1
|
Zhang J, Yang L, Sun Y, Zhang L, Wang Y, Liu M, Li X, Liang Y, Zhao H, Liu Z, Qiu Z, Zhang T, Xie J. Up-regulation of miR-10a-5p expression inhibits the proliferation and differentiation of neural stem cells by targeting Chl1. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1483-1497. [PMID: 38841745 PMCID: PMC11532229 DOI: 10.3724/abbs.2024078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/07/2024] [Indexed: 06/07/2024] Open
Abstract
Neural tube defects (NTDs) are characterized by the failure of neural tube closure during embryogenesis and are considered the most common and severe central nervous system anomalies during early development. Recent microRNA (miRNA) expression profiling studies have revealed that the dysregulation of several miRNAs plays an important role in retinoic acid (RA)-induced NTDs. However, the molecular functions of these miRNAs in NTDs remain largely unidentified. Here, we show that miR-10a-5p is significantly upregulated in RA-induced NTDs and results in reduced cell growth due to cell cycle arrest and dysregulation of cell differentiation. Moreover, the cell adhesion molecule L1-like ( Chl1) is identified as a direct target of miR-10a-5p in neural stem cells (NSCs) in vitro, and its expression is reduced in RA-induced NTDs. siRNA-mediated knockdown of intracellular Chl1 affects cell proliferation and differentiation similar to those of miR-10a-5p overexpression, which further leads to the inhibition of the expressions of downstream ERK1/2 MAPK signaling pathway proteins. These cellular responses are abrogated by either increased expression of the direct target of miR-10a-5p ( Chl1) or an ERK agonist such as honokiol. Overall, our study demonstrates that miR-10a-5p plays a major role in the process of NSC growth and differentiation by directly targeting Chl1, which in turn induces the downregulation of the ERK1/2 cascade, suggesting that miR-10a-5p and Chl1 are critical for NTD formation in the development of embryos.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
- of Cell Biology and GeneticsSchool of Basic Medical ScienceShanxi Medical UniversityTaiyuan030001China
| | - Lihong Yang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yuqing Sun
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Li Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yufei Wang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Ming Liu
- of Cell Biology and GeneticsSchool of Basic Medical ScienceShanxi Medical UniversityTaiyuan030001China
| | - Xiujuan Li
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yuxiang Liang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Hong Zhao
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Jun Xie
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
2
|
Loers G, Kleene R, Granato V, Bork U, Schachner M. Interaction of L1CAM with LC3 Is Required for L1-Dependent Neurite Outgrowth and Neuronal Survival. Int J Mol Sci 2023; 24:12531. [PMID: 37569906 PMCID: PMC10419456 DOI: 10.3390/ijms241512531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The neural cell adhesion molecule L1 (also called L1CAM or CD171) functions not only in cell migration, but also in cell survival, differentiation, myelination, neurite outgrowth, and signaling during nervous system development and in adults. The proteolytic cleavage of L1 in its extracellular domain generates soluble fragments which are shed into the extracellular space and transmembrane fragments that are internalized into the cell and transported to various organelles to regulate cellular functions. To identify novel intracellular interaction partners of L1, we searched for protein-protein interaction motifs and found two potential microtubule-associated protein 1 light-chain 3 (LC3)-interacting region (LIR) motifs within L1, one in its extracellular domain and one in its intracellular domain. By ELISA, immunoprecipitation, and proximity ligation assay using L1 mutant mice lacking the 70 kDa L1 fragment (L1-70), we showed that L1-70 interacts with LC3 via the extracellular LIR motif in the fourth fibronectin type III domain, but not by the motif in the intracellular domain. The disruption of the L1-LC3 interaction reduces L1-mediated neurite outgrowth and neuronal survival.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Viviana Granato
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Ute Bork
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Ge X, Guo M, Li M, Zhang S, Qiang J, Zhu L, Cheng L, Li W, Wang Y, Yu J, Yin Z, Chen F, Tong W, Lei P. Potential blood biomarkers for chronic traumatic encephalopathy: The multi-omics landscape of an observational cohort. Front Aging Neurosci 2022; 14:1052765. [PMID: 36420308 PMCID: PMC9676976 DOI: 10.3389/fnagi.2022.1052765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts, which is susceptible in elderly people with declined mobility, athletes of full contact sports, military personnel and victims of domestic violence. It has been pathologically diagnosed in brain donors with a history of repetitive mild traumatic brain injury (rmTBI), but cannot be clinically diagnosed for a long time. By the continuous efforts by neuropathologists, neurologists and neuroscientists in recent 10 years, an expert consensus for the diagnostic framework of CTE was proposed in 2021 funded by the National Institute of Neurological Disorders and Stroke. The new consensus contributes to facilitating research in the field. However, it still needs to incorporate in vivo biomarkers to further refine and validate the clinical diagnostic criteria. From this, a single-center, observational cohort study has been being conducted by Tianjin Medical University General Hospital since 2021. As a pilot study of this clinical trial, the present research recruited 12 pairs of gender- and age-matched rmTBI patients with healthy subjects. Their blood samples were collected for exosome isolation, and multi-omics screening to explore potential diagnostic biomarkers in blood and its exosomes. The expression level of CHL1 protein, KIF2A mRNA, LIN7C mRNA, miR-297, and miR-1183 in serum and exosomes were found to be differentially expressed between groups. Besides, serum and exosomal CHL1, KIF2A, and miR-1183, as well as exosomal miR-297 were further verified as potential biomarkers for CTE by low-throughput assays. They are expected to contribute to establishing a novel set of CTE diagnostic signatures with classic neurodegenerative indicators in our future study, thereby updating the consensus diagnostic criteria for CTE by incorporating new evidence of the in vivo biomarkers.
Collapse
Affiliation(s)
- Xintong Ge
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
- Key Laboratory of Injuries, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Mengtian Guo
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | - Meimei Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | - Shishuang Zhang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | - Junlian Qiang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Luoyun Zhu
- Department of Medical Examination, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Cheng
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | - Wenzhu Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | - Yan Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | - Jinwen Yu
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | - Zhenyu Yin
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | - Fanglian Chen
- Key Laboratory of Injuries, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
| | - Wen Tong
- Weightlifting, Wrestling, Judo, Boxing and Taekwondo Sports Management Center of Tianjin Sports Bureau, Tianjin, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
- Key Laboratory of Injuries, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China
- *Correspondence: Ping Lei,
| |
Collapse
|
4
|
Jakovcevski I, von Düring M, Lutz D, Vulović M, Hamad M, Reiss G, Förster E, Schachner M. Mice lacking perforin have improved regeneration of the injured femoral nerve. Neural Regen Res 2022; 17:1802-1808. [PMID: 35017441 PMCID: PMC8820721 DOI: 10.4103/1673-5374.332152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The role that the immune system plays after injury of the peripheral nervous system is still not completely understood. Perforin, a natural killer cell- and T-lymphocyte-derived enzyme that mediates cytotoxicity, plays important roles in autoimmune diseases, infections and central nervous system trauma, such as spinal cord injury. To dissect the roles of this single component of the immune response to injury, we tested regeneration after femoral nerve injury in perforin-deficient (Pfp–/–) and wild-type control mice. Single frame motion analysis showed better motor recovery in Pfp–/– mice compared with control mice at 4 and 8 weeks after injury. Retrograde tracing of the motoneuron axons regrown into the motor nerve branch demonstrated more correctly projecting motoneurons in the spinal cord of Pfp–/– mice compared with wild-types. Myelination of regrown axons measured by g-ratio was more extensive in Pfp–/– than in wild-type mice in the motor branch of the femoral nerve. Pfp–/– mice displayed more cholinergic synaptic terminals around cell bodies of spinal motoneurons after injury than the injured wild-types. We histologically analyzed lymphocyte infiltration 10 days after surgery and found that in Pfp–/– mice the number of lymphocytes in the regenerating nerves was lower than in wild-types, suggesting a closed blood-nerve barrier in Pfp–/– mice. We conclude that perforin restricts motor recovery after femoral nerve injury owing to decreased survival of motoneurons and reduced myelination.
Collapse
Affiliation(s)
- Igor Jakovcevski
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, Witten, Germany
| | - Monika von Düring
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - David Lutz
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Maja Vulović
- Department of Anatomy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Mohammad Hamad
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, Witten, Germany
| | - Gebhard Reiss
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, Witten, Germany
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
5
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
6
|
Selim OA, Lakhani S, Midha S, Mosahebi A, Kalaskar DM. Three-Dimensional Engineered Peripheral Nerve: Toward a New Era of Patient-Specific Nerve Repair Solutions. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:295-335. [PMID: 33593147 DOI: 10.1089/ten.teb.2020.0355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reconstruction of peripheral nerve injuries (PNIs) with substance loss remains challenging because of limited treatment solutions and unsatisfactory patient outcomes. Currently, nerve autografting is the first-line management choice for bridging critical-sized nerve defects. The procedure, however, is often complicated by donor site morbidity and paucity of nerve tissue, raising a quest for better alternatives. The application of other treatment surrogates, such as nerve guides, remains questionable, and it is inefficient in irreducible nerve gaps. More importantly, these strategies lack customization for personalized patient therapy, which is a significant drawback of these nerve repair options. This negatively impacts the fascicle-to-fascicle regeneration process, critical to restoring the physiological axonal pathway of the disrupted nerve. Recently, the use of additive manufacturing (AM) technologies has offered major advancements to the bioengineering solutions for PNI therapy. These techniques aim at reinstating the native nerve fascicle pathway using biomimetic approaches, thereby augmenting end-organ innervation. AM-based approaches, such as three-dimensional (3D) bioprinting, are capable of biofabricating 3D-engineered nerve graft scaffolds in a patient-specific manner with high precision. Moreover, realistic in vitro models of peripheral nerve tissues that represent the physiologically and functionally relevant environment of human organs could also be developed. However, the technology is still nascent and faces major translational hurdles. In this review, we spotlighted the clinical burden of PNIs and most up-to-date treatment to address nerve gaps. Next, a summarized illustration of the nerve ultrastructure that guides research solutions is discussed. This is followed by a contrast of the existing bioengineering strategies used to repair peripheral nerve discontinuities. In addition, we elaborated on the most recent advances in 3D printing and biofabrication applications in peripheral nerve modeling and engineering. Finally, the major challenges that limit the evolution of the field along with their possible solutions are also critically analyzed.
Collapse
Affiliation(s)
- Omar A Selim
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Saad Lakhani
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Swati Midha
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Afshin Mosahebi
- Department of Plastic Surgery, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Deepak M Kalaskar
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London (UCL), Stanmore, United Kingdom
| |
Collapse
|
7
|
Zabana Y, Lorén V, Domènech E, Aterido A, Garcia-Jaraquemada A, Julià A, Vicario M, Pedrosa E, Ferreiro M, Troya J, Lozano JJ, Sarrias MR, Cabré E, Mañosa M, Manyé J. Transcriptomic identification of TMIGD1 and its relationship with the ileal epithelial cell differentiation in Crohn's disease. Am J Physiol Gastrointest Liver Physiol 2020; 319:G109-G120. [PMID: 32508154 DOI: 10.1152/ajpgi.00027.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Crohn's disease (CD) is a complex and multifactorial illness. There are still considerable gaps in our knowledge regarding its pathophysiology. A transcriptomic approach could shed some light on little-known biological alterations of the disease. We therefore aimed to explore the ileal transcriptome to gain knowledge about CD. We performed whole transcriptome gene expression analysis on ileocecal resections from CD patients and inflammatory bowel disease-free controls, as well as on a CD-independent cohort to replicate selected results. Normalized data were hierarchically clustered, and gene ontology and the molecular network were studied. Cell cultures and molecular methods were used for further evaluations. Genome-wide expression data analysis identified a robust transmembrane immunoglobulin domain-containing 1 (TMIGD1) gene underexpression in CD tissue, which was even more marked in inflamed ileum, and which was replicated in the validation cohort. Immunofluorescence showed TMIGD1 to be located in the apical microvilli of well-differentiated enterocytes but not in intestinal crypt. This apical TMIGD1 was lower in the noninflamed tissue and almost disappeared in the inflamed mucosa of surgical resections. In vitro studies showed hypoxic-dependent TMIGD1 decreased its expression in enterocyte-like cells. The gene enrichment analysis linked TMIGD1 with cell recovery and tissue remodeling in CD settings, involving guanylate cyclase activities. Transcriptomics may be useful for finding new targets that facilitate studies of the CD pathology. This is how TMIGD1 was identified in CD patients, which was related to multiciliate ileal epithelial cell differentiation.NEW & NOTEWORTHY This is a single-center translational research study that aimed to look for key targets involved in Crohn's disease and define molecular pathways through different functional analysis strategies. With this approach, we have identified and described a novel target, the almost unknown TMIGD1 gene, which may be key in the recovery of injured mucosa involving intestinal epithelial cell differentiation.
Collapse
Affiliation(s)
- Yamile Zabana
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Violeta Lorén
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Eugeni Domènech
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Gastroenterology Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Adrià Aterido
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Catalonia, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Arce Garcia-Jaraquemada
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - Antonio Julià
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Catalonia, Spain
| | - Maria Vicario
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Laboratory of Translational Mucosal Immunology & Department of Gastroenterology, Digestive Diseases Research Unit, Vall d'Hebron Research University Hospital, Badalona, Catalonia, Spain
| | - Elisabet Pedrosa
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - Miriam Ferreiro
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
| | - José Troya
- Colorectal Surgery Unit, General and Digestive Surgery Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Juan J Lozano
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Maria R Sarrias
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Innate Immunity Group, IGTP (AGAUR 2017-SGR-490 group), Badalona, Catalonia, Spain
| | - Eduard Cabré
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Gastroenterology Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Miriam Mañosa
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Gastroenterology Department, Germans Trias i Pujol University Hospital, Badalona, Catalonia, Spain
| | - Josep Manyé
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| |
Collapse
|
8
|
Wachowiak R, Mayer S, Suttkus A, Martynov I, Lacher M, Melling N, Izbicki JR, Tachezy M. CHL1 and NrCAM are Primarily Expressed in Low Grade Pediatric Neuroblastoma. Open Med (Wars) 2019; 14:920-927. [PMID: 31989042 PMCID: PMC6972343 DOI: 10.1515/med-2019-0109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 10/19/2019] [Indexed: 12/28/2022] Open
Abstract
Background Neural cell adhesion molecules like close homolog of L1 protein (CHL1) and neuronal glia related cell adhesion molecule (NrCAM) play an important role in development and regeneration of the central nervous system. However, they are also associated with cancerogenesis and progression in adult malignancies, thus gain increasing importance in cancer research. We therefore studied the expression of CHL1 and NrCAM according to the course of disease in children with neuroblastoma. Methods CHL1 and NrCAM expression levels were histologically assessed by tissue microarrays from surgically resected neuroblastoma specimens of 56 children. Expression of both markers was correlated to demographics as well as clinical data including metastatic dissemination and survival. Results CHL1 was expressed in 9% and NrCAM in 51% of neuroblastoma tissue samples. Expression of CHL1 was higher in patients with low Hughes grade 1a/b (p=0.01). NrCAM was more often detected in patients with a low International Staging System (INSS) score 1/2 (p=0.04). Conclusion CHL1 and NrCAM expression was associated with low-grade pediatric neuroblastoma. These adhesion molecules may play a role in early tumor development of neuroblastoma.
Collapse
Affiliation(s)
- Robin Wachowiak
- Department of Pediatric Surgery, University Hospital Leipzig, Liebigstrasse 20 A, 04103 Leipzig, Germany
| | - Steffi Mayer
- Department of Pediatric Surgery, University Hospital Leipzig, Liebigstrasse 20 A, 04103 Leipzig, Germany
| | - Anne Suttkus
- Department of Pediatric Surgery, University Hospital Leipzig, Liebigstrasse 20 A, 04103 Leipzig, Germany
| | - Illya Martynov
- Department of Pediatric Surgery, University Hospital Leipzig, Liebigstrasse 20 A, 04103 Leipzig, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, University Hospital Leipzig, Liebigstrasse 20 A, 04103 Leipzig, Germany
| | - Nathaniel Melling
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendorf, Hamburg, 20246, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendorf, Hamburg, 20246, Germany
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendorf, Hamburg, 20246, Germany
| |
Collapse
|
9
|
Li R, Sahu S, Schachner M. Phenelzine, a cell adhesion molecule L1 mimetic small organic compound, promotes functional recovery and axonal regrowth in spinal cord-injured zebrafish. Pharmacol Biochem Behav 2018; 171:30-38. [PMID: 29802870 DOI: 10.1016/j.pbb.2018.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/20/2018] [Accepted: 05/21/2018] [Indexed: 02/05/2023]
Abstract
Injury to the spinal cord initiates a cascade of cellular and molecular events that contribute to the tissue environment that is non-permissive for cell survival and axonal regrowth/sprouting in the adult mammalian central nervous system. The endogenous repair response is impaired in this generally inhibitory environment. Previous studies indicate that homophilic interactions of the neural cell adhesion molecule L1 (L1CAM) promote recovery after spinal cord injury and ameliorate neurodegenerative processes in experimental rodent and zebrafish models. In light of reports that phenelzine, a small organic compound that mimics L1, stimulates neuronal survival, neuronal migration, neurite outgrowth, and Schwann cell proliferation in vitro in a L1-dependent manner, we examined the restorative potential of phenelzine in a zebrafish model of spinal cord injury. Addition of phenelzine into the aquarium water immediately after spinal cord injury accelerated locomotor recovery and promoted axonal regrowth and remyelination in larval and adult zebrafish. Phenelzine treatment up-regulated the expression and proteolysis of L1.1 (a homolog of the mammalian recognition molecule L1) and phosphorylation of Erk in the spinal cord caudal to lesion site. By combining the results of the present study with those of other studies, we propose that phenelzine bears hopes for therapy of nervous system injuries.
Collapse
Affiliation(s)
- Rong Li
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| | - Sudhanshu Sahu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China; Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA.
| |
Collapse
|
10
|
Kim W, Ma L, Lomoio S, Willen R, Lombardo S, Dong J, Haydon PG, Tesco G. BACE1 elevation engendered by GGA3 deletion increases β-amyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice. Mol Neurodegener 2018; 13:6. [PMID: 29391027 PMCID: PMC5796504 DOI: 10.1186/s13024-018-0239-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/24/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting enzyme in the production of amyloid beta (Aβ), the toxic peptide that accumulates in the brains of Alzheimer's disease (AD) patients. Our previous studies have shown that the clathrin adaptor Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) plays a key role in the trafficking of BACE1 to lysosomes, where it is normally degraded. GGA3 depletion results in BACE1 stabilization both in vitro and in vivo. Moreover, levels of GGA3 are reduced and inversely related to BACE1 levels in post-mortem brains of AD patients. METHOD In order to assess the effect of GGA3 deletion on AD-like phenotypes, we crossed GGA3 -/- mice with 5XFAD mice. BACE1-mediated processing of APP and the cell adhesion molecule L1 like protein (CHL1) was measured as well as levels of Aβ42 and amyloid burden. RESULTS In 5XFAD mice, we found that hippocampal and cortical levels of GGA3 decreased while BACE1 levels increased with age, similar to what is observed in human AD brains. GGA3 deletion prevented age-dependent elevation of BACE1 in GGA3KO;5XFAD mice. We also found that GGA3 deletion resulted in increased hippocampal levels of Aβ42 and amyloid burden in 5XFAD mice at 12 months of age. While levels of BACE1 did not change with age and gender in GGAKO;5XFAD mice, amyloid precursor protein (APP) levels increased with age and were higher in female mice. Moreover, elevation of APP was associated with a decreased BACE1-mediated processing of CHL1 not only in 12 months old 5XFAD mice but also in human brains from subjects affected by Down syndrome, most likely due to substrate competition. CONCLUSION This study demonstrates that GGA3 depletion is a leading candidate mechanism underlying elevation of BACE1 in AD. Furthermore, our findings suggest that BACE1 inhibition could exacerbate mechanism-based side effects in conditions associated with APP elevation (e.g. Down syndrome) owing to impairment of BACE1-mediated processing of CHL1. Therefore, therapeutic approaches aimed to restore GGA3 function and to prevent the down stream effects of its depletion (e.g. BACE1 elevation) represent an attractive alternative to BACE inhibition for the prevention/treatment of AD.
Collapse
Affiliation(s)
- WonHee Kim
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Liang Ma
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Selene Lomoio
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Rachel Willen
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Sylvia Lombardo
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Jinghui Dong
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Philip G. Haydon
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Giuseppina Tesco
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| |
Collapse
|
11
|
Sahu S, Zhang Z, Li R, Hu J, Shen H, Loers G, Shen Y, Schachner M. A Small Organic Compound Mimicking the L1 Cell Adhesion Molecule Promotes Functional Recovery after Spinal Cord Injury in Zebrafish. Mol Neurobiol 2018; 55:859-878. [PMID: 28070857 DOI: 10.1007/s12035-016-0254-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/24/2016] [Indexed: 02/05/2023]
Abstract
Tacrine is a small organic compound that was discovered to mimic the functions of the neural cell adhesion molecule L1 by promoting the cognate functions of L1 in vitro, such as neuronal survival, neuronal migration, neurite outgrowth, and myelination. Based on studies indicating that L1 enhances functional recovery in different central and peripheral nervous system disease paradigms of rodents, it deemed interesting to investigate the beneficial role of tacrine in the attractive zebrafish animal model, by evaluating functional recovery after spinal cord injury. To this aim, larval and adult zebrafish were exposed to tacrine treatment after spinal cord injury and monitored for locomotor recovery and axonal regrowth. Tacrine promoted the rapid recovery of locomotor activities in both larval and adult zebrafish, enhanced regrowth of severed axons and myelination, and reduced astrogliosis in the spinal cords. Tacrine treatment upregulated the expression of L1.1 (a homolog of the mammalian recognition molecule L1) and enhanced the L1.1-mediated intracellular signaling cascades in the injured spinal cords. These observations lead to the hope that, in combination with other therapeutic approaches, this old drug may become a useful reagent to ameliorate the deficits resulting from acute and chronic injuries of the mammalian nervous system.
Collapse
Affiliation(s)
- Sudhanshu Sahu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China
| | - Zhihua Zhang
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China
| | - Rong Li
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China
| | - Junkai Hu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China
| | - Huifan Shen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China
| | - Gabriele Loers
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China
| | - Yanqin Shen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
- Medical School, Jiangnan University, 1800 Li Hu Road, Wuxi, Jiangsu, 214122, China.
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA.
| |
Collapse
|
12
|
Li R, Sahu S, Schachner M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor Neurol Neurosci 2018; 36:469-483. [PMID: 29889084 DOI: 10.3233/rnn-170808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neural cell adhesion molecule L1 contributes to nervous system development and maintenance by promoting neuronal survival, neuritogenesis, axonal regrowth/sprouting, myelination, and synapse formation and plasticity. L1 also enhances recovery after spinal cord injury and ameliorates neurodegenerative processes in experimental rodent models. Aiming for clinical translation of L1 into therapy we screened for and functionally characterized in vitro the small organic molecule phenelzine, which mimics characteristic L1 functions. OBJECTIVE The present study was designed to evaluate the potential of this compound in vivo in a mouse model of spinal cord injury. METHODS AND RESULTS In mice, intraperitoneal injection of phenelzine immediately after severe thoracic compression, and thereafter once daily for 6 weeks, improved hind limb function, reduced astrogliosis and promoted axonal regrowth/sprouting at 4 and 5 weeks after spinal cord injury compared to vehicle control-treated mice. Phenelzine application upregulated L1 expression in the spinal cord and stimulated the cognate L1-mediated intracellular signaling cascades in the spinal cord tissue. Phenelzine-treated mice showed decreased levels of pro-inflammatory cytokines, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α in the injured spinal cord during the acute phase of inflammation. CONCLUSIONS This study provides new insights into the role of phenelzine in L1-mediated neural functions and modulation of inflammation. The combined results raise hopes that phenelzine may develop into a therapeutic agent for nervous system injuries.
Collapse
Affiliation(s)
- Rong Li
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
| | - Sudhanshu Sahu
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
13
|
Gennarini G, Furley A. Cell adhesion molecules in neural development and disease. Mol Cell Neurosci 2017; 81:1-3. [DOI: 10.1016/j.mcn.2017.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Mehrabian M, Hildebrandt H, Schmitt-Ulms G. NCAM1 Polysialylation: The Prion Protein's Elusive Reason for Being? ASN Neuro 2016; 8:8/6/1759091416679074. [PMID: 27879349 PMCID: PMC5122176 DOI: 10.1177/1759091416679074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/08/2016] [Accepted: 10/02/2016] [Indexed: 01/06/2023] Open
Abstract
Much confusion surrounds the physiological function of the cellular prion protein (PrPC). It is, however, anticipated that knowledge of its function will shed light on its contribution to neurodegenerative diseases and suggest ways to interfere with the cellular toxicity central to them. Consequently, efforts to elucidate its function have been all but exhaustive. Building on earlier work that uncovered the evolutionary descent of the prion founder gene from an ancestral ZIP zinc transporter, we recently investigated a possible role of PrPC in a morphogenetic program referred to as epithelial-to-mesenchymal transition (EMT). By capitalizing on PrPC knockout cell clones in a mammalian cell model of EMT and using a comparative proteomics discovery strategy, neural cell adhesion molecule-1 emerged as a protein whose upregulation during EMT was perturbed in PrPC knockout cells. Follow-up work led us to observe that PrPC regulates the polysialylation of the neural cell adhesion molecule NCAM1 in cells undergoing morphogenetic reprogramming. In addition to governing cellular migration, polysialylation modulates several other cellular plasticity programs PrPC has been phenotypically linked to. These include neurogenesis in the subventricular zone, controlled mossy fiber sprouting and trimming in the hippocampal formation, hematopoietic stem cell renewal, myelin repair and maintenance, integrity of the circadian rhythm, and glutamatergic signaling. This review revisits this body of literature and attempts to present it in light of this novel contextual framework. When approached in this manner, a coherent model of PrPC acting as a regulator of polysialylation during specific cell and tissue morphogenesis events comes into focus.
Collapse
Affiliation(s)
- Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Herbert Hildebrandt
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Menzel L, Paterka M, Bittner S, White R, Bobkiewicz W, van Horssen J, Schachner M, Witsch E, Kuhlmann T, Zipp F, Schäfer MKE. Down-regulation of neuronal L1 cell adhesion molecule expression alleviates inflammatory neuronal injury. Acta Neuropathol 2016; 132:703-720. [PMID: 27544757 DOI: 10.1007/s00401-016-1607-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/22/2016] [Accepted: 08/09/2016] [Indexed: 02/05/2023]
Abstract
In multiple sclerosis (MS), the immune cell attack leads to axonal injury as a major cause for neurological disability. Here, we report a novel role of the cell adhesion molecule L1 in the crosstalk between the immune and nervous systems. L1 was found to be expressed by CNS axons of MS patients and human T cells. In MOG35-55-induced murine experimental neuroinflammation, CD4+ T cells were associated with degenerating axons in the spinal cord, both expressing L1. However, neuronal L1 expression in the spinal cord was reduced, while levels of the transcriptional repressor REST (RE1-Silencing Transcription Factor) were up-regulated. In PLP139-151-induced relapsing-remitting neuroinflammation, L1 expression was low at the peak stage of disease, reached almost normal levels in the remission stage, but decreased again during disease relapse indicating adaptive expression regulation of L1. In vitro, activated CD4+ T cells caused contact-dependent down-regulation of L1, up-regulation of its repressor REST and axonal injury in co-cultured neurons. T cell adhesion to neurons and axonal injury were prevented by an antibody blocking L1 suggesting that down-regulation of L1 ameliorates neuroinflammation. In support of this hypothesis, antibody-mediated blocking of L1 in C57BL/6 mice as well as neuron-specific depletion of L1 in synapsinCre × L1fl/fl mice reduces disease severity and axonal pathology despite unchanged immune cell infiltration of the CNS. Our data suggest that down-regulation of neuronal L1 expression is an adaptive process of neuronal self-defense in response to pro-inflammatory T cells, thereby alleviating immune-mediated axonal injury.
Collapse
Affiliation(s)
- Lutz Menzel
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University Mainz, Mainz, Germany
| | - Magdalena Paterka
- Department of Neurology, University Medical Center of the Johannes-Gutenberg-University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, University Medical Center of the Johannes-Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neuroscience (FTN) and Rhine Main Neuroscience Network (rmn²), Mainz, Germany
| | - Robin White
- Institute of Physiology, University Medical Center of the Johannes-Gutenberg-University Mainz, Mainz, Germany
| | - Wiesia Bobkiewicz
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University Mainz, Mainz, Germany
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Esther Witsch
- Department of Neurology, University Medical Center of the Johannes-Gutenberg-University Mainz, Mainz, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Frauke Zipp
- Department of Neurology, University Medical Center of the Johannes-Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neuroscience (FTN) and Rhine Main Neuroscience Network (rmn²), Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes-Gutenberg-University Mainz, Mainz, Germany.
- Focus Program Translational Neuroscience (FTN) and Rhine Main Neuroscience Network (rmn²), Mainz, Germany.
| |
Collapse
|
16
|
Kataria H, Lutz D, Chaudhary H, Schachner M, Loers G. Small Molecule Agonists of Cell Adhesion Molecule L1 Mimic L1 Functions In Vivo. Mol Neurobiol 2016; 53:4461-83. [PMID: 26253722 DOI: 10.1007/s12035-015-9352-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/07/2015] [Indexed: 02/05/2023]
Abstract
Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery after injury, leading to severe disabilities in motor functions and pain. Peripheral nerve injury impairs motor, sensory, and autonomic functions, particularly in cases where nerve gaps are large and chronic nerve injury ensues. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration after acute injury. We screened libraries of known drugs for small molecule agonists of L1 and evaluated the effect of hit compounds in cell-based assays in vitro and in mice after femoral nerve and spinal cord injuries in vivo. We identified eight small molecule L1 agonists and showed in cell-based assays that they stimulate neuronal survival, neuronal migration, and neurite outgrowth and enhance Schwann cell proliferation and migration and myelination of neurons in an L1-dependent manner. In a femoral nerve injury mouse model, enhanced functional regeneration and remyelination after application of the L1 agonists were observed. In a spinal cord injury mouse model, L1 agonists improved recovery of motor functions, being paralleled by enhanced remyelination, neuronal survival, and monoaminergic innervation, reduced astrogliosis, and activation of microglia. Together, these findings suggest that application of small organic compounds that bind to L1 and stimulate the beneficial homophilic L1 functions may prove to be a valuable addition to treatments of nervous system injuries.
Collapse
Affiliation(s)
- Hardeep Kataria
- Institut für Biosynthese Neuraler Strukturen, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum-Hamburg Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - David Lutz
- Institut für Biosynthese Neuraler Strukturen, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum-Hamburg Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Harshita Chaudhary
- Institut für Biosynthese Neuraler Strukturen, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum-Hamburg Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
| | - Gabriele Loers
- Institut für Biosynthese Neuraler Strukturen, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum-Hamburg Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| |
Collapse
|
17
|
Joustra SD, Andela CD, Oostdijk W, van Trotsenburg ASP, Fliers E, Wit JM, Pereira AM, Middelkoop HAM, Biermasz NR. Mild deficits in attentional control in patients with the IGSF1 deficiency syndrome. Clin Endocrinol (Oxf) 2016; 84:896-903. [PMID: 26387489 DOI: 10.1111/cen.12947] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/02/2015] [Accepted: 09/15/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Male patients with the X-linked IGSF1 deficiency syndrome are characterized by central hypothyroidism, delayed pubertal testosterone rise, adult macroorchidism, variable prolactin deficiency and occasionally transient partial growth hormone deficiency. Thyroid hormone plays a vital role in brain development and functioning, and while most patients receive adequate replacement therapy starting shortly after birth, it is unknown whether this syndrome is accompanied by long-term impaired cognitive functioning. We therefore assessed cognitive functioning in male patients with IGSF1 deficiency. METHODS Fifteen adult male patients with IGSF1 deficiency participated in neuropsychological assessment of executive functioning and memory, and completed validated questionnaires on health-related quality of life (HRQoL), mood and fatigue. Results were compared to data from previous studies by our department: 54 healthy controls (76 for the attention task) for the test battery and 191 healthy controls for the questionnaires. RESULTS All patients had central hypothyroidism, and twelve were treated with levothyroxine. Patients performed worse than controls in tasks that required attentional control (Trail Making Test, Letter-Digit Substitution Test, and Sustained Attention to Response Task) (all P < 0·001). Memory was unaffected. In addition, patients reported more mental fatigue and reduction of activity (Multidimensional Fatigue Inventory) (both P < 0·01), while HRQoL and mood reports were not different from controls. Age at the start of replacement therapy and current thyroxine levels were not related to outcome. CONCLUSIONS Adult male patients with IGSF1 deficiency exhibit mild deficits in attentional control on formal testing. This finding was not related to the age at start of replacement therapy, or current levothyroxine treatment.
Collapse
Affiliation(s)
- S D Joustra
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - C D Andela
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - W Oostdijk
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - A S P van Trotsenburg
- Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - E Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - A M Pereira
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - H A M Middelkoop
- Department of Psychology, Section Health, Medical and Neuropsychology, Leiden University, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - N R Biermasz
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
18
|
Hodde D, Gerardo-Nava J, Wöhlk V, Weinandy S, Jockenhövel S, Kriebel A, Altinova H, Steinbusch HWM, Möller M, Weis J, Mey J, Brook GA. Characterisation of cell-substrate interactions between Schwann cells and three-dimensional fibrin hydrogels containing orientated nanofibre topographical cues. Eur J Neurosci 2015. [DOI: 10.1111/ejn.13026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Dorothee Hodde
- Institute of Neuropathology; Uniklinik RWTH Aachen University; Pauwelsstraße 30 52074 Aachen Germany
- Jülich-Aachen Research Alliance - Translational Brain Medicine (JARA Brain); Jülich Germany
| | - José Gerardo-Nava
- Institute of Neuropathology; Uniklinik RWTH Aachen University; Pauwelsstraße 30 52074 Aachen Germany
- Jülich-Aachen Research Alliance - Translational Brain Medicine (JARA Brain); Jülich Germany
- EURON - European Graduate School of Neuroscience; Maastricht The Netherlands
| | - Vanessa Wöhlk
- Institute of Neuropathology; Uniklinik RWTH Aachen University; Pauwelsstraße 30 52074 Aachen Germany
| | - Stefan Weinandy
- Department of Tissue Engineering and Textile Implants; AME - Helmholtz Institute for Biomedical Engineering and Uniklinik RWTH Aachen University; Aachen Germany
| | - Stefan Jockenhövel
- Department of Tissue Engineering and Textile Implants; AME - Helmholtz Institute for Biomedical Engineering and Uniklinik RWTH Aachen University; Aachen Germany
| | - Andreas Kriebel
- Institute of Biology II; RWTH Aachen University; Aachen Germany
| | - Haktan Altinova
- Institute of Neuropathology; Uniklinik RWTH Aachen University; Pauwelsstraße 30 52074 Aachen Germany
- Jülich-Aachen Research Alliance - Translational Brain Medicine (JARA Brain); Jülich Germany
- Department of Neurosurgery; Evangelic Hospital Bethel; Bielefeld Germany
| | - Harry W. M. Steinbusch
- Department of Psychiatry and Neuropsychology; Division of Neuroscience; Faculty of Health, Medicine and Life Sciences; Maastricht University; Maastricht The Netherlands
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Aachen Germany
| | - Joachim Weis
- Institute of Neuropathology; Uniklinik RWTH Aachen University; Pauwelsstraße 30 52074 Aachen Germany
- Jülich-Aachen Research Alliance - Translational Brain Medicine (JARA Brain); Jülich Germany
| | - Jörg Mey
- EURON - European Graduate School of Neuroscience; Maastricht The Netherlands
- Institute of Biology II; RWTH Aachen University; Aachen Germany
- Department of Psychiatry and Neuropsychology; Division of Neuroscience; Faculty of Health, Medicine and Life Sciences; Maastricht University; Maastricht The Netherlands
- Laboratorio de Regeneración Nerviosa; Hospital Nacional de Parapléjicos; Toledo Spain
| | - Gary A. Brook
- Institute of Neuropathology; Uniklinik RWTH Aachen University; Pauwelsstraße 30 52074 Aachen Germany
- Jülich-Aachen Research Alliance - Translational Brain Medicine (JARA Brain); Jülich Germany
- EURON - European Graduate School of Neuroscience; Maastricht The Netherlands
| |
Collapse
|
19
|
Kolarcik CL, Catt K, Rost E, Albrecht IN, Bourbeau D, Du Z, Kozai TDY, Luo X, Weber DJ, Cui XT. Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion. J Neural Eng 2014; 12:016008. [PMID: 25485675 DOI: 10.1088/1741-2560/12/1/016008] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The dorsal root ganglion is an attractive target for implanting neural electrode arrays that restore sensory function or provide therapy via stimulation. However, penetrating microelectrodes designed for these applications are small and deliver low currents. For long-term performance of microstimulation devices, novel coating materials are needed in part to decrease impedance values at the electrode-tissue interface and to increase charge storage capacity. APPROACH Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and multi-wall carbon nanotubes (CNTs) were coated on the electrode surface and doped with the anti-inflammatory drug, dexamethasone. Electrode characteristics and the tissue reaction around neural electrodes as a result of stimulation, coating and drug release were characterized. Hematoxylin and eosin staining along with antibodies recognizing Iba1 (microglia/macrophages), NF200 (neuronal axons), NeuN (neurons), vimentin (fibroblasts), caspase-3 (cell death) and L1 (neural cell adhesion molecule) were used. Quantitative image analyses were performed using MATLAB. MAIN RESULTS Our results indicate that coated microelectrodes have lower in vitro and in vivo impedance values. Significantly less neuronal death/damage was observed with coated electrodes as compared to non-coated controls. The inflammatory response with the PEDOT/CNT-coated electrodes was also reduced. SIGNIFICANCE This study is the first to report on the utility of these coatings in stimulation applications. Our results indicate PEDOT/CNT coatings may be valuable additions to implantable electrodes used as therapeutic modalities.
Collapse
Affiliation(s)
- Christi L Kolarcik
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA. Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA. McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tajima T, Nakamura A, Morikawa S, Ishizu K. Neonatal screening and a new cause of congenital central hypothyroidism. Ann Pediatr Endocrinol Metab 2014; 19:117-21. [PMID: 25346914 PMCID: PMC4208260 DOI: 10.6065/apem.2014.19.3.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 08/14/2014] [Indexed: 11/20/2022] Open
Abstract
Congenital central hypothyroidism (C-CH) is a rare disease in which thyroid hormone deficiency is caused by insufficient thyrotropin (TSH) stimulation of a normally-located thyroid gland. Most patients with C-CH have low free thyroxine levels and inappropriately low or normal TSH levels, although a few have slightly elevated TSH levels. Autosomal recessive TSH deficiency and thyrotropin-releasing hormone receptor-inactivating mutations are known to be genetic causes of C-CH presenting in the absence of other syndromes. Recently, deficiency of the immunoglobulin superfamily member 1 (IGSF1) has also been demonstrated to cause C-CH. IGSF1 is a plasma membrane glycoprotein highly expressed in the pituitary. Its physiological role in humans remains unknown. IGSF1 deficiency causes TSH deficiency, leading to hypothyroidism. In addition, approximately 60% of patients also suffer a prolactin deficiency. Moreover, macroorchidism and delayed puberty are characteristic features. Thus, although the precise pathophysiology of IGSF1 deficiency is not established, IGSF1 is considered to be a new factor controlling growth and puberty in children.
Collapse
Affiliation(s)
- Toshihiro Tajima
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| | - Akie Nakamura
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| | - Shuntaro Morikawa
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| | - Katsura Ishizu
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|
21
|
A Fab fragment directed against the neural cell adhesion molecule L1 enhances functional recovery after injury of the adult mouse spinal cord. Biochem J 2014; 460:437-46. [DOI: 10.1042/bj20131677] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A recombinant monovalent Fab fragment recognizing a functional epitope within the third fibronectin type III domain of murine cell adhesion molecule L1 induces neurite outgrowth and neuronal survival in vitro and enhances functional recovery after spinal cord injury in mice.
Collapse
|
22
|
Evin G, Barakat A. Critical analysis of the use of β-site amyloid precursor protein-cleaving enzyme 1 inhibitors in the treatment of Alzheimer's disease. Degener Neurol Neuromuscul Dis 2014; 4:1-19. [PMID: 32669897 PMCID: PMC7337240 DOI: 10.2147/dnnd.s41056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/06/2014] [Indexed: 01/18/2023] Open
Abstract
Alzheimer’s disease (AD) is the major cause of dementia in the elderly and an unmet clinical challenge. A variety of therapies that are currently under development are directed to the amyloid cascade. Indeed, the accumulation and toxicity of amyloid-β (Aβ) is believed to play a central role in the etiology of the disease, and thus rational interventions are aimed at reducing the levels of Aβ in the brain. Targeting β-site amyloid precursor protein-cleaving enzyme (BACE)-1 represents an attractive strategy, as this enzyme catalyzes the initial and rate-limiting step in Aβ production. Observation of increased levels of BACE1 and enzymatic activity in the brain, cerebrospinal fluid, and platelets of patients with AD and mild cognitive impairment supports the potential benefits of BACE1 inhibition. Numerous potent inhibitors have been generated, and many of these have been proved to lower Aβ levels in the brain of animal models. Over 10 years of intensive research on BACE1 inhibitors has now culminated in advancing half a dozen of these drugs into human trials, yet translating the in vitro and cellular efficacy of BACE1 inhibitors into preclinical and clinical trials represents a challenge. This review addresses the promises and also the potential problems associated with BACE1 inhibitors for AD therapy, as the complex biological function of BACE1 in the brain is becoming unraveled.
Collapse
Affiliation(s)
- Genevieve Evin
- Oxidation Biology Laboratory, Mental Health Research Institute, Florey Institute of Neuroscience and Mental Health, University of Melbourne.,Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Adel Barakat
- Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
23
|
Brandewiede J, Jakovcevski M, Stork O, Schachner M. Role of stress system disturbance and enhanced novelty response in spatial learning of NCAM-deficient mice. Stress 2013; 16:638-46. [PMID: 24000815 DOI: 10.3109/10253890.2013.840773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The neural cell adhesion molecule (NCAM) plays a crucial role in stress-related brain function, emotional behavior and memory formation. In this study, we investigated the functions of the glucocorticoid and serotonergic systems in mice constitutively deficient for NCAM (NCAM-/- mice). Our data provide evidence for a hyperfunction of the hypothalamic-pituitary-adrenal axis, with enlarged adrenal glands and increased stress-induced corticosterone release, but reduced hippocampal glucocorticoid receptor expression in NCAM-/- mice when compared to NCAM+/+ mice. We also obtained evidence for a hypofunction of 5-HT1A autoreceptors as indicated by increased 8-0H-DPAT-induced hypothermia. These findings suggest a disturbance of both humoral and neural stress systems in NCAM-/- mice. Accordingly, we not only confirmed previously observed hyperarousal of NCAM-/- mice in various anxiety tests, but also observed an increased response to novelty exposure in these animals. Spatial learning deficits of the NCAM-/- mice in a Morris Water maze persisted, even when mice were pretrained to prevent effects of novelty or stress. We suggest that NCAM-mediated processes are involved in both novelty/stress-related emotional behavior and in cognitive function during spatial learning.
Collapse
Affiliation(s)
- Joerg Brandewiede
- Zentrum für Molekulare Neurobiologie, Universität Hamburg , Hamburg , Germany
| | | | | | | |
Collapse
|
24
|
Hundeshagen G, Szameit K, Thieme H, Finkensieper M, Angelov D, Guntinas-Lichius O, Irintchev A. Deficient functional recovery after facial nerve crush in rats is associated with restricted rearrangements of synaptic terminals in the facial nucleus. Neuroscience 2013; 248:307-18. [DOI: 10.1016/j.neuroscience.2013.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/21/2013] [Accepted: 06/13/2013] [Indexed: 01/18/2023]
|
25
|
Jakovcevski I, Djogo N, Hölters LS, Szpotowicz E, Schachner M. Transgenic overexpression of the cell adhesion molecule L1 in neurons facilitates recovery after mouse spinal cord injury. Neuroscience 2013; 252:1-12. [PMID: 23933311 DOI: 10.1016/j.neuroscience.2013.07.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022]
Abstract
It has been shown that the X-chromosome-linked neural cell adhesion molecule L1 plays a beneficial role in regeneration after spinal cord injury (SCI) in young adult rodents when applied in various molecular and cellular forms. In an attempt to further characterize the multiple functions of L1 after severe SCI we analyzed locomotor functions and measured axonal regrowth/sprouting and sparing, glial scarring, and synaptic remodeling at 6 weeks after severe spinal cord compression injury at the T7-9 levels of L1-deficient mice (L1-/y) and their wild-type (L1+/y) littermates, as well as mice that overexpress L1 under the control of the neuron-specific Thy-1 promoter (L1tg) and their wild-type littermates (L1+/+). No differences were found in the locomotor scale score and single frame motion analysis between L1-/y and L1+/y mice during 6 weeks after SCI, most likely due to the very low expression of L1 in the adult spinal cord of wild-type mice. L1tg mice, however, showed better locomotor recovery than their L1+/+ littermates, being associated with enhanced numbers of catecholaminergic axons in the lumbar spinal cord, but not of cholinergic, GABAergic or glutamatergic terminals around motoneuron cell bodies in the lumbar spinal cord. Additionally, no difference between L1tg and L1+/+ mice was detectable in dieback of corticospinal tract axons. Neuronal L1 overexpression did not influence the size of the glial fibrillary acidic protein-immunoreactive astrocytic scar 6 weeks after injury. We conclude that neuronal overexpression of L1 improves functional recovery from SCI by increasing catecholaminergic axonal regrowth/sprouting and/or sparing of severed axons without affecting the glial scar size.
Collapse
Affiliation(s)
- I Jakovcevski
- Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
26
|
Joustra SD, van Trotsenburg ASP, Sun Y, Losekoot M, Bernard DJ, Biermasz NR, Oostdijk W, Wit JM. IGSF1 deficiency syndrome: A newly uncovered endocrinopathy. ACTA ACUST UNITED AC 2013; 1:e24883. [PMID: 25002994 PMCID: PMC3915563 DOI: 10.4161/rdis.24883] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/15/2013] [Accepted: 04/30/2013] [Indexed: 01/29/2023]
Abstract
A recently uncovered X-linked syndrome, caused by loss-of-function of IGSF1, is characterized by congenital central hypothyroidism and macroorchidism, variable prolactin deficiency, occasional growth hormone deficiency, delayed pubertal testosterone secretion and obesity. We propose to call this endocrinopathy “IGSF1 deficiency syndrome.” Based on an estimated incidence of isolated congenital central hypothyroidism of 1:65,000, we predict that the incidence of IGSF1 deficiency related hypothyroidism is approximately 1:100,000. IGSF1 encodes a plasma membrane immunoglobulin superfamily glycoprotein that is highly expressed in pituitary and testis, but is of unknown function. The variable profile of pituitary dysfunction suggests that IGSF1 may play a role in pituitary paracrine regulation. The clinical significance of the syndrome, particularly the clinical consequences of untreated hypothyroidism, justifies screening family members of patients with IGSF1 mutations for carriership and to study potential carriers of IGSF1 mutations, including patients with idiopathic central hypothyroidism, combined GH and TSH deficiency, macroorchidism or delayed puberty.
Collapse
Affiliation(s)
- Sjoerd D Joustra
- Department of Pediatrics; Leiden University Medical Center; Leiden, The Netherlands ; Department of Endocrinology and Metabolic Disorders; Leiden University Medical Center; Leiden, The Netherlands
| | - A S Paul van Trotsenburg
- Department of Pediatric Endocrinology; Emma Children's Hospital; Academic Medical Center; University of Amsterdam; Amsterdam, The Netherlands
| | - Yu Sun
- Center for Human and Clinical Genetics; Leiden University Medical Center; Leiden, The Netherlands
| | - Monique Losekoot
- Center for Human and Clinical Genetics; Leiden University Medical Center; Leiden, The Netherlands
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics; McGill University; Montreal, QC Canada
| | - Nienke R Biermasz
- Department of Endocrinology and Metabolic Disorders; Leiden University Medical Center; Leiden, The Netherlands
| | - Wilma Oostdijk
- Department of Pediatrics; Leiden University Medical Center; Leiden, The Netherlands
| | - Jan M Wit
- Department of Pediatrics; Leiden University Medical Center; Leiden, The Netherlands
| |
Collapse
|
27
|
Abstract
Cell adhesion molecules of the immunoglobulin-super-family (IgSF-CAMs) do not only have a physical effect, mediating merely attachment between cell surfaces. For navigating axons, IgSF-CAMs also exert an instructive impact: Upon activation, they elicit intracellular signalling cascades in the tip of the axon, the growth cone, which regulate in a spatio-temporally concerted action both speed and direction of the axon. Density and distribution of IgSF-CAMs in the growth cone plasma membrane play important roles for the activation of IgSF-CAMs, their clustering, and the adhesive forces they acquire, as well as for the local restriction and effective propagation of their intracellular signals.
Collapse
|
28
|
Kolarcik CL, Bourbeau D, Azemi E, Rost E, Zhang L, Lagenaur CF, Weber DJ, Cui XT. In vivo effects of L1 coating on inflammation and neuronal health at the electrode-tissue interface in rat spinal cord and dorsal root ganglion. Acta Biomater 2012; 8:3561-75. [PMID: 22750248 PMCID: PMC3429718 DOI: 10.1016/j.actbio.2012.06.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/22/2012] [Accepted: 06/25/2012] [Indexed: 01/08/2023]
Abstract
The spinal cord (SC) and dorsal root ganglion (DRG) are target implantation regions for neural prosthetics, but the tissue-electrode interface in these regions is not well-studied. To improve understanding of these locations, the tissue reactions around implanted electrodes were characterized. L1, an adhesion molecule shown to maintain neuronal density and reduce gliosis in brain tissue, was then evaluated in SC and DRG implants. Following L1 immobilization onto neural electrodes, the bioactivities of the coatings were verified in vitro using neuron, astrocyte and microglia cultures. Non-modified and L1-coated electrodes were implanted into adult rats for 1 or 4 weeks. Hematoxylin and eosin staining along with cell-type specific antibodies were used to characterize the tissue response. In the SC and DRG, cells aggregated at the electrode-tissue interface. Microglia staining was more intense around the implant site and decreased with distance from the interface. Neurofilament staining in both locations decreased or was absent around the implant, compared with surrounding tissue. With L1, neurofilament staining was significantly increased while neuronal cell death decreased. These results indicate that L1-modified electrodes may result in an improved chronic neural interface and will be evaluated in recording and stimulation studies.
Collapse
Affiliation(s)
| | - Dennis Bourbeau
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA USA
| | - Erdrin Azemi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
| | - Erika Rost
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Ling Zhang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Carl F. Lagenaur
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA USA
| | - Douglas J. Weber
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA USA
| | - X. Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
29
|
Martines E, Zhong J, Muzard J, Lee A, Akhremitchev B, Suter D, Lee G. Single-molecule force spectroscopy of the Aplysia cell adhesion molecule reveals two homophilic bonds. Biophys J 2012; 103:649-57. [PMID: 22947926 PMCID: PMC3443774 DOI: 10.1016/j.bpj.2012.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022] Open
Abstract
Aplysia californica neurons comprise a powerful model system for quantitative analysis of cellular and biophysical properties that are essential for neuronal development and function. The Aplysia cell adhesion molecule (apCAM), a member of the immunoglobulin superfamily of cell adhesion molecules, is present in the growth cone plasma membrane and involved in neurite growth, synapse formation, and synaptic plasticity. apCAM has been considered to be the Aplysia homolog of the vertebrate neural cell adhesion molecule (NCAM); however, whether apCAM exhibits similar binding properties and neuronal functions has not been fully established because of the lack of detailed binding data for the extracellular portion of apCAM. In this work, we used the atomic force microscope to perform single-molecule force spectroscopy of the extracellular region of apCAM and show for the first time (to our knowledge) that apCAM, like NCAM, is indeed a homophilic cell adhesion molecule. Furthermore, like NCAM, apCAM exhibits two distinct bonds in the trans configuration, although the kinetic and structural parameters of the apCAM bonds are quite different from those of NCAM. In summary, these single-molecule analyses further indicate that apCAM and NCAM are species homologs likely performing similar functions.
Collapse
Affiliation(s)
- E. Martines
- Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - J. Zhong
- Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - J. Muzard
- Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - A.C. Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - B.B. Akhremitchev
- Chemistry Department, Florida Institute of Technology, Melbourne, Florida
| | - D.M. Suter
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - G.U. Lee
- Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11. PLoS Genet 2012; 8:e1002899. [PMID: 22916035 PMCID: PMC3420941 DOI: 10.1371/journal.pgen.1002899] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/01/2012] [Indexed: 11/19/2022] Open
Abstract
The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11). We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation. Vertebrate pigment patterns are stunningly diverse and have been an important model of pattern formation for more than a century. Nevertheless, we still know remarkably little about the genes and cell behaviors that underlie the generation of specific patterns. To elucidate such mechanisms, a large number of pigment pattern mutants have been isolated in the genetically tractable zebrafish. Instead of the normal horizontal stripe pattern, many of these mutants exhibit spots of varying sizes and degrees of organization. Here, we show that one such mutant, seurat, named for the 19th century pointillist, George Seurat, exhibits lesions in the gene encoding a classical cell adhesion molecule (CAM) of the immunoglobulin superfamily, Igsf11. We find that Igsf11 mediates cell adhesion and promotes the migration and survival of melanophores and their precursors during adult stripe formation. These results are exciting because they are the first time that a CAM has been implicated in pigment pattern formation, despite the long-standing expectation that such molecules might be required to regulate adhesive interactions during these events. These cellular phenotypes further represent the first known in vivo functions for Igsf11 and point to the potential for similar activities amongst the rich diversity of immunoglobulin superfamily members.
Collapse
|
31
|
Zhou L, Barão S, Laga M, Bockstael K, Borgers M, Gijsen H, Annaert W, Moechars D, Mercken M, Gevaert K, Gevaer K, De Strooper B. The neural cell adhesion molecules L1 and CHL1 are cleaved by BACE1 protease in vivo. J Biol Chem 2012; 287:25927-40. [PMID: 22692213 DOI: 10.1074/jbc.m112.377465] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The β-site amyloid precursor protein-cleaving enzyme BACE1 is a prime drug target for Alzheimer disease. However, the function and the physiological substrates of BACE1 remain largely unknown. In this work, we took a quantitative proteomic approach to analyze the secretome of primary neurons after acute BACE1 inhibition, and we identified several novel substrate candidates for BACE1. Many of these molecules are involved in neuronal network formation in the developing nervous system. We selected the adhesion molecules L1 and CHL1, which are crucial for axonal guidance and maintenance of neural circuits, for further validation as BACE1 substrates. Using both genetic BACE1 knock-out and acute pharmacological BACE1 inhibition in mice and cell cultures, we show that L1 and CHL1 are cleaved by BACE1 under physiological conditions. The BACE1 cleavage sites at the membrane-proximal regions of L1 (between Tyr(1086) and Glu(1087)) and CHL1 (between Gln(1061) and Asp(1062)) were determined by mass spectrometry. This work provides molecular insights into the function and the pathways in which BACE1 is involved, and it will help to predict or interpret possible side effects of BACE1 inhibitor drugs in current clinical trials.
Collapse
Affiliation(s)
- Lujia Zhou
- VIB Center for the Biology of Disease, KULeuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|