1
|
Shi S, Chen Y, Chu X, Shi P, Wang B, Cai Q, He D, Zhang N, Qin X, Wei W, Zhao Y, Jia Y, Zhang F, Wen Y. Evaluating the associations between intelligence quotient and multi-tissue proteome from the brain, CSF and plasma. Brain Commun 2024; 6:fcae207. [PMID: 38961868 PMCID: PMC11220507 DOI: 10.1093/braincomms/fcae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/16/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024] Open
Abstract
Intelligence quotient is a vital index to evaluate the ability of an individual to think rationally, learn from experience and deal with the environment effectively. However, limited efforts have been paid to explore the potential associations of intelligence quotient traits with the tissue proteins from the brain, CSF and plasma. The information of protein quantitative trait loci was collected from a recently released genome-wide association study conducted on quantification data of proteins from the tissues including the brain, CSF and plasma. Using the individual-level genotypic data from the UK Biobank cohort, we calculated the polygenic risk scores for each protein based on the protein quantitative trait locus data sets above. Then, Pearson correlation analysis was applied to evaluate the relationships between intelligence quotient traits (including 120 330 subjects for 'fluid intelligence score' and 38 949 subjects for 'maximum digits remembered correctly') and polygenic risk scores of each protein in the brain (17 protein polygenic risk scores), CSF (116 protein polygenic risk scores) and plasma (59 protein polygenic risk scores). The Bonferroni corrected P-value threshold was P < 1.30 × 10-4 (0.05/384). Finally, Mendelian randomization analysis was conducted to test the causal relationships between 'fluid intelligence score' and pre-specific proteins from correlation analysis results. Pearson correlation analysis identified significant association signals between the protein of macrophage-stimulating protein and fluid intelligence in brain and CSF tissues (P brain = 1.21 × 10-8, P CSF = 1.10 × 10-7), as well as between B-cell lymphoma 6 protein and fluid intelligence in CSF (P CSF = 1.23 × 10-4). Other proteins showed close-to-significant associations with the trait of 'fluid intelligence score', such as plasma protease C1 inhibitor (P CSF = 4.19 × 10-4, P plasma = 6.97 × 10-4), and with the trait of 'maximum digits remembered correctly', such as tenascin (P plasma = 3.42 × 10-4). Additionally, Mendelian randomization analysis results suggested that macrophage-stimulating protein (Mendelian randomization-Egger: β = 0.54, P = 1.64 × 10-61 in the brain; β = 0.09, P = 1.60 × 10-12 in CSF) had causal effects on fluid intelligence score. We observed functional relevance of specific tissue proteins to intelligence quotient and identified several candidate proteins, such as macrophage-stimulating protein. This study provided a novel insight to the relationship between tissue proteins and intelligence quotient traits.
Collapse
Affiliation(s)
- Sirong Shi
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Yujing Chen
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Xiaoge Chu
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Panxing Shi
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Bingyi Wang
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Qingqing Cai
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Dan He
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Na Zhang
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Xiaoyue Qin
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Wenming Wei
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Yijing Zhao
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Yumeng Jia
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Feng Zhang
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Yan Wen
- NHC Key Laboratory of Environment and Endemic Diseases, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| |
Collapse
|
2
|
Bezerra T, Esteban-Cornejo I, Goulart N, Mota J, Souza Filho A, Clark CCT, Bandeira P, de Lucena Martins CM. Are there associations between sedentary time inside and outside preschools with preschoolers' executive function? Child Neuropsychol 2024:1-12. [PMID: 38282420 DOI: 10.1080/09297049.2024.2310101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
Preschool children spend a large part of their day at school, and a large part of that time they spend in sedentary time. Although sedentary time negatively affects regions of the brain responsible for cognition, it is believed that the type of sedentary time performed can favor executive functions' performance. The present study explored the associations between sedentary time inside and outside preschools with executive function (EF) tasks in preschoolers. Seventy-three preschool children (60% girls; 55.0 ± 9.1 months of age) were objectively assessed for sedentary time and physical activity (PA) using accelerometers (wGT3X). EF was evaluated using the Go/No-Go paradigm through the Early Years Toolbox - YET. Go's inverse efficiency (IE) and the No-Go accuracy were analyzed. To establish possible associations between EF and sedentary time, a structural equation model was conducted after adjustments for sex, age, body mass index, and moderate-to-vigorous PA. A significant and positive association between sedentary time on weekend days and IE (b = 0.61; p < .001) was observed. The general model explained 52% of the variation in IE and 2.1% in the accuracy of No-Go. The sedentary time on weekend days seems to be related to worse EI. This result emphasizes a context-dependent association between time being sedentary and preschoolers' EF. Further investigations should focus on exploring the type of sedentary behavior children are engaged in different contexts.
Collapse
Affiliation(s)
- Thaynã Bezerra
- Department of Physical Education, Regional University of Cariri, Crato, Brazil
- Department of Medicine, Paraiso Faculty, Araripina, Brazil
| | | | - Natalia Goulart
- Department of Physical Education, Federal University of Paraiba, João Pessoa, Brazil
- Department of Physical Education, Federal University of Vale do São Francisco, Petrolina, Brazil
| | - Jorge Mota
- Research Centre of Physical Activity, Health and Leisure, Faculty of Sport Sciences, University of Porto, Porto, Portugal
| | | | - Cain C T Clark
- School of Health Life Sciences, Coventry University, Coventry, UK
| | - Paulo Bandeira
- Department of Physical Education, Regional University of Cariri, Crato, Brazil
| | - Clarice Maria de Lucena Martins
- Department of Physical Education, Federal University of Paraiba, João Pessoa, Brazil
- Research Centre of Physical Activity, Health and Leisure, Faculty of Sport Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Chronic social instability stress down-regulates IL-10 and up-regulates CX3CR1 in tumor-bearing and non-tumor-bearing female mice. Behav Brain Res 2022; 435:114063. [PMID: 35988637 DOI: 10.1016/j.bbr.2022.114063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
Abstract
Extensive literature has reported a link between stress and tumor progression, and between both of these factors and mental health. Despite the higher incidence of affective disorders in females and the neurochemical differences according to sex, female populations have been understudied. The aim of this study was therefore to analyze the effect of stress on tumor development in female OF1 mice. For this purpose, subjects were inoculated with B16F10 melanoma cells and exposed to the Chronic Social Instability Stress (CSIS) model. Behavioral, neurochemical and neuroendocrine parameters were analyzed. Female mice exposed to CSIS exhibited reduced body weight and increased arousal, but there was no evidence of depressive behavior or anxiety. Exposure to CSIS did not affect either corticosterone levels or tumor development, although it did provoke an imbalance in cerebral inflammatory cytokines, decreasing IL-10 expression (IL-6/IL-10 and TNF-α/IL-10); chemokines, increasing CX3CR1 expression (CX3CL1/CX3CR1); and glucocorticoid receptors, decreasing GR expression (MR/GR). In contrast, tumor development did not alter body weight and, although it did alter behavior, it did so to a much lesser extent. Tumor inoculation did not affect corticosterone levels, but increased the MR/GR ratio in the hippocampus and provoked an imbalance in cerebral inflammatory cytokines and chemokines, although differently from stress. These results underscore the need for experimental approaches that allow us to take sex differences into account when exploring this issue, since these results appear to indicate that the female response to stress is mediated by mechanisms different from those often proposed in relation to male mice.
Collapse
|
4
|
Association of Sedentary Behavior with Brain Structure and Intelligence in Children with Overweight or Obesity: The ActiveBrains Project. J Clin Med 2020; 9:jcm9041101. [PMID: 32290576 PMCID: PMC7230478 DOI: 10.3390/jcm9041101] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
We investigated the associations of different sedentary behaviors (SB) with gray matter volume and we tested whether SB related to gray matter volume is associated with intelligence. Methods: 99 children with overweight or obesity aged 8–11 years participated in this cross-sectional study. SB was measured using the Youth Activity Profile-Spain questionnaire. T1-weighted images were acquired with a 3.0 T Magnetom Tim Trio system. Intelligence was assessed with the Kaufman Brief Test. Whole-brain voxel-wise multiple regression models were used to test the associations of each SB with gray matter volume. Results: Watching TV was associated with lower gray matter volume in six brain regions (β ranging −0.314 to −0.489 and cluster size 106 to 323 voxels; p < 0.001), playing video games in three brain regions (β ranging −0.391 to −0.359, and cluster size 96 to 461 voxels; p < 0.001) and total sedentary time in two brain regions (β ranging −0.341 to −0.352, and cluster size 897 to 2455 voxels; p < 0.001). No brain regions showed a significant positive association (all p > 0.05). Two brain regions were related, or borderline related, to intelligence. Conclusions: SB could have the potential to negatively influence brain structure and, in turn, intelligence in children with overweight/obesity.
Collapse
|
5
|
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Yamamoto Y, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Ikeda S, Yokota S, Magistro D, Sassa Y, Kawashima R. The Effects of Family Socioeconomic Status on Psychological and Neural Mechanisms as Well as Their Sex Differences. Front Hum Neurosci 2019; 12:543. [PMID: 30713493 PMCID: PMC6345688 DOI: 10.3389/fnhum.2018.00543] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/31/2018] [Indexed: 12/28/2022] Open
Abstract
Family socioeconomic status (SES) is an important factor that affects an individual’s neural and cognitive development. The two novel aims of this study were to reveal (a) the effects of family SES on mean diffusivity (MD) using diffusion tensor imaging given the characteristic property of MD to reflect neural plasticity and development and (b) the sex differences in SES effects. In a study cohort of 1,216 normal young adults, we failed to find significant main effects of family SES on MD; however, previously observed main effects of family SES on regional gray matter volume and fractional anisotropy (FA) were partly replicated. We found a significant effect of the interaction between sex and family income on MD in the thalamus as well as significant effects of the interaction between sex and parents’ educational qualification (year’s of education) on MD and FA in the body of the corpus callosum as well as white matter areas between the anterior cingulate cortex and lateral prefrontal cortex. These results suggest the sex-specific associations of family SES with neural and/or cognitive mechanisms particularly in neural tissues in brain areas that play key roles in basic information processing and higher-order cognitive processes in a way females with greater family SES level show imaging outcome measures that have been associated with more neural tissues (such as greater FA and lower MD) and males showed opposite.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.,Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuka Kotozaki
- Division of Clinical Research, Medical-Industrial Translational Research Center, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Tohoku University School of Medicine, Sendai, Japan
| | - Yuki Yamamoto
- Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Carlos Makoto Miyauchi
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kohei Sakaki
- Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Daniele Magistro
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Functional Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Association of copper levels in the hair with gray matter volume, mean diffusivity, and cognitive functions. Brain Struct Funct 2019; 224:1203-1217. [PMID: 30656448 DOI: 10.1007/s00429-019-01830-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
Although copper plays a critical role in normal brain functions and development, it is known that excess copper causes toxicity. Here we investigated the associations of copper levels in the hair with regional gray matter volume (rGMV), mean diffusivity (MD), and cognitive differences in a study cohort of 924 healthy young adults. Our findings showed that high copper levels were associated mostly with low cognitive abilities (low scores on the intelligence test consisting of complex speed tasks, involving reasoning task, a complex arithmetic task, and a reading comprehension task) as well as lower reverse Stroop interference, high rGMV over widespread areas of the brain [mainly including the bilateral lateral and medial parietal cortices, medial temporal structures (amygdala, hippocampus, and parahippocampal gyrus), middle cingulate cortex, orbitofrontal cortex, insula, perisylvian areas, inferior temporal lobe, temporal pole, occipital lobes, and supplementary motor area], as well as high MD of the right substantia nigra and bilateral hippocampus, which are indicative of low density in brain tissues. These results suggest that copper levels are associated with mostly aberrant cognitive functions, greater rGMV in extensive areas, greater MD (which are indicative of low density in brain tissues) in subcortical structures in the healthy young adults, possibly reflecting copper's complex roles in neural mechanisms.
Collapse
|
7
|
Takeuchi H, Taki Y, Asano K, Asano M, Sassa Y, Yokota S, Kotozaki Y, Nouchi R, Kawashima R. Impact of frequency of internet use on development of brain structures and verbal intelligence: Longitudinal analyses. Hum Brain Mapp 2018; 39:4471-4479. [PMID: 29956399 DOI: 10.1002/hbm.24286] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/17/2018] [Accepted: 06/04/2018] [Indexed: 01/20/2023] Open
Abstract
Excessive internet use is shown to be cross sectionally associated with lower cognitive functioning and reduced volume of several brain areas. However, the effects of daily internet use on the development of verbal intelligence and brain structures have not been investigated. Here, we cross sectionally examined the effects of the frequency of internet use on regional gray/white matter volume (rGMV/rWMV) and verbal intelligence as well as their longitudinal changes after 3.0 ± 0.3 (standard deviation) years in a large sample of children recruited from the general population (mean age, 11.2 ± 3.1 years; range, 5.7-18.4 years). Although there were no significant associations in cross sectional analyses, a higher frequency of internet use was found to be associated with decrease of verbal intelligence and smaller increase in rGMV and rWMV of widespread brain areas after a few years in longitudinal analyses. These areas involve areas related to language processing, attention and executive functions, emotion, and reward. In conclusion, frequent internet use is directly or indirectly associated with decrease of verbal intelligence and development to smaller gray matter volume at later stages.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Nuclear Medicine & Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Asano
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Michiko Asano
- Department of Child and Adolescent Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yuka Kotozaki
- Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Rui Nouchi
- Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart Ageing International Research Centre, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Tian L, Hui CW, Bisht K, Tan Y, Sharma K, Chen S, Zhang X, Tremblay ME. Microglia under psychosocial stressors along the aging trajectory: Consequences on neuronal circuits, behavior, and brain diseases. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:27-39. [PMID: 28095309 DOI: 10.1016/j.pnpbp.2017.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/30/2016] [Accepted: 01/13/2017] [Indexed: 12/18/2022]
Abstract
Mounting evidence indicates the importance of microglia for proper brain development and function, as well as in complex stress-related neuropsychiatric disorders and cognitive decline along the aging trajectory. Considering that microglia are resident immune cells of the brain, a homeostatic maintenance of their effector functions that impact neuronal circuitry, such as phagocytosis and secretion of inflammatory factors, is critical to prevent the onset and progression of these pathological conditions. However, the molecular mechanisms by which microglial functions can be properly regulated under healthy and pathological conditions are still largely unknown. We aim to summarize recent progress regarding the effects of psychosocial stress and oxidative stress on microglial phenotypes, leading to neuroinflammation and impaired microglia-synapse interactions, notably through our own studies of inbred mouse strains, and most importantly, to discuss about promising therapeutic strategies that take advantage of microglial functions to tackle such brain disorders in the context of adult psychosocial stress or aging-induced oxidative stress.
Collapse
Affiliation(s)
- Li Tian
- Neuroscience Center, University of Helsinki, Viikinkaari 4, Helsinki FIN-00014, Finland; Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China.
| | - Chin Wai Hui
- Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, Canada
| | - Kanchan Bisht
- Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, Canada
| | - Yunlong Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Kaushik Sharma
- Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, Canada
| | - Song Chen
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China; Beijing Key Laboratory of Mental Disorders and Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing Anding Hospital, Capital Medical University, China
| | - Xiangyang Zhang
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China; Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, Canada.
| |
Collapse
|
9
|
Global associations between regional gray matter volume and diverse complex cognitive functions: evidence from a large sample study. Sci Rep 2017; 7:10014. [PMID: 28855703 PMCID: PMC5577279 DOI: 10.1038/s41598-017-10104-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/04/2017] [Indexed: 12/02/2022] Open
Abstract
Correlations between regional gray matter volume (rGMV) and psychometric test scores have been measured to investigate the neural bases for individual differences in complex cognitive abilities (CCAs). However, such studies have yielded different rGMV correlates of the same CCA. Based on the available evidence, we hypothesized that diverse CCAs are all positively but only weakly associated with rGMV in widespread brain areas. To test this hypothesis, we used the data from a large sample of healthy young adults [776 males and 560 females; mean age: 20.8 years, standard deviation (SD) = 0.8] and investigated associations between rGMV and scores on multiple CCA tasks (including non-verbal reasoning, verbal working memory, Stroop interference, and complex processing speed tasks involving spatial cognition and reasoning). Better performance scores on all tasks except non-verbal reasoning were associated with greater rGMV across widespread brain areas. The effect sizes of individual associations were generally low, consistent with our previous studies. The lack of strong correlations between rGMV and specific CCAs, combined with stringent corrections for multiple comparisons, may lead to different and diverse findings in the field.
Collapse
|