1
|
Dard L, Bellance N, Lacombe D, Rossignol R. RAS signalling in energy metabolism and rare human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:845-867. [PMID: 29750912 DOI: 10.1016/j.bbabio.2018.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation-arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway.
Collapse
Affiliation(s)
- L Dard
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France
| | - N Bellance
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France
| | - D Lacombe
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France; CHU de Bordeaux, Service de Génétique Médicale, F-33076 Bordeaux, France
| | - R Rossignol
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France.
| |
Collapse
|
2
|
Jindal GA, Goyal Y, Burdine RD, Rauen KA, Shvartsman SY. RASopathies: unraveling mechanisms with animal models. Dis Model Mech 2016. [PMID: 26203125 PMCID: PMC4527292 DOI: 10.1242/dmm.020339] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RASopathies are developmental disorders caused by germline mutations in the Ras-MAPK pathway, and are characterized by a broad spectrum of functional and morphological abnormalities. The high incidence of these disorders (∼1/1000 births) motivates the development of systematic approaches for their efficient diagnosis and potential treatment. Recent advances in genome sequencing have greatly facilitated the genotyping and discovery of mutations in affected individuals, but establishing the causal relationships between molecules and disease phenotypes is non-trivial and presents both technical and conceptual challenges. Here, we discuss how these challenges could be addressed using genetically modified model organisms that have been instrumental in delineating the Ras-MAPK pathway and its roles during development. Focusing on studies in mice, zebrafish and Drosophila, we provide an up-to-date review of animal models of RASopathies at the molecular and functional level. We also discuss how increasingly sophisticated techniques of genetic engineering can be used to rigorously connect changes in specific components of the Ras-MAPK pathway with observed functional and morphological phenotypes. Establishing these connections is essential for advancing our understanding of RASopathies and for devising rational strategies for their management and treatment. Summary: Developmental disorders caused by germline mutations in the Ras-MAPK pathway are called RASopathies. Studies with animal models, including mice, zebrafish and Drosophila, continue to enhance our understanding of these diseases.
Collapse
Affiliation(s)
- Granton A Jindal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Yogesh Goyal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Katherine A Rauen
- Department of Pediatrics, MIND Institute, Division of Genomic Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Coffin CM, Davis JL, Borinstein SC. Syndrome-associated soft tissue tumours. Histopathology 2013; 64:68-87. [DOI: 10.1111/his.12280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cheryl M Coffin
- Department of Pathology, Microbiology, and Immunology; Vanderbilt University School of Medicine; Nashville TN USA
| | - Jessica L Davis
- Department of Anatomic Pathology; Laboratory Medicine; University of California at San Francisco; San Francisco CA USA
| | - Scott C Borinstein
- Division of Pediatric Hematology/Oncology; Department of Pediatrics; Vanderbilt University School of Medicine; Nashville TN USA
| |
Collapse
|
4
|
Dang I, De Vries GH. Aberrant cAMP metabolism in NF1 malignant peripheral nerve sheath tumor cells. Neurochem Res 2011; 36:1697-705. [PMID: 21380540 DOI: 10.1007/s11064-011-0433-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2011] [Indexed: 12/13/2022]
Abstract
Malignant peripheral nerve sheath (MPNST) cell lines derived from patients with neurofibromatosis type 1 (NF!) were found to have basal cAMP levels which are two-fold higher than cAMP levels in normal human adult Schwann cells (nHSC). PCR analysis also revealed that normal adult human Schwann cells express mRNA for types Ill, IV, and IX adenylyl cyclase (AC) while NF1 MPNST cells express AC mRNA of types II, V, and VIII in addition to expressing all the isoforms of normal adult human Schwann cells. Further PCR analysis revealed that NF1 MPNST lines express mRNA for EP2 and EP4 prostaglandin receptors whereas nHSC only express mRNA for the EP2 receptor. Exogenous prostaglandins alone or in combination with PDGF BB induced greater increases in cAMP levels and proliferation of NF1 MPNST cells compared to nHSC. We conclude that aberrant cAMP signaling in NF1 MPNST cells contributes to tumor formation in NF1 patients.
Collapse
Affiliation(s)
- Ian Dang
- Research 151, Hines VA Hospital, Hines, IL 60141, USA.
| | | |
Collapse
|
5
|
Ribeiro R, Soares A, Pinto D, Catarino R, Lopes C, Medeiros R. EGF genetic polymorphism is associated with clinical features but not malignant phenotype in neurofibromatosis type 1 patients. J Neurooncol 2006; 81:225-9. [PMID: 17031562 DOI: 10.1007/s11060-006-9224-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2006] [Accepted: 07/18/2006] [Indexed: 12/22/2022]
Abstract
Neurofibromatosis type 1 (NF1) is characterized by a wide variation in clinical presentation and in some cases progression to malignant tumor. Epidermal growth factor (EGF) is an important mitogen for Schwann cells and is involved in the development of malignant tumors in NF1 patients. We hypothesized that EGF +61 G/A functional polymorphism, which represents constitutional all-life exposure to higher EGF expression and circulating levels, may predispose for precocious and more aggressive manifestations of disease. We found that clinical findings of intestinal polyps are significantly more frequent in patients with G homozygous genotype (P = 0.023). Those carriers of GG genotype have earlier onset of café-au-lait spots and Lisch nodules appearance (P = 0.030 and P = 0.017, respectively). Nevertheless, the EGF overexpressing genotype-GG, is not associated with higher risk for malignant progression or severity of disease. EGF polymorphism may play a role in the earlier onset of NF1 pigment cell-related manifestations and in intestinal polyps' development. Further studies in larger samples should confirm the absence of risk for having higher severity grade or malignant phenotype in NF1 patients.
Collapse
Affiliation(s)
- Ricardo Ribeiro
- Molecular Oncology-CI, Portuguese Institute of Oncology, Edifício Laboratórios-PISO 4, R. Dr. Ant. Bernardino Almeida, 4200-072, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
6
|
Gottfried ON, Viskochil DH, Fults DW, Couldwell WT. Molecular, genetic, and cellular pathogenesis of neurofibromas and surgical implications. Neurosurgery 2006; 58:1-16; discussion 1-16. [PMID: 16385324 DOI: 10.1227/01.neu.0000190651.45384.8b] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neurofibromatosis 1 (NF1) is a common autosomal dominant disease characterized by complex and multicellular neurofibroma tumors. Significant advances have been made in the research of the cellular, genetic, and molecular biology of NF1. The NF1 gene was identified by positional cloning. The functions of its protein product, neurofibromin, in RAS signaling and in other signal transduction pathways are being elucidated, and the important roles of loss of heterozygosity and haploinsufficiency in tumorigenesis are better understood. The Schwann cell was discovered to be the cell of origin for neurofibromas, but understanding of a more complicated interplay of multiple cell types in tumorigenesis, specifically recruited heterogeneous cell types such as mast cells and fibroblasts, has important implications for surgical therapy of these tumors. This review summarizes the most recent NF1 and neurofibroma literature describing the pathogenesis and treatment of nerve sheath tumors. Understanding the biological underpinnings of tumorigenesis in NF1 has implications for future surgical and medical management of neurofibromas.
Collapse
Affiliation(s)
- Oren N Gottfried
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
7
|
ROSENBAUM THORSTEN, KIM HAESUNA, BOISSY YINGL, LING BO, RATNER NANCY. Neurofibromin, the Neurofibromatosis Type 1 Ras-GAP, Is Required for Appropriate P0Expression and Myelination. Ann N Y Acad Sci 2006; 883:203-214. [DOI: 10.1111/j.1749-6632.1999.tb08583.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Dang I, DeVries GH. Schwann cell lines derived from malignant peripheral nerve sheath tumors respond abnormally to platelet-derived growth factor-BB. J Neurosci Res 2005; 79:318-28. [PMID: 15602756 DOI: 10.1002/jnr.20334] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disease caused by the loss of neurofibromin, which can lead to formation of highly invasive malignant peripheral nerve sheath tumors (MPNST). We characterized platelet-derived growth factor-beta (PDGF-beta) receptor expression levels and signal transduction pathways in NF1 MPNST cell lines and compared them with the expression of PDGF-beta receptors in normal human Schwann cells (nhSC). As examined by Western blotting, PDGF-beta receptor expression levels were similar in nhSC and NF1 MPNST cell lines. MAPK and Akt also were phosphorylated in both cell types to a similar degree in response to PDGF B chains (PDGF-BB). However, increased intracellular calcium (Ca2+) levels in response to PDGF-BB were observed only in the NF1 MPNST cell lines; nhSC did not show any increase in intracellular calcium when stimulated with PDGF-BB. The calcium response in NF1 MPNST cell lines was blocked with thapsigargin, suggesting that the PDGF-BB-stimulated increases in intracellular calcium originated in the internal compartment of the cell rather than reflecting influx of calcium from the extracellular compartment. Calmodulin kinase II (CAMKII) is phosphorylated in response to PDGF-BB in the NF1 MPNST cell lines, whereas no phosphorylation of CAMKII was observed in nhSCs. The decreased growth of NF1 MPNST cell lines after treatment with a CAMKII inhibitor is consistent with the view that aberrant activation of the calcium-signaling pathway by PDGF-BB contributes to the formation of MPNST in NF1 patients.
Collapse
Affiliation(s)
- Ian Dang
- Research Service, Hines VA Hospital, Hines, IL 60141, USA.
| | | |
Collapse
|
9
|
Sherman LS, Atit R, Rosenbaum T, Cox AD, Ratner N. Single cell Ras-GTP analysis reveals altered Ras activity in a subpopulation of neurofibroma Schwann cells but not fibroblasts. J Biol Chem 2000; 275:30740-5. [PMID: 10900196 PMCID: PMC3066458 DOI: 10.1074/jbc.m001702200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by multiple neurofibromas, peripheral nerve tumors containing mainly Schwann cells and fibroblasts. The NF1 gene encodes neurofibromin, a tumor suppressor postulated to function in part as a Ras GTPase-activating protein. The roles of different cell types and of elevated Ras-GTP in neurofibroma formation are unclear. To determine which neurofibroma cell type has altered Ras-GTP regulation, we developed an immunocytochemical assay for active, GTP-bound Ras. In NIH 3T3 cells, the assay detected overexpressed, constitutively activated K-, N-, and Ha-Ras and insulin-induced endogenous Ras-GTP. In dissociated neurofibroma cells from NF1 patients, Ras-GTP was elevated in Schwann cells but not fibroblasts. Twelve to 62% of tumor Schwann cells showed elevated Ras-GTP, unexpectedly revealing neurofibroma Schwann cell heterogeneity. Increased basal Ras-GTP did not correlate with increased cell proliferation. Normal human Schwann cells, however, did not demonstrate elevated basal Ras activity. Furthermore, compared with cells from wild type littermates, Ras-GTP was elevated in all mouse Nf1(-/-) Schwann cells but never in Nf1(-/-) mouse fibroblasts. Our results indicate that Ras activity is detectably increased in only some neurofibroma Schwann cells and suggest that neurofibromin is not an essential regulator of Ras activity in fibroblasts.
Collapse
Affiliation(s)
- Larry S. Sherman
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521
| | - Radhika Atit
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521
| | - Thorsten Rosenbaum
- Department of Neuropediatrics, Children’s Hospital, Heinrich-Heine-University, Dusseldorf, Germany
| | - Adrienne D. Cox
- Departments of Radiation Oncology and Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7512
| | - Nancy Ratner
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521
| |
Collapse
|
10
|
Rosenbaum T, Rosenbaum C, Winner U, Müller HW, Lenard HG, Hanemann CO. Long-term culture and characterization of human neurofibroma-derived Schwann cells. J Neurosci Res 2000; 61:524-32. [PMID: 10956422 DOI: 10.1002/1097-4547(20000901)61:5<524::aid-jnr7>3.0.co;2-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neurofibromas are benign tumors arising from the peripheral nerve sheath and are a typical finding in neurofibromatosis type 1 (NF1). Schwann cells are the predominant cell type in neurofibromas and thus are supposed to play a major role in the pathogenesis of these tumors. It is not known, however, if NF1 mutations in Schwann cells result in an altered phenotype that subsequently leads to tumor formation. To characterize the biological properties of neurofibroma-derived Schwann cells we developed cell culture techniques that enabled us to isolate Schwann cells from neurofibromas and grow them in vitro for several weeks without significant fibroblast contamination. Neurofibroma-derived Schwann cells were characterized by altered morphology, heterogeneous growth behavior, and increased expression of the P0 antigen while several other features of normal human Schwann cells were retained. We conclude that neurofibroma-derived Schwann cells exhibit a distinct phenotype in vitro but that the observed abnormalities by themselves are insufficient to explain neurofibroma formation. Application of our improved culture conditions makes neurofibroma-derived Schwann cells readily available for further studies to define their role in tumorigenesis in neurofibromatosis type 1.
Collapse
Affiliation(s)
- T Rosenbaum
- Department of Neuropediatrics, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
DeClue JE, Heffelfinger S, Benvenuto G, Ling B, Li S, Rui W, Vass WC, Viskochil D, Ratner N. Epidermal growth factor receptor expression in neurofibromatosis type 1-related tumors and NF1 animal models. J Clin Invest 2000; 105:1233-41. [PMID: 10791998 PMCID: PMC315438 DOI: 10.1172/jci7610] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have found that EGF-R expression is associated with the development of the Schwann cell-derived tumors characteristic of neurofibromatosis type 1 (NF1) and in animal models of this disease. This is surprising, because Schwann cells normally lack EGF-R and respond to ligands other than EGF. Nevertheless, immunoblotting, Northern analysis, and immunohistochemistry revealed that each of 3 malignant peripheral nerve sheath tumor (MPNST) cell lines from NF1 patients expressed the EGF-R, as did 7 of 7 other primary MPNSTs, a non-NF1 MPNST cell line, and the S100(+) cells from each of 9 benign neurofibromas. Furthermore, transformed derivatives of Schwann cells from NF1(-/-) mouse embryos also expressed the EGF-R. All of the cells or cell lines expressing EGF-R responded to EGF by activation of downstream signaling pathways. Thus, EGF-R expression may play an important role in NF1 tumorigenesis and Schwann cell transformation. Consistent with this hypothesis, growth of NF1 MPNST lines and the transformed NF1(-/-) mouse embryo Schwann cells was greatly stimulated by EGF in vitro and could be blocked by agents that antagonize EGF-R function.
Collapse
Affiliation(s)
- J E DeClue
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Atit RP, Crowe MJ, Greenhalgh DG, Wenstrup RJ, Ratner N. The Nf1 tumor suppressor regulates mouse skin wound healing, fibroblast proliferation, and collagen deposited by fibroblasts. J Invest Dermatol 1999; 112:835-42. [PMID: 10383727 PMCID: PMC2854506 DOI: 10.1046/j.1523-1747.1999.00609.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurofibromatosis type 1 patients develop peripheral nerve tumors (neurofibromas) composed mainly of Schwann cells and fibroblasts, in an abundant collagen matrix produced by fibroblasts. Trauma has been proposed to trigger neurofibroma formation. To test if loss of the neurofibromatosis type 1 gene (Nf1) compromises fibroblast function in vivo following trauma, skin wounding was performed in Nf1 knockout mice. The pattern and amount of collagen-rich granulation bed tissue, manufactured by fibroblasts, was grossly abnormal in 60% of Nf1+/- wounds. Nf1 mutant fibroblasts showed cell autonomous abnormalities in collagen deposition in vitro that were not mimicked by Ras activation in fibroblasts, even though some Nf1 effects are mediated through Ras. Nf1+/- skin wound fibroblasts also proliferated past the normal wound maturation phase; this in vivo effect was potentiated by muscle injury. In vitro, Nf1+/- fibroblasts showed higher proliferation in 10% serum than Nf1+/+ fibroblasts. Macrophage-conditioned media or epidermal growth factor potentiated Nf1+/- fibroblast proliferation in vitro, demonstrating abnormal response of mutant fibroblasts to wound cytokines. Thus Nf1 is a key regulator of fibroblast responses to injury, and Nf1 mutation in mouse fibroblasts causes abnormalities characteristic of human neurofibromas.
Collapse
Affiliation(s)
- R P Atit
- Division of Biology, Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
13
|
Rizvi TA, Akunuru S, de Courten-Myers G, Switzer RC, Nordlund ML, Ratner N. Region-specific astrogliosis in brains of mice heterozygous for mutations in the neurofibromatosis type 1 (Nf1) tumor suppressor. Brain Res 1999; 816:111-23. [PMID: 9878702 PMCID: PMC2854494 DOI: 10.1016/s0006-8993(98)01133-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brains from human neurofibromatosis type 1 (NF1) patients show increased expression of glial fibrillary acidic protein (GFAP), consistent with activation of astrocytes (M.L. Nordlund, T.A. Rizvi, C.I. Brannan, N. Ratner, Neurofibromin expression and astrogliosis in neurofibromatosis (type 1) brains, J. Neuropathol. Exp. Neurology 54 (1995) 588-600). We analyzed brains from transgenic mice in which the Nf1 gene was targeted by homologous recombination. We show here that, in all heterozygous mice analyzed, there are increased numbers of astrocytes expressing high levels of GFAP in medial regions of the periaqueductal gray and in the nucleus accumbens. More subtle, but significant, changes in the number of GFAP positive astrocytes were observed in the hippocampus in 60% of mutant mice analyzed. Astrocytes with elevated GFAP were present at 1 month, 2 months, 6 months and 12 months after birth. Most brain regions, including the cerebellum, basal ganglia, cerebral cortex, hypothalamus, thalamus, cortical amygdaloid area, and white matter tracts did not show any gliotic changes. No evidence of degenerating neurons was found using de Olmos' cupric silver stain. We conclude that Nf1/nf1 mice provide a model to study astrogliosis associated with neurofibromatosis type 1.
Collapse
Affiliation(s)
- Tilat A. Rizvi
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH, 45267-0521, USA
| | - Shailaja Akunuru
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH, 45267-0521, USA
| | - Gabrielle de Courten-Myers
- Department of Pathology, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH, 45267-0521, USA
| | | | - Michael L. Nordlund
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH, 45267-0521, USA
| | - Nancy Ratner
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH, 45267-0521, USA
- Corresponding author. Fax: +1-513-558-4454;
| |
Collapse
|
14
|
Badache A, De Vries GH. Neurofibrosarcoma-derived Schwann cells overexpress platelet-derived growth factor (PDGF) receptors and are induced to proliferate by PDGF BB. J Cell Physiol 1998; 177:334-42. [PMID: 9766530 DOI: 10.1002/(sici)1097-4652(199811)177:2<334::aid-jcp15>3.0.co;2-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neurofibromatosis type 1 (NF1) is characterized by the formation of neurofibromas, benign tumors of the peripheral nerve consisting essentially of Schwann cells, which can sometimes turn malignant to form neurofibrosarcomas. The mechanism of progression toward a malignant phenotype remains largely unknown. In this report, we show that platelet-derived growth factor (PDGF) BB, and to a lesser extent fibroblast growth factor 2, are mitogenic for two neurofibrosarcoma-derived Schwann cell lines, but not for a Schwann cell line derived from a schwannoma (from a non-NF1 patient) or for transformed rat Schwann cells. Levels of expression of both PDGF receptor alpha and beta are significantly increased in the two neurofibrosarcoma-derived cell lines compared to the non-NF1 Schwann cell lines. The level of tyrosyl-phosphorylated PDGF receptor beta is strongly increased upon stimulation by PDGF BB. In comparison, only modest levels of tyrosyl-phosphorylated PDGF receptor alpha are observed, upon stimulation by PDGF AA or PDGF BB. Accordingly, PDGF AA is only a weak mitogen for the neurofibrosarcoma-derived cells by comparison to PDGF BB. These results indicate that the mitogenic effect of PDGF BB for the neurofibrosarcoma-derived Schwann cell lines is primarily transduced by PDGF receptor beta. Neu differentiation factor beta, a potent mitogen for normal Schwann cells, was unable to stimulate proliferation of the transformed Schwann cell lines, due to a dramatic down-regulation of the erbB3 receptor. Therefore, aberrant expression of growth factor receptors by Schwann cells, such as the PDGF receptors, could represent an important step in the process leading to Schwann cell hyperplasia in NF1.
Collapse
Affiliation(s)
- A Badache
- Department of Cell Biology, Neurobiology and Anatomy, Loyola University Medical Center, Chicago, Illinois, USA.
| | | |
Collapse
|