1
|
Amey RC, Warren MR. Editorial: Neurological insights into communication and synchrony between others: what animal and human group communication can tell us. Front Hum Neurosci 2024; 18:1415166. [PMID: 38756846 PMCID: PMC11096572 DOI: 10.3389/fnhum.2024.1415166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Affiliation(s)
- Rachel C. Amey
- Department of Psychology, University of Maryland, Baltimore, MD, United States
| | - Megan R. Warren
- Department of Biology and the Center for Translational Social Neuroscience, Emory University, Atlanta, GA, United States
| |
Collapse
|
2
|
Antonioni A, Galluccio M, Baroni A, Fregna G, Pozzo T, Koch G, Manfredini F, Fadiga L, Malerba P, Straudi S. Event-related desynchronization during action observation is an early predictor of recovery in subcortical stroke: An EEG study. Ann Phys Rehabil Med 2024; 67:101817. [PMID: 38479116 DOI: 10.1016/j.rehab.2024.101817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 04/13/2024]
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy; Doctoral Program in Translational Neurosciences and Neurotechnologies, Ferrara University, Ferrara, Italy
| | - Martina Galluccio
- Iit@Unife Center for Translational Neurophysiology, Istituto Italiano Di Tecnologia, Ferrara, Italy
| | - Andrea Baroni
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | - Giulia Fregna
- Doctoral Program in Translational Neurosciences and Neurotechnologies, Ferrara University, Ferrara, Italy
| | - Thierry Pozzo
- Iit@Unife Center for Translational Neurophysiology, Istituto Italiano Di Tecnologia, Ferrara, Italy; INSERM UMR 1093-CAPS, Université Bourgogne, F-21000 France
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy; Iit@Unife Center for Translational Neurophysiology, Istituto Italiano Di Tecnologia, Ferrara, Italy; Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabio Manfredini
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy; Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy; Iit@Unife Center for Translational Neurophysiology, Istituto Italiano Di Tecnologia, Ferrara, Italy
| | - Paola Malerba
- Center for Biobehavioral Health, The Research Institute at Nationwide Children's Hospital, USA; School of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy; Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy.
| |
Collapse
|
3
|
Chiappini E, Turrini S, Zanon M, Marangon M, Borgomaneri S, Avenanti A. Driving Hebbian plasticity over ventral premotor-motor projections transiently enhances motor resonance. Brain Stimul 2024; 17:211-220. [PMID: 38387557 DOI: 10.1016/j.brs.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/23/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Making sense of others' actions relies on the activation of an action observation network (AON), which maps visual information about observed actions onto the observer's motor system. This motor resonance process manifests in the primary motor cortex (M1) as increased corticospinal excitability finely tuned to the muscles engaged in the observed action. Motor resonance in M1 is facilitated by projections from higher-order AON regions. However, whether manipulating the strength of AON-to-M1 connectivity affects motor resonance remains unclear. METHODS We used transcranial magnetic stimulation (TMS) in 48 healthy humans. Cortico-cortical paired associative stimulation (ccPAS) was administered over M1 and the ventral premotor cortex (PMv), a key AON node, to induce spike-timing-dependent plasticity (STDP) in the pathway connecting them. Single-pulse TMS assessed motor resonance during action observation. RESULTS Before ccPAS, action observation increased corticospinal excitability in the muscles corresponding to the observed movements, reflecting motor resonance in M1. Notably, ccPAS aimed at strengthening projections from PMv to M1 (PMv→M1) induced short-term enhancement of motor resonance. The enhancement specifically occurred with the ccPAS configuration consistent with forward PMv→M1 projections and dissipated 20 min post-stimulation; ccPAS administered in the reverse order (M1→PMv) and sham stimulation did not affect motor resonance. CONCLUSIONS These findings provide the first evidence that inducing STDP to strengthen PMv input to M1 neurons causally enhances muscle-specific motor resonance in M1. Our study sheds light on the plastic mechanisms that shape AON functionality and demonstrates that exogenous manipulation of AON connectivity can influence basic mirror mechanisms that underlie social perception.
Collapse
Affiliation(s)
- Emilio Chiappini
- Department of Clinical and Health Psychology, University of Vienna, 1010, Vienna, Austria; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany.
| | - Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, United States
| | - Marco Zanon
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Neuroscience Area, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Mattia Marangon
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Dipartimento di Neuroscienze, Biomedicina e Scienze del Movimento, Sezione di Fisiologia e Psicologia, Università di Verona, 37124, Verona, Italy
| | - Sara Borgomaneri
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, 346000, Talca, Chile.
| |
Collapse
|
4
|
Martínez A, Gaspar PA, Bermudez DH, Belen Aburto-Ponce M, Beggel O, Javitt DC. Disrupted third visual pathway function in schizophrenia: Evidence from real and implied motion processing. Neuroimage Clin 2024; 41:103570. [PMID: 38309185 PMCID: PMC10847789 DOI: 10.1016/j.nicl.2024.103570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/17/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Impaired motion perception in schizophrenia has been associated with deficits in social-cognitive processes and with reduced activation of visual sensory regions, including the middle temporal area (MT+) and posterior superior temporal sulcus (pSTS). These findings are consistent with the recent proposal of the existence of a specific 'third visual pathway' specialized for social perception in which motion is a fundamental component. The third visual pathway transmits visual information from early sensory visual processing areas to the STS, with MT+ acting as a critical intermediary. We used functional magnetic resonance imaging to investigate functioning of this pathway during processing of naturalistic videos with explicit (real) motion and static images with implied motion cues. These measures were related to face emotion recognition and motion-perception, as measured behaviorally. Participants were 28 individuals with schizophrenia (Sz) and 20 neurotypical controls. Compared to controls, individuals with Sz showed reduced activation of third visual pathway regions (MT+, pSTS) in response to both real- and implied-motion stimuli. Dysfunction of early visual cortex and pulvinar were also associated with aberrant real-motion processing. Implied-motion stimuli additionally engaged a wide network of brain areas including parietal, motor and frontal nodes of the human mirror neuron system. The findings support concepts of MT+ as a mediator between visual sensory areas and higher-order brain and argue for greater focus on MT+ contributions to social-cognitive processing, in addition to its well-documented role in visual motion processing.
Collapse
Affiliation(s)
- Antígona Martínez
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | - Pablo A Gaspar
- Department of Psychiatry, Biomedical Neurosciences Institute, IMHAY, University of Chile, Santiago, Chile
| | - Dalton H Bermudez
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - M Belen Aburto-Ponce
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Odeta Beggel
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | - Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Bufacchi RJ, Battaglia-Mayer A, Iannetti GD, Caminiti R. Cortico-spinal modularity in the parieto-frontal system: A new perspective on action control. Prog Neurobiol 2023; 231:102537. [PMID: 37832714 DOI: 10.1016/j.pneurobio.2023.102537] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Classical neurophysiology suggests that the motor cortex (MI) has a unique role in action control. In contrast, this review presents evidence for multiple parieto-frontal spinal command modules that can bypass MI. Five observations support this modular perspective: (i) the statistics of cortical connectivity demonstrate functionally-related clusters of cortical areas, defining functional modules in the premotor, cingulate, and parietal cortices; (ii) different corticospinal pathways originate from the above areas, each with a distinct range of conduction velocities; (iii) the activation time of each module varies depending on task, and different modules can be activated simultaneously; (iv) a modular architecture with direct motor output is faster and less metabolically expensive than an architecture that relies on MI, given the slow connections between MI and other cortical areas; (v) lesions of the areas composing parieto-frontal modules have different effects from lesions of MI. Here we provide examples of six cortico-spinal modules and functions they subserve: module 1) arm reaching, tool use and object construction; module 2) spatial navigation and locomotion; module 3) grasping and observation of hand and mouth actions; module 4) action initiation, motor sequences, time encoding; module 5) conditional motor association and learning, action plan switching and action inhibition; module 6) planning defensive actions. These modules can serve as a library of tools to be recombined when faced with novel tasks, and MI might serve as a recombinatory hub. In conclusion, the availability of locally-stored information and multiple outflow paths supports the physiological plausibility of the proposed modular perspective.
Collapse
Affiliation(s)
- R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), Shanghai, China
| | - A Battaglia-Mayer
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Italy
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - R Caminiti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
6
|
Pomper JK, Shams M, Wen S, Bunjes F, Thier P. Non-shared coding of observed and executed actions prevails in macaque ventral premotor mirror neurons. eLife 2023; 12:e77513. [PMID: 37458338 PMCID: PMC10411969 DOI: 10.7554/elife.77513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
According to the mirror mechanism the discharge of F5 mirror neurons of a monkey observing another individual performing an action is a motor representation of the observed action that may serve to understand or learn from the action. This hypothesis, if strictly interpreted, requires mirror neurons to exhibit an action tuning that is shared between action observation and execution. Due to insufficient data it remains contentious if this requirement is met. To fill in the gaps, we conducted an experiment in which identical objects had to be manipulated in three different ways in order to serve distinct action goals. Using three methods, including cross-task classification, we found that at most time points F5 mirror neurons did not encode observed actions with the same code underlying action execution. However, in about 20% of neurons there were time periods with a shared code. These time periods formed a distinct cluster and cannot be considered a product of chance. Population classification yielded non-shared coding for observed actions in the whole population, which was at times optimal and consistently better than shared coding in differentially selected subpopulations. These results support the hypothesis of a representation of observed actions based on a strictly defined mirror mechanism only for small subsets of neurons and only under the assumption of time-resolved readout. Considering alternative concepts and recent findings, we propose that during observation mirror neurons represent the process of a goal pursuit from the observer's viewpoint. Whether the observer's goal pursuit, in which the other's action goal becomes the observer's action goal, or the other's goal pursuit is represented remains to be clarified. In any case, it may allow the observer to use expectations associated with a goal pursuit to directly intervene in or learn from another's action.
Collapse
Affiliation(s)
- Jörn K Pomper
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
| | - Mohammad Shams
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076 , GermanyTübingenGermany
- Department of Psychology, York UniversityTorontoCanada
| | - Shengjun Wen
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076 , GermanyTübingenGermany
| | - Friedemann Bunjes
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
| | - Peter Thier
- Cognitive Neurology Laboratory, Hertie Institute for Clinical Brain Research, University of TübingenTübingenGermany
| |
Collapse
|
7
|
Yang CJ, Yu HY, Hong TY, Shih CH, Yeh TC, Chen LF, Hsieh JC. Trait representation of embodied cognition in dancers pivoting on the extended mirror neuron system: a resting-state fMRI study. Front Hum Neurosci 2023; 17:1173993. [PMID: 37492559 PMCID: PMC10364845 DOI: 10.3389/fnhum.2023.1173993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/14/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction Dance is an art form that integrates the body and mind through movement. Dancers develop exceptional physical and mental abilities that involve various neurocognitive processes linked to embodied cognition. We propose that dancers' primary trait representation is movement-actuated and relies on the extended mirror neuron system (eMNS). Methods A total of 29 dancers and 28 non-dancer controls were recruited. A hierarchical approach of intra-regional and inter-regional functional connectivity (FC) analysis was adopted to probe trait-like neurodynamics within and between regions in the eMNS during rest. Correlation analyses were employed to examine the associations between dance training, creativity, and the FC within and between different brain regions. Results Within the eMNS, dancers exhibited increased intra-regional FC in various brain regions compared to non-dancers. These regions include the left inferior frontal gyrus, left ventral premotor cortex, left anterior insula, left posterior cerebellum (crus II), and bilateral basal ganglia (putamen and globus pallidus). Dancers also exhibited greater intrinsic inter-regional FC between the cerebellum and the core/limbic mirror areas within the eMNS. In dancers, there was a negative correlation observed between practice intensity and the intrinsic FC within the eMNS involving the cerebellum and basal ganglia. Additionally, FCs from the basal ganglia to the dorsolateral prefrontal cortex were found to be negatively correlated with originality in dancers. Discussion Our results highlight the proficient communication within the cortical-subcortical hierarchy of the eMNS in dancers, linked to the automaticity and cognitive-motor interactions acquired through training. Altered functional couplings in the eMNS can be regarded as a unique neural signature specific to virtuoso dancers, which might predispose them for skilled dancing performance, perception, and creation.
Collapse
Affiliation(s)
- Ching-Ju Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Hsin-Yen Yu
- Graduate Institute of Arts and Humanities Education, Taipei National University of the Arts, Taipei City, Taiwan
| | - Tzu-Yi Hong
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Chung-Heng Shih
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Tzu-Chen Yeh
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei City, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
8
|
Errante A, Gerbella M, Mingolla GP, Fogassi L. Activation of Cerebellum, Basal Ganglia and Thalamus During Observation and Execution of Mouth, hand, and foot Actions. Brain Topogr 2023:10.1007/s10548-023-00960-1. [PMID: 37133782 DOI: 10.1007/s10548-023-00960-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Humans and monkey studies showed that specific sectors of cerebellum and basal ganglia activate not only during execution but also during observation of hand actions. However, it is unknown whether, and how, these structures are engaged during the observation of actions performed by effectors different from the hand. To address this issue, in the present fMRI study, healthy human participants were required to execute or to observe grasping acts performed with different effectors, namely mouth, hand, and foot. As control, participants executed and observed simple movements performed with the same effectors. The results show that: (1) execution of goal-directed actions elicited somatotopically organized activations not only in the cerebral cortex but also in the cerebellum, basal ganglia, and thalamus; (2) action observation evoked cortical, cerebellar and subcortical activations, lacking a clear somatotopic organization; (3) in the territories displaying shared activations between execution and observation, a rough somatotopy could be revealed in both cortical, cerebellar and subcortical structures. The present study confirms previous findings that action observation, beyond the cerebral cortex, also activates specific sectors of cerebellum and subcortical structures and it shows, for the first time, that these latter are engaged not only during hand actions observation but also during the observation of mouth and foot actions. We suggest that each of the activated structures processes specific aspects of the observed action, such as performing internal simulation (cerebellum) or recruiting/inhibiting the overt execution of the observed action (basal ganglia and sensory-motor thalamus).
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
- Department of Diagnostics, Neuroradiology unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Gloria P Mingolla
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124, Verona, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy.
| |
Collapse
|
9
|
Seidel A, Weber C, Ghio M, Bellebaum C. My view on your actions: Dynamic changes in viewpoint-dependent auditory ERP attenuation during action observation. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01083-7. [PMID: 36949276 PMCID: PMC10400693 DOI: 10.3758/s13415-023-01083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
It has been suggested that during action observation, a sensory representation of the observed action is mapped onto one's own motor system. However, it is largely unexplored what this may imply for the early processing of the action's sensory consequences, whether the observational viewpoint exerts influence on this and how such a modulatory effect might change over time. We tested whether the event-related potential of auditory effects of actions observed from a first- versus third-person perspective show amplitude reductions compared with externally generated sounds, as revealed for self-generated sounds. Multilevel modeling on trial-level data showed distinct dynamic patterns for the two viewpoints on reductions of the N1, P2, and N2 components. For both viewpoints, an N1 reduction for sounds generated by observed actions versus externally generated sounds was observed. However, only during first-person observation, we found a temporal dynamic within experimental runs (i.e., the N1 reduction only emerged with increasing trial number), indicating time-variant, viewpoint-dependent processes involved in sensorimotor prediction during action observation. For the P2, only a viewpoint-independent reduction was found for sounds elicited by observed actions, which disappeared in the second half of the experiment. The opposite pattern was found in an exploratory analysis concerning the N2, revealing a reduction that increased in the second half of the experiment, and, moreover, a temporal dynamic within experimental runs for the first-person perspective, possibly reflecting an agency-related process. Overall, these results suggested that the processing of auditory outcomes of observed actions is dynamically modulated by the viewpoint over time.
Collapse
Affiliation(s)
- Alexander Seidel
- Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University, Universitätstrasse, 1, 40255, Düsseldorf, Germany
| | - Constanze Weber
- Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University, Universitätstrasse, 1, 40255, Düsseldorf, Germany.
| | - Marta Ghio
- Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University, Universitätstrasse, 1, 40255, Düsseldorf, Germany
| | - Christian Bellebaum
- Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University, Universitätstrasse, 1, 40255, Düsseldorf, Germany
| |
Collapse
|
10
|
Van Malderen S, Hehl M, Verstraelen S, Swinnen SP, Cuypers K. Dual-site TMS as a tool to probe effective interactions within the motor network: a review. Rev Neurosci 2023; 34:129-221. [PMID: 36065080 DOI: 10.1515/revneuro-2022-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Dual-site transcranial magnetic stimulation (ds-TMS) is well suited to investigate the causal effect of distant brain regions on the primary motor cortex, both at rest and during motor performance and learning. However, given the broad set of stimulation parameters, clarity about which parameters are most effective for identifying particular interactions is lacking. Here, evidence describing inter- and intra-hemispheric interactions during rest and in the context of motor tasks is reviewed. Our aims are threefold: (1) provide a detailed overview of ds-TMS literature regarding inter- and intra-hemispheric connectivity; (2) describe the applicability and contributions of these interactions to motor control, and; (3) discuss the practical implications and future directions. Of the 3659 studies screened, 109 were included and discussed. Overall, there is remarkable variability in the experimental context for assessing ds-TMS interactions, as well as in the use and reporting of stimulation parameters, hindering a quantitative comparison of results across studies. Further studies examining ds-TMS interactions in a systematic manner, and in which all critical parameters are carefully reported, are needed.
Collapse
Affiliation(s)
- Shanti Van Malderen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Melina Hehl
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| |
Collapse
|
11
|
Manso-Ortega L, De Frutos-Sagastuy L, Gisbert- Muñoz S, Salamon N, Qiao J, Walshaw P, Quiñones I, Połczyńska MM. Grey matter reshaping of language-related regions depends on tumor lateralization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526219. [PMID: 36778417 PMCID: PMC9915653 DOI: 10.1101/2023.02.02.526219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A brain tumor in the left hemisphere can decrease language laterality as assessed with fMRI. However, it remains unclear whether or not this decreased language laterality is associated with a structural reshaping of the grey matter, particularly within the language network. Here, we examine if the disruption of language hubs exclusively affects macrostructural properties of contralateral homologues (as suggested by previous research), or whether it affects both hemispheres. This study uses voxel-based morphometry applied to high-resolution MR T1-weighted MPRAGE images from 31 adult patients left-dominant for language. Eighteen patients had brain tumors in the left hemisphere, and 13 had tumors in the right hemisphere. A cohort of 71 healthy individuals matched on age and sex was used as a baseline. We defined 10 ROIs per hemisphere known to subserve language function. Two separate repeated-measures ANOVAs were conducted with the volume per region as the dependent variables. For the patients, tumor lateralization (right versus left) served as a between-subject factor. The current study demonstrated that the presence of a brain tumor generates a global volumetric change affecting left language regions and their contralateral homologues. These changes are mediated by the lateralization of the lesion. Our findings suggest that compensatory functional mechanisms are supported by the rearrangement of the grey matter, although future longitudinal research should determine the temporal course of such changes.
Collapse
Affiliation(s)
- Lucia Manso-Ortega
- Basque Center on Cognition, Brain and Language, BCBL, Donostia-San Sebastian, Spain
- University of the Basque Country, Bilbao, Spain
| | | | - Sandra Gisbert- Muñoz
- Basque Center on Cognition, Brain and Language, BCBL, Donostia-San Sebastian, Spain
- University of the Basque Country, Bilbao, Spain
| | - Noriko Salamon
- Dept. of Radiology, University of California, Los Angeles, USA
| | - Joe Qiao
- Dept. of Radiology, University of California, Los Angeles, USA
| | - Patricia Walshaw
- Dept. of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA
| | - Ileana Quiñones
- Basque Center on Cognition, Brain and Language, BCBL, Donostia-San Sebastian, Spain
| | - Monika M. Połczyńska
- Dept. of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA
| |
Collapse
|
12
|
Nuara A, Bazzini MC, Cardellicchio P, Scalona E, De Marco D, Rizzolatti G, Fabbri-Destro M, Avanzini P. The value of corticospinal excitability and intracortical inhibition in predicting motor skill improvement driven by action observation. Neuroimage 2023; 266:119825. [PMID: 36543266 DOI: 10.1016/j.neuroimage.2022.119825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022] Open
Abstract
The observation of other's actions represents an essential element for the acquisition of motor skills. While action observation is known to induce changes in the excitability of the motor cortices, whether such modulations may explain the amount of motor improvement driven by action observation training (AOT) remains to be addressed. Using transcranial magnetic stimulation (TMS), we first assessed in 41 volunteers the effect of action observation on corticospinal excitability, intracortical inhibition, and transcallosal inhibition. Subsequently, half of the participants (AOT-group) were asked to observe and then execute a right-hand dexterity task, while the controls had to observe a no-action video before practicing the same task. AOT participants showed greater performance improvement relative to controls. More importantly, the amount of improvement in the AOT group was predicted by the amplitude of corticospinal modulation during action observation and, even more, by the amount of intracortical inhibition induced by action observation. These relations were specific for the AOT group, while the same patterns were not found in controls. Taken together, our findings demonstrate that the efficacy of AOT in promoting motor learning is rooted in the capacity of action observation to modulate the trainee's motor system excitability, especially its intracortical inhibition. Our study not only enriches the picture of the neurophysiological effects induced by action observation onto the observer's motor excitability, but linking them to the efficacy of AOT, it also paves the way for the development of models predicting the outcome of training procedures based on the observation of other's actions.
Collapse
Affiliation(s)
- Arturo Nuara
- CNR Neuroscience Institute, via Volturno 39/E, Parma 43125, Italy.
| | | | - Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Emilia Scalona
- CNR Neuroscience Institute, via Volturno 39/E, Parma 43125, Italy; Specialità Medico-Chirurgiche, Scienze Radiologiche e Sanità Pubblica (DSMC), Università degli studi di Brescia, Italia
| | - Doriana De Marco
- CNR Neuroscience Institute, via Volturno 39/E, Parma 43125, Italy
| | | | | | - Pietro Avanzini
- CNR Neuroscience Institute, via Volturno 39/E, Parma 43125, Italy; Istituto Clinico Humanitas, Humanitas Clinical and Research Center, Milan, Rozzano, Italy
| |
Collapse
|
13
|
The rediscovered motor-related area 55b emerges as a core hub of music perception. Commun Biol 2022; 5:1104. [PMID: 36257973 PMCID: PMC9579133 DOI: 10.1038/s42003-022-04009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Passive listening to music, without sound production or evident movement, is long known to activate motor control regions. Nevertheless, the exact neuroanatomical correlates of the auditory-motor association and its underlying neural mechanisms have not been fully determined. Here, based on a NeuroSynth meta-analysis and three original fMRI paradigms of music perception, we show that the long-ignored pre-motor region, area 55b, an anatomically unique and functionally intriguing region, is a core hub of music perception. Moreover, results of a brain-behavior correlation analysis implicate neural entrainment as the underlying mechanism of area 55b’s contribution to music perception. In view of the current results and prior literature, area 55b is proposed as a keystone of sensorimotor integration, a fundamental brain machinery underlying simple to hierarchically complex behaviors. Refining the neuroanatomical and physiological understanding of sensorimotor integration is expected to have a major impact on various fields, from brain disorders to artificial general intelligence. Functional magnetic resonance imaging data acquired during passive listening to music suggest that pre-motor area 55b acts as a core hub of music processing in humans.
Collapse
|
14
|
Kemmerer D. Revisiting the relation between syntax, action, and left BA44. Front Hum Neurosci 2022; 16:923022. [PMID: 36211129 PMCID: PMC9537576 DOI: 10.3389/fnhum.2022.923022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Among the many lines of research that have been exploring how embodiment contributes to cognition, one focuses on how the neural substrates of language may be shared, or at least closely coupled, with those of action. This paper revisits a particular proposal that has received considerable attention-namely, that the forms of hierarchical sequencing that characterize both linguistic syntax and goal-directed action are underpinned partly by common mechanisms in left Brodmann area (BA) 44, a cortical region that is not only classically regarded as part of Broca's area, but is also a core component of the human Mirror Neuron System. First, a recent multi-participant, multi-round debate about this proposal is summarized together with some other relevant findings. This review reveals that while the proposal is supported by a variety of theoretical arguments and empirical results, it still faces several challenges. Next, a narrower application of the proposal is discussed, specifically involving the basic word order of subject (S), object (O), and verb (V) in simple transitive clauses. Most languages are either SOV or SVO, and, building on prior work, it is argued that these strong syntactic tendencies derive from how left BA44 represents the sequential-hierarchical structure of goal-directed actions. Finally, with the aim of clarifying what it might mean for syntax and action to have "common" neural mechanisms in left BA44, two different versions of the main proposal are distinguished. Hypothesis 1 states that the very same neural mechanisms in left BA44 subserve some aspects of hierarchical sequencing for syntax and action, whereas Hypothesis 2 states that anatomically distinct but functionally parallel neural mechanisms in left BA44 subserve some aspects of hierarchical sequencing for syntax and action. Although these two hypotheses make different predictions, at this point neither one has significantly more explanatory power than the other, and further research is needed to elaborate and test them.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IND, United States
- Department of Psychological Sciences, Purdue University, West Lafayette, IND, United States
| |
Collapse
|
15
|
Liu F, Chen C, Bai Z, Hong W, Wang S, Tang C. Specific subsystems of the inferior parietal lobule are associated with hand dysfunction following stroke: A cross-sectional resting-state fMRI study. CNS Neurosci Ther 2022; 28:2116-2128. [PMID: 35996952 PMCID: PMC9627383 DOI: 10.1111/cns.13946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 02/06/2023] Open
Abstract
AIM The inferior parietal lobule (IPL) plays important roles in reaching and grasping during hand movements, but how reorganizations of IPL subsystems underlie the paretic hand remains unclear. We aimed to explore whether specific IPL subsystems were disrupted and associated with hand performance after chronic stroke. METHODS In this cross-sectional study, we recruited 65 patients who had chronic subcortical strokes and 40 healthy controls from China. Each participant underwent the Fugl-Meyer Assessment of Hand and Wrist and resting-state fMRI at baseline. We mainly explored the group differences in resting-state effective connectivity (EC) patterns for six IPL subregions in each hemisphere, and we correlated these EC patterns with paretic hand performance across the whole stroke group and stroke subgroups. Moreover, we used receiver operating characteristic curve analysis to distinguish the stroke subgroups with partially (PPH) and completely (CPH) paretic hands. RESULTS Stroke patients exhibited abnormal EC patterns with ipsilesional PFt and bilateral PGa, and five sensorimotor-parietal/two parietal-temporal subsystems were positively or negatively correlated with hand performance. Compared with CPH patients, PPH patients exhibited abnormal EC patterns with the contralesional PFop. The PPH patients had one motor-parietal subsystem, while the CPH patients had one sensorimotor-parietal and three parietal-occipital subsystems that were associated with hand performance. Notably, the EC strength from the contralesional PFop to the ipsilesional superior frontal gyrus could distinguish patients with PPH from patients with CPH. CONCLUSIONS The IPL subsystems manifest specific functional reorganization and are associated with hand dysfunction following chronic stroke.
Collapse
Affiliation(s)
- FeiWen Liu
- Department of Rehabilitation MedicineChengdu Second People's HospitalChengduChina
| | - ChangCheng Chen
- Department of Rehabilitation MedicineQingtian People's HospitalLishuiChina
| | - ZhongFei Bai
- Yangzhi Rehabilitation Hospital Affiliated to Tongji University (Shanghai Sunshine Rehabilitation Center)ShanghaiChina
| | - WenJun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - SiZhong Wang
- Centre for Health, Activity and Rehabilitation Research (CHARR), School of PhysiotherapyUniversity of OtagoDunedinNew Zealand
| | - ChaoZheng Tang
- Capacity Building and Continuing Education CenterNational Health Commission of the People's Republic of ChinaBeijingChina
| |
Collapse
|
16
|
Mirror neurons 30 years later: implications and applications. Trends Cogn Sci 2022; 26:767-781. [PMID: 35803832 DOI: 10.1016/j.tics.2022.06.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/21/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022]
Abstract
Mirror neurons (MNs) were first described in a seminal paper in 1992 as a class of monkey premotor cells discharging during both action execution and observation. Despite their debated origin and function, recent studies in several species, from birds to humans, revealed that beyond MNs properly so called, a variety of cell types distributed among multiple motor, sensory, and emotional brain areas form a 'mirror mechanism' more complex and flexible than originally thought, which has an evolutionarily conserved role in social interaction. Here, we trace the current limits and envisage the future trends of this discovery, showing that it inspired translational research and the development of new neurorehabilitation approaches, and constitutes a point of no return in social and affective neuroscience.
Collapse
|
17
|
Tidoni E, Holle H, Scandola M, Schindler I, Hill L, Cross ES. Human but not robotic gaze facilitates action prediction. iScience 2022; 25:104462. [PMID: 35707718 PMCID: PMC9189121 DOI: 10.1016/j.isci.2022.104462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 01/08/2023] Open
Abstract
Do people ascribe intentions to humanoid robots as they would to humans or non-human-like animated objects? In six experiments, we compared people’s ability to extract non-mentalistic (i.e., where an agent is looking) and mentalistic (i.e., what an agent is looking at; what an agent is going to do) information from gaze and directional cues performed by humans, human-like robots, and a non-human-like object. People were faster to infer the mental content of human agents compared to robotic agents. Furthermore, although the absence of differences in control conditions rules out the use of non-mentalizing strategies, the human-like appearance of non-human agents may engage mentalizing processes to solve the task. Overall, results suggest that human-like robotic actions may be processed differently from humans’ and objects’ behavior. These findings inform our understanding of the relevance of an object’s physical features in triggering mentalizing abilities and its relevance for human–robot interaction. People differently ascribe mental content to human-like and non-human-like agents A human-like shape may automatically engage mentalizing processes Human actions are interpreted faster than non-human actions
Collapse
|
18
|
Rovetti J, Copelli F, Russo FA. Audio and visual speech emotion activate the left pre-supplementary motor area. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:291-303. [PMID: 34811708 DOI: 10.3758/s13415-021-00961-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Sensorimotor brain areas have been implicated in the recognition of emotion expressed on the face and through nonverbal vocalizations. However, no previous study has assessed whether sensorimotor cortices are recruited during the perception of emotion in speech-a signal that includes both audio (speech sounds) and visual (facial speech movements) components. To address this gap in the literature, we recruited 24 participants to listen to speech clips produced in a way that was either happy, sad, or neutral in expression. These stimuli also were presented in one of three modalities: audio-only (hearing the voice but not seeing the face), video-only (seeing the face but not hearing the voice), or audiovisual. Brain activity was recorded using electroencephalography, subjected to independent component analysis, and source-localized. We found that the left presupplementary motor area was more active in response to happy and sad stimuli than neutral stimuli, as indexed by greater mu event-related desynchronization. This effect did not differ by the sensory modality of the stimuli. Activity levels in other sensorimotor brain areas did not differ by emotion, although they were greatest in response to visual-only and audiovisual stimuli. One possible explanation for the pre-SMA result is that this brain area may actively support speech emotion recognition by using our extensive experience expressing emotion to generate sensory predictions that in turn guide our perception.
Collapse
Affiliation(s)
- Joseph Rovetti
- Department of Psychology, Ryerson University, Toronto, ON, M5B 2K3, Canada
- Department of Psychology, Western University, London, ON, Canada
| | - Fran Copelli
- Department of Psychology, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Frank A Russo
- Department of Psychology, Ryerson University, Toronto, ON, M5B 2K3, Canada.
| |
Collapse
|
19
|
Bazzini MC, Nuara A, Scalona E, De Marco D, Rizzolatti G, Avanzini P, Fabbri-Destro M. The Proactive Synergy Between Action Observation and Execution in the Acquisition of New Motor Skills. Front Hum Neurosci 2022; 16:793849. [PMID: 35399362 PMCID: PMC8986982 DOI: 10.3389/fnhum.2022.793849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Motor learning can be defined as a process that leads to relatively permanent changes in motor behavior through repeated interactions with the environment. Different strategies can be adopted to achieve motor learning: movements can be overtly practiced leading to an amelioration of motor performance; alternatively, covert strategies (e.g., action observation) can promote neuroplastic changes in the motor system even in the absence of real movement execution. However, whether a training regularly alternating action observation and execution (i.e., Action Observation Training, AOT) may surpass the pure motor practice (MP) and observational learning (OL) remains to be established. To address this issue, we enrolled 54 subjects requiring them to learn tying nautical knots via one out of three types of training (AOT, MP, OL) with the scope to investigate which element mostly contributes to motor learning. We evaluated the overall improvement of each group, along with the predictive role that neuropsychological indexes exert on each treatment outcome. The AOT group exhibited the highest performance improvement (42%), indicating that the regular alternation between observation and execution biases participants toward a better performance. The reiteration of this sequence provides an incremental, adjunct value that super-adds onto the efficacy of motor practice or observational learning in isolation (42% > 25% + 10%, i.e., OL + MP). These findings extend the use of the AOT from clinical and rehabilitative contexts to daily routines requiring the learning and perfectioning of new motor skills such as sports training, music, and occupational activities requiring fine motor control.
Collapse
Affiliation(s)
- Maria Chiara Bazzini
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Parma, Italy
| | - Arturo Nuara
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
| | - Emilia Scalona
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
| | - Doriana De Marco
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
| | - Giacomo Rizzolatti
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Parma, Italy
| | - Pietro Avanzini
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
- Istituto Clinico Humanitas, Humanitas Clinical and Research Center, Milan, Italy
| | | |
Collapse
|
20
|
Balconi M, Fronda G. Autonomic system tuning during gesture observation and reproduction. Acta Psychol (Amst) 2022; 222:103477. [PMID: 34971949 DOI: 10.1016/j.actpsy.2021.103477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/06/2021] [Accepted: 12/15/2021] [Indexed: 11/01/2022] Open
Abstract
Gestural communication allows providing information about thoughts and feelings, characterizing face-to-face interactions, also during non-verbal exchanges. In the present study, the autonomic responses and peripheral synchronization mechanisms of two individuals (encoder and decoder) were recorded simultaneously, through the use of biofeedback in hyperscanning, during two different experimental phases consisting in the observation (watching videos of gestures) and reproduction of positive and negative different types of gestures (affective, social and informative) supported by linguistic contexts. Therefore, the main aim of this study was focused on the analysis of simultaneous individuals' peripheral mechanisms during the performing of complex joint action, consisting of the observation (watching videos) and the reproduction of positive and negative social, affective, and informative gestures each supported by a linguistic script. Single-subject and inter-subject correlation analyses were conducted to observe individuals' autonomic responses and physiological synchronization. Single-subject results revealed an increase in emotional arousal, indicated by an increase in electrodermal activity (skin conductance level - SCL and response - SCR), during both the observation (watching videos) and reproduction of negative social and affective gestures contextualized by a linguistic context. Moreover, an increase of emotional engagement, expressed by an increase in heart rate (HR) activity, emerged in the encoder compare to the decoder during gestures reproduction (simulation of gestures). Inter-subject correlation results showed the presence of mirroring mechanisms, indicated by an increase in SCL, SCR, and HR synchronization, during the linguistic contexts and gesture observation (watching videos). Furthermore, an increase in SCL and SCR synchronization emerged during the observation (watching videos) and reproduction of negative social and affective gestures. Therefore, the present study allowed to obtain information on the mirroring mechanisms and physiological synchronization underlying the linguistic and gesture system during non-verbal interaction.
Collapse
|
21
|
Copelli F, Rovetti J, Ammirante P, Russo FA. Human mirror neuron system responsivity to unimodal and multimodal presentations of action. Exp Brain Res 2021; 240:537-548. [PMID: 34817643 DOI: 10.1007/s00221-021-06266-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
This study aims to clarify unresolved questions from two earlier studies by McGarry et al. Exp Brain Res 218(4): 527-538, 2012 and Kaplan and Iacoboni Cogn Process 8: 103-113, 2007 on human mirror neuron system (hMNS) responsivity to multimodal presentations of actions. These questions are: (1) whether the two frontal areas originally identified by Kaplan and Iacoboni (ventral premotor cortex [vPMC] and inferior frontal gyrus [IFG]) are both part of the hMNS (i.e., do they respond to execution as well as observation), (2) whether both areas yield effects of biologicalness (biological, control) and modality (audio, visual, audiovisual), and (3) whether the vPMC is preferentially responsive to multimodal input. To resolve these questions about the hMNS, we replicated and extended McGarry et al.'s electroencephalography (EEG) study, while incorporating advanced source localization methods. Participants were asked to execute movements (ripping paper) as well as observe those movements across the same three modalities (audio, visual, and audiovisual), all while 64-channel EEG data was recorded. Two frontal sources consistent with those identified in prior studies showed mu event-related desynchronization (mu-ERD) under execution and observation conditions. These sources also showed a greater response to biological movement than to control stimuli as well as a distinct visual advantage, with greater responsivity to visual and audiovisual compared to audio conditions. Exploratory analyses of mu-ERD in the vPMC under visual and audiovisual observation conditions suggests that the hMNS tracks the magnitude of visual movement over time.
Collapse
Affiliation(s)
- Fran Copelli
- Department of Psychology, Ryerson University, Toronto, ON, Canada
| | - Joseph Rovetti
- Department of Psychology, Ryerson University, Toronto, ON, Canada
| | - Paolo Ammirante
- Department of Psychology, Ryerson University, Toronto, ON, Canada
| | - Frank A Russo
- Department of Psychology, Ryerson University, Toronto, ON, Canada.
| |
Collapse
|
22
|
Viaro R, Maggiolini E, Farina E, Canto R, Iriki A, D'Ausilio A, Fadiga L. Neurons of rat motor cortex become active during both grasping execution and grasping observation. Curr Biol 2021; 31:4405-4412.e4. [PMID: 34433079 DOI: 10.1016/j.cub.2021.07.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
In non-human primates, a subset of frontoparietal neurons (mirror neurons) respond both when an individual executes an action and when it observes another individual performing a similar action.1-8 Mirror neurons constitute an observation and execution matching system likely involved in others' actions processing3,5,9 and in a large set of complex cognitive functions.10,11 Here, we show that the forelimb motor cortex of rats contains neurons presenting mirror properties analogous to those observed in macaques. We provide this evidence by event-related potentials acquired by microelectrocorticography and intracortical single-neuron activity, recorded from the same cortical region during grasping execution and observation. Mirror responses are highly specific, because grasping-related neurons do not respond to the observation of either grooming actions or graspable food alone. These results demonstrate that mirror neurons are present already in species phylogenetically distant from primates, suggesting for them a fundamental, albeit basic, role not necessarily related to higher cognitive functions. Moreover, because murine models have long been valued for their superior experimental accessibility and rapid life cycle, the present finding opens an avenue to new empirical studies tackling questions such as the innate or acquired origin of sensorimotor representations and the effects of social and environmental deprivation on sensorimotor development and recovery.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, 44121 Ferrara, Italy; Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| | - Emma Maggiolini
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, 44121 Ferrara, Italy
| | - Emanuele Farina
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, 44121 Ferrara, Italy
| | - Rosario Canto
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, 44121 Ferrara, Italy
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Alessandro D'Ausilio
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, 44121 Ferrara, Italy; Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, 44121 Ferrara, Italy; Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy.
| |
Collapse
|
23
|
Lega C, Chelazzi L, Cattaneo L. Two Distinct Systems Represent Contralateral and Ipsilateral Sensorimotor Processes in the Human Premotor Cortex: A Dense TMS Mapping Study. Cereb Cortex 2021; 30:2250-2266. [PMID: 31828296 DOI: 10.1093/cercor/bhz237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/19/2019] [Accepted: 09/13/2019] [Indexed: 11/12/2022] Open
Abstract
Animal brains contain behaviorally committed representations of the surrounding world, which integrate sensory and motor information. In primates, sensorimotor mechanisms reside in part in the premotor cortex (PM), where sensorimotor neurons are topographically clustered according to functional specialization. Detailed functional cartography of the human PM is still under investigation. We explored the topographic distribution of spatially dependent sensorimotor functions in healthy volunteers performing left or right, hand or foot, responses to visual cues presented in the left or right hemispace, thus combining independently stimulus side, effector side, and effector type. Event-related transcranial magnetic stimulation was applied to single spots of a dense grid of 10 points on the participants' left hemiscalp, covering the whole PM. Results showed: (1) spatially segregated hand and foot representations, (2) focal representations of contralateral cues and movements in the dorsal PM, and (3) distributed representations of ipsilateral cues and movements in the ventral and dorso-medial PM. The present novel causal information indicates that (1) the human PM is somatotopically organized and (2) the left PM contains sensory-motor representations of both hemispaces and of both hemibodies, but the hemispace and hemibody contralateral to the PM are mapped on a distinct, nonoverlapping cortical region compared to the ipsilateral ones.
Collapse
Affiliation(s)
- Carlotta Lega
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Leonardo Chelazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.,Italian Institute of Neuroscience, Section of Verona, Verona, Italy
| | - Luigi Cattaneo
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.,Italian Institute of Neuroscience, Section of Verona, Verona, Italy
| |
Collapse
|
24
|
Albertini D, Lanzilotto M, Maranesi M, Bonini L. Largely shared neural codes for biological and nonbiological observed movements but not for executed actions in monkey premotor areas. J Neurophysiol 2021; 126:906-912. [PMID: 34379489 PMCID: PMC8846967 DOI: 10.1152/jn.00296.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neural processing of others' observed actions recruits a large network of brain regions (the action observation network, AON), in which frontal motor areas are thought to play a crucial role. Since the discovery of mirror neurons (MNs) in the ventral premotor cortex, it has been assumed that their activation was conditional upon the presentation of biological rather than nonbiological motion stimuli, supporting a form of direct visuomotor matching. Nonetheless, nonbiological observed movements have rarely been used as control stimuli to evaluate visual specificity, thereby leaving the issue of similarity among neural codes for executed actions and biological or nonbiological observed movements unresolved. Here, we addressed this issue by recording from two nodes of the AON that are attracting increasing interest, namely the ventro-rostral part of the dorsal premotor area F2 and the mesial pre-supplementary motor area F6 of macaques while they 1) executed a reaching-grasping task, 2) observed an experimenter performing the task, and 3) observed a nonbiological effector moving in the same context. Our findings revealed stronger neuronal responses to the observation of biological than nonbiological movement, but biological and nonbiological visual stimuli produced highly similar neural dynamics and relied on largely shared neural codes, which in turn remarkably differed from those associated with executed actions. These results indicate that, in highly familiar contexts, visuo-motor remapping processes in premotor areas hosting MNs are more complex and flexible than predicted by a direct visuomotor matching hypothesis.
Collapse
Affiliation(s)
- Davide Albertini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marco Lanzilotto
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Department of Psychology, University of Turin, Turin, Italy
| | - Monica Maranesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
25
|
Kemmerer D. What modulates the Mirror Neuron System during action observation?: Multiple factors involving the action, the actor, the observer, the relationship between actor and observer, and the context. Prog Neurobiol 2021; 205:102128. [PMID: 34343630 DOI: 10.1016/j.pneurobio.2021.102128] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023]
Abstract
Seeing an agent perform an action typically triggers a motor simulation of that action in the observer's Mirror Neuron System (MNS). Over the past few years, it has become increasingly clear that during action observation the patterns and strengths of responses in the MNS are modulated by multiple factors. The first aim of this paper is therefore to provide the most comprehensive survey to date of these factors. To that end, 22 distinct factors are described, broken down into the following sets: six involving the action; two involving the actor; nine involving the observer; four involving the relationship between actor and observer; and one involving the context. The second aim is to consider the implications of these findings for four prominent theoretical models of the MNS: the Direct Matching Model; the Predictive Coding Model; the Value-Driven Model; and the Associative Model. These assessments suggest that although each model is supported by a wide range of findings, each one is also challenged by other findings and relatively unaffected by still others. Hence, there is now a pressing need for a richer, more inclusive model that is better able to account for all of the modulatory factors that have been identified so far.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Psychological Sciences, Department of Speech, Language, and Hearing Sciences, Lyles-Porter Hall, Purdue University, 715 Clinic Drive, United States.
| |
Collapse
|
26
|
Local and system mechanisms for action execution and observation in parietal and premotor cortices. Curr Biol 2021; 31:2819-2830.e4. [PMID: 33984266 PMCID: PMC8279740 DOI: 10.1016/j.cub.2021.04.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/23/2020] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
The action observation network (AON) includes a system of brain areas largely shared with action execution in both human and nonhuman primates. Yet temporal and tuning specificities of distinct areas and of physiologically identified neuronal classes in the encoding of self and others’ action remain unknown. We recorded the activity of 355 single units from three crucial nodes of the AON, the anterior intraparietal area (AIP), and premotor areas F5 and F6, while monkeys performed a Go/No-Go grasping task and observed an experimenter performing it. At the system level, during task execution, F6 displays a prevalence of suppressed neurons and signals whether an action has to be performed, whereas AIP and F5 share a prevalence of facilitated neurons and remarkable target selectivity; during task observation, F5 stands out for its unique prevalence of facilitated neurons and its stronger and earlier modulation than AIP and F6. By applying unsupervised clustering of spike waveforms, we found distinct cell classes unevenly distributed across areas, with different firing properties and carrying specific visuomotor signals. Broadly spiking neurons exhibited a balanced amount of facilitated and suppressed activity during action execution and observation, whereas narrower spiking neurons showed more mutually facilitated responses during the execution of one’s own and others’ action, particularly in areas AIP and F5. Our findings elucidate the time course of activity and firing properties of neurons in the AON during one’s own and others’ action, from the system level of anatomically distinct areas to the local level of physiologically distinct cell classes. F6 neurons show a prevalence of suppressed activity, encoding whether to act Area F5 and AIP share a prevalence of facilitated neurons and target selectivity Across-areas, waveform-based clustering distinguished three neuronal classes Narrow-spiking neurons exhibit mutual modulation during self and others’ action
Collapse
|
27
|
Cross KA, Malekmohammadi M, Woo Choi J, Pouratian N. Movement-related changes in pallidocortical synchrony differentiate action execution and observation in humans. Clin Neurophysiol 2021; 132:1990-2001. [PMID: 33980469 DOI: 10.1016/j.clinph.2021.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/02/2021] [Accepted: 03/15/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Suppression of local and network alpha and beta oscillations in the human basal ganglia-thalamocortical (BGTC) circuit is a prominent feature of movement, including suppression of local alpha/beta power, cross-region beta phase coupling, and cortical and subcortical phase-amplitude coupling (PAC). We hypothesized that network-level coupling is more directly related to movement execution than local power changes, given the role of pathological network hypersynchrony in movement disorders such as Parkinson disease (PD). Understanding the specificity of these movement-related signals is important for designing novel therapeutics. METHODS We recorded globus pallidus internus (GPi) and motor cortical local field potentials during movement execution, passive movement observation and rest in 12 patients with PD undergoing deep brain stimulator implantation. RESULTS Local alpha/beta power is suppressed in the globus pallidus and motor cortex during both action execution and action observation, although less so during action observation. In contrast, pallidocortical phase synchrony and GPi and motor cortical alpha/beta-gamma PAC are suppressed only during action execution. CONCLUSIONS The functional dissociation across tasks in pallidocortical network activity suggests a particularly important role of network coupling in motor execution. SIGNIFICANCE Network level recordings provide important specificity in differentiating motor behavior and may provide significant value for future closed loop therapies.
Collapse
Affiliation(s)
- Katy A Cross
- Department of Neurology, University of California, Los Angeles, USA.
| | | | - Jeong Woo Choi
- Department of Neurosurgery, University of California, Los Angeles, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, USA
| |
Collapse
|
28
|
Putnam PT, Chang SWC. Social processing by the primate medial frontal cortex. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 158:213-248. [PMID: 33785146 DOI: 10.1016/bs.irn.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primate medial frontal cortex is comprised of several brain regions that are consistently implicated in regulating complex social behaviors. The medial frontal cortex is also critically involved in many non-social behaviors, such as those involved in reward, affective, and decision-making processes, broadly implicating the fundamental role of the medial frontal cortex in internally guided cognition. An essential question therefore is what unique contributions, if any, does the medial frontal cortex make to social behaviors? In this chapter, we outline several neural algorithms necessary for mediating adaptive social interactions and discuss selected evidence from behavioral neurophysiology experiments supporting the role of the medial frontal cortex in implementing these algorithms. By doing so, we primarily focus on research in nonhuman primates and examine several key attributes of the medial frontal cortex. Specifically, we review neuronal substrates in the medial frontal cortex uniquely suitable for enabling social monitoring, observational and vicarious learning, as well as predicting the behaviors of social partners. Moreover, by utilizing the three levels of organization in information processing systems proposed by Marr (1982) and recently adapted by Lockwood, Apps, and Chang (2020) for social information processing, we survey selected social functions of the medial frontal cortex through the lens of socially relevant algorithms and implementations. Overall, this chapter provides a broad overview of the behavioral neurophysiology literature endorsing the importance of socially relevant neural algorithms implemented by the primate medial frontal cortex for regulating social interactions.
Collapse
Affiliation(s)
- Philip T Putnam
- Department of Psychology, Yale University, New Haven, CT, United States.
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
29
|
Implicit visual sensitivity towards slim versus overweight bodies modulates motor resonance in the primary motor cortex: A tDCS study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 21:93-104. [PMID: 33263151 PMCID: PMC7994241 DOI: 10.3758/s13415-020-00850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 11/25/2022]
Abstract
Motor resonance (MR) can be influenced by individual differences and similarity in the physical appearance between the actor and observer. Recently, we reported that action simulation is modulated by an implicit visual sensitivity towards normal-weight compared with overweight bodies. Furthermore, recent research has suggested the existence of an action observation network responsible for MR, with limited evidence whether the primary motor cortex (M1) is part of this. We expanded our previous findings with regards to the role of an implicit normal-weight-body preference in the MR mechanism. At the same time, we tested the functional relevance of M1 to MR, by using a transcranial direct current stimulation (tDCS) protocol. Seventeen normal-weight and 17 overweight participants were asked to observe normal-weight or overweight actors reaching and grasping a light or heavy cube, and then, at the end of each video-clip to indicate the correct cube weight. Before the task, all participants received 15 min of sham or cathodal tDCS over the left M1. Measures of anti-fat attitudes were also collected. During sham tDCS, all participants were better in simulating the actions performed by normal-weight compared with overweight models. Surprisingly, cathodal tDCS selectively improved the ability in the overweight group to simulate actions performed by the overweight models. This effect was not associated with scores of fat phobic attitudes or implicit anti-fat bias. Our findings are discussed in the context of relevance of M1 to MR and its social modulation by anti-fat attitudes.
Collapse
|
30
|
Motor resonance in monkey parietal and premotor cortex during action observation: Influence of viewing perspective and effector identity. Neuroimage 2020; 224:117398. [PMID: 32971263 DOI: 10.1016/j.neuroimage.2020.117398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022] Open
Abstract
Observing others performing motor acts like grasping has been shown to elicit neural responses in the observer`s parieto-frontal motor network, which typically becomes active when the observer would perform these actions him/herself. While some human studies suggested strongest motor resonance during observation of first person or egocentric perspectives compared to third person or allocentric perspectives, other research either report the opposite or did not find any viewpoint-related preferences in parieto-premotor cortices. Furthermore, it has been suggested that these motor resonance effects are lateralized in the parietal cortex depending on the viewpoint and identity of the observed effector (left vs right hand). Other studies, however, do not find such straightforward hand identity dependent motor resonance effects. In addition to these conflicting findings in human studies, to date, little is known about the modulatory role of viewing perspective and effector identity (left or right hand) on motor resonance effects in monkey parieto-premotor cortices. Here, we investigated the extent to which different viewpoints of observed conspecific hand actions yield motor resonance in rhesus monkeys using fMRI. Observing first person, lateral and third person viewpoints of conspecific hand actions yielded significant activations throughout the so-called action observation network, including STS, parietal and frontal cortices. Although region-of-interest analysis of parietal and premotor motor/mirror neuron regions AIP, PFG and F5, showed robust responses in these regions during action observation in general, a clear preference for egocentric or allocentric perspectives was not evident. Moreover, except for lateralized effects due to visual field biases, motor resonance in the monkey brain during grasping observation did not reflect hand identity dependent coding.
Collapse
|
31
|
The Topography of Visually Guided Grasping in the Premotor Cortex: A Dense-Transcranial Magnetic Stimulation (TMS) Mapping Study. J Neurosci 2020; 40:6790-6800. [PMID: 32709693 DOI: 10.1523/jneurosci.0560-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 11/21/2022] Open
Abstract
Visuomotor transformations at the cortical level occur along a network where posterior parietal regions are connected to homologous premotor regions. Grasping-related activity is represented in a diffuse, ventral and dorsal system in the posterior parietal regions, but no systematic causal description of a premotor counterpart of a similar diffuse grasping representation is available. To fill this gap, we measured the kinematics of right finger movements in 17 male and female human participants during grasping of three objects of different sizes. Single-pulse transcranial magnetic stimulation was applied 100 ms after visual presentation of the object over a regular grid of 8 spots covering the left premotor cortex (PMC) and 2 Sham stimulations. Maximum finger aperture during reach was used as the feature to classify object size in different types of classifiers. Classification accuracy was taken as a measure of the efficiency of visuomotor transformations for grasping. Results showed that transcranial magnetic stimulation reduced classification accuracy compared with Sham stimulation when it was applied to 2 spots in the ventral PMC and 1 spot in the medial PMC, corresponding approximately to the ventral PMC and the dorsal portion of the supplementary motor area. Our results indicate a multifocal representation of object geometry for grasping in the PMC that matches the known multifocal parietal maps of grasping representations. Additionally, we confirm that, by applying a uniform spatial sampling procedure, transcranial magnetic stimulation can produce cortical functional maps independent of a priori spatial assumptions.SIGNIFICANCE STATEMENT Visually guided actions activate a large frontoparietal network. Here, we used a dense grid of transcranial magnetic stimulation spots covering the whole premotor cortex (PMC), to identify with accurate spatial mapping the functional specialization of the human PMC during grasping movement. Results corroborate previous findings about the role of the ventral PMC in preshaping the fingers according to the size of the target. Crucially, we found that the medial part of PMC, putatively covering the supplementary motor area, plays a direct role in object grasping. In concert with findings in nonhuman primates, these results indicate a multifocal representation of object geometry for grasping in the PMC and expand our understanding of how our brain integrates visual and motor information to perform visually guided actions.
Collapse
|
32
|
Jerjian SJ, Sahani M, Kraskov A. Movement initiation and grasp representation in premotor and primary motor cortex mirror neurons. eLife 2020; 9:e54139. [PMID: 32628107 PMCID: PMC7384858 DOI: 10.7554/elife.54139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
Pyramidal tract neurons (PTNs) within macaque rostral ventral premotor cortex (F5) and (M1) provide direct input to spinal circuitry and are critical for skilled movement control. Contrary to initial hypotheses, they can also be active during action observation, in the absence of any movement. A population-level understanding of this phenomenon is currently lacking. We recorded from single neurons, including identified PTNs, in (M1) (n = 187), and F5 (n = 115) as two adult male macaques executed, observed, or withheld (NoGo) reach-to-grasp actions. F5 maintained a similar representation of grasping actions during both execution and observation. In contrast, although many individual M1 neurons were active during observation, M1 population activity was distinct from execution, and more closely aligned to NoGo activity, suggesting this activity contributes to withholding of self-movement. M1 and its outputs may dissociate initiation of movement from representation of grasp in order to flexibly guide behaviour.
Collapse
Affiliation(s)
- Steven Jack Jerjian
- Department of Clinical and Movement Neurosciences, UCL Institute of NeurologyLondonUnited Kingdom
| | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College LondonLondonUnited Kingdom
| | - Alexander Kraskov
- Department of Clinical and Movement Neurosciences, UCL Institute of NeurologyLondonUnited Kingdom
| |
Collapse
|
33
|
Stable readout of observed actions from format-dependent activity of monkey's anterior intraparietal neurons. Proc Natl Acad Sci U S A 2020; 117:16596-16605. [PMID: 32581128 PMCID: PMC7369316 DOI: 10.1073/pnas.2007018117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The anterior intraparietal area (AIP) is a crucial hub in the observed manipulative action (OMA) network of primates. While macaques observe manipulative action videos, their AIP neuronal activity robustly encodes first the viewpoint from which the action is observed, then the actor’s body posture, and finally the observed-action identity. Despite the lack of fully invariant OMA-selective single neurons, OMA exemplars could be decoded accurately from the activity of a set of units that maintain stable OMA selectivity despite rescaling their firing rate across formats. We propose that by integrating signals multiplicatively about others’ action and their visual format, the AIP can provide a stable readout of OMA identity at the population level. Humans accurately identify observed actions despite large dynamic changes in their retinal images and a variety of visual presentation formats. A large network of brain regions in primates participates in the processing of others’ actions, with the anterior intraparietal area (AIP) playing a major role in routing information about observed manipulative actions (OMAs) to the other nodes of the network. This study investigated whether the AIP also contributes to invariant coding of OMAs across different visual formats. We recorded AIP neuronal activity from two macaques while they observed videos portraying seven manipulative actions (drag, drop, grasp, push, roll, rotate, squeeze) in four visual formats. Each format resulted from the combination of two actor’s body postures (standing, sitting) and two viewpoints (lateral, frontal). Out of 297 recorded units, 38% were OMA-selective in at least one format. Robust population code for viewpoint and actor’s body posture emerged shortly after stimulus presentation, followed by OMA selectivity. Although we found no fully invariant OMA-selective neuron, we discovered a population code that allowed us to classify action exemplars irrespective of the visual format. This code depends on a multiplicative mixing of signals about OMA identity and visual format, particularly evidenced by a set of units maintaining a relatively stable OMA selectivity across formats despite considerable rescaling of their firing rate depending on the visual specificities of each format. These findings suggest that the AIP integrates format-dependent information and the visual features of others’ actions, leading to a stable readout of observed manipulative action identity.
Collapse
|
34
|
Lanzilotto M, Ferroni CG, Livi A, Gerbella M, Maranesi M, Borra E, Passarelli L, Gamberini M, Fogassi L, Bonini L, Orban GA. Anterior Intraparietal Area: A Hub in the Observed Manipulative Action Network. Cereb Cortex 2020; 29:1816-1833. [PMID: 30766996 PMCID: PMC6418391 DOI: 10.1093/cercor/bhz011] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/07/2019] [Accepted: 01/18/2019] [Indexed: 11/13/2022] Open
Abstract
Current knowledge regarding the processing of observed manipulative actions (OMAs) (e.g., grasping, dragging, or dropping) is limited to grasping and underlying neural circuitry remains controversial. Here, we addressed these issues by combining chronic neuronal recordings along the anteroposterior extent of monkeys’ anterior intraparietal (AIP) area with tracer injections into the recorded sites. We found robust neural selectivity for 7 distinct OMAs, particularly in the posterior part of AIP (pAIP), where it was associated with motor coding of grip type and own-hand visual feedback. This cluster of functional properties appears to be specifically grounded in stronger direct connections of pAIP with the temporal regions of the ventral visual stream and the prefrontal cortex, as connections with skeletomotor related areas and regions of the dorsal visual stream exhibited opposite or no rostrocaudal gradients. Temporal and prefrontal areas may provide visual and contextual information relevant for manipulative action processing. These results revise existing models of the action observation network, suggesting that pAIP constitutes a parietal hub for routing information about OMA identity to the other nodes of the network.
Collapse
Affiliation(s)
- Marco Lanzilotto
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | | | - Alessandro Livi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Monica Maranesi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Elena Borra
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Lauretta Passarelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, Bologna, Italy
| | - Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, Bologna, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Guy A Orban
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| |
Collapse
|
35
|
Farina E, Borgnis F, Pozzo T. Mirror neurons and their relationship with neurodegenerative disorders. J Neurosci Res 2020; 98:1070-1094. [DOI: 10.1002/jnr.24579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Thierry Pozzo
- INSERM UMR1093‐CAPS, Université Bourgogne Franche‐Comté Dijon France
- IT@UniFe Center for Translational Neurophysiology Istituto Italiano di Tecnologia Ferrara Italy
| |
Collapse
|
36
|
Albertini D, Gerbella M, Lanzilotto M, Livi A, Maranesi M, Ferroni CG, Bonini L. Connectional gradients underlie functional transitions in monkey pre-supplementary motor area. Prog Neurobiol 2020; 184:101699. [DOI: 10.1016/j.pneurobio.2019.101699] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
|
37
|
Eatherington CJ, Marinelli L, Lõoke M, Battaglini L, Mongillo P. Local Dot Motion, Not Global Configuration, Determines Dogs' Preference for Point-Light Displays. Animals (Basel) 2019; 9:E661. [PMID: 31489919 PMCID: PMC6770411 DOI: 10.3390/ani9090661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 11/21/2022] Open
Abstract
Visual perception remains an understudied area of dog cognition, particularly the perception of biological motion where the small amount of previous research has created an unclear impression regarding dogs' visual preference towards different types of point-light displays. To date, no thorough investigation has been conducted regarding which aspects of the motion contained in point-light displays attract dogs. To test this, pet dogs (N = 48) were presented with pairs of point-light displays with systematic manipulation of motion features (i.e., upright or inverted orientation, coherent or scrambled configuration, human or dog species). Results revealed a significant effect of inversion, with dogs directing significantly longer looking time towards upright than inverted dog point-light displays; no effect was found for scrambling or the scrambling-inversion interaction. No looking time bias was found when dogs were presented with human point-light displays, regardless of their orientation or configuration. The results of the current study imply that dogs' visual preference is driven by the motion of individual dots in accordance with gravity, rather than the point-light display's global arrangement, regardless their long exposure to human motion.
Collapse
Affiliation(s)
- Carla J Eatherington
- Laboratory of Applied Ethology, Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Lieta Marinelli
- Laboratory of Applied Ethology, Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Miina Lõoke
- Laboratory of Applied Ethology, Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Luca Battaglini
- Department of General Psychology, University of Padua, Via Venezia 8, 35131 Padova, Italy.
| | - Paolo Mongillo
- Laboratory of Applied Ethology, Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy.
| |
Collapse
|
38
|
Children with facial paralysis due to Moebius syndrome exhibit reduced autonomic modulation during emotion processing. J Neurodev Disord 2019; 11:12. [PMID: 31291910 PMCID: PMC6617955 DOI: 10.1186/s11689-019-9272-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Facial mimicry is crucial in the recognition of others' emotional state. Thus, the observation of others' facial expressions activates the same neural representation of that affective state in the observer, along with related autonomic and somatic responses. What happens, therefore, when someone cannot mimic others' facial expressions? METHODS We investigated whether psychophysiological emotional responses to others' facial expressions were impaired in 13 children (9 years) with Moebius syndrome (MBS), an extremely rare neurological disorder (1/250,000 live births) characterized by congenital facial paralysis. We inspected autonomic responses and vagal regulation through facial cutaneous thermal variations and by the computation of respiratory sinus arrhythmia (RSA). These parameters provide measures of emotional arousal and show the autonomic adaptation to others' social cues. Physiological responses in children with MBS were recorded during dynamic facial expression observation and were compared to those of a control group (16 non-affected children, 9 years). RESULTS There were significant group effects on thermal patterns and RSA, with lower values in children with MBS. We also observed a mild deficit in emotion recognition in these patients. CONCLUSION Results support "embodied" theory, whereby the congenital inability to produce facial expressions induces alterations in the processing of facial expression of emotions. Such alterations may constitute a risk for emotion dysregulation.
Collapse
|
39
|
De Stefani E, Nicolini Y, Belluardo M, Ferrari PF. Congenital facial palsy and emotion processing: The case of Moebius syndrome. GENES BRAIN AND BEHAVIOR 2019; 18:e12548. [PMID: 30604920 DOI: 10.1111/gbb.12548] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/16/2018] [Accepted: 12/15/2018] [Indexed: 12/13/2022]
Abstract
According to the Darwinian perspective, facial expressions of emotions evolved to quickly communicate emotional states and would serve adaptive functions that promote social interactions. Embodied cognition theories suggest that we understand others' emotions by reproducing the perceived expression in our own facial musculature (facial mimicry) and the mere observation of a facial expression can evoke the corresponding emotion in the perceivers. Consequently, the inability to form facial expressions would affect the experience of emotional understanding. In this review, we aimed at providing account on the link between the lack of emotion production and the mechanisms of emotion processing. We address this issue by taking into account Moebius syndrome, a rare neurological disorder that primarily affects the muscles controlling facial expressions. Individuals with Moebius syndrome are born with facial paralysis and inability to form facial expressions. This makes them the ideal population to study whether facial mimicry is necessary for emotion understanding. Here, we discuss behavioral ambiguous/mixed results on emotion recognition deficits in Moebius syndrome suggesting the need to investigate further aspects of emotional processing such as the physiological responses associated with the emotional experience during developmental age.
Collapse
Affiliation(s)
- Elisa De Stefani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ylenia Nicolini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mauro Belluardo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Pier Francesco Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Institut des Sciences Cognitives Marc Jeannerod, CNRS, Université de Lyon, Lyon, France
| |
Collapse
|
40
|
Caligiore D, Mustile M, Fineschi A, Romano L, Piras F, Assogna F, Pontieri FE, Spalletta G, Baldassarre G. Action Observation With Dual Task for Improving Cognitive Abilities in Parkinson's Disease: A Pilot Study. Front Syst Neurosci 2019; 13:7. [PMID: 30804762 PMCID: PMC6378302 DOI: 10.3389/fnsys.2019.00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/25/2019] [Indexed: 11/14/2022] Open
Abstract
Action observation therapy (AOT) has been recently proposed as a new rehabilitation approach for treatment of motor deficits in Parkinson's disease. To date, this approach has never been used to deal with cognitive deficits (e.g., deficits in working memory, attention), which are impairments that are increasingly recognized in Parkinsonian patients. Typically, patients affected by these dysfunctions have difficulty filtering out irrelevant information and tend to lose track of the task goal. In this paper, we propose that AOT may also be used to improve cognitive abilities of Parkinsonian patients if it is used within a dual task framework. We articulate our hypothesis by pivoting on recent findings and on preliminary results that were obtained through a pilot study that was designed to test the efficacy of a long-term rehabilitation program that, for the first time, uses AOT within a dual task framework for treating cognitive deficits in patients with Parkinson's disease. Ten Parkinson's disease patients underwent a 45-min treatment that consisted in watching a video of an actor performing a daily-life activity and then executing it while performing distractive tasks (AOT with dual task). The treatment was repeated three times per week for a total of 4 weeks. Patients' cognitive/motor features were evaluated through standard tests four times: 1 month before treatment, the first and the last day of treatment and 1 month after treatment. The results show that this approach may provide relevant improvements in cognitive aspects related to working memory (verbal and visuospatial memory) and attention. We discuss these results by pivoting on literature on action observation and recent literature demonstrating that the dual task method can be used to stimulate cognition and concentration. In particular, we propose that using AOT together with a dual task may train the brain systems supporting executive functions through two mechanisms: (i) stimulation of goal setting within the mirror neuron system through action observation and (ii) working memory and persistent goal maintenance through dual task stimuli.
Collapse
Affiliation(s)
- Daniele Caligiore
- Institute of Cognitive Sciences and Technologies, Italian National Research Council, Rome, Italy
| | - Magda Mustile
- Department of Clinical and Behavioural Neurology, Neuropsychiatry Laboratory, IRCCS, Santa Lucia Foundation, Rome, Italy
- Department of Psychology, University of Stirling, Stirling, United Kingdom
| | - Alissa Fineschi
- Department of Clinical and Behavioural Neurology, Neuropsychiatry Laboratory, IRCCS, Santa Lucia Foundation, Rome, Italy
| | - Laura Romano
- Institute of Cognitive Sciences and Technologies, Italian National Research Council, Rome, Italy
| | - Fabrizio Piras
- Department of Clinical and Behavioural Neurology, Neuropsychiatry Laboratory, IRCCS, Santa Lucia Foundation, Rome, Italy
| | - Francesca Assogna
- Department of Clinical and Behavioural Neurology, Neuropsychiatry Laboratory, IRCCS, Santa Lucia Foundation, Rome, Italy
| | - Francesco E. Pontieri
- Department of Clinical and Behavioural Neurology, Neuropsychiatry Laboratory, IRCCS, Santa Lucia Foundation, Rome, Italy
- Department of Neuroscience, Mental Health and Sense Organs, NESMOS, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Spalletta
- Department of Clinical and Behavioural Neurology, Neuropsychiatry Laboratory, IRCCS, Santa Lucia Foundation, Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Gianluca Baldassarre
- Institute of Cognitive Sciences and Technologies, Italian National Research Council, Rome, Italy
| |
Collapse
|
41
|
Orlandi A, Proverbio AM. Bilateral engagement of the occipito-temporal cortex in response to dance kinematics in experts. Sci Rep 2019; 9:1000. [PMID: 30700799 PMCID: PMC6353946 DOI: 10.1038/s41598-018-37876-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/14/2018] [Indexed: 01/04/2023] Open
Abstract
Previous evidence has shown neuroplastic changes in brain anatomy and connectivity associated with the acquisition of professional visuomotor skills. Reduced hemispherical asymmetry was found in the sensorimotor and visual areas in expert musicians and athletes compared with non-experts. Moreover, increased expertise with faces, body, and objects resulted in an enhanced engagement of the occipito-temporal cortex (OTC) during stimulus observation. The present study aimed at investigating whether intense and extended practice with dance would result in an enhanced symmetric response of OTC at an early stage of action processing. Expert ballet dancers and non-dancer controls were presented with videos depicting ballet steps during EEG recording. The observation of the moving dancer elicited a posterior N2 component, being larger over the left hemisphere in dancers than controls. The source reconstruction (swLORETA) of the negativity showed the engagement of the bilateral inferior and middle temporal regions in experts, while right-lateralized activity was found in controls. The dancers also showed an early P2 and enhanced P300 responses, indicating faster stimulus processing and subsequent recognition. This evidence seemed to suggest expertise-related increased sensitivity of the OTC in encoding body kinematics. Thus, we speculated that long-term whole-body practice would result in enriched and refined action processing.
Collapse
Affiliation(s)
- Andrea Orlandi
- Neuro-MI, Milan Center for Neuroscience, Department of Psychology, University of Milano - Bicocca, Milan, Italy.
| | - Alice Mado Proverbio
- Neuro-MI, Milan Center for Neuroscience, Department of Psychology, University of Milano - Bicocca, Milan, Italy
| |
Collapse
|
42
|
Agent-based representations of objects and actions in the monkey pre-supplementary motor area. Proc Natl Acad Sci U S A 2019; 116:2691-2700. [PMID: 30696759 PMCID: PMC6377463 DOI: 10.1073/pnas.1810890116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Information about objects around us is essential for planning actions and for predicting those of others. Here, we studied pre-supplementary motor area F6 neurons with a task in which monkeys viewed and grasped (or refrained from grasping) objects, and then observed a human doing the same task. We found "action-related neurons" encoding selectively monkey's own action [self-type (ST)], another agent's action [other-type (OT)], or both [self- and other-type (SOT)]. Interestingly, we found "object-related neurons" exhibiting the same type of selectivity before action onset: Indeed, distinct sets of neurons discharged when visually presented objects were targeted by the monkey's own action (ST), another agent's action (OT), or both (SOT). Notably, object-related neurons appear to signal self and other's intention to grasp and the most likely grip type that will be performed, whereas action-related neurons encode a general goal attainment signal devoid of any specificity for the observed grip type. Time-resolved cross-modal population decoding revealed that F6 neurons first integrate information about object and context to generate an agent-shared signal specifying whether and how the object will be grasped, which progressively turns into a broader agent-based goal attainment signal during action unfolding. Importantly, shared representation of objects critically depends upon their location in the observer's peripersonal space, suggesting an "object-mirroring" mechanism through which observers could accurately predict others' impending action by recruiting the same motor representation they would activate if they were to act upon the same object in the same context.
Collapse
|
43
|
Papadourakis V, Raos V. Neurons in the Macaque Dorsal Premotor Cortex Respond to Execution and Observation of Actions. Cereb Cortex 2018; 29:4223-4237. [DOI: 10.1093/cercor/bhy304] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/07/2018] [Indexed: 11/14/2022] Open
Abstract
Abstract
We identified neurons in dorsal premotor cortex (PMd) of the macaque brain that respond during execution and observation of reaching-to-grasp actions, thus fulfilling the mirror neuron (MirN) criterion. During observation, the percentage of grip-selective MirNs in PMd and area F5 were comparable, and the selectivity indices in the two areas were similar. During execution, F5-MirNs were more selective than PMd–MirNs for grip, which was reflected in the higher selectivity indices in F5 than in PMd. PMd displayed grip-related information earlier than F5 during both conditions. In both areas, the number of neurons exhibiting congruent visual and motor selectivity did not differ from that expected by chance. However, both the PMd and F5 neuronal ensembles provided observation–execution matching, suggesting that the congruency may be achieved in a distributed fashion across the selective elements of the population. Furthermore, representational similarity analysis revealed that grip encoding in PMd and F5 is alike during both observation and execution. Our study provides direct evidence of mirror activity in PMd during observation of forelimb movements, and suggests that PMd is a node of the MirN circuit.
Collapse
Affiliation(s)
- Vassilis Papadourakis
- Department of Basic Sciences, School of Medicine, University of Crete, PO Box 2208, 71003 Iraklion, Greece
- Computational Neuroscience Group, Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Plastira N 100 str, 71003 Iraklion, Greece
| | - Vassilis Raos
- Department of Basic Sciences, School of Medicine, University of Crete, PO Box 2208, 71003 Iraklion, Greece
- Computational Neuroscience Group, Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Plastira N 100 str, 71003 Iraklion, Greece
| |
Collapse
|
44
|
Paracampo R, Montemurro M, de Vega M, Avenanti A. Primary motor cortex crucial for action prediction: A tDCS study. Cortex 2018; 109:287-302. [DOI: 10.1016/j.cortex.2018.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 09/02/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
|
45
|
Impaired white matter connectivity between regions containing mirror neurons, and relationship to negative symptoms and social cognition, in patients with first-episode schizophrenia. Brain Imaging Behav 2018; 12:229-237. [PMID: 28247157 DOI: 10.1007/s11682-017-9685-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In schizophrenia, abnormalities in structural connectivity between brain regions known to contain mirror neurons and their relationship to negative symptoms related to a domain of social cognition are not well understood. Diffusion tensor imaging (DTI) scans were acquired in 16 patients with first episode schizophrenia and 16 matched healthy controls. FA and Trace of the tracts interconnecting regions known to be rich in mirror neurons, i.e., anterior cingulate cortex (ACC), inferior parietal lobe (IPL) and premotor cortex (PMC) were evaluated. A significant group effect for Trace was observed in IPL-PMC white matter fiber tract (F (1, 28) = 7.13, p = .012), as well as in the PMC-ACC white matter fiber tract (F (1, 28) = 4.64, p = .040). There were no group differences in FA. In addition, patients with schizophrenia showed a significant positive correlation between the Trace of the left IPL-PMC white matter fiber tract, and the Ability to Feel Intimacy and Closeness score (rho = .57, p = 0.034), and a negative correlation between the Trace of the left PMC-ACC and the Relationships with Friends and Peers score (rho = remove -.54, p = 0.049). We have demonstrated disrupted white mater microstructure within the white matter tracts subserving brain regions containing mirror neurons. We further showed that such structural disruptions might impact negative symptoms and, more specifically, contribute to the inability to feel intimacy (a measure conceptually related to theory of mind) in first episode schizophrenia. Further studies are needed to understand the potential of our results for diagnosis, prognosis and therapeutic interventions.
Collapse
|
46
|
Fiave PA, Sharma S, Jastorff J, Nelissen K. Investigating common coding of observed and executed actions in the monkey brain using cross-modal multi-variate fMRI classification. Neuroimage 2018; 178:306-317. [PMID: 29787867 DOI: 10.1016/j.neuroimage.2018.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 11/30/2022] Open
Abstract
Mirror neurons are generally described as a neural substrate hosting shared representations of actions, by simulating or 'mirroring' the actions of others onto the observer's own motor system. Since single neuron recordings are rarely feasible in humans, it has been argued that cross-modal multi-variate pattern analysis (MVPA) of non-invasive fMRI data is a suitable technique to investigate common coding of observed and executed actions, allowing researchers to infer the presence of mirror neurons in the human brain. In an effort to close the gap between monkey electrophysiology and human fMRI data with respect to the mirror neuron system, here we tested this proposal for the first time in the monkey. Rhesus monkeys either performed reach-and-grasp or reach-and-touch motor acts with their right hand in the dark or observed videos of human actors performing similar motor acts. Unimodal decoding showed that both executed or observed motor acts could be decoded from numerous brain regions. Specific portions of rostral parietal, premotor and motor cortices, previously shown to house mirror neurons, in addition to somatosensory regions, yielded significant asymmetric action-specific cross-modal decoding. These results validate the use of cross-modal multi-variate fMRI analyses to probe the representations of own and others' actions in the primate brain and support the proposed mapping of others' actions onto the observer's own motor cortices.
Collapse
Affiliation(s)
- Prosper Agbesi Fiave
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Saloni Sharma
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jan Jastorff
- Research Group Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Koen Nelissen
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
47
|
Simultaneous scalp recorded EEG and local field potentials from monkey ventral premotor cortex during action observation and execution reveals the contribution of mirror and motor neurons to the mu-rhythm. Neuroimage 2018; 175:22-31. [PMID: 29571717 DOI: 10.1016/j.neuroimage.2018.03.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/31/2018] [Accepted: 03/17/2018] [Indexed: 11/21/2022] Open
Abstract
The desynchronization of alpha and beta oscillations (mu rhythm) in the central scalp EEG during action observation and action execution is thought to reflect neural mirroring processes. However, the extent to which mirror neurons (MNs) or other populations of neurons contribute to such EEG desynchronization is still unknown. Here, we provide the first evidence that, in the monkey, the neuronal activity recorded from the ventral premotor cortex (PMv) strongly contributes to the EEG changes occurring in the beta band over central scalp electrodes, during executed and observed actions. We simultaneously recorded scalp EEG and extracellular activity, Multi Unit Activity (MUA) and Local Field Potentials (LFP), from area F5 of two macaques executing and observing grasping actions. We found that MUA highly correlates with an increase in high gamma LFP power and, interestingly, such LFP power increase also correlates to EEG beta - and in part also to alpha - desynchronization. In terms of timing of signal changes, the increase in high gamma LFP power precedes the EEG desynchronization, during both action observation and execution, thus suggesting a causal role of PMv neuronal activity in the modulation of the alpha and beta mu-rhythm. Lastly, neuronal signals from deeper layers of PMv exert a greater contribution than superficial layers to the EEG beta rhythm modulation, especially during the motor task. Our findings have clear implications for EEG studies in that they demonstrate that the activity of different populations of neurons in PMv contribute to the generation of the mu-rhythm.
Collapse
|
48
|
Spontaneous imitative movements induced by an illusory embodied fake hand. Neuropsychologia 2018; 111:77-84. [DOI: 10.1016/j.neuropsychologia.2018.01.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/06/2018] [Accepted: 01/16/2018] [Indexed: 12/29/2022]
|
49
|
Cortical and subcortical connections of parietal and premotor nodes of the monkey hand mirror neuron network. Brain Struct Funct 2017; 223:1713-1729. [PMID: 29196811 DOI: 10.1007/s00429-017-1582-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/26/2017] [Indexed: 01/25/2023]
Abstract
Mirror neurons (MNs) are a class of cells originally discovered in the monkey ventral premotor cortex (PMv) and inferior parietal lobule (IPL). They discharge during both action execution and action observation and appear to play a crucial role in understanding others' actions. It has been proposed that the mirror mechanism is based on a match between the visual description of actions, encoded in temporal cortical regions, and their motor representation, provided by PMv and IPL. However, neurons responding to action observation have been recently found in other cortical regions, suggesting that the mirror mechanism relies on a wider network. Here we provide the first description of this network by injecting neural tracers into physiologically identified IPL and PMv sectors containing hand MNs. Our results show that these sectors are reciprocally connected, in line with the current view, but IPL MN sectors showed virtually no direct connection with temporal visual areas. In addition, we found that PMv and IPL MN sectors share connections with several cortical regions, including the dorsal and mesial premotor cortex, the primary motor cortex, the secondary somatosensory cortex, the mid-dorsal insula and the ventrolateral prefrontal cortex, as well as subcortical structures, such as motor and polysensory thalamic nuclei and the mid-dorsal claustrum. We propose that each of these regions constitutes a node of an "extended network", through which information relative to ongoing movements, social context, environmental contingencies, abstract rules, and internal states can influence MN activity and contribute to several socio-cognitive functions.
Collapse
|
50
|
Nelissen K, Vanduffel W. Action Categorization in Rhesus Monkeys: discrimination of grasping from non-grasping manual motor acts. Sci Rep 2017; 7:15094. [PMID: 29118339 PMCID: PMC5678109 DOI: 10.1038/s41598-017-15378-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/25/2017] [Indexed: 11/09/2022] Open
Abstract
The ability to recognize others’ actions is an important aspect of social behavior. While neurophysiological and behavioral research in monkeys has offered a better understanding of how the primate brain processes this type of information, further insight with respect to the neural correlates of action recognition requires tasks that allow recording of brain activity or perturbing brain regions while monkeys simultaneously make behavioral judgements about certain aspects of observed actions. Here we investigated whether rhesus monkeys could actively discriminate videos showing grasping or non-grasping manual motor acts in a two-alternative categorization task. After monkeys became proficient in this task, we tested their ability to generalize to a number of untrained, novel videos depicting grasps or other manual motor acts. Monkeys generalized to a wide range of novel human or conspecific grasping and non-grasping motor acts. They failed, however, for videos showing unfamiliar actions such as a non-biological effector performing a grasp, or a human hand touching an object with the back of the hand. This study shows the feasibility of training monkeys to perform active judgements about certain aspects of observed actions, instrumental for causal investigations into the neural correlates of action recognition.
Collapse
Affiliation(s)
- Koen Nelissen
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium.
| | - Wim Vanduffel
- Laboratory for Neuro- & Psychophysiology, Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium.,Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martino's Center for Biomedical Imaging, Charlestown, Massachusetts, 02129, USA
| |
Collapse
|