1
|
Kristensen TD, Ambrosen KS, Raghava JM, Syeda WT, Dhollander T, Lemvigh CK, Bojesen KB, Barber AD, Nielsen MØ, Rostrup E, Pantelis C, Fagerlund B, Glenthøj BY, Ebdrup BH. Structural and functional connectivity in relation to executive functions in antipsychotic-naïve patients with first episode schizophrenia and levels of glutamatergic metabolites. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:72. [PMID: 39217180 PMCID: PMC11366027 DOI: 10.1038/s41537-024-00487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Patients with schizophrenia exhibit structural and functional dysconnectivity but the relationship to the well-documented cognitive impairments is less clear. This study investigates associations between structural and functional connectivity and executive functions in antipsychotic-naïve patients experiencing schizophrenia. Sixty-four patients with schizophrenia and 95 matched controls underwent cognitive testing, diffusion weighted imaging and resting state functional magnetic resonance imaging. In the primary analyses, groupwise interactions between structural connectivity as measured by fixel-based analyses and executive functions were investigated using multivariate linear regression analyses. For significant structural connections, secondary analyses examined whether functional connectivity and associations with executive functions also differed for the two groups. In group comparisons, patients exhibited cognitive impairments across all executive functions compared to controls (p < 0.001), but no group difference were observed in the fixel-based measures. Primary analyses revealed a groupwise interaction between planning abilities and fixel-based measures in the left anterior thalamic radiation (p = 0.004), as well as interactions between cognitive flexibility and fixel-based measures in the isthmus of corpus callosum and cingulum (p = 0.049). Secondary analyses revealed increased functional connectivity between grey matter regions connected by the left anterior thalamic radiation (left thalamus with pars opercularis p = 0.018, and pars orbitalis p = 0.003) in patients compared to controls. Moreover, a groupwise interaction was observed between cognitive flexibility and functional connectivity between contralateral regions connected by the isthmus (precuneus p = 0.028, postcentral p = 0.012), all p-values corrected for multiple comparisons. We conclude that structural and functional connectivity appear to associate with executive functions differently in antipsychotic-naïve patients with schizophrenia compared to controls.
Collapse
Affiliation(s)
- Tina D Kristensen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.
| | - Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Jayachandra M Raghava
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Warda T Syeda
- Melbourne Brain Center Imaging Unit, Department of Radiology, University of Melbourne, Parkville, VIC, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Cecilie K Lemvigh
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Anita D Barber
- Department of Psychiatry, Zucker Hillside Hospital and Zucker School of Medicine at Hofstra/Northwell, Northwell, NY, USA
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Christos Pantelis
- Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - Birgitte Fagerlund
- Child and Adolescent Psychiatry, Mental Health Centre, Copenhagen University Hospital, Hellerup, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Sponheim SR, Ramsay IS, Lynn PA, Vinogradov S. Generalized Slowing of Resting-State Neural Oscillations in People With Schizophrenia. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00242-8. [PMID: 39182721 DOI: 10.1016/j.bpsc.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Recent interest in how neural oscillations reflect the flow of information through the brain has led to partitioning electroencephalography (EEG) recordings into periodic (i.e., oscillatory) and aperiodic (i.e., non-oscillatory) components. While both contribute to conventional measures of power within the frequencies that compose EEG recordings, the periodic aspect characterizes true oscillations, the speed of which is thought to be critical to efficient functioning of neural systems. Given evidence of EEG power abnormalities in schizophrenia (SCZ), we sought to determine whether the periodic aspect of EEG was aberrant in people with SCZ and could serve as a general measure of brain efficiency. METHODS Resting-state EEGs were gathered from 104 participants with SCZ and 105 healthy control participants. We used the FOOOF toolbox to remove aperiodic neural activity. We computed the cross-correlation between power spectra for individual participants and the mean power spectrum for all participants to quantify the relative speed of neural oscillations. RESULTS Periodic activity in SCZ was shifted toward lower frequencies than control participants during eyes-closed rest. On average, participants with SCZ had a 0.55-Hz shift toward oscillatory slowing across the frequency spectrum that predicted worse perceptual reasoning. CONCLUSIONS Slowed periodic activity at rest is evident in SCZ and may represent inefficient functioning of neural circuits as reflected in worse perceptual reasoning. A slower pace of neural oscillations may be a general limitation on the transmission of information within the brain.
Collapse
Affiliation(s)
- Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, Minnesota; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota.
| | - Ian S Ramsay
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Peter A Lynn
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
3
|
Caffaratti H, Slater B, Shaheen N, Rhone A, Calmus R, Kritikos M, Kumar S, Dlouhy B, Oya H, Griffiths T, Boes AD, Trapp N, Kaiser M, Sallet J, Banks MI, Howard MA, Zanaty M, Petkov CI. Neuromodulation with Ultrasound: Hypotheses on the Directionality of Effects and a Community Resource. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.14.24308829. [PMID: 38947047 PMCID: PMC11213082 DOI: 10.1101/2024.06.14.24308829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Low-intensity Transcranial Ultrasound Stimulation (TUS) is a promising non-invasive technique for deep-brain stimulation and focal neuromodulation. Research with animal models and computational modelling has raised the possibility that TUS can be biased towards enhancing or suppressing neural function. Here, we first conduct a systematic review of human TUS studies for perturbing neural function and alleviating brain disorders. We then collate a set of hypotheses on the directionality of TUS effects and conduct an initial meta-analysis on the human TUS study reported outcomes to date (n = 32 studies, 37 experiments). We find that parameters such as the duty cycle show some predictability regarding whether the targeted area's function is likely to be enhanced or suppressed. Given that human TUS sample sizes are exponentially increasing, we recognize that results can stabilize or change as further studies are reported. Therefore, we conclude by establishing an Iowa-Newcastle (inTUS) resource for the systematic reporting of TUS parameters and outcomes to support further hypothesis testing for greater precision in brain stimulation and neuromodulation with TUS.
Collapse
Affiliation(s)
- Hugo Caffaratti
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ben Slater
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Nour Shaheen
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ariane Rhone
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ryan Calmus
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Michael Kritikos
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Sukhbinder Kumar
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Brian Dlouhy
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Tim Griffiths
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Aaron D Boes
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Nicholas Trapp
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Marcus Kaiser
- NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jérôme Sallet
- Stem Cell and Brain Research Institute, INSERM U1208, University of Lyon, Lyon, France
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin at Madison, WI, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Mario Zanaty
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Christopher I Petkov
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
4
|
ÇAVUŞOĞLU B, HÜNERLİ D, EMEK SAVAŞ DD, YENER G, ADA E. Patterns of longitudinal subcortical atrophy over one year in amnestic mild cognitive impairment and its impact on cognitive performance: a preliminary study. Turk J Med Sci 2024; 54:588-597. [PMID: 39049994 PMCID: PMC11265849 DOI: 10.55730/1300-0144.5826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/12/2024] [Accepted: 03/11/2024] [Indexed: 07/27/2024] Open
Abstract
Background/aim Amnestic mild cognitive impairment (aMCI) is a risk factor for dementia, and thus, it is of interest to enlighten specific brain atrophy patterns in aMCI patients. We aim to define the longitudinal atrophy pattern in subcortical structures and its effect on cognition in patients with aMCI. Materials and methods Twenty patients with aMCI and 20 demographically matched healthy controls with baseline and longitudinal structural magnetic resonance imaging scans and neuropsychological assessments were studied. The algorithm FIRST (FMRIB's integrated registration and segmentation tool) was used to obtain volumes of subcortical structures (thalamus, putamen, caudate nucleus, nucleus accumbens, globus pallidus, hippocampus, and amygdala). Correlations between volumes and cognitive performance were assessed. Results Compared with healthy controls, aMCI demonstrated subcortical atrophies in the hippocampus (p = 0.001), nucleus accumbens (p = 0.003), and thalamus (p = 0.003) at baseline. Significant associations were found for the baseline volumes of the thalamus, nucleus accumbens, and hippocampus with memory, the thalamus with visuospatial skills. Conclusion aMCI demonstrated subcortical atrophies associated with cognitive deficits. The thalamus, nucleus accumbens, and hippocampus may provide additional diagnostic information for aMCI.
Collapse
Affiliation(s)
- Berrin ÇAVUŞOĞLU
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, İzmir,
Turkiye
| | - Duygu HÜNERLİ
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylül University, İzmir,
Turkiye
| | | | - Görsev YENER
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylül University, İzmir,
Turkiye
- Faculty of Medicine, İzmir University of Economics, İzmir,
Turkiye
- İzmir International Biomedicine and Genome Institute, İzmir,
Turkiye
| | - Emel ADA
- Department of Radiology, Faculty of Medicine, Dokuz Eylül University, İzmir,
Turkiye
| |
Collapse
|
5
|
Wang BA, Drammis S, Hummos A, Halassa MM, Pleger B. Modulation of prefrontal couplings by prior belief-related responses in ventromedial prefrontal cortex. Front Neurosci 2023; 17:1278096. [PMID: 38033544 PMCID: PMC10684683 DOI: 10.3389/fnins.2023.1278096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Humans and other animals can maintain constant payoffs in an uncertain environment by steadily re-evaluating and flexibly adjusting current strategy, which largely depends on the interactions between the prefrontal cortex (PFC) and mediodorsal thalamus (MD). While the ventromedial PFC (vmPFC) represents the level of uncertainty (i.e., prior belief about external states), it remains unclear how the brain recruits the PFC-MD network to re-evaluate decision strategy based on the uncertainty. Here, we leverage non-linear dynamic causal modeling on fMRI data to test how prior belief-dependent activity in vmPFC gates the information flow in the PFC-MD network when individuals switch their decision strategy. We show that the prior belief-related responses in vmPFC had a modulatory influence on the connections from dorsolateral PFC (dlPFC) to both, lateral orbitofrontal (lOFC) and MD. Bayesian parameter averaging revealed that only the connection from the dlPFC to lOFC surpassed the significant threshold, which indicates that the weaker the prior belief, the less was the inhibitory influence of the vmPFC on the strength of effective connections from dlPFC to lOFC. These findings suggest that the vmPFC acts as a gatekeeper for the recruitment of processing resources to re-evaluate the decision strategy in situations of high uncertainty.
Collapse
Affiliation(s)
- Bin A. Wang
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr-University Bochum, Bochum, Germany
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Sabrina Drammis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ali Hummos
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Michael M. Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Saalmann YB, Mofakham S, Mikell CB, Djuric PM. Microscale multicircuit brain stimulation: Achieving real-time brain state control for novel applications. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100071. [PMID: 36619175 PMCID: PMC9816916 DOI: 10.1016/j.crneur.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
Neurological and psychiatric disorders typically result from dysfunction across multiple neural circuits. Most of these disorders lack a satisfactory neuromodulation treatment. However, deep brain stimulation (DBS) has been successful in a limited number of disorders; DBS typically targets one or two brain areas with single contacts on relatively large electrodes, allowing for only coarse modulation of circuit function. Because of the dysfunction in distributed neural circuits - each requiring fine, tailored modulation - that characterizes most neuropsychiatric disorders, this approach holds limited promise. To develop the next generation of neuromodulation therapies, we will have to achieve fine-grained, closed-loop control over multiple neural circuits. Recent work has demonstrated spatial and frequency selectivity using microstimulation with many small, closely-spaced contacts, mimicking endogenous neural dynamics. Using custom electrode design and stimulation parameters, it should be possible to achieve bidirectional control over behavioral outcomes, such as increasing or decreasing arousal during central thalamic stimulation. Here, we discuss one possible approach, which we term microscale multicircuit brain stimulation (MMBS). We discuss how machine learning leverages behavioral and neural data to find optimal stimulation parameters across multiple contacts, to drive the brain towards desired states associated with behavioral goals. We expound a mathematical framework for MMBS, where behavioral and neural responses adjust the model in real-time, allowing us to adjust stimulation in real-time. These technologies will be critical to the development of the next generation of neurostimulation therapies, which will allow us to treat problems like disorders of consciousness and cognition.
Collapse
Affiliation(s)
- Yuri B. Saalmann
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sima Mofakham
- Department of Neurological Surgery, Stony Brook University Hospital, Stony Brook, NY, USA
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Charles B. Mikell
- Department of Neurological Surgery, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Petar M. Djuric
- Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|