1
|
Hallajian AH, Sharifi K, Rostami R, Saeed F, Mokarian Rajabi S, Zangenehnia N, Amini Z, Askari Z, Vila-Rodriguez F, Salehinejad MA. Neurocognitive effects of 3 mA prefrontal electrical stimulation in schizophrenia: A randomized sham-controlled tDCS-fMRI study protocol. PLoS One 2024; 19:e0306422. [PMID: 39150917 PMCID: PMC11329159 DOI: 10.1371/journal.pone.0306422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/10/2024] [Indexed: 08/18/2024] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is characterized by cognitive deficits that are linked to prefrontal cortex dysfunction. While transcranial direct current stimulation (tDCS) shows promise for improving cognition, the effects of intensified 3mA tDCS protocols on brain physiology are unknown. This project aims to elucidate the neurophysiological and cognitive effects of an intensified prefrontal tDCS protocol in SCZ. METHODS The study is designed as a randomized, double-blind, 2-arm parallel-group, sham-controlled, trial. Forty-eight participants with SCZ and cognitive impairment (measured via a set of executive functions tests) will be randomly allocated to receive either a single session of active (n = 24) or sham (n = 24) tDCS (20-min, 3-mA). The anodal and cathodal electrodes are positioned over the left and right DLPFC respectively. The stimulation occurs concurrently with the working memory task, which is initiated precisely 5 minutes after the onset of tDCS. Structural and resting-state (rs-fMRI) scans are conducted immediately before and after both active and sham tDCS using a 3 Tesla scanner (Siemens Prisma model) equipped with a 64-channel head coil. The primary outcome will be changes in brain activation (measures vis BOLD response) and working memory performance (accuracy, reaction time). DISCUSSION The results of this study are helpful in optimizing tDCS protocols in SCZ and inform us of neurocognitive mechanisms underlying 3 mA stimulation. This study will additionally provide initial safety and efficacy data on a 3 mA tDCS protocol to support larger clinical trials. Positive results could lead to rapid and broader testing of a promising tool for debilitating symptoms that affect the majority of patients with SCZ. The results will be made available through publications in peer-reviewed journals and presentations at national and international conferences.
Collapse
Affiliation(s)
| | - Kiomars Sharifi
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran
| | - Fahimeh Saeed
- Psychosis Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shirin Mokarian Rajabi
- Psychosis Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Negin Zangenehnia
- Psychosis Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zahra Amini
- Psychosis Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zahra Askari
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | | | - Mohammad Ali Salehinejad
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Department of Psychology and Neurosciences, Leibniz-Institut fur Arbeitsforschung, Dortmund, Germany
| |
Collapse
|
2
|
Sloane KL, Hamilton RH. Transcranial Direct Current Stimulation to Ameliorate Post-Stroke Cognitive Impairment. Brain Sci 2024; 14:614. [PMID: 38928614 PMCID: PMC11202055 DOI: 10.3390/brainsci14060614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Post-stroke cognitive impairment is a common and disabling condition with few effective therapeutic options. After stroke, neural reorganization and other neuroplastic processes occur in response to ischemic injury, which can result in clinical improvement through spontaneous recovery. Neuromodulation through transcranial direct current stimulation (tDCS) is a promising intervention to augment underlying neuroplasticity in order to improve cognitive function. This form of neuromodulation leverages mechanisms of neuroplasticity post-stroke to optimize neural reorganization and improve function. In this review, we summarize the current state of cognitive neurorehabilitation post-stroke, the practical features of tDCS, its uses in stroke-related cognitive impairment across cognitive domains, and special considerations for the use of tDCS in the post-stroke patient population.
Collapse
Affiliation(s)
- Kelly L. Sloane
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roy H. Hamilton
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Gurr C, Splittgerber M, Puonti O, Siemann J, Luckhardt C, Pereira HC, Amaral J, Crisóstomo J, Sayal A, Ribeiro M, Sousa D, Dempfle A, Krauel K, Borzikowsky C, Brauer H, Prehn-Kristensen A, Breitling-Ziegler C, Castelo-Branco M, Salvador R, Damiani G, Ruffini G, Siniatchkin M, Thielscher A, Freitag CM, Moliadze V, Ecker C. Neuroanatomical Predictors of Transcranial Direct Current Stimulation (tDCS)-Induced Modifications in Neurocognitive Task Performance in Typically Developing Individuals. J Neurosci 2024; 44:e1372232024. [PMID: 38548336 PMCID: PMC11140687 DOI: 10.1523/jneurosci.1372-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 05/31/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique gaining more attention in neurodevelopmental disorders (NDDs). Due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical markers in typically developing (TD) individuals that may be used for the prediction of individual responses to tDCS. Fifty-seven male and female children received 2 mA anodal and sham tDCS, targeting the left dorsolateral prefrontal cortex (DLPFCleft), right inferior frontal gyrus, and bilateral temporoparietal junction. Response to tDCS was assessed based on task performance differences between anodal and sham tDCS in different neurocognitive tasks (N-back, flanker, Mooney faces detection, attentional emotional recognition task). Measures of cortical thickness (CT) and surface area (SA) were derived from 3 Tesla structural MRI scans. Associations between neuroanatomy and task performance were assessed using general linear models (GLM). Machine learning (ML) algorithms were employed to predict responses to tDCS. Vertex-wise estimates of SA were more closely linked to differences in task performance than measures of CT. Across ML algorithms, highest accuracies were observed for the prediction of N-back task performance differences following stimulation of the DLPFCleft, where 65% of behavioral variance was explained by variability in SA. Lower accuracies were observed for all other tasks and stimulated regions. This suggests that it may be possible to predict individual responses to tDCS for some behavioral measures and target regions. In the future, these models might be extended to predict treatment outcome in individuals with NDDs.
Collapse
Affiliation(s)
- Caroline Gurr
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| | - Maike Splittgerber
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel 24105, Germany
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark
| | - Julia Siemann
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital Bethel, University of Bielefeld, Bielefeld 33617, Germany
| | - Christina Luckhardt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| | - Helena C Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Amaral
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Crisóstomo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Alexandre Sayal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Mário Ribeiro
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Daniela Sousa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig Holstein, Kiel 24105, Germany
| | - Kerstin Krauel
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg 39130, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena- Magdeburg, Magdeburg 39120, Germany
| | - Christoph Borzikowsky
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig Holstein, Kiel 24105, Germany
| | - Hannah Brauer
- Department of Child and Adolescent Psychiatry, Center for Integrative Psychiatry Kiel, University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Alexander Prehn-Kristensen
- Department of Child and Adolescent Psychiatry, Center for Integrative Psychiatry Kiel, University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Carolin Breitling-Ziegler
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg 39130, Germany
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | | | | | | | - Michael Siniatchkin
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital Bethel, University of Bielefeld, Bielefeld 33617, Germany
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel 24105, Germany
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| |
Collapse
|
4
|
Rodríguez A, Amaya-Pascasio L, Gutiérrez-Fernández M, García-Pinteño J, Moreno M, Martínez-Sánchez P. Non-invasive brain stimulation for functional recovery in animal models of stroke: A systematic review. Neurosci Biobehav Rev 2024; 156:105485. [PMID: 38042359 DOI: 10.1016/j.neubiorev.2023.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Motor and cognitive dysfunction occur frequently after stroke, severely affecting a patient´s quality of life. Recently, non-invasive brain stimulation (NIBS) has emerged as a promising treatment option for improving stroke recovery. In this context, animal models are needed to improve the therapeutic use of NIBS after stroke. A systematic review was conducted based on the PRISMA statement. Data from 26 studies comprising rodent models of ischemic stroke treated with different NIBS techniques were included. The SYRCLE tool was used to assess study bias. The results suggest that both repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) improved overall neurological, motor, and cognitive functions and reduced infarct size both in the short- and long-term. For tDCS, it was observed that either ipsilesional inhibition or contralesional stimulation consistently led to functional recovery. Additionally, the application of early tDCS appeared to be more effective than late stimulation, and tDCS may be slightly superior to rTMS. The optimal stimulation protocol and the ideal time window for intervention remain unresolved. Future directions are discussed for improving study quality and increasing their translational potential.
Collapse
Affiliation(s)
- Antonio Rodríguez
- Fundación para la Investigación Biosanitaria de Andalucía Oriental (FIBAO), Torrecárdenas University Hospital, Almería, Spain; Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain
| | - Laura Amaya-Pascasio
- Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - José García-Pinteño
- Fundación para la Investigación Biosanitaria de Andalucía Oriental (FIBAO), Torrecárdenas University Hospital, Almería, Spain; Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain
| | - Margarita Moreno
- Department of Psychology, Faculty of Health Science, University of Almería, Spain; Health Research Center (CEINSA), University of Almería, Spain.
| | - Patricia Martínez-Sánchez
- Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain; Health Research Center (CEINSA), University of Almería, Spain; Department of Nursing, Physiotherapy and Medicine, Faculty of Health Science, University of Almería, Spain.
| |
Collapse
|
5
|
Kim J, Yang Y. Alterations in cognitive function and blood biomarkers following transcranial direct current stimulation in patients with amyloid positron emission tomography-positive Alzheimer's disease: a preliminary study. Front Neurosci 2023; 17:1327886. [PMID: 38178837 PMCID: PMC10765986 DOI: 10.3389/fnins.2023.1327886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Alzheimer's disease (AD), the most common form of dementia, is characterized by progressive cognitive decline. To address this, we conducted a randomized, double-blinded, sham-controlled study to investigate the therapeutic potential of transcranial direct current stimulation (tDCS) on patients with amyloid positron emission tomography (PET)- positive AD. Methods Participants already undergoing pharmacological treatment and testing positive for amyloid PET were divided into Active-tDCS (n = 8) and Sham-tDCS (n = 8) groups. For 12 weeks, participants or their caregivers administered daily bi-frontal tDCS (YMS-201B+, Ybrain Inc., Seongnam, Korea) at home (2 mA, 30 min). Pre- and post-intervention assessments included neuropsychological tests and blood sample measurements for oligomerized beta-amyloid. Results The Active-tDCS group demonstrated significant improvements in cognitive domains such as language abilities, verbal memory, and attention span and in frontal lobe functions compared to the Sham-tDCS group. Furthermore, the Active-tDCS group showed a marked reduction in post-intervention plasma Aβ oligomerization tendency level, suggesting changes in pivotal AD-associated biomarkers. Discussion Our results emphasize the potential therapeutic benefits of tDCS for mild AD patients with amyloid PET positivity and stress the urgency for broader research, considering the global challenges of dementia and the need to pursue innovative therapeutic strategies.
Collapse
Affiliation(s)
- Jinuk Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - YoungSoon Yang
- Department of Neurology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan, Republic of Korea
| |
Collapse
|
6
|
Joshi R, Murali S, Thirugnanasambandam N. Behavioral Validation of Individualized Low-Intensity Transcranial Electrical Stimulation (tES) Protocols. eNeuro 2023; 10:ENEURO.0374-22.2023. [PMID: 38135512 PMCID: PMC10748339 DOI: 10.1523/eneuro.0374-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 12/24/2023] Open
Abstract
Large interindividual variability in the effects of low-intensity transcranial electrical stimulation (tES) considerably limits its potential for clinical applications. It has been recently proposed that individualizing stimulation dose by accounting for interindividual anatomic differences would reduce the variability in electric fields (E-fields) over the targeted cortical site and therefore produce more consistent behavioral outcomes. However, improvement in behavioral outcomes following individualized dose tES has never been compared with that of conventional fixed dose tES. In this study, we aimed to empirically evaluate the effect of individualized dose tES on behavior and further compare it with the effects of sham and fixed dose stimulations. We conducted a single-blinded, sham-controlled, repeated-measures study to examine the impact of transcranial direct current stimulation on motor learning and that of transcranial alternating current stimulation on the working memory of 42 healthy adult individuals. Each participant underwent three sessions of tES, receiving fixed dose, individualized dose, or sham stimulation over the targeted brain region for the entire behavioral task. Our results showed that the individualized dose reduced the variability in E-fields at the targeted cortical surfaces. However, there was no significant effect of tES on behavioral outcomes. We argue that although the stimulation dose and E-field intensity at the targeted cortical site are linearly correlated, the effect of E-fields on behavior seems to be more complex. Effective optimization of tES protocols warrants further research considering both neuroanatomical and functional aspects of behavior.
Collapse
Affiliation(s)
- Rajat Joshi
- National Brain Research Centre (NBRC), Manesar 122 052, India
- Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai 400076, India
| | - Sainath Murali
- National Brain Research Centre (NBRC), Manesar 122 052, India
- Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai 400076, India
| | - Nivethida Thirugnanasambandam
- National Brain Research Centre (NBRC), Manesar 122 052, India
- Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai 400076, India
| |
Collapse
|
7
|
Murphy OW, Hoy KE, Wong D, Bailey NW, Fitzgerald PB, Segrave RA. Effects of transcranial direct current stimulation and transcranial random noise stimulation on working memory and task-related EEG in major depressive disorder. Brain Cogn 2023; 173:106105. [PMID: 37963422 DOI: 10.1016/j.bandc.2023.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVE To compare effects of transcranial direct current stimulation (tDCS) and transcranial random noise stimulation with a direct-current offset (tRNS + DC-offset) on working memory (WM) performance and task-related electroencephalography (EEG) in individuals with Major Depressive Disorder (MDD). METHODS Using a sham-controlled, parallel-groups design, 49 participants with MDD received either anodal tDCS (N = 16), high-frequency tRNS + DC-offset (N = 16), or sham stimulation (N = 17) to the left dorsolateral prefrontal cortex (DLPFC) for 20-minutes. The Sternberg WM task was completed with concurrent EEG recording before and at 5- and 25-minutes post-stimulation. Event-related synchronisation/desynchronisation (ERS/ERD) was calculated for theta, upper alpha, and gamma oscillations during WM encoding and maintenance. RESULTS tDCS significantly increased parieto-occipital upper alpha ERS/ERD during WM maintenance, observed on EEG recorded 5- and 25-minutes post-stimulation. tRNS + DC-offset did not significantly alter WM-related oscillatory activity when compared to sham stimulation. Neither tDCS nor tRNS + DC-offset improved WM performance to a significantly greater degree than sham stimulation. CONCLUSIONS Although tDCS induced persistent effects on WM-related oscillatory activity, neither tDCS nor tRNS + DC-offset enhanced WM performance in MDD. SIGNIFICANCE This reflects the first sham-controlled comparison of tDCS and tRNS + DC-offset in MDD. These findings directly contrast with evidence of tRNS-induced enhancements in WM in healthy individuals.
Collapse
Affiliation(s)
- O W Murphy
- Central Clinical School, Monash University, Clayton, VIC, Australia; Bionics Institute, East Melbourne, VIC, Australia.
| | - K E Hoy
- Central Clinical School, Monash University, Clayton, VIC, Australia; Bionics Institute, East Melbourne, VIC, Australia
| | - D Wong
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - N W Bailey
- Central Clinical School, Monash University, Clayton, VIC, Australia; Monarch Research Institute Monarch Mental Health Group, Sydney, NSW, Australia; School of Medicine and Psychology, Australian National University, Canberra, ACT, Australia
| | - P B Fitzgerald
- Monarch Research Institute Monarch Mental Health Group, Sydney, NSW, Australia; School of Medicine and Psychology, Australian National University, Canberra, ACT, Australia
| | - R A Segrave
- BrainPark, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| |
Collapse
|
8
|
Indahlastari A, Dunn AL, Pedersen S, Kraft JN, Someya S, Albizu A, Woods AJ. Impact of electrode selection on modeling tDCS in the aging brain. Front Hum Neurosci 2023; 17:1274114. [PMID: 38077189 PMCID: PMC10704166 DOI: 10.3389/fnhum.2023.1274114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024] Open
Abstract
Background Person-specific computational models can estimate transcranial direct current stimulation (tDCS) current dose delivered to the brain and predict treatment response. Artificially created electrode models derived from virtual 10-20 EEG measurements are typically included in these models as current injection and removal sites. The present study directly compares current flow models generated via artificially placed electrodes ("artificial" electrode models) against those generated using real electrodes acquired from structural MRI scans ("real" electrode models) of older adults. Methods A total of 16 individualized head models were derived from cognitively healthy older adults (mean age = 71.8 years) who participated in an in-scanner tDCS study with an F3-F4 montage. Visible tDCS electrodes captured within the MRI scans were segmented to create the "real" electrode model. In contrast, the "artificial" electrodes were generated in ROAST. Percentage differences in current density were computed in selected regions of interest (ROIs) as examples of stimulation targets within an F3-F4 montage. Main results We found significant inverse correlations (p < 0.001) between median current density values and brain atrophy in both electrode pipelines with slightly larger correlations found in the artificial pipeline. The percent difference (PD) of the electrode distances between the two models predicted the median current density values computed in the ROIs, gray, and white matter, with significant correlation between electrode distance PDs and current density. The correlation between PD of the contact areas and the computed median current densities in the brain was found to be non-significant. Conclusions This study demonstrates potential discrepancies in generated current density models using real versus artificial electrode placement when applying tDCS to an older adult cohort. Our findings strongly suggest that future tDCS clinical work should consider closely monitoring and rigorously documenting electrode location during stimulation to model tDCS montages as closely as possible to actual placement. Detailed physical electrode location data may provide more precise information and thus produce more robust tDCS modeling results.
Collapse
Affiliation(s)
- Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Ayden L. Dunn
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Samantha Pedersen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Jessica N. Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Shizu Someya
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Adam J. Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Sehatpour P, Kreither J, Lopez-Calderon J, Shastry AM, De Baun HM, Martinez A, Javitt DC. Network-level mechanisms underlying effects of transcranial direct current stimulation (tDCS) on visuomotor learning in schizophrenia. Transl Psychiatry 2023; 13:360. [PMID: 37993420 PMCID: PMC10665365 DOI: 10.1038/s41398-023-02656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
Motor learning is a fundamental skill to our daily lives. Dysfunction in motor performance in schizophrenia (Sz) has been associated with poor social and functional outcomes. Transcranial direct current stimulation (tDCS), a non-invasive electrical brain stimulation approach, can influence underlying brain function with potential for improving motor learning in Sz. We used a well-established Serial Reaction Time Task (SRTT) to study motor learning, in combination with simultaneous tDCS and EEG recording, to investigate mechanisms of motor and procedural learning deficits in Sz, and to develop refined non-invasive brain stimulation approaches to improve neurocognitive dysfunction. We recruited 27 individuals with Sz and 21 healthy controls (HC). Individuals performed the SRTT task as they received sham and active tDCS with simultaneous EEG recording. Reaction time (RT), neuropsychological, and measures of global functioning were assessed. SRTT performance was significantly impaired in Sz and showed significant correlations with motor-related and working memory measures as well as global function. Source-space time-frequency decomposition of EEG showed beta-band coherence across supplementary-motor, primary-motor and visual cortex forming a network involved in SRTT performance. Motor-cathodal and visual-cathodal stimulations resulted in significant modulation in coherence particularly across the motor-visual nodes of the network accompanied by significant improvement in motor learning in both controls and patients. Here, we confirm earlier reports of SRTT impairment in Sz and demonstrate significant reversal of the deficits with tDCS. The findings support continued development of tDCS for enhancement of plasticity-based interventions in Sz, as well as source-space EEG analytic approaches for evaluating underlying neural mechanisms.
Collapse
Affiliation(s)
- Pejman Sehatpour
- Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA.
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Johanna Kreither
- PIA Ciencias Cognitivas, Centro de Investigación en Ciencias Cognitivas, Facultad de Psicología, and Laboratorio de Neurofisiología, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | | | - Adithya M Shastry
- Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Heloise M De Baun
- Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Antigona Martinez
- Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Daniel C Javitt
- Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA.
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| |
Collapse
|
10
|
Gwon SH, Lee HJ, Brian Ahn H. Transcranial Direct Current Stimulation in Nicotine Use: Nursing Implications for Patient Outcomes. J Addict Nurs 2023; 34:E74-E78. [PMID: 37669347 DOI: 10.1097/jan.0000000000000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
ABSTRACT Tobacco use is a leading cause of cancer, cardiovascular and respiratory disease, and preventable death in the United States. The brains of individuals with nicotine dependence are characterized by damaged mesolimbic pathways in the medial portion of the limbic and frontal lobes, creating positive reinforcing mechanisms. Transcranial direct current stimulation (tDCS) targets this neuroadaptation to improve smokers' nicotine-related outcomes, such as craving and smoking behavior, by depolarizing or hyperpolarizing the neurons of the brain. Recent literature reported promising outcomes in smokers after tDCS treatment interventions. tDCS has great potential for clinical nursing research for tobacco control given its multiple methodological advantages and few disadvantages. Nurse researchers can consider individualized and home-based tDCS interventions for community-based tobacco control research and may need to consider objective outcome measures (e.g., cotinine in urine) and addiction-related cognitive variables (e.g., self-regulation). Users of electronic nicotine delivery systems also need to be considered as participants in tDCS interventions. Additional considerations for nursing research are discussed.
Collapse
|
11
|
Javitt D, Sehatpour P, Kreither J, Lopez-Calderon J, Shastry A, De-Baun H, Martinez A. Network-level mechanisms underlying effects of transcranial direct current stimulation (tDCS) on visuomotor learning impairments in schizophrenia. RESEARCH SQUARE 2023:rs.3.rs-2711867. [PMID: 37066410 PMCID: PMC10104242 DOI: 10.21203/rs.3.rs-2711867/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Motor learning is a fundamental skill to our daily lives. Dysfunction in motor performance in schizophrenia (Sz) is associated with poor social and functional outcomes, but nevertheless remains understudied relative to other neurocognitive domains. Moreover, transcranial direct current stimulation (tDCS) can influence underlying brain function in Sz and may be especially useful in enhancing local cortical plasticity, but underlying neural mechanisms remain incompletely understood. Here, we evaluated performance of Sz individuals on the Serial Reaction Time Task (SRTT), which has been extensively used in prior tDCS research, in combination with concurrent tDCS and EEG source localization first to evaluate the integrity of visuomotor learning in Sz relative to other cognitive domains and second to investigate underlying neural mechanisms. Twenty-seven individuals with Sz and 21 healthy controls (HC) performed the SRTT task as they received sham or active tDCS and simultaneous EEG recording. Measures of motor, neuropsychological and global functioning were also assessed. Impaired SRTT performance correlated significantly with deficits in motor performance, working memory, and global functioning. Time-frequency ("Beamformer") EEG source localization showed beta-band coherence across supplementary-motor, primary-motor and visual cortex regions, with reduced visuomotor coherence in Sz relative to HC. Cathodal tDCS targeting both visual and motor regions resulted in significant modulation in coherence particularly across the motor-visual nodes of the network accompanied by significant improvement in motor learning in both controls and patients. Overall, these findings demonstrate the utility of the SRTT to study mechanisms of visuomotor impairment in Sz and demonstrate significant tDCS effects on both learning and connectivity when applied over either visual or motor regions. The findings support continued study of dysfunctional dorsal-stream visual connectivity and motor plasticity as components of cognitive impairment in Sz, of local tDCS administration for enhancement of plasticity, and of source-space EEG-based biomarkers for evaluation of underlying neural mechanisms.
Collapse
Affiliation(s)
- Daniel Javitt
- Columbia University Medical Center/Nathan Kline Institute
| | | | | | | | | | | | | |
Collapse
|
12
|
Burton CZ, Garnett EO, Capellari E, Chang SE, Tso IF, Hampstead BM, Taylor SF. Combined Cognitive Training and Transcranial Direct Current Stimulation in Neuropsychiatric Disorders: A Systematic Review and Meta-analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:151-161. [PMID: 36653210 PMCID: PMC10823589 DOI: 10.1016/j.bpsc.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/25/2022] [Accepted: 09/19/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Treatments for cognitive dysfunction in neuropsychiatric conditions are urgently needed. Cognitive training and transcranial direct current stimulation (tDCS) hold promise, and there is growing interest in combined or multimodal treatments, though studies to date have had small samples and inconsistent results. METHODS A systematic review and meta-analysis was completed. Retained studies included cognitive training combined with active or sham tDCS in a neuropsychiatric population and reported a posttreatment cognitive outcome. Meta-analyses included effect sizes comparing cognitive training plus active tDCS and cognitive training plus sham tDCS in 5 cognitive domains. Risk of bias in included studies and across studies was explored. RESULTS Fifteen studies were included: 10 in neurodegenerative disorders and 5 in psychiatric disorders (n = 629). There were several tDCS montages, though two-thirds of studies placed the anode over the left dorsolateral prefrontal cortex. A wide variety of cognitive training types and outcome measures were reported. There was a small, statistically significant effect of combined treatment on measures of attention/working memory, as well as small and non-statistically significant effects favoring combined treatment on global cognition and language. There was no evidence of bias in individual studies but some evidence of nonreporting or small-study bias across studies. CONCLUSIONS These results may provide preliminary support for the efficacy of combined cognitive training and tDCS on measures of attention/working memory. More data are needed, particularly via studies that explicitly align the cognitive ability of interest, stimulation target, training type, and outcome measures.
Collapse
Affiliation(s)
- Cynthia Z Burton
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.
| | - Emily O Garnett
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Emily Capellari
- Taubman Health Sciences Library, University of Michigan, Ann Arbor, Michigan
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Ivy F Tso
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Benjamin M Hampstead
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Mental Health Service, U.S. Department of Veterans Affairs, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
13
|
Huang Y, Tan Y, Hao H, Li J, Liu C, Hu Y, Wu Y, Ding Q, Zhou Y, Li Y, Guan Y. Treatment of primary progressive aphasia by repetitive transcranial magnetic stimulation: a randomized, double-blind, placebo-controlled study. J Neural Transm (Vienna) 2023; 130:111-123. [PMID: 36662282 DOI: 10.1007/s00702-023-02594-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
To evaluate the efficacy of high-frequency repetitive transcranial magnetic stimulation (rTMS) in patients with primary progressive aphasia (PPA). In this randomized, double-blind trial in a single center, patients who were diagnosed with PPA were randomly assigned to receive either real rTMS or sham rTMS treatment. High-frequency rTMS was delivered to the dorsolateral prefrontal cortex (DLPFC). The primary outcome was the change in Boston Naming Test (BNT) score at each follow-up compared to the baseline. The secondary outcomes included change in CAL (Communicative Activity Log) and WAB (Western Aphasia Battery) compared to baseline and neuropsychological assessments. Forty patients (16 with nonfluent, 12 with semantic and 12 with logopenic variant PPA) were enrolled and randomly assigned to the rTMS or sham rTMS group, with 20 patients in each group. Thirty-five patients (87.5%) completed a 6-month follow-up. Compared to the sham rTMS group, the BNT improvement and WAB improvement in the real rTMS group were significantly higher. These significant improvements could be observed throughout the entire 6-month follow-up. At 1 month and 3 months after treatment, CAL improvements of real rTMS were significantly higher than sham rTMS. The improvements in BNT, CAL and WAB did not significantly differ among PPA variants. No significant improvement in neuropsychological assessments was observed. High-frequency rTMS delivered to DLPFC improved language functions in patients with different PPA variants. The efficacy was still observed after 6 months of treatment. Trial registration: NCT04431401 ( https://clinicaltrials.gov/ct2/show/NCT04431401 ).
Collapse
Affiliation(s)
- Yangyu Huang
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Ying Tan
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Honglin Hao
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Jing Li
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
- Department of Neurology, The First Hospital of Tsinghua University, Beijing, China
| | - Caiyan Liu
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Youfang Hu
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yimin Wu
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Qingyun Ding
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yan Zhou
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yanfeng Li
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yuzhou Guan
- Department of Neurology, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
14
|
Satorres E, Escudero Torrella J, Real E, Pitarque A, Delhom I, Melendez JC. Home-based transcranial direct current stimulation in mild neurocognitive disorder due to possible Alzheimer's disease. A randomised, single-blind, controlled-placebo study. Front Psychol 2023; 13:1071737. [PMID: 36660288 PMCID: PMC9844131 DOI: 10.3389/fpsyg.2022.1071737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/02/2022] [Indexed: 01/04/2023] Open
Abstract
Introduction Mild neurocognitive disorder (mNCD), a pre-dementia stage close to Mild Cognitive Impairment, shows a progressive and constant decline in the memory domain. Of the non-pharmacological therapeutic interventions that may help to decelerate the neurodegenerative progress, transcranial direct current stimulation (tDCS) shows beneficial effects on the learning curve, immediate recall, immediate verbal memory and executive functions. The purpose of this research was to study the effect of tDCS on general cognition, immediate and delayed memory and executive functions by comparing an active group with a placebo group of mNCD patients. Methods Participants were 33 mNCD due to possible AD, randomly assigned to two groups: 17 active tDCS and 16 placebo tDCS. Ten sessions of tDCS were conducted over the left dorsolateral prefrontal cortex. Several neuropsychological scales were administered to assess the primary outcome measures of general cognitive function, immediate and delayed memory and learning ability, whereas the secondary outcome measures included executive function tests. All participants were evaluated at baseline and at the end of the intervention. Mixed ANOVAs were performed. Results Significant effects were obtained on general cognitive function, immediate and delayed memory and learning ability, with increases in scores in the active tDCS group. However, there were no significant effects on executive function performance. Conclusion The present study demonstrated the effectiveness of tDCS in an active tDCS group, compared to a placebo group, in improving general cognition and immediate and delayed memory, as previous studies found. Taken together, our data suggest that tDCS is a simple, painless, reproducible and easy technique that is useful for treating cognitive alterations found in neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Elena Real
- Faculty of Psychology, University of Valencia, Valencia, Spain
| | | | - Iraida Delhom
- Faculty of Psychology, Jaume I University, Castellón de La Plana, Spain
| | - Juan C. Melendez
- Faculty of Psychology, University of Valencia, Valencia, Spain,*Correspondence: Juan C. Melendez,
| |
Collapse
|
15
|
Martin DM, Berryhill ME, Dielenberg V. Can brain stimulation enhance cognition in clinical populations? A critical review. Restor Neurol Neurosci 2022:RNN211230. [PMID: 36404559 DOI: 10.3233/rnn-211230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many psychiatric and neurological conditions are associated with cognitive impairment for which there are very limited treatment options. Brain stimulation methodologies show promise as novel therapeutics and have cognitive effects. Electroconvulsive therapy (ECT), known more for its related transient adverse cognitive effects, can produce significant cognitive improvement in the weeks following acute treatment. Transcranial magnetic stimulation (TMS) is increasingly used as a treatment for major depression and has acute cognitive effects. Emerging research from controlled studies suggests that repeated TMS treatments may additionally have cognitive benefit. ECT and TMS treatment cause neurotrophic changes, although whether these are associated with cognitive effects remains unclear. Transcranial electrical stimulation methods including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are in development as novel treatments for multiple psychiatric conditions. These treatments may also produce cognitive enhancement particularly when stimulation occurs concurrently with a cognitive task. This review summarizes the current clinical evidence for these brain stimulation treatments as therapeutics for enhancing cognition. Acute, or short-lasting, effects as well as longer-term effects from repeated treatments are reviewed, together with potential putative neural mechanisms. Areas of future research are highlighted to assist with optimization of these approaches for enhancing cognition.
Collapse
Affiliation(s)
- Donel M. Martin
- Sydney Neurostimulation Centre, Discipline of Psychiatry and Mental Health UNSW, Black Dog Institute, Sydney, New South Wales, Australia
| | - Marian E. Berryhill
- Memory and Brain Lab, Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, University of Nevada, Reno, NV, USA
| | - Victoria Dielenberg
- Sydney Neurostimulation Centre, Discipline of Psychiatry and Mental Health UNSW, Black Dog Institute, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
The effects of aerobic exercise and transcranial direct current stimulation on cognitive function in older adults with and without cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev 2022; 81:101738. [PMID: 36162707 DOI: 10.1016/j.arr.2022.101738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Aerobic exercise (AE) may slow age-related cognitive decline. However, such cognition-sparing effects are not uniform across cognitive domains and studies. Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation and is also emerging as a potential alternative to pharmaceutical therapies. Like AE, the effectiveness of tDCS is also inconsistent for reducing cognitive impairment in ageing. The unexplored possibility exists that pairing AE and tDCS could produce synergistic effects and reciprocally augment cognition-improving effects in older individuals with and without cognitive impairments. Previous research found such synergistic effects on cognition when cognitive training is paired with tDCS in older individuals with and without mild cognitive impairment (MCI) or dementia. AIM The purpose of this systematic review with meta-analysis was to explore if pairing AE with tDCS could augment singular effects of AE and tDCS on global cognition (GC), working memory (WM) and executive function (EF) in older individuals with or without MCI and dementia. METHODS Using a PRISMA-based systematic review, we compiled studies that examined the effects of AE alone, tDCS alone, and AE and tDCS combined on cognitive function in older individuals with and without mild cognitive impairment (MCI) or dementia. Using a PICOS approach, we systematically searched PubMed, Scopus and Web of Science searches up to December 2021, we focused on 'MoCA', 'MMSE', 'Mini-Cog' (measures) and 'cognition', 'cognitive function', 'cognitive', 'cognitive performance', 'executive function', 'executive process', 'attention', 'memory', 'memory performance' (outcome terms). We included only randomized controlled trials (RTC) in humans if available in English full text over the past 20 years, with participants' age over 60. We assessed the methodological quality of the included studies (RTC) by the Physiotherapy Evidence Database (PEDro) scale. RESULTS Overall, 68 studies were included in the meta-analyses. AE (ES = 0.56 [95% CI: 0.28-0.83], p = 0.01) and tDCS (ES = 0.69 [95% CI: 0.12-1.26], p = 0.02) improved GC in all three groups of older adults combined (healthy, MCI, demented). In healthy population, AE improved GC (ES = 0.46 [95% CI: 0.22-0.69], p = 0.01) and EF (ES = 0.27 [95% CI: 0.05-0.49], p = 0.02). AE improved GC in older adults with MCI (ES = 0.76 [95% CI: 0.21-1.32], p = 0.01). tDCS improved GC (ES = 0.69 [90% CI: 0.12-1.26], p = 0.02), all three cognitive function (GC, WM and EF) combined in older adults with dementia (ES = 1.12 [95% CI: 0.04-2.19], p = 0.04) and improved cognitive function in older adults overall (ES = 0.69 [95% CI: 0.20-1,18], p = 0.01). CONCLUSION Our systematic review with meta-analysis provided evidence that beyond the cardiovascular and fitness benefits of AE, pairing AE with tDCS may have the potential to slow symptom progression of cognitive decline in MCI and dementia. Future studies will examine the hypothesis of this present review that a potentiating effect would incrementally improve cognition with increasing severity of cognitive impairment.
Collapse
|
17
|
Subramaniam A, Liu S, Lochhead L, Appelbaum LG. A systematic review of transcranial direct current stimulation on eye movements and associated psychological function. Rev Neurosci 2022; 34:349-364. [PMID: 36310385 DOI: 10.1515/revneuro-2022-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022]
Abstract
Abstract
The last decades have seen a rise in the use of transcranial direct current stimulation (tDCS) approaches to modulate brain activity and associated behavior. Concurrently, eye tracking (ET) technology has improved to allow more precise quantitative measurement of gaze behavior, offering a window into the mechanisms of vision and cognition. When combined, tDCS and ET provide a powerful system to probe brain function and measure the impact on visual function, leading to an increasing number of studies that utilize these techniques together. The current pre-registered, systematic review seeks to describe the literature that integrates these approaches with the goal of changing brain activity with tDCS and measuring associated changes in eye movements with ET. The literature search identified 26 articles that combined ET and tDCS in a probe-and-measure model and are systematically reviewed here. All studies implemented controlled interventional designs to address topics related to oculomotor control, cognitive processing, emotion regulation, or cravings in healthy volunteers and patient populations. Across these studies, active stimulation typically led to changes in the number, duration, and timing of fixations compared to control stimulation. Notably, half the studies addressed emotion regulation, each showing hypothesized effects of tDCS on ET metrics, while tDCS targeting the frontal cortex was widely used and also generally produced expected modulation of ET. This review reveals promising evidence of the impact of tDCS on eye movements and associated psychological function, offering a framework for effective designs with recommendations for future studies.
Collapse
Affiliation(s)
- Ashwin Subramaniam
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
| | - Sicong Liu
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liam Lochhead
- Department of Psychiatry, University of California, San Diego, CA 92093, USA
| | - Lawrence Gregory Appelbaum
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
- Department of Psychiatry, University of California, San Diego, CA 92093, USA
| |
Collapse
|
18
|
Ma M, Xu Y, Xiang Z, Yang X, Guo J, Zhao Y, Hou Z, Feng Y, Chen J, Yuan Y. Functional whole-brain mechanisms underlying effects of tDCS on athletic performance of male rowing athletes revealed by resting-state fMRI. Front Psychol 2022; 13:1002548. [PMID: 36267058 PMCID: PMC9576861 DOI: 10.3389/fpsyg.2022.1002548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that applied to modulate brain activity and enhance motor recovery. However, the neurobiological substrates underlying the effects of tDCS on brain function remain poorly understood. This study aimed to investigate the central mechanisms of tDCS on improving the athletic performance of male rowing athletes. Methods Twelve right-handed male professional rowing athletes received tDCS over the left primary motor cortex while undergoing regular training. The resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired before and after tDCS. Measures of amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) were calculated and compared between baseline and follow-up, as well as topological measures including global and local efficiency of functional brain networks constructed by graph theoretical analysis. Results Male rowing athletes showed increased isokinetic muscle strength of the left knee and left shoulder after tDCS. Increased ALFF values were found in the right precentral gyrus of male rowing athletes after tDCS when compared with those before tDCS. In addition, male rowing athletes showed increased ReHo values in the left paracentral lobule following tDCS. Moreover, increased nodal global efficiency was identified in the left inferior frontal gyrus (opercular part) of male rowing athletes after tDCS. Conclusion The findings suggested that simultaneous tDCS-induced excitation over the primary motor cortex might potentially improve the overall athletic performance in male rowing athletes through the right precentral gyrus and left paracentral lobule, as well as left inferior frontal gyrus.
Collapse
Affiliation(s)
- Ming Ma
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yan Xu
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziliang Xiang
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Yang
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jianye Guo
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yong Zhao
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yuxu Feng
- Department of Orthopaedics, Pukou Central Hospital, PuKou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
- Yuxu Feng,
| | - Jianhuai Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jianhuai Chen,
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- *Correspondence: Yonggui Yuan,
| |
Collapse
|
19
|
Luo YP, Liu Z, Wang C, Yang XF, Wu XY, Tian XL, Wen HZ. Anodal transcranial direct current stimulation alleviates cognitive impairment in an APP/PS1 model of Alzheimer's disease in the preclinical stage. Neural Regen Res 2022; 17:2278-2285. [PMID: 35259850 PMCID: PMC9083165 DOI: 10.4103/1673-5374.337053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Anodal transcranial direct current stimulation (AtDCS) has been shown to alleviate cognitive impairment in an APP/PS1 model of Alzheimer's disease in the preclinical stage. However, this enhancement was only observed immediately after AtDCS, and the long-term effect of AtDCS remains unknown. In this study, we treated 26-week-old mouse models of Alzheimer's disease in the preclinical stage with 10 AtDCS sessions or sham stimulation. The Morris water maze, novel object recognition task, and novel object location test were implemented to evaluate spatial learning memory and recognition memory of mice. Western blotting was used to detect the relevant protein content. Morphological changes were observed using immunohistochemistry and immunofluorescence staining. Six weeks after treatment, the mice subjected to AtDCS sessions had a shorter escape latency, a shorter path length, more platform area crossings, and spent more time in the target quadrant than sham-stimulated mice. The mice subjected to AtDCS sessions also performed better in the novel object recognition and novel object location tests than sham-stimulated mice. Furthermore, AtDCS reduced the levels of amyloid-β42 and glial fibrillary acidic protein, a marker of astrocyte activation, and increased the level of neuronal marker NeuN in hippocampal tissue. These findings suggest that AtDCS can improve the spatial learning and memory abilities and pathological state of an APP/PS1 mouse model of Alzheimer's disease in the preclinical stage, with improvements that last for at least 6 weeks.
Collapse
Affiliation(s)
- Yin-Pei Luo
- Chongqing Key Laboratory of Neurobiology, Department of Neurobiology, School of Basic Medicine, Army Medical University; Chongqing Medical Electronics Engineering Technology Research Center, Laboratory of Neural Regulation and Rehabilitation Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zhi Liu
- Department of Histology and Embryology, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Cong Wang
- Chongqing Medical Electronics Engineering Technology Research Center, Laboratory of Neural Regulation and Rehabilitation Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiu-Fang Yang
- Chongqing Medical Electronics Engineering Technology Research Center, Laboratory of Neural Regulation and Rehabilitation Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiao-Ying Wu
- Chongqing Medical Electronics Engineering Technology Research Center, Laboratory of Neural Regulation and Rehabilitation Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xue-Long Tian
- Chongqing Medical Electronics Engineering Technology Research Center, Laboratory of Neural Regulation and Rehabilitation Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hui-Zhong Wen
- Chongqing Key Laboratory of Neurobiology, Department of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
20
|
Sansevere KS, Wooten T, McWilliams T, Peach S, Hussey EK, Brunyé TT, Ward N. Self-reported Outcome Expectations of Non-invasive Brain Stimulation Are Malleable: a Registered Report that Replicates and Extends Rabipour et al. (2017). JOURNAL OF COGNITIVE ENHANCEMENT 2022. [DOI: 10.1007/s41465-022-00250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Horan WP, Catalano LT, Green MF. An Update on Treatment of Cognitive Impairment Associated with Schizophrenia. Curr Top Behav Neurosci 2022; 63:407-436. [PMID: 35915386 DOI: 10.1007/7854_2022_382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cognitive impairment associated with schizophrenia (CIAS) is widely regarded as a critically important treatment target for schizophrenia. Despite major efforts and a number of promising findings, we do not yet have an approved drug for CIAS. Similarly, promising cognitive remediation approaches are limited in their ability to help patients achieve real-world functional gains on a wide scale. This article provides an update and critical evaluation of recent treatment development activities for CIAS. First, we provide update on pharmacological approaches, which include a glutamatergic drug that is currently in Phase III trials for CIAS, and discuss factors that may have impacted past efforts to identify efficacious drugs. Second, we review positive findings, limitations, and current trends involving cognitive remediation approaches. Third, we consider newer transdiagnostic approaches aimed at looking beyond, or identifying more homogenous subgroups within, the diagnostic category schizophrenia to advance treatment development. Despite its many challenges, treatment development for CIAS remains a major public health issue and research continues to push forward on several encouraging fronts.
Collapse
Affiliation(s)
- William P Horan
- WCG VeraSci, Durham, NC, USA. .,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Lauren T Catalano
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Michael F Green
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
22
|
Effects of transcranial direct current stimulation on brain changes and relation to cognition in patients with schizophrenia: a fMRI study. Brain Imaging Behav 2022; 16:2061-2071. [PMID: 35781191 DOI: 10.1007/s11682-022-00676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 01/10/2023]
Abstract
We studied brain changes during an N-back task before and after 10 sessions of transcranial direct current stimulation (tDCS) and its relation to cognitive changes. This was a double-blind, sham-controlled, randomized study of tDCS in 27 patients with schizophrenia. They performed an N-back task in a 3 T scanner before and after receiving the 10 tDCS sessions. Cognitive performance outside the fMRI session was assessed using the MATRICS Consensus Cognitive Battery and other tests at baseline and several time points after 10 sessions of tDCS. During the N-back task performed during fMRI scans, comparing the 0-back vs. the 2-back task, the active tDCS group demonstrated a significantly increased activation in the right fusiform, left middle frontal, left inferior frontal gyrus (opercular part) and right inferior frontal gyrus (triangular part) and reduced activation in the left posterior cingulum gyrus with most of these results primarily due to increases in activation during the 0-back rather than 2-back task. There were also significant positive or negative correlations between some of the brain changes and cognitive performance. tDCS modulated prefrontal activation at low working memory load or attention mode, but default mode network at higher working memory load. Changes in brain activation measured during the N-back task were correlated with some dimensions of cognitive function immediately after 10 tDCS sessions and at follow-up times. The results support tDCS could offer a potential novel approach for modulating cortical activity and its relation to cognitive function.
Collapse
|
23
|
Koshikawa Y, Nishida K, Yamane T, Yoshimura M, Onohara A, Ueda S, Ishii R, Kinoshita T, Morishima Y. Disentangling cognitive inflexibility in major depressive disorder: A transcranial direct current stimulation study. Psychiatry Clin Neurosci 2022; 76:329-337. [PMID: 35426207 DOI: 10.1111/pcn.13364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/27/2022] [Accepted: 04/10/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cognitive dysfunction is a persistent residual symptom in major depressive disorders (MDDs) that hinders social and occupational recovery. Cognitive inflexibility is a typical cognitive dysfunction in MDD and refers to difficulty in switching tasks, which requires two subcomponents: forgetting an old task and adapting to a new one. Here, we aimed to disentangle the subcomponents of cognitive inflexibility in MDD and investigate whether they can be improved by transcranial direct current stimulation (tDCS) on the prefrontal cortex. METHODS The current study included 20 patients with MDD (seven females) and 22 age-matched healthy controls (HCs) (seven females). The participants received anodal tDCS on either the dorsomedial prefrontal cortex (DMPFC) or dorsolateral prefrontal cortex (DLPFC) in a crossover design. Before and after the application of tDCS, the participants performed a modified Wisconsin Card Sorting Test, in which the task-switching rules were explicitly described and proactive interference from a previous task rule was occasionally released. RESULTS We found that the behavioral cost of a task switch was increased in patients with MDD, but that of proactive interference was comparable between patients with MDD and HCs. The response time for anodal DMPFC tDCS was decreased compared with that for anodal tDCS on the DLPFC in MDD. CONCLUSIONS These findings suggest that cognitive inflexibility in MDD is primarily explained by the difficulty to adapt to a new task and environment, and that tDCS on the DMPFC improves behavioral performance during cognitively demanding tasks that require conflict resolution.
Collapse
Affiliation(s)
- Yosuke Koshikawa
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Keiichiro Nishida
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Tomonari Yamane
- Graduate School of Psychology, Kansai University, Osaka, Japan
| | - Masafumi Yoshimura
- Department of Occupational Therapy, Faculty of Rehabilitation, Kansai Medical University, Osaka, Japan
| | - Ai Onohara
- Social Welfare Corporation Uminoko Gakuen Ikejimaryo, Osaka, Japan
| | - Satsuki Ueda
- Faculty of Clinical Psychology, Kyoto Bunkyo University, Kyoto, Japan
| | - Ryouhei Ishii
- Osaka Metropolitan University Graduate School of Rehabilitation Science, Osaka, Japan
| | | | - Yosuke Morishima
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Gu J, Li D, Li Z, Guo Y, Qian F, Wang Y, Tang L. The Effect and Mechanism of Transcranial Direct Current Stimulation on Episodic Memory in Patients With Mild Cognitive Impairment. Front Neurosci 2022; 16:811403. [PMID: 35250453 PMCID: PMC8891804 DOI: 10.3389/fnins.2022.811403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the efficacy of transcranial direct current stimulation (tDCS) on episodic memory in patients with mild cognitive impairment (MCI) and analyze the neural mechanism of tDCS therapy from the perspective of neuroelectrophysiological parameters. METHODS Forty MCI patients were recruited and randomly divided into a sham group (n = 20) and a tDCS group (n = 20). Patients in the tDCS group were treated with a tDCS instrument for 20 min, once a day, for 5 days. Patients in the sham group were treated with sham stimulus. Montreal Cognitive Assessment Scale (MoCA), Wechsler Memory Scale (WMS), and event-related potential (ERP) (amplitude and latency of P300 wave) were comparatively assessed between the two groups at pre-treatment, 5 days and 4 weeks post-treatment points. RESULTS The two groups showed no significant difference in any of the assessed parameters at pre-treatment (P > 0.05). At 5 days post-treatment, memory quotient (MQ) score in the tDCS group significantly increased (P < 0.05), scores of picture memory, visual regeneration, logical memory, memory span, visual regeneration-delay, and logical memory-delay were significantly increased compared to pre-treatment (P < 0.01). The P300 amplitude significantly increased, and its latency significantly shortened (P < 0.01). Four weeks post-treatment, the scores of MQ and visual regeneration-delay in the tDCS group increased, compared to pre-treatment (P < 0.05); picture memory, visual regeneration, logical memory, memory span, and logical memory-delay improved (P < 0.01); the P300 amplitude increased, and its latency shortened (P < 0.01). At 5 days and 4 weeks post-treatment points, the tDCS group, compared with the sham group (P < 0.01), exhibited greater scores of MQ, picture memory, visual regeneration, logical memory, memory span, visual regeneration-delay, and logical memory-delay, increased P300 amplitude, and shortened P300 latency. Similarly, the tDCS group showed higher MQ scores at 5 days post-treatment (P < 0.05) and 4 weeks post-treatment (P < 0.01). Before treatment and after 5 days of treatment, P300 amplitude and latency difference were positively correlated with MQ difference (P < 0.05). CONCLUSION tDCS improved episodic memory in MCI patients, and the effect lasted for 4 weeks. Changes in ERP (P300) suggested that tDCS could promote changes in brain function.
Collapse
Affiliation(s)
- Jun Gu
- Department of Mental Rehabilitation, Wuxi Mental Health Center, Wuxi, China
| | - Da Li
- Department of Mental Rehabilitation, Wuxi Mental Health Center, Wuxi, China
| | - Zhaohui Li
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Yuan Guo
- Psychometric Laboratory, Wuxi Mental Health Center, Wuxi, China
| | - Fuqiang Qian
- Medical Administration Department, Wuxi Mental Health Center, Wuxi, China
| | - Ying Wang
- Department of Psychiatry, Wuxi Mental Health Center, Wuxi, China
| | - Li Tang
- Department of Psychiatry, Wuxi Mental Health Center, Wuxi, China
| |
Collapse
|
25
|
Ikeda T, Nishida K, Yoshimura M, Ishii R, Tsukuda B, Bunai T, Ouchi Y, Kikuchi M. Toward the Development of tES- Based Telemedicine System: Insights From the Digital Transformation and Neurophysiological Evidence. Front Psychiatry 2022; 13:782144. [PMID: 35898624 PMCID: PMC9309473 DOI: 10.3389/fpsyt.2022.782144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan.,United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Keiichiro Nishida
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Masafumi Yoshimura
- Department of Occupational Therapy, Faculty of Rehabilitation Kansai Medical University, Osaka, Japan.,Department of Neuropsychiatry, Kansai Medical University Medical Center, Osaka, Japan
| | - Ryouhei Ishii
- Occupational Therapy Major, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino, Japan
| | - Banri Tsukuda
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Tomoyasu Bunai
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsuru Kikuchi
- United Graduate School of Child Development, Osaka University, Osaka, Japan.,Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
26
|
Vita A, Gaebel W, Mucci A, Sachs G, Barlati S, Giordano GM, Nibbio G, Nordentoft M, Wykes T, Galderisi S. European Psychiatric Association guidance on treatment of cognitive impairment in schizophrenia. Eur Psychiatry 2022; 65:e57. [PMID: 36059103 PMCID: PMC9532218 DOI: 10.1192/j.eurpsy.2022.2315] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Although cognitive impairment is a core symptom of schizophrenia related to poorer outcomes in different functional domains, it still remains a major therapeutic challenge. To date, no comprehensive treatment guidelines for cognitive impairment in schizophrenia are implemented. Methods The aim of the present guidance paper is to provide a comprehensive meta-review of the current available evidence-based treatments for cognitive impairment in schizophrenia. The guidance is structured into three sections: pharmacological treatment, psychosocial interventions, and somatic treatments. Results Based on the reviewed evidence, this European Psychiatric Association guidance recommends an appropriate pharmacological management as a fundamental starting point in the treatment of cognitive impairment in schizophrenia. In particular, second-generation antipsychotics are recommended for their favorable cognitive profile compared to first-generation antipsychotics, although no clear superiority of a single second-generation antipsychotic has currently been found. Anticholinergic and benzodiazepine burdens should be kept to a minimum, considering the negative impact on cognitive functioning. Among psychosocial interventions, cognitive remediation and physical exercise are recommended for the treatment of cognitive impairment in schizophrenia. Noninvasive brain stimulation techniques could be taken into account as add-on therapy. Conclusions Overall, there is definitive progress in the field, but further research is needed to develop specific treatments for cognitive impairment in schizophrenia. The dissemination of this guidance paper may promote the development of shared guidelines concerning the treatment of cognitive functions in schizophrenia, with the purpose to improve the quality of care and to achieve recovery in this population.
Collapse
|
27
|
Sun CH, Jiang WL, Cai DB, Wang ZM, Sim K, Ungvari GS, Huang X, Zheng W, Xiang YT. Adjunctive multi-session transcranial direct current stimulation for neurocognitive dysfunction in schizophrenia: A meta-analysis. Asian J Psychiatr 2021; 66:102887. [PMID: 34740126 DOI: 10.1016/j.ajp.2021.102887] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/21/2021] [Accepted: 10/14/2021] [Indexed: 01/13/2023]
Abstract
Findings of multi-session transcranial direct current stimulation (tDCS) as an adjunctive treatment of neurocognitive dysfunction in schizophrenia have been inconsistent. This meta-analysis of randomized controlled trials (RCTs) investigated the neurocognitive effects of adjunctive multi-session tDCS for schizophrenia. Twelve RCTs covering 418 schizophrenia patients were included and analyzed in this meta-analysis. The RevMan software (Version 5.3) was used to calculate risk ratios (RRs) and standardized mean differences (SMDs) with their 95% confidence intervals (CIs). Adjunctive tDCS outperformed the comparator in improving working memory deficits (SMD = 0.34, 95% CI: 0.03, 0.65; I2 = 52%; p = 0.03), but no significant effects were found in other cognitive domains. No group differences were found with regard to total psychopathology measured by the Brief Psychiatric Rating Scale and the Positive and Negative Symptom Scale (SMD =-0.29, 95%CI: -0.61, 0.03; I2 = 50%, p = 0.07) and discontinuation due to any reason (RR=0.80, 95%CI: 0.39, 1.66; I2 = 9%, p = 0.56). Adjunctive tDCS appears to have a significant therapeutic effect improving the working memory deficits in schizophrenia.
Collapse
Affiliation(s)
- Chen-Hui Sun
- Qingdao Mental Health Center, Qingdao University, Shandong, China
| | | | - Dong-Bin Cai
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Zhi-Min Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Kang Sim
- West Region, Institute of Mental Health, Buangkok Green Medical Park, Singapore, Singapore
| | - Gabor S Ungvari
- University of Notre Dame Australia, Fremantle, Australia; Division of Psychiatry, School of Medicine, University of Western Australia, Perth, Australia
| | - Xiong Huang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.
| | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, & Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macao SAR, China; Institute of Advanced Studies in Humanities and Social Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
28
|
Multichannel anodal tDCS over the left dorsolateral prefrontal cortex in a paediatric population. Sci Rep 2021; 11:21512. [PMID: 34728684 PMCID: PMC8563927 DOI: 10.1038/s41598-021-00933-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Methodological studies investigating transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (lDLPFC) in paediatric populations are limited. Therefore, we investigated in a paediatric population whether stimulation success of multichannel tDCS over the lDLPFC depends on concurrent task performance and individual head anatomy. In a randomised, sham-controlled, double-blind crossover study 22 healthy participants (10–17 years) received 2 mA multichannel anodal tDCS (atDCS) over the lDLPFC with and without a 2-back working memory (WM) task. After stimulation, the 2-back task and a Flanker task were performed. Resting state and task-related EEG were recorded. In 16 participants we calculated the individual electric field (E-field) distribution. Performance and neurophysiological activity in the 2-back task were not affected by atDCS. atDCS reduced reaction times in the Flanker task, independent of whether atDCS had been combined with the 2-back task. Flanker task related beta oscillation increased following stimulation without 2-back task performance. atDCS effects were not correlated with the E-field. We found no effect of multichannel atDCS over the lDLPFC on WM in children/adolescents but a transfer effect on interference control. While this effect on behaviour was independent of concurrent task performance, neurophysiological activity might be more sensitive to cognitive activation during stimulation. However, our results are limited by the small sample size, the lack of an active control group and variations in WM performance.
Collapse
|
29
|
He F, Li Y, Li C, Fan L, Liu T, Wang J. Repeated anodal high-definition transcranial direct current stimulation over the left dorsolateral prefrontal cortex in mild cognitive impairment patients increased regional homogeneity in multiple brain regions. PLoS One 2021; 16:e0256100. [PMID: 34388179 PMCID: PMC8363005 DOI: 10.1371/journal.pone.0256100] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/31/2021] [Indexed: 01/10/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) can improve cognitive function. However, it is not clear how high-definition tDCS (HD-tDCS) regulates the cognitive function and its neural mechanism, especially in individuals with mild cognitive impairment (MCI). This study aimed to examine whether HD-tDCS can modulate cognitive function in individuals with MCI and to determine whether the potential variety is related to spontaneous brain activity changes recorded by resting-state functional magnetic resonance imaging (rs-fMRI). Forty-three individuals with MCI were randomly assigned to receive either 10 HD-tDCS sessions or 10 sham sessions to the left dorsolateral prefrontal cortex (L-DLPFC). The fractional amplitude of low-frequency fluctuation (fALFF) and the regional homogeneity (ReHo) was computed using rs-fMRI data from all participants. The results showed that the fALFF and ReHo values changed in multiple areas following HD-tDCS. Brain regions with significant decreases in fALFF values include the Insula R, Precuneus R, Thalamus L, and Parietal Sup R, while the Temporal Inf R, Fusiform L, Occipital Sup L, Calcarine R, and Angular R showed significantly increased in their fALFF values. The brain regions with significant increases in ReHo values include the Temporal Inf R, Putamen L, Frontal Mid L, Precentral R, Frontal Sup Medial L, Frontal Sup R, and Precentral L. We found that HD-tDCS can alter the intensity and synchrony of brain activity, and our results indicate that fALFF and ReHo analysis are sensitive indicators for the detection of HD-tDCS during spontaneous brain activity. Interestingly, HD-tDCS increases the ReHo values of multiple brain regions, which may be related to the underlying mechanism of its clinical effects, these may also be related to a potential compensation mechanism involving the mobilization of more regions to complete a function following a functional decline.
Collapse
Affiliation(s)
- Fangmei He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Chenxi Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
- * E-mail: (JW); (TL)
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, and Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong, P. R. China
- * E-mail: (JW); (TL)
| |
Collapse
|
30
|
Yang D, Shin YI, Hong KS. Systemic Review on Transcranial Electrical Stimulation Parameters and EEG/fNIRS Features for Brain Diseases. Front Neurosci 2021; 15:629323. [PMID: 33841079 PMCID: PMC8032955 DOI: 10.3389/fnins.2021.629323] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/25/2021] [Indexed: 01/09/2023] Open
Abstract
Background Brain disorders are gradually becoming the leading cause of death worldwide. However, the lack of knowledge of brain disease’s underlying mechanisms and ineffective neuropharmacological therapy have led to further exploration of optimal treatments and brain monitoring techniques. Objective This study aims to review the current state of brain disorders, which utilize transcranial electrical stimulation (tES) and daily usable noninvasive neuroimaging techniques. Furthermore, the second goal of this study is to highlight available gaps and provide a comprehensive guideline for further investigation. Method A systematic search was conducted of the PubMed and Web of Science databases from January 2000 to October 2020 using relevant keywords. Electroencephalography (EEG) and functional near-infrared spectroscopy were selected as noninvasive neuroimaging modalities. Nine brain disorders were investigated in this study, including Alzheimer’s disease, depression, autism spectrum disorder, attention-deficit hyperactivity disorder, epilepsy, Parkinson’s disease, stroke, schizophrenia, and traumatic brain injury. Results Sixty-seven studies (1,385 participants) were included for quantitative analysis. Most of the articles (82.6%) employed transcranial direct current stimulation as an intervention method with modulation parameters of 1 mA intensity (47.2%) for 16–20 min (69.0%) duration of stimulation in a single session (36.8%). The frontal cortex (46.4%) and the cerebral cortex (47.8%) were used as a neuroimaging modality, with the power spectrum (45.7%) commonly extracted as a quantitative EEG feature. Conclusion An appropriate stimulation protocol applying tES as a therapy could be an effective treatment for cognitive and neurological brain disorders. However, the optimal tES criteria have not been defined; they vary across persons and disease types. Therefore, future work needs to investigate a closed-loop tES with monitoring by neuroimaging techniques to achieve personalized therapy for brain disorders.
Collapse
Affiliation(s)
- Dalin Yang
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan-si, South Korea
| | - Keum-Shik Hong
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan-si, South Korea
| |
Collapse
|