures confirmed these results also under conditions when 4-AP was applied for longer time periods and at much lower concentrations than used in acute slices. It was concluded that pathological firing modelled by 4-AP might trigger a sensitivity increase of P2X7Rs leading to necrosis/apoptosis of NPCs with the subsequent decrease of NPC, and in consequence, granule cell number. Hence, supersensitive P2X7Rs may exert a beneficial counter-regulatory effect by reducing the chances for the evolution of chronic temporal lobe epilepsy by ectopically located granule cells.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107, Leipzig, Germany
| | - Juan Liu
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107, Leipzig, Germany; Acupuncture and Tuina School, Chengdu University of TCM, 610075, Chengdu, China
| | - Jana Nerlich
- Carl-Ludwig-Institut für Physiologie, Universität Leipzig, 04103, Leipzig, Germany
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of TCM, 610075, Chengdu, China
| | - Heike Franke
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107, Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107, Leipzig, Germany; Acupuncture and Tuina School, Chengdu University of TCM, 610075, Chengdu, China.
| |
Collapse
|
38
|
Rozmer K, Gao P, Araújo MGL, Khan MT, Liu J, Rong W, Tang Y, Franke H, Krügel U, Fernandes MJS, Illes P. Pilocarpine-Induced Status Epilepticus Increases the Sensitivity of P2X7 and P2Y1 Receptors to Nucleotides at Neural Progenitor Cells of the Juvenile Rodent Hippocampus. Cereb Cortex 2018; 27:3568-3585. [PMID: 27341850 DOI: 10.1093/cercor/bhw178] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Patch-clamp recordings indicated the presence of P2X7 receptors at neural progenitor cells (NPCs) in the subgranular zone of the dentate gyrus in hippocampal brain slices prepared from transgenic nestin reporter mice. The activation of these receptors caused inward current near the resting membrane potential of the NPCs, while P2Y1 receptor activation initiated outward current near the reversal potential of the P2X7 receptor current. Both receptors were identified by biophysical/pharmacological methods. When the brain slices were prepared from mice which underwent a pilocarpine-induced status epilepticus or when brain slices were incubated in pilocarpine-containing external medium, the sensitivity of P2X7 and P2Y1 receptors was invariably increased. Confocal microscopy confirmed the localization of P2X7 and P2Y1 receptor-immunopositivity at nestin-positive NPCs. A one-time status epilepticus in rats caused after a latency of about 5 days recurrent epileptic fits. The blockade of central P2X7 receptors increased the number of seizures and their severity. It is hypothesized that P2Y1 receptors after a status epilepticus may increase the ATP-induced proliferation/ectopic migration of NPCs; the P2X7 receptor-mediated necrosis/apoptosis might counteract these effects, which would otherwise lead to a chronic manifestation of recurrent epileptic fits.
Collapse
Affiliation(s)
- Katalin Rozmer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Po Gao
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany.,Department of Physiology, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, China
| | - Michelle G L Araújo
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia da Universidade Federal de São Paulo, São Paulo/SP, Brazil
| | - Muhammad Tahir Khan
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Juan Liu
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany.,Acupuncture and Tuina School, Chengdu University of TCM, 610075 Chengdu, China
| | - Weifang Rong
- Department of Physiology, Shanghai Jiaotong University School of Medicine, 200025 Shanghai, China
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of TCM, 610075 Chengdu, China
| | - Heike Franke
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Ute Krügel
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Maria José S Fernandes
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia da Universidade Federal de São Paulo, São Paulo/SP, Brazil
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| |
Collapse
|
39
|
Mayorquin LC, Rodriguez AV, Sutachan JJ, Albarracín SL. Connexin-Mediated Functional and Metabolic Coupling Between Astrocytes and Neurons. Front Mol Neurosci 2018; 11:118. [PMID: 29695954 PMCID: PMC5905222 DOI: 10.3389/fnmol.2018.00118] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/27/2018] [Indexed: 01/24/2023] Open
Abstract
The central nervous system (CNS) requires sophisticated regulation of neuronal activity. This modulation is partly accomplished by non-neuronal cells, characterized by the presence of transmembrane gap junctions (GJs) and hemichannels (HCs). This allows small molecule diffusion to guarantee neuronal synaptic activity and plasticity. Astrocytes are metabolically and functionally coupled to neurons by the uptake, binding and recycling of neurotransmitters. In addition, astrocytes release metabolites, such as glutamate, glutamine, D-serine, adenosine triphosphate (ATP) and lactate, regulating synaptic activity and plasticity by pre- and postsynaptic mechanisms. Uncoupling neuroglial communication leads to alterations in synaptic transmission that can be detrimental to neuronal circuit function and behavior. Therefore, understanding the pathways and mechanisms involved in this intercellular communication is fundamental for the search of new targets that can be used for several neurological disease treatments. This review will focus on molecular mechanisms mediating physiological and pathological coupling between astrocytes and neurons through GJs and HCs.
Collapse
Affiliation(s)
- Lady C Mayorquin
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrea V Rodriguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhon-Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sonia L Albarracín
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
40
|
Welsh TG, Kucenas S. Purinergic signaling in oligodendrocyte development and function. J Neurochem 2018; 145:6-18. [PMID: 29377124 DOI: 10.1111/jnc.14315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/08/2018] [Accepted: 01/21/2018] [Indexed: 12/31/2022]
Abstract
Myelin, an insulating membrane that enables rapid action potential propagation, is an essential component of an efficient, functional vertebrate nervous system. Oligodendrocytes, the myelinating glia of the central nervous system (CNS), produce myelin throughout the CNS, which requires continuous proliferation, migration, and differentiation of oligodendrocyte progenitor cells. Because myelination is essential for efficient neurotransmission, researchers hypothesize that neuronal signals may regulate the cascade of events necessary for this process. The ability of oligodendrocytes and oligodendrocyte progenitor cells to detect and respond to neuronal activity is becoming increasingly appreciated, although the specific signals involved are still a matter of debate. Recent evidence from multiple studies points to purinergic signaling as a potential regulator of oligodendrocyte development and differentiation. Adenosine triphosphate (ATP) and its derivatives are potent signaling ligands with receptors expressed on many populations of cells in the nervous system, including cells of the oligodendrocyte lineage. Release of ATP into the extracellular space can initiate a multitude of signaling events, and these downstream signals are specific to the particular purinergic receptor (or receptors) expressed, and whether enzymes are present to hydrolyze ATP to its derivatives adenosine diphosphate and adenosine, each of which can activate their own unique downstream signaling cascades. This review will introduce purinergic signaling in the CNS and discuss evidence for its effects on oligodendrocyte proliferation, differentiation, and myelination. We will review sources of extracellular purines in the nervous system and how changes in purinergic receptor expression may be coupled to oligodendrocyte differentiation. We will also briefly discuss purinergic signaling in injury and diseases of the CNS.
Collapse
Affiliation(s)
- Taylor G Welsh
- Neuroscience Graduate Program, Charlottesville, Virginia, USA
| | - Sarah Kucenas
- Neuroscience Graduate Program, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
41
|
Svobodova I, Bhattaracharya A, Ivetic M, Bendova Z, Zemkova H. Circadian ATP Release in Organotypic Cultures of the Rat Suprachiasmatic Nucleus Is Dependent on P2X7 and P2Y Receptors. Front Pharmacol 2018; 9:192. [PMID: 29559915 PMCID: PMC5845546 DOI: 10.3389/fphar.2018.00192] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/20/2018] [Indexed: 01/22/2023] Open
Abstract
The circadian rhythms in physiological and behavioral functions are driven by a pacemaker located in the suprachiasmatic nucleus (SCN). The rhythms continue in constant darkness and depend on cell-cell communication between neurons and glia. The SCN astrocytes generate also a circadian rhythm in extracellular adenosine 5′-triphosphate (ATP) accumulation, but molecular mechanisms that regulate ATP release are poorly understood. Here, we tested the hypothesis that ATP is released via the plasma membrane purinergic P2X7 receptors (P2X7Rs) and P2Y receptors (P2YRs) which have been previously shown to be expressed in the SCN tissue at transcriptional level. We have investigated this hypothesis using SCN organotypic cultures, primary cultures of SCN astrocytes, ATP bioluminescent assays, immunohistochemistry, patch-clamping, and calcium imaging. We found that extracellular ATP accumulation in organotypic cultures followed a circadian rhythm, with a peak between 24:00 and 04:00 h, and the trough at ~12:00 h. ATP rhythm was inhibited by application of AZ10606120, A438079, and BBG, specific blockers of P2X7R, and potentiated by GW791343, a positive allosteric modulator of this receptor. Double-immunohistochemical staining revealed high expression of the P2X7R protein in astrocytes of SCN slices. PPADS, a non-specific P2 antagonist, and MRS2179, specific P2Y1R antagonist, also abolished ATP rhythm, whereas the specific P2X4R blocker 5-BDBD was not effective. The pannexin-1 hemichannel blocker carbenoxolone displayed a partial inhibitory effect. The P2Y1R agonist MRS2365, and the P2Y2R agonist MRS2768 potentiated ATP release in organotypic cultures and increase intracellular Ca2+ level in cultured astrocytes. Thus, SCN utilizes multiple purinergic receptor systems and pannexin-1 hemichannels to release ATP.
Collapse
Affiliation(s)
- Irena Svobodova
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Anirban Bhattaracharya
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Milorad Ivetic
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Zdenka Bendova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Hana Zemkova
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
42
|
Verkhratsky A, Trebak M, Perocchi F, Khananshvili D, Sekler I. Crosslink between calcium and sodium signalling. Exp Physiol 2018; 103:157-169. [PMID: 29210126 PMCID: PMC6813793 DOI: 10.1113/ep086534] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? This paper overviews the links between Ca2+ and Na+ signalling in various types of cells. What advances does it highlight? This paper highlights the general importance of ionic signalling and overviews the molecular mechanisms linking Na+ and Ca2+ dynamics. In particular, the narrative focuses on the molecular physiology of plasmalemmal and mitochondrial Na+ -Ca2+ exchangers and plasmalemmal transient receptor potential channels. Functional consequences of Ca2+ and Na+ signalling for co-ordination of neuronal activity with astroglial homeostatic pathways fundamental for synaptic transmission are discussed. ABSTRACT Transmembrane ionic gradients, which are an indispensable feature of life, are used for generation of cytosolic ionic signals that regulate a host of cellular functions. Intracellular signalling mediated by Ca2+ and Na+ is tightly linked through several molecular pathways that generate Ca2+ and Na+ fluxes and are in turn regulated by both ions. Transient receptor potential (TRP) channels bridge endoplasmic reticulum Ca2+ release with generation of Na+ and Ca2+ currents. The plasmalemmal Na+ -Ca2+ exchanger (NCX) flickers between forward and reverse mode to co-ordinate the influx and efflux of both ions with membrane polarization and cytosolic ion concentrations. The mitochondrial calcium uniporter channel (MCU) and mitochondrial Na+ -Ca2+ exchanger (NCLX) mediate Ca2+ entry into and release from this organelle and couple cytosolic Ca2+ and Na+ fluctuations with cellular energetics. Cellular Ca2+ and Na+ signalling controls numerous functional responses and, in the CNS, provides for fast regulation of astroglial homeostatic cascades that are crucial for maintenance of synaptic transmission.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Fabiana Perocchi
- Gene Center/Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Ramat-Aviv, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Science, Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
43
|
Jia T, Rao J, Zou L, Zhao S, Yi Z, Wu B, Li L, Yuan H, Shi L, Zhang C, Gao Y, Liu S, Xu H, Liu H, Liang S, Li G. Nanoparticle-Encapsulated Curcumin Inhibits Diabetic Neuropathic Pain Involving the P2Y12 Receptor in the Dorsal Root Ganglia. Front Neurosci 2018; 11:755. [PMID: 29422835 PMCID: PMC5788895 DOI: 10.3389/fnins.2017.00755] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/29/2017] [Indexed: 12/28/2022] Open
Abstract
Diabetic peripheral neuropathy results in diabetic neuropathic pain (DNP). Satellite glial cells (SGCs) enwrap the neuronal soma in the dorsal root ganglia (DRG). The purinergic 2 (P2) Y12 receptor is expressed on SGCs in the DRG. SGC activation plays an important role in the pathogenesis of DNP. Curcumin has anti-inflammatory and antioxidant properties. Because curcumin has poor metabolic stability in vivo and low bioavailability, nanoparticle-encapsulated curcumin was used to improve its targeting and bioavailability. In the present study, our aim was to investigate the effects of nanoparticle-encapsulated curcumin on DNP mediated by the P2Y12 receptor on SGCs in the rat DRG. Diabetic peripheral neuropathy increased the expression levels of the P2Y12 receptor on SGCs in the DRG and enhanced mechanical and thermal hyperalgesia in rats with diabetes mellitus (DM). Up-regulation of the P2Y12 receptor in SGCs in the DRG increased the production of pro-inflammatory cytokines. Up-regulation of interleukin-1β (IL-1β) and connexin43 (Cx43) resulted in mechanical and thermal hyperalgesia in rats with DM. The nanoparticle-encapsulated curcumin decreased up-regulated IL-1β and Cx43 expression and reduced levels of phosphorylated-Akt (p-Akt) in the DRG of rats with DM. The up-regulation of P2Y12 on SGCs and the up-regulation of the IL-1β and Cx43 in the DRG indicated the activation of SGCs in the DRG. The nano-curcumin treatment inhibited the activation of SGCs accompanied by its anti-inflammatory effect to decrease the up-regulated CGRP expression in the DRG neurons. Therefore, the nanoparticle-encapsulated curcumin treatment decreased the up-regulation of the P2Y12 receptor on SGCs in the DRG and decreased mechanical and thermal hyperalgesia in rats with DM.
Collapse
Affiliation(s)
- Tianyu Jia
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Jingan Rao
- Second Clinical Department, Medical School, Nanchang University, Nanchang, China
| | - Lifang Zou
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shanhong Zhao
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Zhihua Yi
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Bing Wu
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Lin Li
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Huilong Yuan
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Liran Shi
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Chunping Zhang
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China.,Department of Cell Biology, Medical School, Nanchang University, Nanchang, China
| | - Yun Gao
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shuangmei Liu
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Hong Xu
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Hui Liu
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shangdong Liang
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Guilin Li
- Department of Physiology, Medical School, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| |
Collapse
|
44
|
Shi L, Wu B, Yi Z, Zhao S, Zou L, Li L, Yuan H, Jia T, Liu S, Liu H, Gao Y, Li G, Xu H, Zhang C, Liang S. P2Y 12 shRNA treatment relieved HIV gp120-induced neuropathic pain in rats. Neurochem Int 2018; 112:259-266. [DOI: 10.1016/j.neuint.2017.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/02/2017] [Accepted: 08/11/2017] [Indexed: 11/26/2022]
|
45
|
Xia M, Li X, Yang L, Ren J, Sun G, Qi S, Verkhratsky A, Li B. The ameliorative effect of fluoxetine on neuroinflammation induced by sleep deprivation. J Neurochem 2017; 146:63-75. [PMID: 29222907 DOI: 10.1111/jnc.14272] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Abstract
It is well known that sleep disorders are harmful to people's health and performance, and growing evidence suggests that sleep deprivation (SD) can trigger neuroinflammation in the brain. The nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome is reported to be relevant to the neuroinflammation induced by SD, but the regulatory signaling that governs the NLRP3 inflammasome in SD is still unknown. Meanwhile, whether the regulatory action of antidepressants in astrocytes could affect the neuroinflammation induced by SD also remains obscure. In this study, we were the first to discover that the antidepressant fluoxetine, a type of specific serotonin reuptake inhibitor widely used in clinical practice, could suppress the neuroinflammation and neuronal apoptosis induced by SD. The main findings from this study are as follows: (i) SD stimulated the expression of activated NLRP3 inflammasomes and the maturation of IL-1β/18 via suppressing the phosphorylation of STAT3 in astrocytes; (ii) SD decreased the activation of AKT and stimulated the phosphorylation of GSK-3β, which inhibited the phosphorylation of STAT3; (iii) the NLRP3 inflammasome expression stimulated by SD was partly mediated by the P2X7 receptor; (iv) an agonist of STAT3 could significantly abolish the expression of NLRP3 inflammasomes induced by an agonist of the P2X7 receptor in primary cultured astrocytes; (v) the administration of fluoxetine could reverse the stimulation of NLRP3 inflammasome expression and function by SD through elevating the activation of STAT3. In conclusion, our present research suggests the promising possibility that fluoxetine could ameliorate the neuronal impairment induced by SD.
Collapse
Affiliation(s)
- Maosheng Xia
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Xiaowei Li
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Li Yang
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Jiaan Ren
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Guangfeng Sun
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Shuang Qi
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Baoman Li
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| |
Collapse
|
46
|
Nam Y, Kim JH, Kim JH, Jha MK, Jung JY, Lee MG, Choi IS, Jang IS, Lim DG, Hwang SH, Cho HJ, Suk K. Reversible Induction of Pain Hypersensitivity following Optogenetic Stimulation of Spinal Astrocytes. Cell Rep 2017; 17:3049-3061. [PMID: 27974216 DOI: 10.1016/j.celrep.2016.11.043] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 10/17/2016] [Accepted: 11/12/2016] [Indexed: 12/30/2022] Open
Abstract
While glial activation is an integral part of pain pathogenesis, the existence of a causal relationship between glia and pain processing has yet to be demonstrated in vivo. Here, we have investigated whether the activation of spinal astrocytes could directly evoke pain hypersensitivity in vivo via the use of optogenetic techniques. Optogenetic stimulation of channelrhopdopsin-2 (ChR)-expressing spinal astrocytes induced pain hypersensitivity in a reversible and time-dependent manner, which was accompanied by glial activation, NR1 phosphorylation, ATP release, and the production of proalgesic mediators. Photostimulation of ChR2-expressing astrocytes in culture and spinal slices recapitulated in vivo findings, demonstrating the release of proalgesic mediators and electrophysiological disinhibition of spinal projection neurons. These findings deepen our understanding of the role of astrocytes in pain pathogenesis and provide the scientific basis for an astrocyte-oriented pain treatment.
Collapse
Affiliation(s)
- Youngpyo Nam
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Jae-Hong Kim
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Ji Young Jung
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Dong Gun Lim
- Department of Anesthesiology and Pain Medicine, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Sung-Hun Hwang
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Hee-Jung Cho
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea.
| |
Collapse
|
47
|
The P2X 7 receptor in dorsal root ganglia is involved in HIV gp120-associated neuropathic pain. Brain Res Bull 2017; 135:25-32. [PMID: 28919433 DOI: 10.1016/j.brainresbull.2017.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 05/10/2017] [Accepted: 09/13/2017] [Indexed: 01/28/2023]
Abstract
Human immunodeficiency virus (HIV)-associated neuropathic pain is common, and studies have shown that HIV envelope glycoprotein 120 (gp120) can directly stimulate primary sensory afferent neurons causing hyperalgesia. The P2X7 receptor in the dorsal root ganglia (DRG) is involved in pain transmission and is closely related to the inflammatory and immune response. In this study, we aimed to explore the role of the P2X7 receptor in gp120-induced neuropathic pain using a rat model specific for this type of pain. The results showed that mechanical hyperalgesia, thermal hyperalgesia and P2X7 expression levels were increased in rats treated with gp120. The P2X7 antagonist, brilliant blue G (BBG), decreased hyperalgesia and P2X7 expression levels in rats treated with gp120. BBG also decreased IL-1β and TNF-α receptor expression and ERK1/2 phosphorylation levels and increased IL-10 expression in the gp120-treated rat DRG. In addition, P2X7 agonist (BzATP)-activated currents in DRG neurons cultured with gp120 were larger than those in control neurons, and the inhibitory effect of BBG on BzATP-induced currents in gp120-treated DRG neurons was larger than that in control neurons. Therefore, inhibition of the P2X7 receptor in rat DRG relieved gp120-induced mechanical hyperalgesia and thermal hyperalgesia.
Collapse
|
48
|
Neuronal P2X7 Receptors Revisited: Do They Really Exist? J Neurosci 2017; 37:7049-7062. [PMID: 28747388 DOI: 10.1523/jneurosci.3103-16.2017] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
P2X7 receptors (Rs) constitute a subclass of ATP-sensitive ionotropic receptors (P2X1-P2X7). P2X7Rs have many distinguishing features, mostly based on their long intracellular C terminus regulating trafficking to the cell membrane, protein-protein interactions, and post-translational modification. Their C-terminal tail is especially important in enabling the transition from the nonselective ion channel mode to a membrane pore allowing the passage of large molecules. There is an ongoing dispute on the existence of neuronal P2X7Rs with consequences for our knowledge on their involvement in neuroinflammation, aggravating stroke, temporal lobe epilepsy, neuropathic pain, and various neurodegenerative diseases. Whereas early results appeared to support the operation of P2X7Rs at neurons, more recently glial P2X7Rs are increasingly considered as indirect causes of neuronal effects. Specific tools for P2X7Rs are of limited value because of the poor selectivity of agonists, and the inherent failure of antibodies to differentiate between the large number of active and inactive splice variants, or gain-of-function and loss-of-function small nucleotide polymorphisms of the receptor. Unfortunately, the available P2RX7 knock-out mice generated by pharmaceutical companies possess certain splice variants, which evade inactivation. In view of the recently discovered bidirectional dialogue between astrocytes and neurons (and even microglia and neurons), we offer an alternative explanation for previous data, which assumedly support the existence of P2X7Rs at neurons. We think that the unbiased reader will follow our argumentation on astrocytic or microglial P2X7Rs being the primary targets of pathologically high extracellular ATP concentrations, although a neuronal localization of these receptors cannot be fully excluded either.
Collapse
|
49
|
Domingos LB, Hott SC, Terzian ALB, Resstel LBM. P2X7 purinergic receptors participate in the expression and extinction processes of contextual fear conditioning memory in mice. Neuropharmacology 2017; 128:474-481. [PMID: 28802645 DOI: 10.1016/j.neuropharm.2017.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/27/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022]
Abstract
The purinergic system consists of two large receptor families - P2X and P2Y. Both are activated by adenosine triphosphate (ATP), although presenting different functions. These receptors are present in several brain regions, including those involved in emotion and stress-related behaviors. Hence, they seem to participate in fear- and anxiety-related responses. However, few studies have investigated the purinergic system in threatening situations, as observed in contextual fear conditioning (CFC). Therefore, this study investigated the involvement of purinergic receptors in the expression and extinction of aversive memories. C57Bl/6 background mice were submitted to the CFC protocol. Wildtype (WT) mice received i.p. injection of either a nonselective P2 receptor (P2R) antagonist, P178 (10 or 30 mg/kg); a selective P2X7 receptor (P2X7R) antagonist, A438079 (10 mg/kg); a selective P2Y1 receptor (P2Y1R) antagonist, MRS2179 (10 mg/kg); or vehicle 10 min prior to or immediately after the extinction session. Additionally, P2X7R KO mice were tested in the CFC protocol. After P2R antagonist treatment, contextual fear recall increased, while acquisition of extinction was impaired. Similar results were observed with the selective P2X7R antagonist, but not with the selective P2Y1R antagonist. Interestingly, P2X7R KO mice showed increased contextual fear recall, associated with impaired acquisition of extinction, in accordance with pharmacologic P2X7R antagonism. Our results suggest that specific pharmacological or genetic blockade of P2X7R promotes anxiogenic-like effects, along with deficits in extinction learning. Thus, these receptors could present an alternative treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- L B Domingos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - S C Hott
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - A L B Terzian
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - L B M Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
50
|
Muller MS, Taylor CW. ATP evokes Ca 2+ signals in cultured foetal human cortical astrocytes entirely through G protein-coupled P2Y receptors. J Neurochem 2017; 142:876-885. [PMID: 28677119 PMCID: PMC5601250 DOI: 10.1111/jnc.14119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/15/2017] [Accepted: 06/29/2017] [Indexed: 01/07/2023]
Abstract
Extracellular ATP plays important roles in coordinating the activities of astrocytes and neurons, and aberrant signalling is associated with neurodegenerative diseases. In rodents, ATP stimulates opening of Ca2+‐permeable channels formed by P2X receptor subunits in the plasma membrane. It is widely assumed, but not verified, that P2X receptors also evoke Ca2+ signals in human astrocytes. Here, we directly assess this hypothesis. We showed that cultured foetal cortical human astrocytes express mRNA for several P2X receptor subunits (P2X4, P2X5, P2X6) and G protein‐coupled P2Y receptors (P2Y1, P2Y2, P2Y6, P2Y11). In these astrocytes, ATP stimulated Ca2+ release from intracellular stores through IP3 receptors and store‐operated Ca2+ entry. These responses were entirely mediated by P2Y1 and P2Y2 receptors. Agonists of P2X receptors did not evoke Ca2+ signals, and nor did ATP when Ca2+ release from intracellular stores and store‐operated Ca2+ entry were inhibited. We conclude that ATP‐evoked Ca2+ signals in cultured human foetal astrocytes are entirely mediated by P2Y1 and P2Y2 receptors, with no contribution from P2X receptors. ![]()
Collapse
Affiliation(s)
- Margit S Muller
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|